JPWO2018173553A1 - 塗布膜、塗布膜の製造方法及び有機エレクトロルミネッセンス素子 - Google Patents

塗布膜、塗布膜の製造方法及び有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
JPWO2018173553A1
JPWO2018173553A1 JP2019507431A JP2019507431A JPWO2018173553A1 JP WO2018173553 A1 JPWO2018173553 A1 JP WO2018173553A1 JP 2019507431 A JP2019507431 A JP 2019507431A JP 2019507431 A JP2019507431 A JP 2019507431A JP WO2018173553 A1 JPWO2018173553 A1 JP WO2018173553A1
Authority
JP
Japan
Prior art keywords
organic
particle size
layer
coating film
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019507431A
Other languages
English (en)
Inventor
昇 関根
昇 関根
拓己 倉田
拓己 倉田
勇作 田中
勇作 田中
伊藤 博人
博人 伊藤
小西 敬吏
敬吏 小西
北 弘志
弘志 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2018173553A1 publication Critical patent/JPWO2018173553A1/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

少なくとも単一種の有機化合物からなる塗布膜であって、小角X線散乱測定から得られる分子又は会合体の粒径分布曲線(横軸:粒径、縦軸:頻度分布)中に少なくとも一つの極大ピークを有し、かつ、下記R及びrが、下記式(1)で表される関係を満たす有機化合物を含有する。式(1):R≦15r[式(1)中、Rは、小角X線散乱測定から得られる粒径分布曲線の極大ピークのうち、最も粒径の小さい粒径を示す極大ピークに対応する粒径を表す。rは、前記有機化合物について密度汎関数理論計算したときに得られる分子長軸長さを2a(nm)及び分子短軸長さを2b(nm)としたとき、当該有機化合物の分子半径r=(a×b)1/2を表す。]

Description

本発明は、塗布膜、塗布膜の製造方法及び有機エレクトロルミネッセンス素子に関し、特にその目的は、膜中の有機化合物粒子の粒径が小さい塗布膜及びその製造方法を提供することであり、また、当該塗布膜を用いた発光効率と耐久性に優れた有機エレクトロルミネッセンス素子を提供することである。
1 有機電子デバイスの普及状況と現状の課題
有機化合物を利用した電子デバイス、例えば、有機エレクトロルミネッセンス素子(organic electroluminescent diode:「OLED」、「有機EL素子」ともいう。)、有機光電変換素子、及び有機トランジスタなどの種々の電子デバイスが開発され、それらの技術的進展に伴い、様々な産業・市場分野での普及が進んでいる。
例えば、有機電子デバイスの典型的例である有機EL素子は、ディスプレイや照明、インジケータなどの様々な分野で利用が始まり、既に液晶ディスプレイや発光ダイオード(light emitting diode:LED)と共に現在の生活に入り込み、これから飛躍的普及拡大期を迎えようとしている。
しかし、有機EL素子等の有機電子デバイスの発展を促進するためには、その研究・開発過程で解決しなければならない問題は数多く残存している。とりわけ、有機化合物を利用することに由来する種々の問題が、各種有機電子デバイスに共通する又は特有の問題として残存している。これらの解決すべき問題は、量子効率や発光寿命等の性能の一層の向上と、生産性の一層の向上すなわちコストダウンとに直結する究極的課題であると言える。
上記究極的課題のうち、性能面の課題については既に実用に十分なレベルには達しているものと思われる。
一方、生産性、つまりコスト面に対して、液晶ディスプレイや発光ダイオードに比較して大きな課題を有しており、まだまだ改善の余地が大きい。
つまり、生産性を改善することは、有機EL素子を発展させるための必要条件であると言える。また、このことは、他の有機電子デバイス、例えば有機光電変換素子についても同様である。
そこで、以下において、特に生産性に係る究極的課題の観点から、有機電子デバイスの典型的例である有機EL素子の製造に関する従来技術の問題点について説明する。
2 有機機能層形成法に関する問題点
まず、有機機能層を形成する方法、すなわち真空蒸着法(「真空蒸着成膜法」ともいう。)と湿式塗布法(「ウエット・コーティング法」、「湿式塗布成膜法」ともいう。)に起因する問題点について述べる。
2.1 有機機能層に対する水分と酸素の影響
有機EL素子は、有機機能層の一つである発光層中に存在する発光材料(一般的には「ドーパント」ともいう。)に電子と正孔が注入され、その再結合が起こったときにできる励起子が、基底状態に戻る際に光を放出することを基本原理としている。
この励起子は、その名のとおり励起状態にある非常に活性な化学種であるため、容易に水分子や酸素分子と反応し、分解や変性などの化学変化又は状態変化を起こし、発光性が減少してしまう。つまり、発光寿命が減少してしまう要因の一つである。
すなわち、発光層のような有機機能層を形成する際には、その形成過程において厳密に水分や酸素の混入を防止した環境下で行う必要がある。
また、有機EL素子では、LEDとは異なり、発光層を構成する有機化合物の存在状態は結晶ではなくアモルファス(非晶質)であることが高効率発光の条件となる。したがって、均質なアモルファス膜を形成するためには、成膜中における有機化合物の分子状態(アモルファス状態)並びにその周囲の環境が一定であることが望まれる。
したがって、上述の水分や酸素による弊害防止と有機化合物をアモルファス状態にする必要性等の理由から、これまでの良好な性能を発揮する有機EL素子の有機機能層に対する成膜方法は、真空蒸着法によるものであった。既に量産化されているスマートフォン用の有機ELディスプレイも、大型テレビに使われる有機ELディスプレイも、有機機能層の成膜方法には蒸着法が採用されている。
2.2 真空蒸着法による有機機能層形成の問題点
しかしながら、真空蒸着法により有機EL素子を作製する場合、発光色再現方式に関する下記のような問題がある。
有機エレクトロルミネッセンスは自発光であり、発光色は発光層を構成する発光材料で一義的に決まるため、基本的には赤(Red:R)、緑(Green:G)、青(Blue:B)の画素ごとに、それぞれの発光色の有機EL素子を作り、それをアレイ化してディスプレイにする方法(RGBサイド・バイ・サイド方式)が採用されてきた。
RGBサイド・バイ・サイド方式の場合、それぞれの画素で、異なる発光層を形成する必要があり、それを大面積で行うためにシャドーマスクを画素毎にずらしながら各画素を形成していく方法が一般的である。このとき、発光層等の形成(成膜)方法が真空蒸着法であるため、蒸着源からの輻射熱でシャドーマスクが熱膨張し、画素ズレを起こしてしまうという決定的な問題がある。
この決定的な問題のため、スマートフォン用の小〜中型サイズのディスプレイは、RGBサイド・バイ・サイド方式で年間数億パネル生産されているにもかかわらず、50インチを超えるような大型ディスプレイにおいては、シャドーマスクの熱変形に端を発する製造歩留りが低く、大規模な生産は行われていない。
一方、フルカラーを再現するもう一つの方式として、有機EL素子から得られる白色光を、カラーフィルターを通すことで、RGBに色分割してフルカラー再現する方式(カラーフィルター方式)が採用されている。既に量産化されている大型ディスプレイは、画素ごとに、白色発光する有機EL素子がアレイ化されたものであり、カラーフィルター方式にはシャドーマスクが不要となることから歩留りが向上する。しかしながら、カラーフィルター方式では、独立の画素でコントラストの高い発光を得られるという有機EL素子そもそもの利点・特徴を十分に発揮できないという問題がある。
2.3 湿式塗布法による有機機能層形成の可能性
有機EL素子を構成する有機機能層は、4層〜7層程度の積層構造を採り、さらに全体の層(膜)厚は100〜200nm程度である。これ以上薄すぎると、下地層となる電極の表面粗さの影響で、陽極と陰極が部分的に短絡してしまい、電流リーク現象が起こってしまう。
また、これよりも厚いと、有機EL素子の電荷伝導機構がオームの法則と異なり、チャイルド則にのっとる空間電荷制限電流(space charge limited current:SCLC)であるために、流れる電流密度は電極間距離の3乗に反比例してしまうことから、大幅な駆動電圧上昇が起こり、消費電力が大きくなってしまうという問題が生じる。
有機EL素子の有機機能層は低分子化合物を蒸着成膜することが一般的ではあるが、低分子化合物の代わりに、ポリフェニレンビニレンやポリフルオレンなどのようなπ共役系高分子をキャリア移動と発光の両方に活用する発光ポリマー(light emitting polymer:LEP)を用いる方法もある。ポリマー材料は蒸着成膜できないため、スピンコートやダイコート、フレキソ印刷、インクジェットプリンティングなどの湿式塗布法(湿式成膜法、ウエット・コーティング法)によって有機機能層を作製することになる。
また、蒸着可能な低分子化合物であっても、化合物の分子構造と溶解させる溶媒を適切に選択することにより、ナノメートルオーダーの平滑な塗布膜を形成することも可能であり、2010年にコニカミノルタは、低分子化合物を4層積層塗布して、高効率発光するリン光白色素子の試作品を発表している。
上記の事情に鑑み、低分子化合物を用いた湿式塗布法(ウエット・コーティング法)によって有機EL素子を作製する研究開発が盛んに行われている。
サイズの大きな微結晶の含有を抑制する塗布成膜法については、複数の先行文献が存在するが、一般に膜の微結晶サイズ評価は目視でのみ行われており、目で見えない範囲での微結晶生成の可能性は否定できない。
さらに、X線回折により微結晶による回折ピークが検出されない薄膜を含む蒸着型の有機EL素子の作製方法が開示されている文献もあるが、X線回折による回折ピークが検出されない低分子塗布型の有機EL素子の作製方法については解決されていない課題として残されている。
また、高エネルギー、高指向性のX線回折ではこのような膜においても微結晶ピークが観測されることが知られている。すなわち、分子が十分に分散しているわけではなく、いくつかの分子が集合し、結果としてドメイン(凝集クラスター若しくは空隙)を形成していることが示唆され、さらなる高発光効率(低駆動電圧など)で長寿命化された有機EL素子を得るには十分とは言えなかった。
このような課題に対し、ホスト材料とドーパント材料の多種混合等により、微結晶の少ない有機エレクトロルミネッセンス素子用発光層を得る方法が開示されている(特許文献1)。特許文献1においては、ホスト材料及びドーパント材料を複数組み合わせることによって、微結晶の生成を抑制することができることが開示されているが、単一種の材料からなる薄膜において微結晶の生成を制御されるかどうかは開示されていない。
国際公開第2013/042446号
本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、単一種の材料を用いた場合においても微結晶の少ない、言い換えれば、膜中の有機化合物粒子の粒径(ドメインサイズ)が小さい塗布膜、当該塗布膜を製造する塗布膜の製造方法を提供することであり、また、当該塗布膜を用いた発光効率と耐久性に優れた有機エレクトロルミネッセンス素子を提供することである。
本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、少なくとも単一種の有機化合物分子からなる塗布膜で、小角X線散乱測定から得られる分子又は会合体の粒径分布曲線中に少なくとも一つの極大ピークを有し、かつ、特定の関係式を満たす有機化合物を含有することで、膜中の有機化合物の粒子の粒径が小さい塗布膜及び塗布膜の製造方法、また、発光効率と耐久性に優れた有機エレクトロルミネッセンス素子を提供することができることを見いだし本発明に至った。
すなわち、本発明に係る上記課題は、以下の手段により解決される。
1.少なくとも単一種の有機化合物からなる塗布膜であって、
小角X線散乱測定から得られる分子又は会合体の粒径分布曲線(横軸:粒径、縦軸:頻度分布)中に少なくとも一つの極大ピークを有し、かつ、
下記R及びrが、下記式(1)で表される関係を満たす有機化合物を含有する塗布膜。
式(1):R≦15r
[式(1)中、Rは、小角X線散乱測定から得られる粒径分布曲線の極大ピークのうち、最も粒径の小さい粒径を示す極大ピークに対応する粒径を表す。rは、前記有機化合物について密度汎関数理論計算したときに得られる分子長軸長さを2a(nm)及び分子短軸長さを2b(nm)としたとき、当該有機化合物の分子半径r=(a×b)1/2を表す
。]
2.前記Rが、前記粒径分布曲線の極大ピークのうち、最も頻度分布の大きい極大ピークに対応する粒径を表す第1項に記載の塗布膜。
3.前記式(1)を満たす極大ピークの頻度分布が、0.4以上である第1項又は第2項に記載の塗布膜。
4.下記式(2)を満たす第1項から第3項のいずれか一項に記載の塗布膜。
式(2):R≦8r
[式(2)中、R及びrは、前記式(1)中のR及びrと同義である。]
5.前記式(1)を満たす極大ピークの半値幅が、0.3〜3.0nmの範囲内である第1項から第4項までのいずれか一項に記載の塗布膜。
6.前記式(1)を満たす複数種の有機化合物を含有する第1項から第5項までのいずれか一項に記載の塗布膜。
7.下記R′及びrが、下記式(3)で表される関係を満たす有機化合物を含有する塗布液を固化してなる膜である第1項から第6項までのいずれか一項に記載の塗布膜。
式(3):R′≦6r
[式(3)中、R′は、前記塗布液の小角X線散乱測定から得られる粒径分布曲線の極大ピークのうち、最も粒径の小さい粒径を示す極大ピークに対応する粒径を表す。rは、前記式(1)中のrと同義である。]
8.第1項から第7項までのいずれか一項に記載の塗布膜を製造する塗布膜の製造方法であって、
下記R′及びrが、下記式(3)で表される関係を満たす有機化合物を含有する塗布液を調製する工程と、
前記塗布液を乾燥固化する工程と、を有する塗布膜の製造方法。
式(3):R′≦6r
[式(3)中、R′は、前記塗布液の小角X線散乱測定から得られる粒径分布曲線の極大ピークのうち、最も粒径の小さい粒径を示す極大ピークに対応する粒径を表す。rは、前記式(1)中のrと同義である。]
9.第1項から第7項までのいずれか一項に記載の塗布膜を、有機機能層の少なくとも1層に有する有機エレクトロルミネッセンス素子。
10.前記有機機能層が、発光層である第9項に記載の有機エレクトロルミネッセンス素子。
なお、本発明の理解を容易にするため、本発明に係る基本的方針と研究・開発の経緯について後述する。
(本発明に係る基本的方針と研究・開発の経緯)
前述した技術的背景のもとでは、本発明の塗布膜の製造方法において採用すべき技術としては、必然的に次に掲げるような選択になるものと推定している。
<製造方法に関する基本的方針>
(1)有機化合物は低分子化合物が好ましい(高分子化合物は好ましくない)。
(2)成膜法は塗布法が好ましい(蒸着法は好ましくない)。
(3)塗布液中の溶媒は汎用溶媒が好ましい(高価な脱水高純度溶媒は好ましくない)。
(4)溶解は単分子状態が好ましい(微結晶分散液は好ましくない)。
(5)化合物の精製には吸着−脱着平衡を活用するのが好ましい(熱平衡は好ましくない)。
まずは、上記のような基本的方針にしたときに、方針(3)〜(5)を全て満たす方法を創出することが当面の技術課題であり、それを達成することが最も価値のある技術であると考え、それを達成する手段について、研究・開発を重ねてきた。
その結果、前記「(4)溶解は単分子状態が好ましい。」を達成するためには、分子を分散化しておくことが重要であるものと捉えた。溶液中における溶質会合体を分散させる方法として、クロマトグラフィー、超音波又はマイクロ波の照射、電気泳動等の方法を挙げることができる。また、乾燥工程においても、溶質と溶媒の相互作用力をある一定範囲以下に抑え、乾燥の駆動力をエントロピー支配とするため、溶質の溶解度は5質量%以下である溶媒を用いることが好ましいことを見いだした。
本発明の上記手段により、膜中の有機化合物の粒子の粒径が小さい塗布膜、当該塗布膜を製造する塗布膜の製造方法を提供することができ、また、当該塗布膜を用いた発光効率と耐久性に優れた有機エレクトロルミネッセンス素子を提供することができる。
本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。
本発明者らは、材料が溶解した塗布液を塗布してから膜を形成するまでの材料状態に着目して検討した。言い換えると、塗布液に含まれる溶質が膜を形成する際に、溶質は塗布液の溶液状態ではどのような状態にあり、どのように固体化(塗膜化)していくことか、ということである。
塗布法に比較して、蒸着方法の場合には、固体分子が真空中で加熱されることにより、気体相へ変態し、当該分子が熱勾配によって素子基板へ移動し、基板上で熱エネルギーを失って気体から固体へ変態することにより膜が形成され、結果としてアモルファス膜が形成されるものと考えられる。
このような推論から塗布法においてアモルファス膜を得るためには、膜形成前の段階、つまり塗布液(溶液)の段階で分子が高度に分散していることが重要であるものと考えた。一般に、塗布液中において、溶質分子は数〜数十分子が集まったクラスターを形成していることが知られており、このような状態で塗布膜を得る場合には、膜形成過程において、当該クラスターが微結晶を形成する引き金になるものと考えられる。
具体的には、図1に示すように、溶質分子20が数分子〜数十分子が集まったクラスター22を形成し、その周囲に多数の溶媒分子21が存在している。
つまり、塗布液の段階で分子が高度に分散、すなわち、図11に示すように、一分子の溶質分子20(直径2r)が多数の溶媒分子21に囲まれた状態で存在することにより、膜形成過程におけるクラスターが存在しない状態とすることで、アモルファス膜が形成されるものと推測している。
溶媒中に存在する溶質一分子の模式図 従来の蒸着膜と塗布膜における粒径分布曲線の一例を示すグラフ 本発明と比較例の塗布膜における粒径分布曲線の一例を示すグラフ 超臨界又は亜臨界クロマトグラフィー法における充填カラムを用いた装置の概略図 有機EL素子から構成される表示装置の一例を示した模式図 表示部Aの模式図 画素の回路を示した概略図 パッシブマトリクス方式フルカラー表示装置の模式図 バルクヘテロジャンクション型の有機光電変換素子からなる太陽電池を示す断面図 タンデム型のバルクヘテロジャンクション層を備える有機光電変換素子からなる太陽電池を示す断面図 溶媒中に存在する溶質分子のクラスターの模式図
本発明の塗布膜は、少なくとも単一種の有機化合物からなる塗布膜であって、小角X線散乱測定から得られる分子又は会合体の粒径分布曲線(横軸:粒径、縦軸:頻度分布)中に少なくとも一つの極大ピークを有し、かつ、下記R及びrが、下記式(1)で表される関係を満たす有機化合物を含有する。
式(1):R≦15r
[式(1)中、Rは、小角X線散乱測定から得られる粒径分布曲線の極大ピークのうち、最も粒径の小さい粒径を示す極大ピークに対応する粒径を表す。rは、前記有機化合物について密度汎関数理論計算したときに得られる分子長軸長さを2a(nm)及び分子短軸長さを2b(nm)としたとき、当該有機化合物の分子半径r=(a×b)1/2を表す。]
この特徴は、本実施形態に係る発明に共通又は対応する技術的特徴である。
本発明の実施態様としては、前記Rが、前記粒径分布曲線の極大ピークのうち、最も頻度分布の大きい極大ピークに対応する粒径を表すことが、塗布膜中の粒径の分散度が高くなり、すなわち、膜中の均質性が高くなる点で好ましい。
また、前記式(1)を満たす極大ピークの頻度分布が、0.4以上であることが、塗布膜中の粒径の分散度が高くなり、すなわち、膜中の均質性が高くなる点で好ましい。
また、下記式(2)を満たすことが、塗布膜中の粒径をより小粒径化できる点で好ましい。
式(2):R≦8r
[式(2)中、R及びrは、前記式(1)中のR及びrと同義である。]
また、前記式(1)を満たす極大ピークの半値幅が、0.3〜3.0nmの範囲内であることが、デバイスの特性が均一化される点で好ましい。
また、前記式(1)を満たす複数種の有機化合物を含有することが、溶質の種類が多いほど安定となり、保存性が高くなる点で好ましい。
また、下記R′及びrが、下記式(3)で表される関係を満たす有機化合物を含有する塗布液を固化してなる膜であることが、膜形成過程におけるクラスターが存在しない状態とすることができ、より小粒径な塗布膜とすることができる。
式(3):R′≦6r
[式(3)中、R′は、前記塗布液の小角X線散乱測定から得られる粒径分布曲線の極大ピークのうち、最も粒径の小さい粒径を示す極大ピークに対応する粒径を表す。rは、前記式(1)中のrと同義である。]
本発明の塗布膜の製造方法は、下記R′及びrが、下記式(3)で表される関係を満たす有機化合物を含有する塗布液を調製する工程と、前記塗布液を乾燥固化する工程と、を有することを特徴とする。
式(3):R′≦6r
[式(3)中、R′は、前記塗布液の小角X線散乱測定から得られる粒径分布曲線の極大ピークのうち、最も粒径の小さい粒径を示す極大ピークに対応する粒径を表す。rは、前記式(1)中のrと同義である。]
このような製造方法により、塗布液の段階で分子が高度に分散しているので、膜形成過程におけるクラスターが存在しない状態とすることができ、より小粒径な塗布膜を製造することができる。
本発明の塗布膜は、有機機能層の少なくとも1層に有する有機エレクトロルミネッセンス素子に好適に用いられる。
また、前記有機機能層が、発光層であることが、発光素子寿命及び発光効率の点で好ましい。
以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「〜」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。また、本発明において「%」や「ppm」等の比率は、質量基準とする。
[本発明の塗布膜の概要]
本発明の塗布膜は、少なくとも単一種の有機化合物からなる塗布膜であって、小角X線散乱測定から得られる分子又は会合体の粒径分布曲線(横軸:粒径、縦軸:頻度分布)中に少なくとも一つの極大ピークを有し、かつ、下記R及びrが、下記式(1)で表される関係を満たす有機化合物を含有することを特徴とする。
式(1):R≦15r
[式(1)中、Rは、小角X線散乱測定から得られる粒径分布曲線の極大ピークのうち、最も粒径の小さい粒径を示す極大ピークに対応する粒径を表す。rは、前記有機化合物について密度汎関数理論計算したときに得られる分子長軸長さを2a(nm)及び分子短軸長さを2b(nm)としたとき、当該有機化合物の分子半径r=(a×b)1/2を表す。]
本発明は、前述のように、下記基本的方針(1)〜(5)に基づいて検討し、完成したものである。
(1)有機化合物は低分子化合物が好ましい(高分子化合物は好ましくない)。
(2)成膜法は塗布法が好ましい(蒸着法は好ましくない)。
(3)塗布液中の溶媒は汎用溶媒が好ましい(高価な脱水高純度溶媒は好ましくない)。
(4)溶解は単分子状態が好ましい(微結晶分散液は好ましくない)。
(5)化合物の精製には吸着−脱着平衡を活用するのが好ましい(熱平衡は好ましくない)。
以下において、まず、上記各方針の根拠となる基本的考え方の観点から、本発明について説明をし、その後、具体的技術について説明をする。
1.高分子化合物に対する低分子化合物の優位性
湿式塗布法による有機機能層の形成において、高分子化合物に対する低分子化合物の優位性を説明する。
(第1の要因):純度の優位性
低分子化合物を高分子化合物(いわゆるポリマー)と比較してみると、その違いがよくわかる。まず、低分子化合物は昇華精製を適用するのは分子量が小さいため好適であり、再結晶も分子量分布が小さく望ましい。また、低分子化合物の精製方法には、精製効率の低い(理論段数の低い)高速液体クロマトグラフィー(high performance liquid chromatography:HPLC)やカラムクロマトグラフィーを用いることができるため好ましい。
高分子化合物の精製では、ほとんどの場合、良溶媒と貧溶媒を使った再沈殿法を繰り返し行うことで精製しており、低分子化合物の方が高純度としやすい。
また、高分子化合物がπ共役系高分子化合物である場合、重合反応を起こすための金属触媒や重合開始剤を用いる必要があり、重合末端には、反応活性の置換基が残存してしまうケースがあり、それも低分子化合物の方が高純度にできる理由の一つでもある。
(第2の要因):分子特有のエネルギー準位に関する優位性
発光ポリマー(light emitting polymer:LEP)は、分子量が大きくなると、π共役系ポリマーであるが故に、分子を安定化させるためには共役系を拡張することになるために、原理的に一重項又は三重項の励起状態と基底状態とのエネルギー準位差(「エネルギー準位のギャップ」、「バンドギャップ」ともいう。)は狭くなり、青色発光が難しくなる。また、蛍光の青色発光よりも高いエネルギー準位(大きいエネルギー準位差)が要求される青色リン光においては、発光ポリマーは、その発光物質となる遷移金属錯体を形成することが構造上難しい。さらに、発光ポリマーをホストとして用いようとしても、前記のπ共役の拡張により高い三重項エネルギーを有する化合物(「高T化合物」と略称する。)にしにくい。
一方、低分子化合物ではπ共役系を連結させる必然性はなく、π共役系ユニットとなる芳香族化合物残基は必要であるが、それらを任意に選択できること、さらにそれらを任意の位置に置換できる。したがって、低分子化合物では、容易に最高被占軌道(highest occupied molecular orbital:HOMO)と、最低空軌道(lowest unoccupied molecular orbital:LUMO)と、三重項(T1)エネルギーレベルとを意図的に調整でき、青色リン光発光物質を作ることも、そのホストにすることも、また、TADF現象を起こす化合物を構築することも可能である。このように、任意の電子状態や任意の準位を意図的に設計、合成できる拡張性の大きさが、低分子化合物の第2の優位性の要因である。
(第3の要因):化合物合成の容易性
第2の要因と類似した理由(要因)ではあるが、低分子化合物は、発光ポリマー(LEP)に比べ、合成できる分子構造に制限がなく、とりわけ発光ポリマーにおいて主鎖をπ共役連結にするとなると、適用できる骨格や合成方法は限定的となるが、低分子化合物では新たな機能付与や物性値の調整(Tgや融点、溶解性など)を分子構造によって成し遂げることが相対的に容易であり、これが低分子化合物の第3の優位性の要因である。
2.低分子化合物を用いた湿式塗布法による有機機能層形成における課題
低分子化合物を用いた湿式塗布法による有機機能層形成における本質的な課題は、何かついて説明する。
有機EL素子に用いられるほぼ全ての材料は、有機EL素子内部においては、電子及び正孔が分子間をホッピング移動しなければならない。基本的に電子はLUMO準位を伝ってホッピングし、正孔はHOMO準位を使ってホッピングすることになる。
すなわち、必ず隣接する分子同士はπ共役系が重なり合うように存在しないと、そのようなキャリア伝導が起こらないため、可能な限りπ共役系ユニットだけで分子構造を形成することが有利である。
例えば、溶媒に対する溶解性を向上させるために、立体的に嵩高い置換基(sec−ブチル基や、tert−オクチル基、トリイソプロピルシリル基など)を一つの分子中に複数個置換してしまうと、分子間のπ共役系は重ね合わすことが難しくなり、嵩高い置換基の部分でホッピング移動が阻害されてしまう。
一方で、有機EL素子は発光中絶え間なく電流が流れていることから、例え量子効率的に100%であって、すなわち、キャリア再結合の確率が100%であり、熱失活が0%であったとしても、有機EL素子はキャリアを流し続けるために陽極と陰極との間に電位差を設けて電界勾配を付ける必要があるため、有機EL素子の等価回路は、ダイオードと抵抗の直列接続となる。
すなわち、通電発光中の有機EL素子の内部ではジュール熱が発生しており、実際に素子内部、特に再結合が起こる発光層内では100℃以上の発熱があることもわかっている。
また、有機EL素子全体の有機層厚は200nm程度の極めて薄い層であることから、熱は層(膜)間で伝導し、発光層のみならず、全ての層で高温状態が継続されることになる。
このような状態にさらされる有機分子は、それ自体のガラス転移点(Tg)を超えると、アモルファスの状態から結晶状態へと相転移を起こす。
この結晶は次第に成長し、数十nmを超えると、その化合物が存在していた層厚を超えることになり、有機EL素子としての層による機能分離ができなくなるために、結果として発光効率が低下することになる。
さらに、この結晶が有機EL素子の有機層全層(100〜200nm)を超えてしまうと、陽極と陰極は短絡する。そして、その短絡した部分に電界集中が起こり、微小領域に大電流が流れることで、その部分の有機化合物は熱分解を起こしてしまい、全く発光しない部分、いわゆるダークスポットができてしまう。
つまり、有機EL素子の低分子化合物は、嵩高い非芳香族性の置換基を持たずに、かつ、ガラス転移点(Tg)が100℃以上(好ましくは150℃以上)を超えるような分子であらねばならない。
このような分子を構築するには、通常、π共役系を大きくするか、芳香族基を単純連結するのであるが、通常の場合できてくる化合物は、溶媒に対する溶解性が極めて低くなり、塗布液になり得ないか、又は塗布できたとしても、結晶析出や物質の偏在などが生じることとなる。
このジレンマを解消する手立てとして、我々は、安定なアモルファス膜を形成し、通電中もそれを保持できるという画期的な技術をこれまでに開発してきた(例えば、特許第5403179号や特開2014−196258号公報等。)具体的には、嵩高く、フレキシビリティの高い分岐のアルキル基などを持たずに、芳香族基だけを連結しビアアリール構造とし、そのC−C結合軸周辺に発生する回転障害により数多くのコンフォメーションや幾何異性体を能動的に増やすことによって、又は、同一層中に存在する複数分子(例えば、ホストとドーパント)がさまざまな形状・形態で相互作用を起こすようにしてやることによって、膜中での成分数を増やせるため、薄膜状態でのエントロピーを増大させ、安定なアモルファス膜を形成することができる。
本発明者らは、湿式塗布法による有機EL素子の作製において、前述したような指針に則って低分子化合物の分子構造を改良し、乾燥条件等の最適化も図ったところ、発光効率は蒸着素子の95%、発光寿命は同90%と、飛躍的な改善を達成することができた。これにより、発光ドーパントにリン光ドーパント、とりわけ寿命向上が最も難しいとされている青色リン光ドーパントを用いた素子ですらも、塗布成膜法で、ほぼ従来の蒸着成膜法に匹敵する基礎特性を発揮しることを見いだしている。
しかしながら、このように性能が改善された有機EL素子にもまだ多くの課題が残存している。
それらの課題としては、例えば、低分子化合物の純度、当該化合物表面に付着している微量水分、使用する溶媒の酸素含有量、水分含有量などの除去が挙げられる。
また、例えば、一般的には塗布で用いる低分子化合物であっても、最高の性能を発現させるために、カラムクロマトグラフィーと再結晶を行った後に、昇華精製を行い、さらに有機化合物を使用又は保管する際には真空状態を経た後、窒素雰囲気に置換して用いられている。
このような、できる限りの悪影響を排除した、極めて厳格な管理の下において塗布法による有機EL素子を作製した場合であっても、蒸着法で作製した有機EL素子の性能を超えることは困難であった。
さらに、そもそも、真空を使った蒸着法の生産性が低いことが、有機EL素子の大型化や量産性、つまりコストに悪影響を与えるために、塗布法が注目されているのであるが、その塗布法もこのような厳格な管理の下で行うのでは、かえって蒸着法よりも生産性が低く、コスト高になってしまう。
3.化合物の精製方法について
低分子化合物の利点は高分子化合物よりも数多くの精製手段が活用でき、高純度にできる点である。しかし、結局のところ、一般的に現在実用されている有機EL素子を構成する有機化合物のほぼ全てが、昇華精製という精製手段を経て使用されている。
昇華精製は古典的な精製方法であるが、再結晶やカラムクロマトグラフィー、HPLCなどの精製方法に比べると圧倒的に精製効率(理論段数)は小さく、実質上は金属や無機物質などの除去と溶媒の除去を行うための手段として使われている。
なぜ昇華精製法が有機EL用の有機化合物で採用されているかというと、有機EL素子の製造プロセスが真空蒸着法を採用していることが主な理由である。有機化合物に溶媒がごく微量でも含まれていると、蒸着装置内で真空下に置いた際有機化合物中の溶媒が揮散し真空度を下げてしまう。
それが連続生産を不可能にしてしまい、製造上の問題となる。そのため、精製時に溶媒が完璧に除去される昇華精製法が採用されているのである。
よって、有機EL素子の生産方式が蒸着法から塗布法に代わった際には、前記の理由から昇華精製法による有機化合物の精製は必須ではなくなる。
(再結晶)
次に、低分子有機化合物の精製法としては最も一般的な再結晶について考えてみる。
この方法は、熱力学第二法則(式T1)に基づいた精製方法である。
式(T1):−ΔG=−ΔH+TΔS
物質は、物質相互間の存在距離が短くなるほどファンデルワールス力や水素結合力、π−π相互作用力、双極子−双極子相互作用力などが増大し、エンタルピー(−ΔH)は大きくなる。
一方で、物質が媒体に完全分散しているとき、すなわち溶解しているとき、物質は自由に動き回れるため、その乱雑さは増大し、エントロピー(ΔS)は大きくなる。
熱力学第二法則では、全ての存在状態は、ギプスの自由エネルギー(−ΔG)を一定に保つか、又は、大きくする方向に移行する。
すなわち、精製を施したい化合物Aを再結晶により精製するということは、次のように考えると、合理的に説明できる。
Aを溶かすことのできるBという溶媒中に高温でAを溶解するとAは分散状態で存在することになる。そのため、A同士間の存在距離が大きく互いに相互作用しにくくなるため、エンタルピー(−ΔH)は極めて小さくなる。
一方で、Aは溶液の中を自由に動き回れるためエントロピー(ΔS)は極めて大きい。この高温溶液を冷やすと、絶対温度TがかかったTΔSは、冷やす前よりも小さくなる。そのとき、冷やす前後でギプスの自由エネルギー(−ΔG)を一定に保つためには、エンタルピー(−ΔH)を大きくせざるを得なくなる。
つまり、温度が下がってTΔSが小さくなった分、AはAとの距離を小さくしてエンタルピーを大きくしなければならなくなるのである。その極限状態が、AとAとの距離が最小となる結晶状態であり、それによってエンタルピー項(−ΔH)は増大していく。
こうしてエンタルピーが増大していくと、系内の成分数は減ってしまうため、エントロピーは小さくなり、その小さくなった分、また結晶を作ってエンタルピーを増大していく。
このように、まずは温度低下でエントロピー項(TΔS)が減少し、それを補うために結晶化によりエンタルピー(−ΔH)が増加し、またそれによって成分数が減るためにさらにエントロピー項が、今度はΔSの減少によって小さくなり、またその分結晶化が起こるという熱力学平衡を繰り返すことで、再結晶は成し遂げられるのである。
ただし、注意しなければならないのが、溶質Aと溶媒Bとの相互作用である。溶質Aは溶媒Bと溶媒和されることによって溶解するため、A−B間の相互作用が大きくなければそもそもAはBに溶解しない。しかし、相互作用が大きすぎると冷却して低下するエントロピー項の減少に打ち勝つ程、AとAとの距離を短くできないことになり(AとAとの間にはBが介在することになるために)、再結晶は起こらない結果となる。
つまり、A−A間の相互作用力とA−B間の相互作用力とを再結晶が起こる条件に調整できた場合のみ、この再結晶による精製方法が適用できる。
このような再結晶の精製方法では、一度に数百kg以上の大量精製も可能であることから、化学工業では古くからこの方法が使われている。
(カラムクロマトグラフィー)
次に、カラムクロマトグラフィー(以下、「クロマト法」ともいう。)について考えてみる。
カラムクロマトグラフィーの最も典型的なところは、固定相に微粒子シリカゲルを用い、そこに化合物Aを吸着させ、それを溶離液と呼ばれる移動相(B)で徐々に溶出させて行くというものである。
このとき、シリカゲル表面と化合物Aとの相互作用(吸着)に対して、移動相(B)との相互作用が拮抗する場合、Aはシリカと移動相Bとの間で、吸着−脱着の平衡を繰り返し、シリカとの相互作用が小さい場合は早く、相互作用が大きい場合には遅く、溶出して行く。
このときに、吸着−脱着平衡の往復回数が大きいほど理論段数(すなわち精製効率)が増大することから、クロマト法による精製効率は、固定相の長さに比例し、移動相の通過速度にも比例し、固定相の表面積にも比例することになる。
これを実現させたのが、高速液体クロマトグラフィーであり、これが、有機化合物の成分分析や品質保証に幅広く使われているのも、この理論に裏打ちされた高度の理論段数を実現できる希な手法であることに起因している。
このクロマト法が再結晶に比べ秀でる理由は、移動相Bの極性を任意に変更できる点である。例えば、移動相を最初から良溶媒と貧溶媒の混合溶媒にしておくことはもとより、精製の際に徐々に良溶媒比率を増やしていくグラジエント法を用い、さらに理論段数を増やせることが挙げられる。
また、温度も任意に変えることが可能であるため、精製可能となる溶質の適用範囲が極めて広く、ほぼ汎用的な精製法として活用できることが最大の特徴である。
一方、クロマト法の欠点もある。前述のように、理論段数を大きくするための根本的な原理が、吸着−脱着平衡を活用しているところにある。
例えば、移動相に化合物Aと相互作用が強い溶媒B′(すなわち良溶媒)だけを用いてクロマト法を行った場合、Aとシリカゲルとの相互作用よりも、Aと移動相B′との相互作用が強ければ、吸着−脱着平衡の往復回数が激減し、精製効果が低くなってしまう。
つまり、精製効果を高めるためには、良溶媒B′の他に、大過剰の貧溶媒Cを混合し、吸着−脱着平衡の往復回数を増やす必要がある。ただしこの場合、精製されて分取した化合物Aの溶液には、大過剰のCが含まれており、これを濃縮しなければならないことが最大の問題である。
例えば、1gのAを得るためには、良溶媒B′と貧溶媒Cの混合比率を1:99〜10:90くらいにする必要があり、一般的にはおおよそ10Lから100Lの貧溶媒Cが必要となってしまう。そのため、HPLC分取は研究開発には適用されているものの、大量生産には使われていないのが実情である。
貧溶媒濃縮の問題を解決する手段が超臨界二酸化炭素を用いたHPLCである。超臨界二酸化炭素は、二酸化炭素を高温高圧で超臨界流体にしたものであり、その他の物質もこのような超臨界流体にすることは可能であるが、比較的低い圧力と温度で超臨界状態を実現できることから、クロマトや抽出では専ら二酸化炭素が使われている。
この超臨界二酸化炭素には、普通の流体や液体とは異なった特徴がある。それは、温度と圧力を変化させることで、溶解したいものの極性に合わせて、連続的に極性を変化させることができることである。
例えば、魚の頭に含まれているドコサヘキサエン酸を選択抽出する際にも、この超臨界二酸化炭素が使われているし、接着剤を用いている特殊な衣類のクリーニングにも、皮脂は溶かして接着剤は溶かさない超臨界二酸化炭素を温度と圧力の制御で作ることにより、成し遂げている。
このように様々な極性を持たせることができる超臨界二酸化炭素であるが、比較的低い温度と圧力の領域で形成される超臨界二酸化炭素の極性は、シクロヘキサンやヘプタン程度である。現在市販されている超臨界HPLCでは、この程度の極性の超臨界二酸化炭素が、装置内で作られ、それが良溶媒と混合されてカラム内に入り、通常のHPLCと同様の機構で化合物の精製が行われる。
超臨界二酸化炭素を用いたHPLCのシステムでは、カラムを通過した後に検出器に入るが、通常はその段階までは高温高圧状態が保たれ、二酸化炭素も超臨界流体として存在している。その後常温常圧で分取されるまでの間に二酸化炭素はガスとなり、分取時には自ら溶液から抜けていくために、貧溶媒の濃縮が不要となる。この時、参考文献(生物工学会誌88巻、10号、525〜528ページ、2010年)に記載の気液分離機構等を備えた二酸化炭素回収装置によって二酸化炭素を回収することが可能であり、再び超臨界流体としての利用も可能である。
そのため、高純度の新規合成化合物を数多く合成する必要のある創薬の業界では、最近この超臨界HPLCを積極的に活用するようになって来ており、その影響で分析用、分取用ともに販売価格が下がり、かなり一般的に使われるようになってきた。
このような特徴と経緯から、我々はこの超臨界HPLCを、高純度が要求さえる有機EL素子用材料の精製に活用してきた(特許第4389494号公報)。
以上述べてきたように、有機EL業界の生産性向上が望まれる中、低分子有機化合物の精製法はさまざまあるが、どれも一長一短あり、製造した化合物の特性、及びその化合物が要求される純度、残留する溶媒の可否などによって、しかるべき精製方法が選択され、また組み合わされて使われている。
4.有機EL化合物の溶解について
まず、溶解とは何かを考える。通常は、溶質Aを溶媒分子BがAとBとの相互作用力で取り囲み、Aの集合体をばらばらにしてAの回りにBを存在させることによって、すなわちAを孤立単一分子状態にすることをいうが、本当にそうなっているのかを確かめるのは難しい。
例えば、Aが溶解性の極めて低い、又は結晶性の高い分子だった場合、可視光の波長以上のサイズの結晶であれば、溶解していないことは、光散乱等で容易に検出できる。しかし、例えば、中途半端に溶解性の低い物質であった場合、Aの数分子からなる微小結晶の回りを溶媒分子Bが取り囲んでいたといても、それは溶解しているように見えてしまう。有機EL素子では、これが後々大きな問題を引き起こす可能性がある。
つまり、蒸着成膜では、正孔輸送層、発光層、電子輸送層、電子注入層などの薄い層(膜)を形成する際に、各層を構成する化合物は、真空蒸着により、基本的には気化された孤立単一分子の状態で基板上又は有機層上に着弾し、それが固体薄膜となって成膜されていく。そのため、基本的には単一分子のランダムな集合体で膜が形成され、理想的なアモルファス膜となる。
一方で、塗布成膜法の場合、もし仮に、塗布液が有機EL化合物の微結晶の分散物であった場合には、見た目では完全溶解しているように見えるが、得られる薄膜の実態は微結晶が寄せ集められた薄膜となる。そのため、例えばHOMOやLUMOの準位も単分子のそれではなく、スタックした集合体(微結晶状態)のそれとなってしまい、性能の低下の要因となりうる。
また、経時では、その微結晶が核となり、粗大結晶へと成長していくことになるため、層間の機能分離ができなくなるばかりか、陽極と陰極を短絡させる大きな結晶となってしまうと、ダークスポットを発生させてしまうという大きな問題がある。
低分子を用いた塗布成膜素子に関しては、上述の長年の検討から、初期状態である塗布液をいかにして単分子分散状態に近似させるかが、まずは蒸着法と同等の性能を出すための必要条件となることは、明らかである。
ここで、通常、厳密に溶解させたつもりの塗布液が、どのくらいの分子の分散物となっているかを小角X線X線散乱測定(small angle X−ray scattering:「SAXS」ともいう。)により解析した結果に基づき考えてみる。
図2は、破線が蒸着法で作製した薄膜を構成する化合物の微粒子の粒径分布曲線(横軸:粒径(nm)、縦軸:頻度分布)であり、実線が塗布法で作製した薄膜構成化合物の微粒子の粒径分布曲線である。どちらも同じ化合物を用いているため、直接比較することができる。
蒸着成膜における化合物の微粒子の粒径分布幅では、極大ピークに対応する位置の粒径が約2nmであり、単分散に近い粒径となっている。これは、分子一つ又は二つのサイズであることから、蒸着成膜では、ほぼ単一分子がランダムに配置されてアモルファス膜が形成されていることを表している。
一方で、塗布成膜における化合物の微粒子の粒径分布では、極大ピークに対応する位置の粒径が約4.5nmであり、蒸着成膜の粒径分布よりも幅広く分布している。
先にも述べたように、蒸着と塗布とで同じ化合物を用いていることから、化合物本来の結晶性や凝集性は同じであり、この違いは、塗布液の状態における分子の分散状態が、単一孤立分子ではなく、5から10分子の微結晶の分散物であったことが推測される。
この塗布液はいわゆる澄明な溶液であるのだが、X線で解析すると判明する数分子微結晶の分散物を、我々は溶解した溶液と勘違いしている訳である。
5.有機EL化合物の溶媒の純度について
有機EL素子は、励起状態になった発光材料が基底状態に戻る際に光を放つ現象を基本機能としているものである。
また、電極から発光層までの間は、電子及び正孔をホッピング現象を通じて輸送する必要がある。
まず、励起状態についてであるが、例えば、5%濃度の発光材料をドーピングを施した有機EL素子の場合、1000cd/mの輝度で、1年間発光させ続けるには、単純に計算して、一つのドーパントが約10億回励起子になる必要がある。このとき、たった1回だけでも、励起子が水分子と反応すると、本来の分子とは違う化合物になってしまう。また、励起子が酸素分子と反応すると、何らかの酸化反応や酸化カップリング反応が起こってしまう。これが、有機EL素子の機能低下の原因となる化学変化の最も代表的な現象である。
また、発光材料以外の材料においても、ほぼ同じ回数、ラジカル状態になる訳で、ラジカルアニオン状態もカチオンラジカル状態も基底状態に比べれば活性種であることから、有機EL素子の機能低下の原因となる化学変化が起きる可能性がある。
つまり、水分子や酸素分子は、塗布液には一切あってはならないものであり、それが前提となる訳である。
ただし、工業上では、純度の高い無水溶媒は非常に高価であり、取り扱い性も難しい。そのため、結局、塗布法でコストダウンするためには、消耗剤となる溶媒でいかに汎用的なものを使えるかが重要である。
6.本発明に係る要素的技術について
[塗布膜]
本発明の塗布膜は、少なくとも単一種の有機化合物からなる塗布膜であって、小角X線散乱測定から得られる分子又は会合体の粒径分布曲線(横軸:粒径、縦軸:頻度分布)中に少なくとも一つの極大ピークを有し、かつ、下記R及びrが、下記式(1)で表される関係を満たす有機化合物を含有する。
式(1):R≦15r
[式(1)中、Rは、小角X線散乱測定から得られる粒径分布曲線の極大ピークのうち、最も粒径の小さい粒径を示す極大ピークに対応する粒径を表す。rは、前記有機化合物について密度汎関数理論計算したときに得られる分子長軸長さを2a(nm)及び分子短軸長さを2b(nm)としたとき、当該有機化合物の分子半径r=(a×b)1/2を表す。]
<小角X線散乱の測定>
本発明の塗布膜の小角X線散乱の測定には、例えば、株式会社リガク製ナノスケールX線構造評価装置NANO−Viewerのような汎用装置を用いてもよく、好ましくは、高エネルギー加速器研究機構 放射光科学研究施設(Photon Factory)、SPring−8(Super Photon ring−8 GeV)、佐賀県立九州シンクロトロン光研究センター(SAGA−LS)、あいちシンクロトロン光センターのような大型放射光施設を利用した小角X線散乱装置を用いることができる。以下、測定条件を下記に示す。
試料をX線回折試料用キャピラリー(WJM−Glass/Muller GmbH製)に入れ、測定サンプルとする。
X線としてSPring−8の放射光を用い、波長0.1nmで試料に照射する。
測定にはHUBER製多軸回折装置を用い、X線入射角θは0.2°で固定して試料に照射し、検出器はシンチレーションカウンターを用いて2θを1〜43°までの散乱線測定を行う。
これら得られた小角X線散乱データの解析にはリガク社製粒径・空孔径解析ソフトウェア NANO−Solverを用いる。
X線を物質に入射すると、それを構成している各々の原子のもつ電子雲により一部が散乱される。散乱角の小さい範囲(本発明では1〜8°)からは、数nm〜数百nmの空間レベルの情報を得ることができ、これを利用した構造評価が、小角X線散乱である。
小角X線散乱のプロファイルでは散乱角θの代わりに一般に散乱ベクトルqが用いられる。qは下記式(A1)で与えられる。
式(A1):q=(4π/λ)sinθ
式(A1)中、「λ」はX線の波長、「θ」は散乱角を表す。
qの小さな領域はギニエ(Gunier)領域、大きな領域はポロド(Porod)領域と呼ばれ、前者からはより大きな空間的情報、粒子分散状態や長周期構造、後者からはより小さな領域の情報、高分子の重合状態、分散粒子の表面形状、蛋白質の構造解析等を得ることができる。
小角X線散乱において粒子解析を行う場合、ギニエプロットが一般的に用いられる。
粒径分布が比較的小さく、マトリックス中で粒子同士の相互作用が小さい場合、散乱強度I(q)は式(A2)で表される。
式(A2):I(q)=I(0)exp(−q*Rg/3)
式(A2)中、「I(q)」は散乱強度、「Rg」は慣性半径を表す。
この式はギニエの法則と呼ばれ、qに対し散乱強度I(q)をプロットした場合、その傾きは散乱体の慣性半径に依存することになる。
したがって、ギニエプロットにおいて、散乱角度の増大により散乱強度の急激な減少を示す領域が小角散乱領域であり、中心ピークの幅は密度の不均一領域のサイズ、すなわち一次粒子の慣性半径とほぼ逆比例する。
よって、散乱強度の増減挙動を例えばFunkuchenの方法に適用し、ギニエプロットの右端から順に接線を引いて、各接線の勾配から、慣性半径とその散乱強度を算出すれば、それらの強度比から一次粒子の慣性半径の分布の相対比を求めることができる。
本発明では、このギニエプロットの勾配(傾き)に対し、上記リガク社製粒径・空孔径解析ソフトウェア NANO−Solverを用い、粒子の幾何学形状を球と仮定して空孔、粒径解析フィッティングを行うことで塗布膜中の有機化合物に由来する分子又は会合体の粒径及び粒径分布を求めた。
なお、X線小角散乱法の詳細については、例えばX線回折ハンドブック第3版(理学電機株式会社 2000年発行)を参照することができる。
本発明に係る粒径分布曲線は、上記小角X線散乱の測定及び解析法に基づき作成したものであり、横軸を粒径を表す軸とし、縦軸を頻度分布を表す軸として、粒径に対する頻度分布の測定値をプロットして各プロットを結んで得たものである。
ここで、「頻度分布(単に「分布」ともいう。)」とは、測定された粒子総数に対する特定粒径の相対的粒子数の比率(すなわち頻度)の大きさ(1/nmに比例する相対値)をいう。
(極大ピーク)
本発明の塗布膜において、小角X線散乱測定から得られる分子又は会合体の粒径分布曲線中(横軸:粒径、縦軸:頻度分布)に少なくとも一つの極大ピークを有する。
図3に、本発明の塗布膜についての粒径分布曲線の一例を示す。また、当該粒径分布曲線中において、極大ピークに対応する位置の粒径をRとしている。
また、本発明の塗布膜の粒径分布曲線は、複数の極大ピークを有していてもよいが、最小の粒径を示す極大ピークの位置に対応する粒径Rが、上記式(1)の関係を満たしていれば、本発明の効果を得ることができる。
また、粒径Rが、前記粒径分布曲線の極大ピークのうち、最も頻度分布の大きい極大ピークに対応する粒径を表すことが好ましい。頻度分布の最も大きい極大ピークの位置に対応する粒径Rが上記式(1)を満たす場合、塗布膜中の粒径の分散度が高くなり、すなわち、膜中の均質性が高くなり、本発明の効果を有効に得ることができる。
なお、本発明でいう、粒径分布曲線中における「極大ピーク」とは、半値幅が10nm以下であり、かつ、頻度分布が0.05以上の極大値を有するピークをいう。つまり、粒径分布曲線中に極大値を有するピークであっても、粒径分布がばらつくことで半値幅が10nmを超える場合や、又は頻度分布が0.05未満となっている場合には、本発明の極大ピークには該当しない。
<密度汎関数理論計算>
本発明に係る密度汎関数理論計算によって得られた前記有機化合物の分子半径rについて説明する。
本発明でいう分子半径rとは、DFT計算(密度汎関数理論計算)によって計算し、最適化された構造において得られた長軸の長さを2a(nm)、短軸の長さを2b(nm)としたとき、その相乗平均値r=(a×b)1/2で表したものである。長軸の長さ・短
軸の長さの理論計算は、具体的には、Gaussian09(米ガウシアン社)を用いて、基底関数:6−31G、交換相関汎関数:B3LYPにて、構造最適化計算を行い、この分子構造を基に長軸の長さ及び短軸の長さを求める。
また、上述した分子半径rが複数ある場合、その平均値(r=Σr/n)をrとする。
本発明の塗布膜は、下記式(2)を満たすことがより好ましい。
式(2):R≦8r
式(2)中、R及びrは、前記式(1)中のR及びrと同義である。
また、前記式(1)を満たす極大ピークの頻度分布が、0.4以上であることが好ましく、0.5以上であることがより好ましく、0.6以上であることがさらに好ましい。極大値が大きいということは、塗布膜中の粒径の分散度が高いことを示すものと捉えられ、塗布膜中の均質性が高いため好ましい。
前記式(1)を満たす極大ピークの粒径値は、10.0nm以下であることが好ましく、6.0nm以下であることがより好ましく、4.5nm以下であることがさらに好ましい。
極大ピークの粒径値が小さいほど、会合体に含まれる分子数が少なく、高度に分散されていることを示しており、デバイスの特性が均一化されるため好ましい。
また、電荷輸送の観点からは極大ピークの粒径値が4.0nm以上であることが好ましい。この理由について未だ明らかではないが、下記のとおり推測している。会合体がある程度の大きさを有していることで、会合体内部では分子のπ−π平面が近接し、分子間距離が近接するため、会合体内での電荷輸送速度が向上し、また、会合体間については、会合体同士の接合面積が増大するために会合体界面における電荷輸送阻害頻度が低減するため、と推測している。
前記式(1)を満たす極大ピークの半値幅は、0.3〜3.0nmの範囲内であることが好ましく、0.5〜2.0nmの範囲内であることがより好ましく、0.5〜1.5nmの範囲内であることがさらに好ましい。半値幅が狭くなるほど、会合体に含まれる分子数がそろっていることを示しており、デバイスの特性が均一化されるため好ましい。
本発明の塗布膜は、下記R′及びrが、下記式(3)で表される関係を満たす有機化合物を含有する塗布液を固化してなる膜であることが、膜形成過程におけるクラスターが存在しない状態とすることができ、より小粒径な塗布膜とすることができる点で好ましい。
式(3):R′≦6r
式(3)中、R′は、前記塗布液の小角X線散乱測定から得られる粒径分布曲線の極大ピークのうち、最も粒径の小さい粒径を示す極大ピークに対応する粒径を表す。rは、前記式(1)中のrと同義である。
塗布液の小角X線散乱の測定は、上述した塗布膜の小角X線散乱の測定と同様にして測定することができる。
上記式(3)を満たす有機化合物を含有する塗布液を得る手段としては、後述する塗布膜の製造方法(塗布液作製工程)で述べる。
<有機化合物>
本発明の塗布膜は、本発明の上記式(1)で表される関係を満たす有機化合物を1種類のみ含有する塗布膜であっても良いし、複数種の有機化合物を含む塗布膜であっても良い。
複数種の有機化合物が含まれる塗布膜において、少なくとも1種類の有機化合物が、本発明の上記式(1)で表される関係を満たしていれば良いが、複数種の有機化合物が本発明の上記式(1)で表される関係を満たしていることが好ましく、塗布膜に含まれる全ての種類の有機化合物が本発明の上記式(1)で表される関係を満たしていることがより好ましい。
複数種の有機化合物を含む塗布膜とした場合、溶質の成分の種類が多いほど安定となるため、保存性が高くなる点で好ましい。すなわち、溶質の複数成分は、例えば、特表2009−505154号公報に記載のように熱力学的に考えると、本発明に係る有機化合物と、その有機化合物以外の少なくとも1種の他の有機化合物とを混合する場合、混合後のギブスエネルギーから、混合前のギブスエネルギーを引いた値である混合ギブスエネルギー(ΔGmix)は、下記式(A3)ように表すことができる。
式(A3): ΔGmix=RTΣ(Xln(X))
上記式(A3)において、Rは気体定数を表す。また、Tは絶対温度を表す。また、Xは全成分中の割合を表す。
ここで、ΣX=1であることから、0<X<1となり、ln(X)<0より、ΔGmix<0となる。したがって、複数種の溶質を含有する場合には保存性が高くなるという効果が得られると考えられる。
本発明において用いられる有機化合物は、特定種類・特定構造の化合物に限定されるものではないが、各種電子デバイスに用いられる化合物であることが、本発明の効果発現の観点から、好ましい。
例えば、塗布膜が、有機EL素子を作製するための塗布膜である場合には、有機化合物が有機エレクトロルミネッセンス用の材料(以下、「有機EL材料」ともいう。)であることが好ましい。有機EL材料とは、後述する陽極と陰極との間に形成される有機機能層(「有機EL層」、「有機化合物層」ともいう。)に用いることが可能な有機化合物をいう。また、これら陽極、陰極、及び有機EL材料を含む有機機能層からなる発光素子を有機EL素子と呼ぶ。有機EL材料として用いられる化合物例は、後述する。
また、塗布膜が、光電変換素子を作製するための塗布膜である場合には、有機化合物がp型有機半導体材料やn型有機半導体材料であることが好ましい。これらp型有機半導体材料、及びn型有機半導体材料として用いられる化合物例は、後述する。
<有機溶媒>
本発明において、塗布膜を形成するための塗布液中に含有される有機溶媒とは、本発明に係る上記有機化合物を溶解又は分散し得る有機化合物からなる液状の媒体をいう。
本発明に係る有機EL素子材料を溶解又は分散する液媒体としては、塩化メチレン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ノルマルプロピル、酢酸イソプロピル、酢酸イソブチル等の脂肪酸エステル類、クロロベンゼン、ジクロロベンゼン、2,2,3,3−テトラフルオロ−1−プロパノール(TFPO)等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、n−ブタノール、s−ブタノール、t−ブタノールのアルコール類、DMF(N,N-dimethylformamide
)、DMSO(Dimethyl sulfoxide)、トラヒドロフラン(THF)、ジオキサン、メチルブチルエーテル、プロピレングリコールモノメチルエーテル等のエーテル類等の有機溶媒が挙げられ、素子中の含まれる溶媒量を抑制する点から、沸点が50〜180℃の範囲の溶媒が好ましい。
特に、本発明では、有機化合物と有機溶媒の相互作用力をある一定の範囲以下に抑え、乾燥の駆動力をエントロピー支配とするため、有機化合物の溶解度は、常温(25℃)において、0.001〜5質量%の範囲内である有機溶媒を用いることが好ましい。
一般に、溶質を溶解させるためには、溶解度の高い溶媒を用いるが、溶解度の高い溶媒は、一般的にクロロベンゼンやグリセリン等の沸点が高いことが多く、溶媒を乾燥させるために大量のエネルギーが必要である。さらには、溶解度が高いということは、溶質である材料との相互作用が大きいことを示しており、乾燥中においても溶質と溶媒の相互作用力が大きいために、乾燥負荷はさらに大きくなる。また、乾燥工程を考えると、溶質と溶媒の相互作用に対し、溶質と溶質の相互作用が打ち勝つ形でないと、溶媒が除去されていかないため、必然的に分子間相互作用エンタルピーが強い状態で乾燥されることとなる。この結果として、乾燥後の塗布膜において、分子間相互作用力は非常に強固であり、粒径の大きい膜となりやすく、当該分子間相互作用力が顕著である場合には、凝集体が観測されることが多い。そのため、有機化合物の溶解度を、0.001〜5質量%の範囲内とすることで、有機化合物と有機溶媒の相互作用力を一定の範囲以下に抑えることができ、乾燥の駆動力をエントロピー支配とすることができ、本発明の上記式(1)を満たす有機化合物を含有した塗布膜を得ることができる。
このような有機溶媒としては、上述した有機溶媒の中でも、エステル系溶媒や、エーテル系溶媒等が好ましく用いられる。
[塗布膜の製造方法]
本発明の塗布膜は、上述したように、塗布方法によって成膜され、かつ、膜中の粒径が小粒径化していることを特徴としており、膜中の粒径を小粒径化する方法としては、膜形成前段階の溶液状態において、分子を分散化しておくことが重要である。
すなわち、本発明の塗布膜の製造方法は、下記R′及びrが、下記式(3)で表される関係を満たす有機化合物を含有する塗布液を調製する工程と、前記塗布液を乾燥固化する工程と、を有することを特徴とする。
式(3):R′≦6r
式(3)中、R′は、前記塗布液の小角X線散乱測定から得られる粒径分布曲線の極大ピークのうち、最も粒径の小さい粒径を示す極大ピークに対応する粒径を表す。rは、前記式(1)中のrと同義である。
なお、塗布液の小角X線散乱の測定は、上述した塗布膜のX線小核散乱測定と同様にして塗布液について行うことができる。
<塗布液調製工程>
塗布液調製工程は、上記式(3)を満たす有機化合物を含有する塗布液を得る工程である。具体的には、有機化合物と有機溶媒を混合した溶液を分散させることが好ましい。
有機化合物としては、上述した有機化合物を用いることができ、有機溶媒としては、上述した有機溶媒を用いることができる。
溶液中における有機化合物の分散方法としては、例えば、クロマトグラフィー、超音波又はマイクロ波の照射、電気泳動等の方法が挙げられる。
クロマトグラフィーとしては、カラムクロマトグラフィー、高速液体クロマトグラフィー、超臨界又は亜臨界クロマトグラフィー、ゲル浸透クロマトグラフィー等が挙げられ、特に超臨界又は亜臨界クロマトグラフィーが好ましい。
<超臨界又は亜臨界クロマトグラフィー法>
本発明の塗布膜は、上記有機化合物及び有機溶媒を、超臨界又は亜臨界クロマトグラフィー法を用いて混合した塗布液を用いて製造することが好ましい。
超臨界又は亜臨界クロマトグラフィー法は、充填カラム、オープンカラム、キャピラリカラムを用いることができる。
(クロマトグラフィー用カラム)
カラムは、移動相に注入された試料中の目的の物質を分離することができる分離剤を有するカラムであれば特に限定されない。
分離剤は、目的の物質に応じて種々の分離剤の中から選ばれる。分離剤の形態は特に限定されない。例えば、粒子状の担体に担持されている状態でカラムに充填されていても良いし、カラムに収容される一体型の担体に担持されている状態でカラムに収容されていても良いし、分離剤からなる一体型の成形物としてカラムに収容されていても良い。
充填カラムを用いた方法では、図4に示すように、有機溶媒(二酸化炭素を含む)を含有する超臨界流体11、ポンプ12、必要に応じてモディファイヤ13、分離する有機化合物を注入するインジェクタ14、そして分離用のカラム15、さらに必要であれば検出器17、そして圧力調整弁18からなる装置を用いることができる。カラム15は、カラムオーブン16内で温度調整される。充填剤としては従来のクロマトグラフィー法に用いられているシリカ、又は表面修飾したシリカ等適宜選択することができる。
本発明において、超臨界流体とは、超臨界状態にある物質のことである。
ここで、超臨界状態について説明する。物質は、温度、圧力(又は体積)等の環境条件の変化により気体、液体、固体の三つの状態の間を移り変わるが、これは分子間力と運動エネルギーとのバランスで決定される。横軸に温度を、縦軸に圧力をとって気液固三態の移り変わりを表したものを状態図(相図)というが、その中で気体、液体、固体の三相が共存し、平衡にある点を三重点という。三重点より温度が高い場合は、液体とその蒸気が平衡になる。この時の圧力は飽和蒸気圧であり、蒸発曲線(蒸気圧線)で表される。この曲線で表される圧力よりも低い圧力では液体は全部気化し、またこれよりも高い圧力を加えれば蒸気は全部液化する。圧力を一定にして温度も変化させてもこの曲線を越えると液体が蒸気に、また蒸気が液体になる。この蒸発曲線には、高温、高圧側に終点があり、これを臨界点(critical point)と呼ぶ。臨界点は物質を特徴づける重要な点であり、液体と蒸気との区別がつかなくなる状態で、気液の境界面も消失する。
臨界点より高温の状態では、気液共存状態を生じることなく液体と気体の間を移り変わることができる。
臨界温度以上でかつ臨界圧力以上の状態にある流体を超臨界流体といい、超臨界流体を与える温度・圧力領域を超臨界領域という。また、臨界温度以上又は臨界圧力以上のいずれかを満たした状態を亜臨界(膨張液体)状態といい、亜臨界状態にある流体を亜臨界流体という。超臨界流体及び亜臨界流体は、高い運動エネルギーを有する高密度流体と理解でき、溶質を溶解するという点では液体的な挙動を、密度の可変性という点では気体的な特徴を示す。超臨界及び亜臨界流体の溶媒特性は多数挙げられるが、低粘性で高拡散性であり固体材料への浸透性が優れていることが重要な特性である。
超臨界状態は、例えば、二酸化炭素であれば、臨界温度(以下、Tcともいう)31℃、臨界圧力(以下、Pcともいう)は7.38×10Pa、プロパン(Tc=96.7℃、Pc=43.4×10Pa)、エチレン(Tc=9.9℃、Pc=52.2×10Pa)等、この領域以上では流体は拡散係数が大きくかつ粘性が小さくなり物質移動、濃度平衡への到達が早く、かつ液体のように密度が高いため、効率のよい分離が可能となる。しかも、二酸化炭素のような常圧、常温で気体となる物質を用いることにより回収が迅速になる。また、液体溶媒を用いる精製法で不可避の微量の溶媒の残留に起因する種々の障害はない。
超臨界流体又は亜臨界流体として用いられる溶媒としては、二酸化炭素、一酸化二窒素、アンモニア、水、メタノール、エタノール、2−プロパノール、エタン、プロパン、ブタン、ヘキサン、ペンタン等が好ましく用いられるが、この中でも二酸化炭素を好ましく用いることができる。
超臨界流体又は亜臨界流体として用いる溶媒は1種類を単独で用いることも可能であるし、極性を調整するためのいわゆるモディファイヤ(エントレーナ)と呼ばれる物質を添加することも可能である。
モディファイヤとしては、例えば、ヘキサン、シクロヘキサン、ベンゼン、トルエン等の炭化水素系溶媒、塩化メチル、ジクロロメタン、ジクロロエタン、クロロベンゼン等のハロゲン化炭化水素系溶媒、メタノール、エタノール、プロパノール、ブタノール等のアルコール系溶媒、ジエチルエーテル、テトラヒドロフラン(THF)等のエーテル系溶媒、アセトアルデヒドジエチルアセタール等のアセタール系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル等のエステル系溶媒、ギ酸、酢酸、トリフルオロ酢酸等のカルボン酸系溶媒、アセトニトリル、ピリジン、N,N−ジメチルホルムアミド等の窒素化合物系溶媒、二硫化炭素、ジメチルスルホキシド等の硫黄化合物系溶媒、さらに水、硝酸、硫酸等が挙げられる。
超臨界流体又は亜臨界流体の使用温度は、基本的に、本発明に係る有機化合物が溶解する温度以上であれば特に限定はないが、温度が低過ぎると有機化合物の超臨界流体又は亜臨界流体中への溶解性が乏しくなる場合があり、また温度が高過ぎると有機化合物が分解する場合があるため、使用温度範囲は20〜600℃の範囲内とするのが好ましい。
超臨界流体又は亜臨界流体の使用圧力は、基本的に用いる物質の臨界圧力以上であれば特に限定はないが、圧力が低過ぎると有機化合物の超臨界流体又は亜臨界流体中への溶解性が乏しくなる場合があり、また、圧力が高過ぎると製造装置の耐久性、操作時の安全性等の面で問題が生じる場合があるため、使用圧力は1〜100MPaの範囲内とするのが好ましい。
超臨界流体又は亜臨界流体を使用する装置は、有機化合物が超臨界流体又は亜臨界流体と接触して超臨界流体又は亜臨界流体中へ溶解する機能を有する装置であればなんら限定されることはなく、例えば、超臨界流体又は亜臨界流体を閉鎖系で使用するバッチ方式、超臨界流体又は亜臨界流体を循環させて使用する流通方式、バッチ方式と流通方式とを組み合わせた複合方式等の使用が可能である。
本発明に係る超臨界又は亜臨界クロマトグラフィー法においては、移動相に試料を注入した後に、目的物質のうち、カラムからの溶出が最も遅い目的物質のピークのテーリングが減衰し終わる以前に次の試料注入を行うことが好ましい。
このとき、移動相に試料を注入した後に、当該移動相の組成を変化させても良いし、組成を一定としても良い。特に大量の分離対象化合物の分取操作を行う場合には、移動相の組成を変化させることが好ましい。
移動相の組成を変化させる工程は、超臨界流体又は亜臨界流体と溶媒を含有する移動相の組成を変化させるものである。この工程により移動相の組成を変化させることで、ピークのテーリングの減衰を速めることができる。カラム吸着超臨界流体又は亜臨界クロマトグラフィーでは、特に比較的大量の分離対象化合物をロードする分取操作を行う場合には、ピークが顕著なテーリングを示す。このテーリングが減衰する前に次の試料を注入すると、テーリングしている成分が次に注入した試料のピーク成分に混入することとなり、分離した化合物の純度が低下し、不都合が生じる。そのため、テーリングの完全な減衰を待ってから次の試料の注入を行わなければならない。したがって、テーリングの減衰を速めることで次の試料注入のタイミングを速めることができることとなるが、本発明においては移動相の組成を変化させることで、ピーク成分のカラムからの押し出しを促進させ、テーリングの減衰を速めることができる。
移動相中の組成を変化させることは、液体クロマトグラフィーでいうステップグラジエント法と同様の効果を生じさせ、ピーク成分のカラムからの押し出しを促進させることで、テーリングの減衰を速めている。
超臨界流体又は亜臨界クロマトグラフィーは、高拡散性・低粘度の超臨界流体又は亜臨界流体を用いていることから、移動相の流速が大きく、カラムの平衡化も早い。そのため、移動相中の組成が一時的に変化しても、移動相中の組成を元に戻すとカラムは迅速に変化前の環境に復元することから、テーリングを減衰させた後直ちに次の試料を注入することができる。結果として、試料の時間当たりの処理量を増やすことができ、効率性・生産性が向上する。
本発明の移動相の組成を変化させる工程は、超臨界又は亜臨界クロマトグラフィー装置で行うことができる限り、どのような手法によるものでも良い。例えば、移動相中の溶媒比率を増加させることで、移動相の組成の変化を生じさせることができるし、圧力やカラム温度を有意に変化させることでも、移動相中のCO密度が変化し、これらを含めて移動相の組成変化とする。
移動相中には既に溶媒が含まれているが、移動相中に含ませる溶媒とは別途、カラムの上流で移動相生成装置の下流に溶媒注入装置を設け、移動相中の溶媒比率を増加させることができる。溶媒注入装置は、例えば注入する溶媒を保持するためのループ配管と流路切替弁、溶媒注入ポンプで構成される溶媒注入装置とすることができる。
溶媒注入装置に用いるループ配管は、所定の容積を有する管である。ループ配管を有すると、試料の注入の定量性が向上し、またより多量の試料を注入することが可能となり好ましい。本発明において、ループ配管の容積は、超臨界流体又は亜臨界クロマトグラフィー装置で用いられるカラムの種類やカラムの内径、目的の物質の種類、移動相の組成等の条件に応じて異なるが、一度に多量の溶媒を注入する必要があるため、溶媒注入装置が有するループ配管は試料注入装置が有するループ配管よりも大型で、多量の溶媒を保持できるものが適する。
溶媒注入装置に用いる流路切替弁は、移動相の流路に設けられる開閉自在な弁やコックであれば特に限定されない。例えば、二方弁やバタフライ弁を組み合わせて用いたり、三方弁を用いて移動相の流路の切り替えを行う弁が挙げられる。上記溶媒注入装置に用いる溶媒注入ポンプは、超臨界又は亜臨界クロマトグラフィー装置の試料注入などで用いられる高圧ポンプを用いることができる。
溶媒注入装置を用いた場合、溶媒の注入は、流路切替弁を切り替え溶媒注入ポンプによりカラムの移動相に溶媒を送りこむことで行われる。溶媒の注入は、試料の注入容積以上、好ましくは2倍以上、より好ましくは5倍以上の溶媒を瞬時に注入することが好ましい。上限値としては、試料の注入容積の30倍以下、好ましくは20倍以下、より好ましくは15倍以下の溶媒を注入することが好ましい。このような溶媒注入量とすることで、ピークのテーリングの減衰がさらに速まることとなる。
溶媒注入装置から注入される溶媒は特に限定されるものではなく、例えば、移動相中に含有される溶媒と同一の溶媒であってもよいし、異なる溶媒であってもよい。また、注入される溶媒は1種でもよいし、2種以上でもよい。
特に、テーリングの減衰をさらに速める点で、極性の高い溶媒が好ましい。また、移動相中に含有される溶媒と比較して、より極性の高い溶媒を使用することが好ましい。
前記移動相の組成を変化させる工程及び移動相の組成を変化前に戻す工程の両工程は、瞬時に行うことが好ましい。ここでいう瞬時とは、移動相の変化を生じさせるのに十分な時間であれば良い。
ピーク検出の方法は、特段限定はされるものではないが、通常、超臨界流体又は亜臨界クロマトグラフィーが有する検出器、例えば紫外吸光分光計により検出されたピークによりタイミングを計ることができる。
<乾燥固化工程>
乾燥固化工程は、前記塗布液作製工程で得られた塗布液を塗布し乾燥固化する工程である。
塗布液の塗布方法(塗布膜の形成方法)としては、スピンコート法、キャスト法、インクジェット法、スプレー法、印刷法、スロット型コータ法等が挙げられる。均質な膜が得られやすく、かつ、ピンホールが生成しにくい等の観点から、好ましくは、インクジェット法、スプレー法、印刷法、スロット型コータ法等の塗布法であり、その中でもより好ましくはインクジェット法を用いることが好ましい。
<インクジェット法>
インクジェット法で用いられるインクジェットヘッドとしては、オンデマンド方式でもコンティニュアス方式でもよい。また、吐出方式としては、電気−機械変換方式(例えば、シングルキャビティー型、ダブルキャビティー型、ベンダー型、ピストン型、シェアーモード型、シェアードウォール型等)、電気−熱変換方式(例えば、サーマルインクジェット型、バブルジェット(登録商標)型等)、静電吸引方式(例えば、電界制御型、スリットジェット型等)、放電方式(例えば、スパークジェット型等)などを具体的な例として挙げることができるが、いずれの吐出方式を用いてもよい。また、印字方式としては、シリアルヘッド方式、ラインヘッド方式等を制限なく用いることができる。
ヘッドから射出するインク滴の体積は、0.5〜100pLの範囲とすることが好ましい。塗布ムラが少なく、かつ印字速度を高速化できる観点から、2〜20pLの範囲であることが、より好ましい。なお、インク滴の体積は、印加電圧の調整等によって適宜調整可能である。
印字解像度は、好ましくは180〜10000dpi(dots per inch)の範囲、より好ましくは360〜2880dpiの範囲で、湿潤膜厚とインク滴の体積等を考慮して適宜設定することができる。
本発明において、インクジェット塗布時(塗布直後)における湿潤塗膜の湿潤膜厚は、適宜設定することができるが、好ましくは1〜100μmの範囲、より好ましくは1〜30μmの範囲、最も好ましくは1〜5μmの範囲において、本発明の効果がより顕著に奏される。なお、湿潤膜厚は、塗布面積、印字解像度及びインク滴の体積から算出できる。
インクジェットによる印字方法には、ワンパス印字法とマルチパス印字法がある。
ワンパス印字法は、所定の印字領域を1回のヘッドスキャンで印字する方法である。対して、マルチパス印字法は、所定の印字領域を複数回のヘッドスキャンで印字する方法である。
ワンパス印字法では、所望とする塗布パターンの幅以上の幅に亘ってノズルが並設された広幅のヘッドを用いることが好ましい。同一の基材上に、互いにパターンが連続していない独立した複数の塗布パターンを形成する場合は、少なくとも各塗布パターンの幅以上の広幅ヘッドを用いればよい。
乾燥固化工程では、溶質(有機化合物)と溶媒(有機溶媒)の相互作用力をある一定の範囲以下に抑え、乾燥の駆動力をエントロピー支配とするため、上述したように、有機化合物の溶解度は、常温(25℃)において、0.001〜5質量%の範囲内である有機溶媒を用いることが好ましい。
[有機EL素子]
本発明の有機EL素子は、上記塗布膜を有機機能層の少なくとも1層に有することを特徴とする。
後述するが、有機機能層としては、電子注入層、電子輸送層、正孔阻止層、発光層、電子阻止層、正孔輸送層及び正孔注入層など複数の有機機能層が挙げられるが、これらのうち少なくともいずれか1層の有機機能層に本発明の塗布膜を用いればよく、特に限定はされないが、これら有機機能層のうち、電子輸送層、正孔阻止層、発光層、電子阻止層又は正孔輸送層のいずれかであることが好ましく、正孔阻止層、発光層、電子阻止層のいずれか1層以上であることがより好ましい。特に、発光層であることが、発光効率及び耐久性の観点で好ましい。
以下、有機EL素子の詳細を説明する。
本発明の有機EL素子は、基板上に、陽極と陰極、及びこれらの電極間に挟持された1層以上の有機機能層(「有機EL層」、「有機化合物層」ともいう。)を有している。
(基板)
本発明の有機EL素子に用いることのできる基板(以下、基体、支持基板、基材、支持体等ともいう。)としては、特に限定は無く、ガラス基板、プラスチック基板等を用いることができ、また透明であっても不透明であってもよい。基板側から光を取り出す場合には、基板は透明であることが好ましい。好ましく用いられる透明な基板としては、ガラス、石英、透明プラスチック基板を挙げることができる。
また、基板としては、基板側からの酸素や水の侵入を阻止するため、JIS Z−0208に準拠した試験において、その厚さが1μm以上で水蒸気透過度が1g/(m・24h・atm)(25℃)以下であるものが好ましい。
ガラス基板としては、具体的には、例えば無アルカリガラス、低アルカリガラス、ソーダライムガラス等が挙げられる。水分の吸着が少ない点からは無アルカリガラスが好ましいが、充分に乾燥を行えばこれらのいずれを用いてもよい。
プラスチック基板は、可撓性が高く、軽量で割れにくいこと、さらに有機EL素子のさらなる薄型化を可能にできること等の理由で近年注目されている。
プラスチック基板の基材として用いられる樹脂フィルムとしては、特に限定は無く、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル又はポリアリレート類、有機無機ハイブリッド樹脂等を挙げることができる。
有機無機ハイブリッド樹脂としては、有機樹脂とゾル・ゲル反応によって得られる無機高分子(例えばシリカ、アルミナ、チタニア、ジルコニア等)を組み合わせて得られるものが挙げられる。これらのうちでは、特にアートン(JSR(株)製)又はアペル(三井化学(株)製)といったノルボルネン(又はシクロオレフィン系)樹脂が好ましい。
通常生産されているプラスチック基板は、水分の透過性が比較的高く、また、基板内部に水分を含有している場合もある。そのため、このようなプラスチック基板を用いる際には、樹脂フィルム上に水蒸気や酸素などの侵入を抑制する膜(以下、「バリアー膜」又は「水蒸気封止膜」という)を設けたものが好ましい。
バリアー膜を構成する材料は、特に限定は無く、無機物、有機物の被膜又はその両者のハイブリッド等が用いられる。被膜が形成されていてもよく、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のバリアー性フィルムであることが好ましく、さらには、JIS K 7126−1987に準拠した方法で測定された酸素透過度が、1×10−3mL/(m・24h・atm)以下、水蒸気透過度が、1×10−5g/(m・24h)以下の高バリアー性フィルムであることが好ましい
バリアー膜を構成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であれば特に限定は無く、例えば金属酸化物、金属酸窒化物又は金属窒化物等の無機物、有機物、又はその両者のハイブリッド材料等を用いることができる。
金属酸化物、金属酸窒化物又は金属窒化物としては、酸化ケイ素、酸化チタン、酸化インジウム、酸化スズ、インジウム・スズ酸化物(ITO)、酸化アルミニウム等の金属酸化物、窒化ケイ素等の金属窒化物、酸窒化ケイ素、酸窒化チタン等の金属酸窒化物等が挙げられる。
さらに、該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
バリアー膜は、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のバリアー性フィルムであることが好ましく、さらには、JIS K 7126−1987に準拠した方法で測定された酸素透過度が、10−3mL/(m・24h・atm)以下、水蒸気透過度が、10−5g/(m・24h)以下の高バリアー性フィルムであることが好ましい
前記樹脂フィルムに、バリアー膜を設ける方法は、特に限定されず、いかなる方法でもよいが、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、CVD法(化学的気相堆積:例えば、プラズマCVD法、レーザーCVD法、熱CVD法など)、コーティング法、ゾル・ゲル法等を用いることができる。これらのうち、緻密な膜を形成できる点から、大気圧又は大気圧近傍でのプラズマCVD処理による方法が好ましい。
不透明な基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
(陽極)
有機EL素子の陽極としては、仕事関数の大きい(4eV以上)金属、合金、金属の電気伝導性化合物、又はこれらの混合物を電極物質とするものが好ましく用いられる。
ここで、「金属の電気伝導性化合物」とは、金属と他の物質との化合物のうち電気伝導性を有するものをいい、具体的には、例えば、金属の酸化物、ハロゲン化物等であって電気伝導性を有するものをいう。
このような電極物質の具体例としては、Au等の金属、CuI、インジウム・スズ酸化物(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。上記陽極は、これらの電極物質からなる薄膜を、蒸着やスパッタリング等の公知の方法により、前記基板上に形成させることで作製することができる。
また、この薄膜にフォトリソグラフィー法で所望の形状のパターンを形成してもよく、また、パターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
陽極から発光を取り出す場合には、透過率を10%より大きくすることが望ましい。また、陽極としてのシート抵抗は、数百Ω/sq.以下が好ましい。さらに陽極の膜厚は、構成する材料にもよるが、通常10nm〜1μm、好ましくは10〜200nmの範囲で選ばれる。
(有機機能層)
有機機能層(「有機EL層」、「有機化合物層」ともいう。)には少なくとも発光層が含まれるが、発光層とは広義には、陰極と陽極とからなる電極に電流を流した際に発光する層のことを指し、具体的には、陰極と陽極とからなる電極に電流を流した際に発光する有機化合物を含有する層を指す。
本発明に用いられる有機EL素子は、必要に応じ、発光層の他に、正孔注入層、電子注入層、正孔輸送層及び電子輸送層を有していてもよく、これらの層が陰極と陽極とで挟持された構造をとる。
具体的には、
(i)陽極/発光層/陰極
(ii)陽極/正孔注入層/発光層/陰極
(iii)陽極/発光層/電子注入層/陰極
(iv)陽極/正孔注入層/発光層/電子注入層/陰極
(v)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(vi)陽極/正孔輸送層/発光層/電子輸送層/陰極
等の構造が挙げられる。
さらに、電子注入層と陰極との間に、陰極バッファー層(例えば、フッ化リチウム等)を挿入してもよく、陽極と正孔注入層との間に、陽極バッファー層(例えば、銅フタロシアニン等)を挿入してもよい。
(発光層)
本発明に係る発光層は、電極又は電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。発光層は単一の組成を持つ層であってもよいし、同一又は異なる組成をもつ複数の層からなる積層構造であってもよい。
この発光層自体に、正孔注入層、電子注入層、正孔輸送層及び電子輸送層等の機能を付与してもよい。すなわち、発光層に(1)電界印加時に、陽極又は正孔注入層により正孔を注入することができ、かつ陰極又は電子注入層より電子を注入することができる注入機能、(2)注入した電荷(電子と正孔)を電界の力で移動させる輸送機能、(3)電子と正孔の再結合の場を発光層内部に提供し、これを発光につなげる発光機能のうちの少なくとも一つの機能を付与してもよい。なお、発光層は、正孔の注入されやすさと電子の注入されやすさに違いがあってもよく、また、正孔と電子の移動度で表される輸送機能に大小があってもよいが、少なくともどちらか一方の電荷を移動させる機能を有するものが好ましい。
この発光層に用いられる発光材料の種類については、特に制限はなく、従来、有機EL素子における発光材料として公知のものを用いることができる。このような発光材料は、主に有機化合物であり、所望の色調により、例えば、Macromol.Symp.125巻17〜26頁に記載の化合物が挙げられる。また、発光材料はp−ポリフェニレンビニレンやポリフルオレンのような高分子材料でもよく、さらに前記発光材料を側鎖に導入した高分子材料や前記発光材料を高分子の主鎖とした高分子材料を使用してもよい。なお、上述したように、発光材料は、発光性能の他に、正孔注入機能や電子注入機能を併せ持っていてもよいため、後述する正孔注入材料や電子注入材料のほとんどが発光材料としても使用できる。
有機EL素子を構成する層において、その層が2種以上の有機化合物で構成されるとき、主成分をホスト、その他の成分をドーパントといい、本発明の発光層においてホストとドーパントを併用する場合、主成分であるホスト化合物に対する発光層のドーパント(以下発光ドーパントともいう)の混合比は好ましくは質量で0.1〜30質量%未満である。
発光層に用いるドーパントは、大きく分けて、蛍光を発光する蛍光性ドーパントとリン光を発光するリン光性ドーパントの2種類がある。
蛍光性ドーパントの代表例としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体、その他公知の蛍光性化合物等が挙げられる。
本発明においては、少なくとも1層の発光層がリン光性化合物を含有するのが好ましい。
本発明においてリン光性化合物とは、励起三重項からの発光が観測される化合物であり、リン光量子収率が25℃において0.001以上の化合物である。
リン光量子収率は、好ましくは0.01以上、さらに好ましくは0.1以上である。上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に用いられるリン光性化合物は、任意の溶媒のいずれかにおいて上記リン光量子収率が達成されればよい。
リン光性ドーパントはリン光性化合物であり、その代表例としては、好ましくは元素の周期律表で8〜10族の金属を含有する錯体系化合物であり、さらに好ましくは、イリジウム化合物、オスミウム化合物、ロジウム化合物、パラジウム化合物、又は白金化合物(白金錯体系化合物)であり、中でも好ましくはイリジウム化合物、ロジウム化合物、白金化合物であり、最も好ましくはイリジウム化合物である。
ドーパントの例としては、以下の文献又は特許公報に記載されている化合物である。J.Am.Chem.Soc.123巻4304〜4312頁、国際公開第2000/70655号、同2001/93642号、同2002/02714号、同2002/15645号、同2002/44189号、同2002/081488号、特開2002−280178号公報、同2001−181616号公報、同2002−280179号公報、同2001−181617号公報、同2002−280180号公報、同2001−247859号公報、同2002−299060号公報、同2001−313178号公報、同2002−302671号公報、同2001−345183号公報、同2002−324679号公報、同2002−332291号公報、同2002−50484号公報、同2002−332292号公報、同2002−83684号公報、特表2002−540572号公報、特開2002−117978号公報、同2002−338588号公報、同2002−170684号公報、同2002−352960号公報、同2002−50483号公報、同2002−100476号公報、同2002−173674号公報、同2002−359082号公報、同2002−175884号公報、同2002−363552号公報、同2002−184582号公報、同2003−7469号公報、特表2002−525808号公報、特開2003−7471号公報、特表2002−525833号公報、特開2003−31366号公報、同2002−226495号公報、同2002−234894号公報、同2002−235076号公報、同2002−241751号公報、同2001−319779号公報、同2001−319780号公報、同2002−62824号公報、同2002−100474号公報、同2002−203679号公報、同2002−343572号公報、同2002−203678号公報等。
以下にリン光性ドーパントの具体例を挙げるが、本発明はこれらに限定されない。
Figure 2018173553
Figure 2018173553
Figure 2018173553
発光ドーパントは1種のみを用いてもよいし、複数種類を用いてもよく、これらドーパントからの発光を同時に取り出すことにより、複数の発光極大波長を持つ発光素子を構成することもできる。また、例えばリン光性ドーパントと、蛍光性ドーパントの両方が加えられていてもよい。複数の発光層を積層して有機EL素子を構成する場合、それぞれの層に含有される発光ドーパントは同じであっても異なっていても、単一種類であっても複数種類であってもよい。
さらには、前記発光ドーパントを高分子鎖に導入した、又は前記発光ドーパントを高分子の主鎖とした高分子材料を使用してもよい。
上記ホスト化合物としては、例えば、カルバゾール誘導体、トリアリールアミン誘導体、芳香族ボラン誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するものが挙げられ、後述の電子輸送材料及び正孔輸送材料もその相応しい一例として挙げられる。
青色又は白色の発光素子、表示装置及び照明装置に適用する場合には、ホスト化合物の蛍光極大波長が415nm以下であることが好ましく、リン光性ドーパントを用いる場合、ホスト化合物のリン光の0−0バンドが450nm以下であることがさらに好ましい。発光ホストとしては、正孔輸送能、電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、なおかつ高Tg(ガラス転移温度)である化合物が好ましい。
発光ホストの具体例としては、例えば以下の文献に記載されている化合物が好適である。
特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等。
発光ドーパントはホスト化合物を含有する層全体に分散されていてもよいし、部分的に分散されていてもよい。発光層にはさらに別の機能を有する化合物が加えられていてもよい。
上記の材料を用いて、例えば蒸着法、スピンコート法、キャスト法、LB法、インクジェット転写法、印刷法等の公知の方法により薄膜化することにより、発光層を形成することができるが、形成された発光層は、特に分子堆積膜であることが好ましい。
ここで、分子堆積膜とは、上記化合物の気相状態から沈着され形成された薄膜や、該化合物の溶融状態又は液相状態から固体化され形成された膜のことである。通常、この分子堆積膜とLB法により形成された薄膜(分子累積膜)とは、凝集構造、高次構造の相違や、それに起因する機能的な相違により区別することができる。
本発明においては、上記の発光材料であるリン光性ドーパント及びホスト化合物を本発明に係る有機化合物として用いることが好ましい。すなわち、発光層を、当該リン光性ドーパント及びホスト化合物と、有機溶媒とを含む溶液を、スピンコート法、キャスト法、インクジェット法、スプレー法、印刷法、スロット型コータ法等の塗布によって形成することが、分子堆積膜からなる発光層を形成することができるため好ましい。中でも、均質な膜が得られやすく、かつ、ピンホールが生成しにくい等の観点から、インクジェット法が好ましい。
そして、当該リン光性ドーパント及びホスト化合物と、有機溶媒とを含む塗布液において、50℃以下、大気圧条件下での有機溶媒に対する溶存二酸化炭素濃度を1ppm〜前記有機溶媒に対する飽和濃度とすることが好ましい。溶存二酸化炭素濃度を上記範囲とする手段としては、リン光性ドーパント及びホスト化合物と、有機溶媒とを含む溶液に炭酸ガスをバブリングする方法、又は、有機溶媒及び二酸化炭素を含有する超臨界流体を用いた超臨界クロマトグラフィー法が挙げられる。
また、前記塗布液において、前記リン光性ドーパント及びホスト化合物のうち、少なくとも一方が上記(3)で表される関係を満たしていることが好ましい。より好ましくは、前記塗布液において、前記リン光性ドーパント及びホスト化合物のいずれもが上記(3)で表される関係を満たすことである。このような手段としては、リン光性ドーパント及びホスト化合物と、有機溶媒とを、上述した超臨界クロマトグラフィー法を用いて混合することが好ましい。
(正孔注入層及び正孔輸送層)
正孔注入層に用いられる正孔注入材料は、正孔の注入、電子の障壁性のいずれかを有するものである。また、正孔輸送層に用いられる正孔輸送材料は、電子の障壁性を有するとともに正孔を発光層まで輸送する働きを有するものである。したがって、本発明においては、正孔輸送層は正孔注入層に含まれる。
これら正孔注入材料及び正孔輸送材料は、有機物、無機物のいずれであってもよい。具体的には、例えばトリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、ポルフィリン化合物、チオフェンオリゴマー等の導電性高分子オリゴマーが挙げられる。これらのうちでは、アリールアミン誘導体及びポルフィリン化合物が好ましい。
アリールアミン誘導体の中では、芳香族第三級アミン化合物及びスチリルアミン化合物が好ましく、芳香族第三級アミン化合物がより好ましい。
上記芳香族第三級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)ビフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベン;N−フェニルカルバゾール、さらには、米国特許第5061569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(以下、α−NPDと略す。)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが三つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料として使用することができる。
また、本発明においては、正孔輸送層の正孔輸送材料は、415nm以下に蛍光極大波長を有することが好ましい。すなわち、正孔輸送材料は、正孔輸送能を有しつつかつ、発光の長波長化を防ぎ、なおかつ高Tgである化合物が好ましい。
正孔注入層及び正孔輸送層は、上記正孔注入材料及び正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法、転写法、印刷法等の公知の方法により、薄膜化することにより形成することができる。
本発明においては、上記正孔注入材料及び正孔輸送材料を本発明に係る有機化合物として用いることが好ましい。そして、上記正孔注入材料及び正孔輸送材料と、有機溶媒とを含む溶液を、スピンコート法、キャスト法、インクジェット法、スプレー法、印刷法、スロット型コータ法等の塗布によって形成することが好ましい。中でも、均質な膜が得られやすく、かつ、ピンホールが生成しにくい等の観点から、インクジェット法が好ましい。
正孔注入層及び正孔輸送層の厚さについては、特に制限はないが、通常は5nm〜5μm程度である。なお、上記正孔注入層及び正孔輸送層は、それぞれ上記材料の1種又は2種以上からなる1層構造であってもよく、同一組成又は異種組成の複数層からなる積層構造であってもよい。また、正孔注入層と正孔輸送層を両方設ける場合には、上記の材料のうち、通常、異なる材料を用いるが、同一の材料を用いてもよい。
(電子注入層及び電子輸送層)
電子注入層は、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができる。
この電子注入層に用いられる材料(以下、電子注入材料ともいう)の例としては、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。
また、特開昭59−194393号公報に記載されている一連の電子伝達性化合物は、該公報では発光層を形成する材料として開示されているが、本発明者らが検討の結果、電子注入材料として用いうることが分かった。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子注入材料として用いることができる。
また、8−キノリノール誘導体の金属錯体、例えばトリス(8−キノリノール)アルミニウム(Alqと略す。)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も電子注入材料として用いることができる。
その他、メタルフリーやメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも電子注入材料として好ましく用いることができる。また、正孔注入層と同様にn型−Si、n型−SiC等の無機半導体も電子注入材料として用いることができる。
電子輸送層に用いられる好ましい化合物は、415nm以下に蛍光極大波長を有することが好ましい。すなわち、電子輸送層に用いられる化合物は、電子輸送能を有しつつかつ、発光の長波長化を防ぎ、なおかつ高Tgである化合物が好ましい。
電子注入層は、上記電子注入材料を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法、転写法、印刷法等の公知の方法により、薄膜化することにより形成することができる。
本発明においては、上記電子注入材料を本発明に係る有機化合物として用いることが好ましい。そして、上記電子注入材料と、有機溶媒とを含む溶液を、スピンコート法、キャスト法、インクジェット法、スプレー法、印刷法、スロット型コータ法等の塗布によって形成することが好ましい。中でも、均質な膜が得られやすく、かつ、ピンホールが生成しにくい等の観点から、インクジェット法が好ましい。
また、電子注入層としての厚さは特に制限はないが、通常は5nm〜5μmの範囲で選ばれる。この電子注入層は、これらの電子注入材料の1種又は2種以上からなる1層構造であってもよいし、又は同一組成又は異種組成の複数層からなる積層構造であってもよい。
なお、本明細書においては、前記電子注入層のうち、発光層と比較してイオン化エネルギーが大きい場合には、特に電子輸送層と呼ぶこととする。したがって、本明細書においては、電子輸送層は電子注入層に含まれる。
上記電子輸送層は、正孔阻止層(ホールブロック層)ともいわれ、その例としては、例えば、国際公開第2000/70655号、特開2001−313178号公報、特開平11−204258号公報、同11−204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日 エヌ・ティー・エス社発行)」の第237頁等に記載されているものが挙げられる。特に発光層にオルトメタル錯体系ドーパントを用いるいわゆる「リン光発光素子」においては、前記(v)及び(vi)のように電子輸送層(正孔阻止層)を有する構成を採ることが好ましい。
(バッファー層)
陽極と発光層又は正孔注入層の間、及び、陰極と発光層又は電子注入層との間には、バッファー層(電極界面層)を存在させてもよい。
バッファー層とは、駆動電圧低下や発光効率向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日 エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(第123〜166頁)に詳細に記載されており、陽極バッファー層と陰極バッファー層とがある。
陽極バッファー層は、特開平9−45479号、同9−260062号、同8−288069号等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
陰極バッファー層は、特開平6−325871号、同9−17574号、同10−74586号等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。
上記バッファー層はごく薄い膜であることが望ましく、素材にもよるが、その厚さは0.1〜100nmの範囲が好ましい。さらに、上記基本構成層の他に、必要に応じてその他の機能を有する層を適宜積層してもよい。
(陰極)
上述のように有機EL素子の陰極としては、一般に仕事関数の小さい(4eV未満)金属(以下、電子注入性金属と称する)、合金、金属の電気伝導性化合物又はこれらの混合物を電極物質とするものが用いられる。
このような電極物質の具体例としては、ナトリウム、マグネシウム、リチウム、アルミニウム、インジウム、希土類金属、ナトリウム−カリウム合金、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物等が挙げられる。
本発明においては、上記に列挙したものを陰極の電極物質として用いてもよいが、本発明の効果をより有効に発揮させる点からは、陰極は第13族金属元素を含有してなることが好ましい。すなわち本発明では、後述するように陰極の表面をプラズマ状態の酸素ガスで酸化して、陰極表面に酸化皮膜を形成することにより、それ以上の陰極の酸化を防止し、陰極の耐久性を向上させることができる。
したがって、陰極の電極物質としては、陰極に要求される好ましい電子注入性を有する金属であって、緻密な酸化皮膜を形成しうる金属であることが好ましい。
前記第13族金属元素を含有してなる陰極の電極物質としては、具体的には、例えば、アルミニウム、インジウム、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物等が挙げられる。なお、上記混合物の各成分の混合比率は、有機EL素子の陰極として従来公知の比率を採用することができるが、特にこれに限定されない。上記陰極は、上記の電極物質を蒸着やスパッタリング等の方法により、前記有機化合物層(有機EL層)上に薄膜形成することにより、作製することができる。
また、陰極としてのシート抵抗は数百Ω/sq.以下が好ましく、膜厚は、通常10nm〜1μm、好ましくは50〜200nmの範囲で選ばれる。なお、発光光を透過させるために、有機EL素子の陽極又は陰極のいずれか一方を透明又は半透明にすると、発光効率が向上して好ましい。
[有機EL素子の作製方法]
本発明の有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製法について説明する。
まず適当な基体上に、所望の電極物質、例えば陽極用物質からなる薄膜を、1μm以下、好ましくは10〜200nmの厚さになるように、蒸着やスパッタリング等の方法により形成させ、陽極を作製する。次に、この上に素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、正孔阻止層の有機化合物薄膜を形成させる。
これらの有機化合物薄膜の薄膜化の方法としては、上述したように、スピンコート法、キャスト法、インクジェット法、スプレー法、蒸着法、印刷法、スロットコート法等があるが、均質な膜が得られやすく、かつ、ピンホールが生成しにくい等の点と、本発明においては、本発明に係る塗布液を用いることができる点でインクジェット法が好ましい。
また、層ごとに異なる成膜法を適用してもよい。成膜に蒸着法を採用する場合、その蒸着条件は、使用する化合物の種類等により異なるが、一般にボート加熱温度50〜450℃、真空度10−6〜10−2Pa、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、厚さ0.1nm〜5μmの範囲で適宜選ぶことが望ましい。
これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50〜200nmの範囲の厚さになるように、例えば蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより、所望の有機EL素子が得られる。この有機EL素子の作製は、1回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる成膜法を施してもかまわない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。
[有機EL素子の封止]
有機EL素子の封止手段としては、特に限られないが、例えば、有機EL素子の外周部を封止用接着剤で封止した後、有機EL素子の発光領域を覆うように封止部材を配置する方法が挙げられる。
封止用接着剤としては、例えば、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2−シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
封止部材としては、有機EL素子を薄膜化することできる観点から、ポリマーフィルム及び金属フィルムを好ましく使用することができる。
封止部材と有機EL素子の発光領域との間隙には、封止用接着剤の他には、気相及び液相では窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することもできる。また、封止部材と有機EL素子の表示領域との間隙を真空とすることや、間隙に吸湿性化合物を封入することもできる。
[表示装置]
本発明の有機EL素子を用いる多色表示装置は、発光層形成時のみシャドーマスクを設け、他層は共通であるので、シャドーマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。
発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、印刷法である。蒸着法を用いる場合においてはシャドーマスクを用いたパターニングが好ましい。
また、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
このようにして得られた多色表示装置に、直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧2〜40V程度を印加すると、発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。さらに、交流電圧を印加する場合には、陽極が+、陰極が−の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。
多色表示装置は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の3種の有機EL素子を用いることにより、フルカラーの表示が可能となる。
表示デバイス、ディスプレイとしてはテレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリックス(パッシブマトリックス)方式でもアクティブマトリックス方式でもどちらでもよい。
発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではない。
また、本発明に係る有機EL素子に共振器構造を持たせた有機EL素子として用いてもよい。
このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより、上記用途に使用してもよい。
本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。又は、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
本発明の有機EL素子から構成される表示装置の一例を図面に基づいて以下に説明する。
図5は、有機EL素子から構成される表示装置の一例を示した模式図である。
有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。ディスプレイ41は、複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。制御部Bは、表示部Aと電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。
図6は、表示部Aの模式図である。表示部Aは基板上に、複数の走査線55及びデータ線56を含む配線部と、複数の画素53等とを有する。表示部Aの主要な部材の説明を以下に行う。
図6においては、画素53の発光した光が、白矢印方向(下方向)へ取り出される場合を示している。配線部の走査線55及び複数のデータ線56は、それぞれ導電材料からなり、走査線55とデータ線56は格子状に直交して、直交する位置で画素53に接続している(詳細は図示せず)。画素53は、走査線55から走査信号が印加されると、データ線56から画像データ信号を受け取り、受け取った画像データに応じて発光する。発光の色が赤領域の画素、緑領域の画素、青領域の画素を、適宜、同一基板上に並置することによって、フルカラー表示が可能となる。
次に、画素の発光プロセスを説明する。
図7は、画素の回路を示した概略図である。画素は、有機EL素子60、スイッチングトランジスタ61、駆動トランジスタ62、コンデンサー63等を備えている。複数の画素に有機EL素子60として、赤色、緑色、青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。
図7において、制御部B(図7には図示せず、図5に示す。)からデータ線56を介してスイッチングトランジスタ61のドレインに画像データ信号が印加される。そして、制御部Bから走査線55を介してスイッチングトランジスタ61のゲートに走査信号が印加されると、スイッチングトランジスタ61の駆動がオンし、ドレインに印加された画像データ信号がコンデンサー63と駆動トランジスタ62のゲートに伝達される。
画像データ信号の伝達により、コンデンサー63が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ62の駆動がオンする。駆動トランジスタ62は、ドレインが電源ライン67に接続され、ソースが有機EL素子60の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン67から有機EL素子60に電流が供給される。
制御部Bの順次走査により走査信号が次の走査線55に移ると、スイッチングトランジスタ61の駆動がオフする。しかし、スイッチングトランジスタ61の駆動がオフしてもコンデンサー63は充電された画像データ信号の電位を保持するので、駆動トランジスタ62の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子60の発光が継続する。順次走査により、次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ62が駆動して有機EL素子60が発光する。すなわち、有機EL素子60の発光は、複数の画素それぞれの有機EL素子60に対して、アクティブ素子であるスイッチングトランジスタ61と駆動トランジスタ62を設けて、複数の画素53(図7には図示せず、図6に示す。)それぞれの有機EL素子60の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。
ここで、有機EL素子60の発光は、複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。
また、コンデンサー63の電位の保持は、次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。
図8は、パッシブマトリクス方式による表示装置の模式図である。図8において、複数の走査線55と複数の画像データ線56が画素53を挟んで対向して格子状に設けられている。順次走査により走査線55の走査信号が印加されたとき、印加された走査線55に接続している画素53が画像データ信号に応じて発光する。パッシブマトリクス方式では画素53にアクティブ素子が無く、製造コストの低減を図ることができる。
[光電変換素子及び太陽電池]
本発明の塗布膜が、光電変換素子を作製するための塗布膜である場合には、有機化合物としては、p型有機半導体材料やn型有機半導体材料などの光電変換素子用材料であることが好ましい。そして、この場合、塗布膜は、光電変換素子を構成する有機機能層として好適に用いることができる。
以下、光電変換素子用材料、光電変換素子及び太陽電池の詳細を説明する。
図9は、バルクヘテロジャンクション型の有機光電変換素子からなるシングル構成(バルクヘテロジャンクション層が1層の構成)の太陽電池の一例を示す断面図である。
図9において、バルクヘテロジャンクション型の有機光電変換素子200は、基板201の一方面上に、透明電極(陽極)202、正孔輸送層207、バルクヘテロジャンクション層の光電変換部204、電子輸送層(又はバッファー層ともいう。)208及び対極(陰極)203が順次積層されている。
基板201は、順次積層された透明電極202、光電変換部204及び対極203を保持する部材である。本実施形態では、基板201側から光電変換される光が入射するので、基板201は、この光電変換される光を透過させることが可能な、すなわち、この光電変換すべき光の波長に対して透明な部材であることが好ましい。基板201は、例えば、ガラス基板や樹脂基板等が用いられる。この基板201は、必須ではなく、例えば、光電変換部204の両面に透明電極202及び対極203を形成することでバルクヘテロジャンクション型の有機光電変換素子200が構成されてもよい。
光電変換部204は、光エネルギーを電気エネルギーに変換する層であって、光電変換素子用材料であるp型半導体材料とn型半導体材料とを一様に混合したバルクヘテロジャンクション層を有して構成される。
p型半導体材料は、相対的に電子供与体(ドナー)として機能し、n型半導体材料は、相対的に電子受容体(アクセプター)として機能する。ここで、電子供与体及び電子受容体は、“光を吸収した際に、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)を形成する電子供与体及び電子受容体”であり、電極のように単に電子を供与又は受容するものではなく、光反応によって、電子を供与又は受容するものである。
図9において、基板201を介して透明電極202から入射された光は、光電変換部204のバルクヘテロジャンクション層における電子受容体又は電子供与体で吸収され、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)が形成される。
発生した電荷は、内部電界、例えば、透明電極202と対極203の仕事関数が異なる場合では透明電極202と対極203との電位差によって、電子は電子受容体間を通り、また正孔は電子供与体間を通り、それぞれ異なる電極へ運ばれ光電流が検出される。例えば、透明電極202の仕事関数が対極203の仕事関数よりも大きい場合では、電子は透明電極202へ、正孔は対極203へ輸送される。
なお、仕事関数の大小が逆転すれば、電子と正孔はこれとは逆方向に輸送される。
また、透明電極202と対極203との間に電位をかけることにより、電子と正孔の輸送方向を制御することもできる。
また、光電変換部204で生じた電子及び正孔をそれぞれ効率良く透明電極202及び対極203に輸送するために、必要に応じて電子輸送層207や正孔輸送層208を設けることが好ましい。
なお、図9には記載していないが、正孔ブロック層、電子ブロック層、電子注入層、正孔注入層、又は平滑化層等の他の層を有していてもよい。
また、さらなる太陽光利用率(光電変換効率)の向上を目的として、このような光電変換素子を積層した、タンデム型の構成(バルクヘテロジャンクション層を複数有する構成)であってもよい。
図10は、タンデム型のバルクヘテロジャンクション層を備える有機光電変換素子からなる太陽電池を示す断面図である。タンデム型構成の場合、基板201上に、順次透明電極202、第1の光電変換部209を積層した後、電荷再結合層(中間電極)205を積層した後、第2の光電変換部206、次いで対極203を積層することで、タンデム型の構成とすることができる。
上記のような層に用いることができる材料については、例えば、特開2015−149483号公報の段落0045〜0113に記載のn型半導体材料、及びp型半導体材料が挙げられる。
(バルクヘテロジャンクション層の形成方法)
電子受容体と電子供与体とが混合されたバルクヘテロジャンクション層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、前述の正孔と電子が電荷分離する界面の面積を増大させ、高い光電変換効率を有する素子を作製するためには、塗布法が好ましい。また塗布法は、製造速度にも優れている。
塗布後は残留溶媒及び水分、ガスの除去、及び半導体材料の結晶化による移動度向上・吸収長波化を引き起こすために加熱を行うことが好ましい。製造工程中において所定の温度でアニール処理されると、微視的に一部が配列又は結晶化が促進され、バルクヘテロジャンクション層を適切な相分離構造とすることができる。その結果、バルクヘテロジャンクション層のキャリア移動度が向上し、高い効率を得ることができるようになる。
光電変換部(バルクヘテロジャンクション層)204は、電子受容体と電子供与体とが均一に混在された単一層で構成してもよいが、電子受容体と電子供与体との混合比を変えた複数層で構成してもよい。
次に、有機光電変換素子を構成する電極について説明する。
有機光電変換素子は、バルクヘテロジャンクション層で生成した正電荷と負電荷とが、それぞれp型半導体材料、及びn型半導体材料を経由して、それぞれ透明電極及び対極から取り出され、電池として機能するものである。それぞれの電極には、電極を通過するキャリアに適した特性が求められる。
(対極)
本発明において対極は、光電変換部で発生した電子を取り出す陰極とすることが好ましい。例えば、陰極として用いる場合、導電材単独層であってもよいが、導電性を有する材料に加えて、これらを保持する樹脂を併用してもよい。
対極材料としては、例えば、特開2010−272619号公報、特開2014−078742号公報等に記載の公知の陰極の導電材を用いることができる。
(透明電極)
本発明において透明電極は、光電変換部で発生した正孔を取り出す機能を有する陽極とすることが好ましい。例えば、陽極として用いる場合、好ましくは波長380〜800nmの光を透過する電極である。材料としては、例えば、特開2010−272619号公報、特開2014−078742号公報等に記載の公知の陽極用の材料を用いることができる。
(中間電極)
また、タンデム構成の場合に必要となる中間電極の材料としては、透明性と導電性を併せ持つ化合物を用いた層であることが好ましい。材料としては、例えば、特開2010−272619号公報、特開2014−078742号公報等に記載の公知の中間電極用の材料を用いることができる。
次に、電極及びバルクヘテロジャンクション層以外を構成する材料について述べる。
(正孔輸送層及び電子ブロック層)
本発明に係る有機光電変換素子は、バルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能とするために、バルクヘテロジャンクション層と透明電極との中間には正孔輸送層・電子ブロック層を有していることが好ましい。
正孔輸送層を構成する光電変換素子用材料としては、例えば、特開2010−272619号公報、特開2014−078742号公報等に記載の公知の材料を用いることができる。
(電子輸送層及び正孔ブロック層)
本発明に係る有機光電変換素子は、バルクヘテロジャンクション層と対極との中間には電子輸送層・正孔ブロック層・バッファー層を形成することで、バルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
また、電子輸送層としては、例えば、特開2010−272619号公報、特開2014−078742号公報等に記載の公知の材料を用いることができる。電子輸送層は、バルクヘテロジャンクション層で生成した正孔を対極側には流さないような整流効果を有する、正孔ブロック機能が付与された正孔ブロック層としてもよい。正孔ブロック層とするための材料としては、例えば、特開2014−078742号公報に記載の公知の材料を用いることができる。
(その他の層)
エネルギー変換効率の向上や、素子寿命の向上を目的に、各種中間層を素子内に有する構成としてもよい。中間層の例としては、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層、励起子ブロック層、UV吸収層、光反射層、波長変換層等を挙げることができる。
(基板)
基板側から光電変換される光が入射する場合、基板はこの光電変換される光を透過させることが可能な、すなわち、この光電変換すべき光の波長に対して透明な部材であることが好ましい。基板は、例えば、ガラス基板や樹脂基板等が好適に挙げられるが、軽量性と柔軟性の観点から透明樹脂フィルムを用いることが望ましい。
本発明で透明基板として好ましく用いることができる透明樹脂フィルムには特に制限がなく、その材料、形状、構造、厚さ等については公知のものの中から適宜選択することができる。例えば、特開2010−272619号公報、特開2014−078742号公報等に記載の公知の材料を用いることができる。
(光学機能層)
本発明に係る有機光電変換素子は、太陽光のより効率的な受光を目的として、各種の光学機能層を有していてよい。光学機能層としては、例えば、反射防止膜、マイクロレンズアレイ等の集光層、対極で反射した光を散乱させて再度バルクヘテロジャンクション層に入射させることができるような光拡散層等を設けてもよい。
反射防止層、集光層及び光散乱層としては、例えば、特開2010−272619号公報、特開2014−078742号公報等に記載の公知の反射防止層、集光層及び光散乱層をそれぞれ用いることができる。
(パターニング)
本発明に係る電極、発電層、正孔輸送層、電子輸送層等をパターニングする方法やプロセスには特に制限はなく、例えば、特開2010−272619号公報、特開2014−078742号公報等に記載の公知の手法を適宜適用することができる。
(封止)
また、作製した有機光電変換素子が環境中の酸素、水分等で劣化しないために、有機光電変換素子だけでなく有機エレクトロルミネッセンス素子等で公知の手法によって封止することが好ましい。例えば、特開2010−272619号公報、特開2014−078742号公報等に記載の手法を用いることができる。
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り、「質量部」又は「質量%」を表す。
[実施例1]
<溶液(A)の作製>
高純度窒素雰囲気下で、酢酸nPr(酢酸ノルマルプロピル)(関東化学株式会社、事前に脱水処理した)1Lに下記DP−1を5g溶かした溶液(A)を得た。
<溶液(B)〜(M)の作製>
上記溶液(A)の作製において、酢酸nPr及びDP−1を下記表Iに示す溶媒及び化合物に変更した以外は同様にして溶液(B)〜(M)を作製した。なお、用いた溶媒は事前に全て脱水処理をした。以下に用いた化合物の材料を示す。
Figure 2018173553
<処理(S1)〜(S3)>
上記で作製した溶液(A)〜(M)について、それぞれ表Iに示すとおりの処理(無処理、(S1)〜(S3))を行い、塗布液1〜34を得た。
(S1:超音波処理による塗布液作製)
溶液をガラス瓶に密閉し、以下の条件で超音波処理した。
機器:卓上型超音波洗浄機(アズワン社製)
発信周波数:40kHz
時間:10分間
(S2:カラムクロマト処理による塗布液作製)
溶液を窒素雰囲気下(グローブボックス内)でカラムクロマト処理した。なお、展開液には元溶液(A)〜(M)に用いた溶液を用い、溶出液を減圧濃縮することにより、溶液濃度は元溶液と同じようになるように調整した。
カラム:シリカゲル(富士シリシア化学社製)
(S3:超臨界クロマト処理による塗布液作製)
以下の条件で超臨界クロマトグラフィー処理した。
機器:Prep15(日本ウォーターズ社製)
カラム:Torus 2−PIC、5μm、10.0mm×150mm
移動層:二酸化炭素/酢酸nPr=93/7
移動層流量:10mL/min
圧力:18MPa
温度:40℃
検出:PDA(254nm)
<塗布液の評価>
(1)塗布液の小角X線散乱測定結果の粒径分布解析
実施例1で得た塗布液試料について小角X線散乱測定を行い、得られたデータについて粒径分布解析を行った。X線はSPring−8の放射光を用い、波長0.1nmで塗布液試料に照射した。測定にはHUBER製多軸回折装置を用い、X線入射角θは0.2°で固定して塗布液試料に照射し、検出器はシンチレーションカウンターを用いて1〜43°までの散乱線測定を行った。得られた散乱回折データから解析ソフト(リガク社製粒径・空孔径解析ソフトウェア NANO−Solver)を用いて粒径分布曲線(横軸粒径(nm)、縦軸:頻度分布)を作成した。
また、該粒径分布曲線中の極大ピークに対応する粒径をR′として算出した。なお、複数の極大ピークを有する場合には、それらの極大ピークのうち、最小の粒径を示す極大ピークに対応する粒径をR′として算出した。さらに、下記式によってnの値を求めた。
(式)n=R′/r
なお、rは、化合物について密度汎関数理論計算したときに得られる分子長軸長さを2a(nm)及び分子短軸長さを2b(nm)としたとき、当該有機化合物の分子半径r=(a×b)1/2を表す。]
また、極大ピークが存在した塗布液については、各塗布液における粒径R′に対応する極大ピークは、粒径分布曲線の極大ピークのうち最も頻度分布の大きい極大ピークであった。
なお、DP−1のrは0.86nm(長軸長さ2.28nm、短軸長さ1.17nm)であった。他の化合物についても同様にrを求め、nの値を算出した。
さらに、最も粒径値の小さい粒径を示す極大ピークの半値幅を算出し、結果を表Iに示した。なお、半値幅が10nmを超えるもの、判定が難しい場合には×で示した。
(2)塗布膜の小角X線散乱測定結果の粒径分布解析
実施例1で得た各塗布液を1500rpm、30秒でスピンコート法によりそれぞれ成膜した後、80℃で30分間保持し膜厚40nmの塗布膜をシリコンウエハ上に成膜し、測定サンプルとした。X線はSPring−8の放射光を用い、波長0.1nmで塗布膜試料に照射した。測定にはHUBER製多軸回折装置を用い、X線入射角θは0.2°で固定して塗布膜試料に照射し、検出器はシンチレーションカウンターを用いて1〜43°までの散乱線測定を行った。得られた散乱回折データから前述の解析ソフトを用いて粒径分布曲線(横軸粒径(nm)、縦軸:頻度分布)を作成した。
また、該粒径分布曲線中の極大ピークに対応する粒径をRとして算出した。なお、複数の極大ピークを有する場合には、それらの極大ピークのうち、最小の粒径を示す極大ピークに対応する粒径をRとして算出した。さらに、下記式によってnの値を求めた。
(式)n=R/r
なお、rは化合物について密度汎関数理論計算したときに得られる分子長軸長さを2a(nm)及び分子短軸長さを2b(nm)としたとき、当該有機化合物の分子半径r=(a×b)1/2を表す。
また、極大ピークが存在した塗布膜については、各塗布膜における粒径Rに対応する極大ピークは、粒径分布曲線の極大ピークのうち最も頻度分布の大きい極大ピークであった。
さらに、最も粒径値の小さい粒径を示す極大ピークの半値幅と、該極大ピークの頻度分布を算出し、結果を表Iに示した。なお、半値幅が10nmを超えるもの、判定が難しい場合には×で示した。
(3)発光強度測定
50mm×50mm、厚さ0.7mmの石英基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。該石英基板をスピンコート機に設置し、実施例1で得た各(ドーパント)塗布液を1500rpm、30秒でスピンコート法によりそれぞれ成膜した後、80℃で30分間保持し膜厚40nmの塗布膜を石英基板上に成膜し、測定サンプルとした。
作製した測定サンプルのそれぞれについて、23℃で、励起波長365nmの紫外線を照射し、フォトルミネッセンス強度を測定した。各塗布膜の発光強度は母液となる溶液(A)〜(M)を固化してなる塗布膜の発光強度を100として表Iに示した。なお、発光強度測定にはUSB2000(Ocean Optics製)を用いた。
Figure 2018173553
[実施例2]
<有機EL素子101の作製>
以下のように、基材上に、陽極/正孔注入層/正孔輸送層/発光層/ブロック層/電子輸送層/電子注入層/陰極を積層して封止し、ボトムエミッション型の有機EL素子101を作製した。
(基材の準備)
まず、ポリエチレンナフタレートフィルム(帝人デュポン社製、以下、PENと略記する。)の陽極を形成する側の全面に、特開2004−68143号公報に記載の構成の大気圧プラズマ放電処理装置を用いて、SiOからなる無機物のガスバリアー層を層厚500nmとなるように形成した。これにより、酸素透過度0.001mL/(m・24h)以下、水蒸気透過度0.001g/(m・24h)以下のガスバリアー性を有する可撓性の基材を作製した。
(陽極の形成)
上記基材上に厚さ120nmのインジウム・スズ酸化物(ITO)をスパッタ法により製膜し、フォトリソグラフィー法によりパターニングを行い、陽極を形成した。なお、パターンは発光領域の面積が5cm×5cmになるようなパターンとした。
(正孔注入層の形成)
陽極を形成した基材をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。そして、陽極を形成した基材上に、特許第4509787号公報の実施例16と同様に調製したポリ(3,4−エチレンジオキシチオフェン)/ポリスチレンスルホネート(PEDOT/PSS)の分散液をイソプロピルアルコールで希釈した2質量%溶液をインクジェット法にて塗布、80℃で5分乾燥し、層厚40nmの正孔注入層を形成した。
(正孔輸送層の形成)
次に、正孔注入層を形成した基材を、窒素ガス(グレードG1)を用いた窒素雰囲気下に移し、下記組成の正孔輸送層形成用塗布液を用いて、インクジェット法にて塗布、130℃で30分乾燥し、層厚30nmの正孔輸送層を形成した。
〈正孔輸送層形成用塗布液〉
正孔輸送材料(下記化合物(60))(重量平均分子量Mw=80000)
10質量部
クロロベンゼン 3000質量部
Figure 2018173553
(発光層の形成)
次に、正孔輸送層を形成した基材を、下記組成の発光層形成用塗布液を用い、インクジェット法にて塗布し、120℃で30分間乾燥し、層厚50nmの発光層を形成した。なお、前記発光層形成用塗布液は、下記ホスト塗布液を形成した後、下記の蛍光発光ドーパントを加えて作製した。
〈ホスト塗布液〉
ホスト化合物(H−1) 10質量部
酢酸イソプロピル 2200質量部
〈発光層形成用塗布液〉
ホスト化合物(H−1) 10質量部
蛍光発光ドーパント(DP−1) 1質量部
酢酸イソプロピル 2200質量部
(電子輸送層の形成)
次に、発光層を形成した基材を、下記組成の電子輸送層形成用塗布液を用い、インクジェット法にて塗布し、80℃で30分間乾燥し、層厚30nmの電子輸送層を形成した。〈電子輸送層形成用塗布液〉
前記化合物A 6質量部

2,2,3,3−テトラフルオロ−1−プロパノール(TFPO)
2000質量部
(電子注入層、陰極の形成)
続いて、基板を大気に曝露することなく真空蒸着装置へ取り付けた。また、モリブデン製抵抗加熱ボートにフッ化ナトリウム及びフッ化カリウムを入れたものを真空蒸着装置に取り付け、真空槽を4×10−5Paまで減圧した。その後、ボートに通電して加熱し、フッ化ナトリウムを0.02nm/秒で前記電子輸送層上に蒸着し、膜厚1nmの薄膜を形成した。同様に、フッ化カリウムを0.02nm/秒でフッ化ナトリウム薄膜上に蒸着し、層厚1.5nmの電子注入層を形成した。
引き続き、アルミニウムを蒸着して厚さ100nmの陰極を形成した。
(封止)
以上の工程により形成した積層体に対し、市販のロールラミネート装置を用いて封止基材を接着した。
封止基材として、可撓性を有する厚さ30μmのアルミニウム箔(東洋アルミニウム(株)製)に、ドライラミネーション用の2液反応型のウレタン系接着剤を用いて層厚1.5μmの接着剤層を設け、厚さ12μmのポリエチレンテレフタレート(PET)フィルムをラミネートしたものを作製した。
封止用接着剤として熱硬化性接着剤を、ディスペンサーを使用して封止基材のアルミニウム箔の接着面(つや面)に沿って厚さ20μmで均一に塗布した。これを100Pa以下の真空下で12時間乾燥させた。さらに、その封止基材を露点温度−80℃以下、酸素濃度0.8ppmの窒素雰囲気下へ移動して、12時間以上乾燥させ、封止用接着剤の含水率が100ppm以下となるように調整した。
熱硬化性接着剤としては下記の(A)〜(C)を混合したエポキシ系接着剤を用いた。
(A)ビスフェノールAジグリシジルエーテル(DGEBA)
(B)ジシアンジアミド(DICY)
(C)エポキシアダクト系硬化促進剤
上記封止基材を上記積層体に対して密着・配置して、圧着ロールを用いて、圧着ロール温度100℃、圧力0.5MPa、装置速度0.3m/minの圧着条件で密着封止した。
以上のようにして、有機EL素子101を作製した。
<有機EL素子102〜110の作製>
上記有機EL素子101の作製において、ホスト塗布液に含有されるホスト材料を表IIに示すとおりに変更し、一部について、上述したS1(超音波処理)又はS3(超臨界クロマト処理)処理を行い、蛍光ドーパント(DP−1)を加えて発光層形成用塗布液とし、発光層を形成した以外は同様にして有機EL素子102〜110を作製した。
<有機EL素子101〜110の評価>
上記のように作製した各有機EL素子について、以下の評価を行った。評価結果を表IIに示す。
(1)発光効率の測定
発光効率の測定は、室温(25℃)で、2.5mA/cmの定電流密度条件下による点灯を行い、分光放射輝度計CS−2000(コニカミノルタ社製)を用いて、各有機EL素子の発光輝度を測定し、当該電流値における発光効率(外部取り出し効率)を求めた。有機EL素子101(比較例)の発光効率を100とする相対値で表した。
(2)発光寿命の測定
発光寿命の測定は、各有機EL素子を室温25℃、湿度55%RHの条件下で連続駆動させ、分光放射輝度計CS−2000を用いて輝度を測定し、測定した輝度が半減する時間(半減寿命)を寿命の尺度として求めた。駆動条件は、連続駆動開始時に1000cd/mとなる電流値とした。そして、有機EL素子101(比較例)の発光寿命を100とする相対値で表した。
<単層塗布膜の評価>
(1)小角X線散乱測定結果の粒径分布解析
上記実施例1の(2)塗布膜の小角X線散乱測定において、塗布液を前記発光層形成用塗布液に変更した以外は同様にして粒径分布曲線を得た後、該粒径分布曲線中の極大ピークに対応する粒径値Rを算出した。なお、複数の極大ピークを有する場合には、それらの極大ピークのうち、最小の粒径を示す極大ピークに対応する粒径をRとして算出した。
また、極大ピークが存在した塗布膜については、各塗布膜における粒径Rに対応する極大ピークは、粒径分布曲線の極大ピークのうち最も頻度分布の大きい極大ピークであった。さらに、nの値を求め、最も粒径値の小さい粒径を示す極大ピークの半値幅と、該極大ピークの頻度分布を算出し、結果を表IIに示した。なお、半値幅が10nmを越えるもの、判定が難しい場合には×で示した。
Figure 2018173553
表IIに示す結果より、本発明の有機EL素子は、比較例の有機EL素子に比べて、発光効率及び発光寿命に優れていることがわかる。
<有機EL素子201の作製>
上記有機EL素子101の作製において、発光層形成用塗布液を下記の材料及び組成に変更した以外は同様にして有機EL素子201を作製した。
〈発光層形成用塗布液〉
ホスト化合物(H−1) 10質量部
発光ドーパント(DP−2) 1.5質量部
酢酸イソプロピル 2200質量部
<有機EL素子202〜210の作製>
上記有機EL素子201の作製において、発光層形成用塗布液に含有されるホスト材料を表IIIに示すとおりに変更し、一部について上述したS1(超音波処理)又はS3(超臨界クロマト処理)の処理を行い発光層形成用塗布液とし、発光層を形成した以外は同様にして有機EL素子202〜210を作製した。
<有機EL素子201〜210の評価>
上記のように作製した各有機EL素子について、以下の評価を行った。評価結果を表IIIに示す。
(1)発光効率の測定
発光効率の測定は、室温(25℃)で、2.5mA/cmの定電流密度条件下による点灯を行い、分光放射輝度計CS−2000(コニカミノルタ社製)を用いて、各有機EL素子の発光輝度を測定し、当該電流値における発光効率(外部取り出し効率)を求めた。有機EL素子201(比較例)の発光効率を100とする相対値で表した。
(2)発光寿命の測定
発光寿命の測定は、各有機EL素子を室温25℃、湿度40%RHの条件下で連続駆動させ、分光放射輝度計CS−2000を用いて輝度を測定し、測定した輝度が半減する時間(半減寿命)を寿命の尺度として求めた。駆動条件は、連続駆動開始時に10000cd/mとなる電流値とした。そして、有機EL素子201(比較例)の発光寿命を100とする相対値で表した。
<単層塗布膜の評価>
(1)小角X線散乱測定結果の粒径分布解析
上記実施例1の(2)塗布膜の小角X線散乱測定において、塗布液を前記発光層形成用塗布液に変更した以外は同様にして粒径分布曲線を得た後、該粒径分布曲線中の極大ピークに対応する粒径値Rを算出した。なお、複数の極大ピークを有する場合には、それらの極大ピークのうち、最小の粒径を示す極大ピークに対応する粒径をRとして算出した。
また、極大ピークが存在した塗布膜については、各塗布膜における粒径Rに対応する極大ピークは、粒径分布曲線の極大ピークのうち最も頻度分布の大きい極大ピークであった。さらに、nの値を求め、最も粒径値の小さい粒径を示す極大ピークの半値幅と、該極大ピークの頻度分布を算出し、結果を表IIIに示した。なお、半値幅が10nmを越えるもの、判定が難しい場合には×で示した。
Figure 2018173553
表IIIに示す結果より、本発明の有機EL素子は、比較例の有機EL素子に比べて、発光効率及び発光寿命に優れていることがわかる。
<有機EL素子301の作製>
(陽極の形成)
陽極として100mm×100mm×1.1mmのガラス基板上にインジウム・スズ酸化物(ITO)を100nm成膜した基板(AvanStrate(株)製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
(正孔注入層の形成)
この透明支持基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS)を純水で希釈した溶液を用いて3000rpm、30秒の条件下、スピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、厚さ20nmの正孔注入層を設けた。
(正孔輸送層の形成)
前記透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートにα−NPDを250mg入れ、別のモリブデン製抵抗加熱ボートに化合物Aを200mg入れ、真空蒸着装置に取り付けた。
次いで、真空槽を4×10−4Paまで減圧した後、α−NPDの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、正孔注入層上に蒸着し20nmの正孔輸送層を設けた。
Figure 2018173553
(発光層の形成)
正孔輸送層まで作製した基板を窒素雰囲気下のグローブボックス中に移動した。下記組成の発光層形成用塗布液を混合し、700rpm、25秒の条件下、スピンコート法により薄膜を形成した。さらに、減圧加熱乾燥(5hpa以下、30℃、30分間)し、層厚50nmの発光層を形成した。
〈発光層形成用塗布液〉
ホスト化合物(H−2) 10質量部
発光ドーパント(DP−2) 1.2質量部
溶媒(酢酸ノルマルプロピル) 2200質量部
(正孔阻止層の形成)
発光層を形成した基板を、真空蒸着装置に戻し、化合物(H−2)の入った加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、前記発光層上に蒸着し10nmの正孔阻止層を設けた。
(電子輸送層の形成)
さらに、前記化合物Aの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、前記発光層上に蒸着し40nmの電子輸送層を設けた。
(陰極の形成)
引き続き、電子注入層(陰極バッファー層)としてフッ化リチウム0.5nmを蒸着し、さらにアルミニウム110nmを蒸着して陰極を形成し、有機EL素子301を作製した。
<有機EL素子302〜315の作製>
上記有機EL素子301の作製において、発光層形成用塗布液に含有されるホスト材料及び溶媒を表IVに記載のとおりに変更した以外は同様にして、有機EL素子302〜315を作製した。
<有機EL素子301〜315の評価>
上記のように作製した各有機EL素子について、以下の評価を行った。評価結果を表IVに示す。
(1)発光効率の測定
発光効率の測定は、室温(25℃)で、2.5mA/cmの定電流密度条件下による点灯を行い、分光放射輝度計CS−2000(コニカミノルタ社製)を用いて、各有機EL素子の発光輝度を測定し、当該電流値における発光効率(外部取り出し効率)を求めた。有機EL素子301(比較例)の発光効率を100とする相対値で表した。
(2)発光寿命の測定
発光寿命の測定は、各有機EL素子を室温25℃、湿度40%RHの条件下で連続駆動させ、分光放射輝度計CS−2000を用いて輝度を測定し、測定した輝度が半減する時間(半減寿命)を寿命の尺度として求めた。駆動条件は、連続駆動開始時に10000cd/mとなる電流値とした。そして、有機EL素子301(比較例)の発光寿命を100とする相対値で表した。
(3)電圧変化の測定
電圧変化の測定は、(1)発光効率の測定時の電圧を初期電圧Vsとし測定し、(2)発光寿命の測定において、輝度が半減した時点での駆動電圧を劣化後電圧Vfとし、下記式により評価した。
(駆動電圧変化)=(劣化後電圧Vf)/(初期電圧(Vs))×100
表IVには、下記の基準に則り、電圧変化を示した。○であることが望ましい。
〇:駆動電圧変化が1.0以上、1.5未満
△:駆動電圧変化が1.5以上、2.0未満
×:駆動電圧変化が2.0以上
<単層塗布膜の評価>
(1)小角X線散乱測定結果の粒径分布解析
上記実施例1の(2)塗布膜の小角X線散乱測定において、塗布液を前記発光層形成用塗布液に変更した以外は同様にして粒径分布曲線を得た後、該粒径分布曲線中の極大ピークに対応する粒径値Rを算出した。なお、複数の極大ピークを有する場合には、それらの極大ピークのうち、最小の粒径を示す極大ピークに対応する粒径をRとして算出した。
また、極大ピークが存在した塗布膜については、各塗布膜における粒径Rに対応する極大ピークは、粒径分布曲線の極大ピークのうち最も頻度分布の大きい極大ピークであった。さらに、nの値を求め、最も粒径値の小さい粒径を示す極大ピークの半値幅と、該極大ピークの頻度分布を算出した。そして、nの値、極大ピークの頻度分布及び半値幅について、下記基準に沿って評価を行い、結果を表IVに示した。
<n(=R/r)>
◎:nが6.0未満
○:nが10.0未満、6.0以上
△:nが18.0未満、10.0以上
×:nが18.0以上
<極大ピークの頻度分布>
○:極大ピークの頻度分布が0.5以上
△:極大ピークの頻度分布が0.3以上、0.5未満
×:極大ピークの頻度分布が0.3未満
<半値幅>
◎:半値幅が3.0nm未満
○:半値幅が3.0nm以上、6.0nm未満
△:半値幅が6.0nm以上、10.0nm未満
×:半値幅が10.0nm以上
Figure 2018173553
表IVに示す結果より、本発明の有機EL素子は、比較例の有機EL素子に比べて、発光効率、発光寿命及び駆動電圧の点で優れていることがわかる。
本発明は、膜中の有機化合物粒子の粒径が小さい塗布膜及びその製造方法に利用することができ、また、当該塗布膜を用いた発光効率と耐久性に優れた有機エレクトロルミネッセンス素子に利用することができる。
20 溶質分子
21 溶媒分子
22 クラスター
41 ディスプレイ(表示装置)
60 有機EL素子
200 有機光電変換素子

Claims (10)

  1. 少なくとも単一種の有機化合物からなる塗布膜であって、
    小角X線散乱測定から得られる分子又は会合体の粒径分布曲線(横軸:粒径、縦軸:頻度分布)中に少なくとも一つの極大ピークを有し、かつ、
    下記R及びrが、下記式(1)で表される関係を満たす有機化合物を含有する塗布膜。
    式(1):R≦15r
    [式(1)中、Rは、小角X線散乱測定から得られる粒径分布曲線の極大ピークのうち、最も粒径の小さい粒径を示す極大ピークに対応する粒径を表す。rは、前記有機化合物について密度汎関数理論計算したときに得られる分子長軸長さを2a(nm)及び分子短軸長さを2b(nm)としたとき、当該有機化合物の分子半径r=(a×b)1/2を表す。]
  2. 前記Rが、前記粒径分布曲線の極大ピークのうち、最も頻度分布の大きい極大ピークに対応する粒径を表す請求項1に記載の塗布膜。
  3. 前記式(1)を満たす極大ピークの頻度分布が、0.4以上である請求項1又は請求項2に記載の塗布膜。
  4. 下記式(2)を満たす請求項1から請求項3までのいずれか一項に記載の塗布膜。
    式(2):R≦8r
    [式(2)中、R及びrは、前記式(1)中のR及びrと同義である。]
  5. 前記式(1)を満たす極大ピークの半値幅が、0.3〜3.0nmの範囲内である請求項1から請求項4までのいずれか一項に記載の塗布膜。
  6. 前記式(1)を満たす複数種の有機化合物を含有する請求項1から請求項5までのいずれか一項に記載の塗布膜。
  7. 下記R′及びrが、下記式(3)で表される関係を満たす有機化合物を含有する塗布液を固化してなる膜である請求項1から請求項6までのいずれか一項に記載の塗布膜。
    式(3):R′≦6r
    [式(3)中、R′は、前記塗布液の小角X線散乱測定から得られる粒径分布曲線の極大ピークのうち、最も粒径の小さい粒径を示す極大ピークに対応する粒径を表す。rは、前記式(1)中のrと同義である。]
  8. 請求項1から請求項7までのいずれか一項に記載の塗布膜を製造する塗布膜の製造方法であって、
    下記R′及びrが、下記式(3)で表される関係を満たす有機化合物を含有する塗布液を調製する工程と、
    前記塗布液を乾燥固化する工程と、を有する塗布膜の製造方法。
    式(3):R′≦6r
    [式(3)中、R′は、前記塗布液の小角X線散乱測定から得られる粒径分布曲線の極大ピークのうち、最も粒径の小さい粒径を示す極大ピークに対応する粒径を表す。rは、前記式(1)中のrと同義である。]
  9. 請求項1から請求項7までのいずれか一項に記載の塗布膜を、有機機能層の少なくとも1層に有する有機エレクトロルミネッセンス素子。
  10. 前記有機機能層が、発光層である請求項9に記載の有機エレクトロルミネッセンス素子。
JP2019507431A 2017-03-23 2018-02-14 塗布膜、塗布膜の製造方法及び有機エレクトロルミネッセンス素子 Pending JPWO2018173553A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017056745 2017-03-23
JP2017056745 2017-03-23
PCT/JP2018/005024 WO2018173553A1 (ja) 2017-03-23 2018-02-14 塗布膜、塗布膜の製造方法及び有機エレクトロルミネッセンス素子

Publications (1)

Publication Number Publication Date
JPWO2018173553A1 true JPWO2018173553A1 (ja) 2020-01-23

Family

ID=63586324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019507431A Pending JPWO2018173553A1 (ja) 2017-03-23 2018-02-14 塗布膜、塗布膜の製造方法及び有機エレクトロルミネッセンス素子

Country Status (2)

Country Link
JP (1) JPWO2018173553A1 (ja)
WO (1) WO2018173553A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7346116B2 (ja) * 2019-07-12 2023-09-19 住友化学株式会社 粉体及び固体組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347624A (ja) * 2002-05-27 2003-12-05 Konica Minolta Holdings Inc 有機半導体材料の精製方法、該精製方法を用いて得られた有機半導体材料及びそれを用いた半導体素子
JP4389494B2 (ja) * 2003-06-13 2009-12-24 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス材料の精製方法
JP2013122994A (ja) * 2011-12-12 2013-06-20 Konica Minolta Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2013141190A1 (ja) * 2012-03-23 2013-09-26 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子用封止要素、有機エレクトロルミネッセンス素子の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2329064A1 (en) * 2008-09-11 2011-06-08 The Ohio State University Research Foundation Electro-spun fibers and applications therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347624A (ja) * 2002-05-27 2003-12-05 Konica Minolta Holdings Inc 有機半導体材料の精製方法、該精製方法を用いて得られた有機半導体材料及びそれを用いた半導体素子
JP4389494B2 (ja) * 2003-06-13 2009-12-24 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス材料の精製方法
JP2013122994A (ja) * 2011-12-12 2013-06-20 Konica Minolta Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2013141190A1 (ja) * 2012-03-23 2013-09-26 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子用封止要素、有機エレクトロルミネッセンス素子の製造方法

Also Published As

Publication number Publication date
WO2018173553A1 (ja) 2018-09-27

Similar Documents

Publication Publication Date Title
JP5493309B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6677246B2 (ja) 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6933248B2 (ja) 有機膜形成用塗布液、有機膜、有機電子デバイス、及び有機膜形成用塗布液の製造方法
JPWO2018173553A1 (ja) 塗布膜、塗布膜の製造方法及び有機エレクトロルミネッセンス素子
JP6844621B2 (ja) 塗布液、その製造方法、電子デバイス作製用インク、電子デバイス、有機エレクトロルミネッセンス素子、及び光電変換素子
WO2020012685A1 (ja) 薄膜、電子デバイス、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス用材料、表示装置、及び、照明装置
WO2020012686A1 (ja) 有機エレクトロルミネッセンス素子
WO2019107424A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス用材料、表示装置、及び、照明装置
JP6879361B2 (ja) 塗布液、塗布液の製造方法、塗布膜及び有機エレクトロルミネッセンス素子
JP7020478B2 (ja) 塗布液の製造方法、塗布膜の製造方法、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JPWO2018173729A1 (ja) 組成物、組成物の製造方法、塗布膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
KR102228341B1 (ko) 유기 일렉트로루미네센스 소자용 재료의 회수 방법 및 유기 일렉트로루미네센스 소자용 재료의 제조 방법
JP7404878B2 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP7029404B2 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス用材料
WO2020071276A1 (ja) 有機エレクトロルミネッセンス素子用の混合組成物
JP2017039661A (ja) 有機多環芳香族化合物、およびその利用
JP5930005B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子及びその製造方法、表示装置並びに照明装置
JP2014078719A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2014003299A (ja) 有機エレクトロルミネッセンス素子
JP2010225984A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220201