JPWO2018021011A1 - Polyamide multifilament and lace knit using it, stocking - Google Patents
Polyamide multifilament and lace knit using it, stocking Download PDFInfo
- Publication number
- JPWO2018021011A1 JPWO2018021011A1 JP2017550778A JP2017550778A JPWO2018021011A1 JP WO2018021011 A1 JPWO2018021011 A1 JP WO2018021011A1 JP 2017550778 A JP2017550778 A JP 2017550778A JP 2017550778 A JP2017550778 A JP 2017550778A JP WO2018021011 A1 JPWO2018021011 A1 JP WO2018021011A1
- Authority
- JP
- Japan
- Prior art keywords
- strength
- polyamide
- yarn
- multifilament
- elongation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920002647 polyamide Polymers 0.000 title claims abstract description 84
- 239000004952 Polyamide Substances 0.000 title claims abstract description 83
- 238000010438 heat treatment Methods 0.000 description 69
- 238000000034 method Methods 0.000 description 38
- 238000001816 cooling Methods 0.000 description 34
- 238000011156 evaluation Methods 0.000 description 30
- 238000009987 spinning Methods 0.000 description 30
- 229920002292 Nylon 6 Polymers 0.000 description 29
- 239000000835 fiber Substances 0.000 description 28
- 238000004519 manufacturing process Methods 0.000 description 19
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 18
- 239000004744 fabric Substances 0.000 description 17
- 238000009940 knitting Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 12
- 238000010583 slow cooling Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 238000005259 measurement Methods 0.000 description 11
- 239000002356 single layer Substances 0.000 description 10
- 239000013078 crystal Substances 0.000 description 9
- 238000002425 crystallisation Methods 0.000 description 9
- 230000008025 crystallization Effects 0.000 description 9
- 239000010410 layer Substances 0.000 description 8
- 238000002844 melting Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 229920002302 Nylon 6,6 Polymers 0.000 description 7
- 230000009477 glass transition Effects 0.000 description 7
- 238000009998 heat setting Methods 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 238000004043 dyeing Methods 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- -1 polyhexamethylene Polymers 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 210000000689 upper leg Anatomy 0.000 description 3
- 241000204801 Muraenidae Species 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229920006020 amorphous polyamide Polymers 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229920006039 crystalline polyamide Polymers 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010036 direct spinning Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 210000004177 elastic tissue Anatomy 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000009941 weaving Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- UFFRSDWQMJYQNE-UHFFFAOYSA-N 6-azaniumylhexylazanium;hexanedioate Chemical compound [NH3+]CCCCCC[NH3+].[O-]C(=O)CCCCC([O-])=O UFFRSDWQMJYQNE-UHFFFAOYSA-N 0.000 description 1
- 241001589086 Bellapiscis medius Species 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical compound NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- SJEYSFABYSGQBG-UHFFFAOYSA-M Patent blue Chemical compound [Na+].C1=CC(N(CC)CC)=CC=C1C(C=1C(=CC(=CC=1)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=CC(=[N+](CC)CC)C=C1 SJEYSFABYSGQBG-UHFFFAOYSA-M 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000000980 acid dye Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004807 desolvation Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002362 mulch Substances 0.000 description 1
- FJXWKBZRTWEWBJ-UHFFFAOYSA-N nonanediamide Chemical compound NC(=O)CCCCCCCC(N)=O FJXWKBZRTWEWBJ-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920006111 poly(hexamethylene terephthalamide) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006123 polyhexamethylene isophthalamide Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000000985 reactive dye Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000009991 scouring Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41B—SHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
- A41B11/00—Hosiery; Panti-hose
- A41B11/14—Panti-hose; Body-stockings
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/60—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/02—Yarns or threads characterised by the material or by the materials from which they are made
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/22—Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
- D02G3/38—Threads in which fibres, filaments, or yarns are wound with other yarns or filaments, e.g. wrap yarns, i.e. strands of filaments or staple fibres are wrapped by a helically wound binder yarn
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/44—Yarns or threads characterised by the purpose for which they are designed
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04B—KNITTING
- D04B21/00—Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
- D04B21/10—Open-work fabrics
- D04B21/12—Open-work fabrics characterised by thread material
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04B—KNITTING
- D04B21/00—Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
- D04B21/20—Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes specially adapted for knitting articles of particular configuration
- D04B21/207—Wearing apparel or garment blanks
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/02—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2501/00—Wearing apparel
- D10B2501/02—Underwear
- D10B2501/021—Hosiery; Panti-hose
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Artificial Filaments (AREA)
- Knitting Of Fabric (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Socks And Pantyhose (AREA)
Abstract
15%伸長時の引張強度が4.0〜6.0cN/dtex、強伸度積が10.0以上、糸斑(U%)が1.2以下であることを特徴とするポリアミドマルチフィラメント。ソフト性、耐久性、透明感に優れたストッキング、耐久性に優れ、柄が綺麗に映えるレース編物が得られる高強力ポリアミドマルチフィラメントを提供する。A polyamide multifilament characterized in that the tensile strength at 15% elongation is 4.0 to 6.0 cN / dtex, the strength and elongation product is 10.0 or more, and the yarn spots (U%) are 1.2 or less. The present invention provides a high-strength polyamide multifilament which can obtain a lace knit having excellent softness, durability and transparency and excellent in durability and having a beautiful pattern.
Description
本発明は、ポリアミドマルチフィラメントに関する。さらに詳しくは、本発明のポリアミドマルチフィラメントをストッキングに用いたとき、ソフト性、耐久性、透明感に優れたストッキングを提供し、レース地の地糸に用いたとき、耐久性に優れ、柄が綺麗に映えるレース編物を提供することができるポリアミドマルチフィラメントに関する。 The present invention relates to polyamide multifilaments. More specifically, when the polyamide multifilament of the present invention is used for a stocking, the stocking having excellent softness, durability and transparency is provided, and when used for a ground thread of a lace base, the durability is excellent and the handle is The present invention relates to a polyamide multifilament that can provide a lace fabric that looks beautiful.
合成繊維であるポリアミド繊維やポリエステル繊維は、機械的・化学的性質において優れた特性を有することから衣料用途や産業用途で広く利用されている。特に、ポリアミド繊維はその独特の柔らかさ、高強度、染色時の発色性、耐熱性、吸湿性等において優れた特性を有することから、ストッキング、インナーウエア、スポーツウエアなど一般衣料用途で広く使用されている。 Polyamide fibers and polyester fibers which are synthetic fibers are widely used in clothing and industrial applications because they have excellent mechanical and chemical properties. In particular, polyamide fiber is widely used in general clothing applications such as stocking, innerwear, sportswear, etc., because it has excellent properties in its unique softness, high strength, coloring during dyeing, heat resistance, hygroscopicity, etc. ing.
レースの消費者ニーズとしては、柄が綺麗に映えるようにするため、耐久性は従来並で、かつレース地糸の透明感が望まれていた。ストッキングの消費者ニーズとしては、履き心地が良く、かつ素肌感を出すため、耐久性は従来並で、かつソフト性、透明感の追求が望まれていた。すなわち、衣料用ポリアミド繊維に置き換えると、強力は従来並での細繊度化が強く望まれていた。 As consumer needs of the race, in order to make the pattern look beautiful, the durability is as usual, and the feeling of transparency of the lace base yarn has been desired. As consumers' needs for stockings, in order to give comfortable feeling and bare skin feeling, durability was conventionally comparable, and the pursuit of softness and transparency was desired. That is, when replaced with a polyamide fiber for clothing, the strength is strongly desired to be as fine as ever.
これらの問題を解決するために、ポリアミド繊維の高強度化は様々な技術が提案されている。例えば特許文献1では、伸度が51〜64%、強度が4.2〜6.5cN/dtexの高粘度タイプのナイロン6フィラメントからなるレース編物が提案されている。 In order to solve these problems, various techniques have been proposed for strengthening polyamide fibers. For example, Patent Document 1 proposes a lace knit made of high viscosity type nylon 6 filaments having an elongation of 51 to 64% and a strength of 4.2 to 6.5 cN / dtex.
特許文献2では、伸度が40〜50%、強伸度積が9.1以上で9.8程度のポリアミドフィラメントからなるストッキングが提案されている。 Patent Document 2 proposes a stocking made of a polyamide filament having an elongation of 40 to 50%, a tensile elongation product of 9.1 or more and about 9.8.
特許文献3では、伸度が16〜18%程度、強度が9.8cN/dtex以上で強伸度積が11.4〜12.2cN/dtex程度のポリアミド系繊維からなるタイヤコード、ベルトが提案されている。 Patent Document 3 proposes a tire cord or belt made of a polyamide-based fiber having an elongation of about 16 to 18%, a strength of 9.8 cN / dtex or more, and a tensile elongation product of about 11.4 to 12.2 cN / dtex. It is done.
しかしながら、特許文献1に記載の方法では、柄が綺麗に映えるレースが得られるものの、繊維モジュラスと強伸度積が低く、レース編物の製品強度に満足できるものではなかった。 However, according to the method described in Patent Document 1, although a lace with a beautiful handle can be obtained, the fiber modulus and the tensile elongation product are low, and the product strength of the lace knitted fabric is not satisfactory.
特許文献2に記載の方法をシングルカバリング弾性糸の被服糸に適した繊度に展開して用いた場合、繊維モジュラスと強伸度積が低く、ストッキングの製品強度として満足できるものではなかった。 When the method described in Patent Document 2 is used by developing it to a fineness suitable for coating yarn of single covering elastic yarn, the fiber modulus and the tensile elongation product are low, and the product strength of the stocking is not satisfactory.
特許文献3に記載の方法を衣料用途に展開して用いた場合、繊維モジュラスが高すぎて、レースやストッキングの製造工程での糸切れ、毛羽発生など高次通過性に劣るものであった。 When the method described in Patent Document 3 was developed for use in clothing, the fiber modulus was too high, and it was inferior in high-order passability such as yarn breakage and fuzz generation in the production process of laces and stockings.
本発明は上記問題を解決するものであり、高強伸度積、適正繊維モジュラスを有した高強力ポリアミドマルチフィラメントを提供することを課題とする。さらに詳しくは、高強伸度積、適正繊維モジュラスを有したポリアミドマルチフィラメントによって、高次通過性と製品品位に優れ、細繊度化が可能となり、耐久性を維持しつつ、レース地糸の透明感が増して、柄が綺麗に映えるレース編物、優れた透明感とソフト性を有するストッキングを提供することを課題とする。 The present invention solves the above-mentioned problems, and it is an object of the present invention to provide a high strength polyamide multifilament having a high tensile elongation product and a suitable fiber modulus. More specifically, the polyamide multifilament having a high strength elongation product and an appropriate fiber modulus provides excellent high-order passage and product quality, enables finening, and maintains the durability while maintaining the transparency of the lace base yarn. It is an object of the present invention to provide a lace knitted fabric in which the pattern looks beautiful and a stocking having excellent transparency and softness.
上記課題を解決するため、本発明は以下の構成を採用する。 In order to solve the above-mentioned subject, the present invention adopts the following composition.
(1)15%伸長時の引張強度が4.0〜6.0cN/dtex、強伸度積が10.0以上、糸斑(U%)が1.2以下であることを特徴とするポリアミドマルチフィラメント。 (1) Polyamide mulch characterized in that the tensile strength at 15% elongation is 4.0 to 6.0 cN / dtex, the tenacity and elongation product is 10.0 or more, and the yarn spots (U%) are 1.2 or less. filament.
(2)単糸繊度が1.3〜3.4dtexであることを特徴とする上記(1)に記載のポリアミドマルチフィラメント。 (2) The polyamide multifilament according to the above (1), which has a single yarn fineness of 1.3 to 3.4 dtex.
(3)伸度が30〜50%であることを特徴とする上記(1)また、は(2)に記載のポリアミドマルチフィラメント。 (3) The polyamide multifilament according to the above (1) or (2), which has an elongation of 30 to 50%.
(4)結晶量と剛直非晶量の和が70〜90%であることを特徴とする上記(1)〜(3)のいずれかに記載のポリアミドマルチフィラメント。 (4) The polyamide multifilament according to any one of the above (1) to (3), wherein the sum of the crystalline amount and the rigid non-crystalline amount is 70 to 90%.
(5)上記(1)〜(4)のいずれか1項に記載のポリアミドマルチフィラメントをレース地糸に使用したレース編物。 (5) A lace knit using the polyamide multifilament according to any one of the above (1) to (4) as a lace base yarn.
(6)上記(1)〜(4)のいずれか1項に記載のポリアミドマルチフィラメントをカバリング被覆糸として使用し、そのカバリング糸を一部に使用したストッキング。 (6) A stocking in which the polyamide multifilament according to any one of the above (1) to (4) is used as a covering coated yarn and the covering yarn is used in part.
本発明のポリアミドマルチフィラメントは、高強伸度積、適正繊維モジュラスを有した高強力ポリアミドマルチフィラメントである。さらには、本発明のポリアミドマルチフィラメントは、高次通過性と製品品位に優れ、細繊度化が可能となり、耐久性を維持しつつ、レース地糸の透明感が増して、柄が綺麗に映えるレース編物、優れた透明感とソフト性を有するストッキングを得ることができる。 The polyamide multifilament of the present invention is a high strength polyamide multifilament having a high strength elongation product and a proper fiber modulus. Furthermore, the polyamide multifilament of the present invention is excellent in high-order passage and product quality, can be reduced in fineness, maintain durability, increase the transparency of the lace base yarn, and make the pattern look beautiful It is possible to obtain a lace knit, a stocking having excellent transparency and softness.
以下、本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.
本発明のポリアミドマルチフィラメントは、15%伸長時の引張強度が4.0〜6.0cN/dtex、強伸度積が10.0以上、糸斑(U%)が1.2以下であることを特徴とする。 The polyamide multifilament of the present invention has a tensile strength of 4.0 to 6.0 cN / dtex at 15% elongation, a tenacity and elongation product of 10.0 or more, and a yarn spot (U%) of 1.2 or less. It features.
本発明のポリアミドマルチフィラメントを構成するポリアミドは、いわゆる炭化水素基が主鎖にアミド結合を介して連結された高分子量体からなる樹脂であって、かかるポリアミドは、製糸性、機械特性に優れており、主としてポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)が好ましく、ゲル化し難しく、製糸性が良いことからポリカプロアミド(ナイロン6)がさらに好ましい。前記における主としてとは、ポリカプロアミドでは、ポリカプロアミドを構成するε−カプロラクタムを構成単位とし、ポリヘキサメチレンアジパミドでは、ポリヘキサメチレンアジパミドを構成するヘキサメチレンジアンモニウムアジペートを構成単位として80モル%以上含むことをいい、さらに好ましくは90モル%以上含む。その他の成分としては、特に限定されないが、例えば、ポリドデカノアミド、ポリヘキサメチレンアジパミド、ポリヘキサメチレンアゼラミド、ポリヘキサメチレンセバカミド、ポリヘキサメチレンドデカノアミド、ポリメタキシリレンアジパミド、ポリヘキサメチレンテレフタラミド、ポリヘキサメチレンイソフタラミド等を構成するモノマーである、アミノカルボン酸、ジカルボン酸、ジアミン等の単位が挙げられる。 The polyamide constituting the polyamide multifilament of the present invention is a resin composed of a polymer having a so-called hydrocarbon group linked to the main chain via an amide bond, and such a polyamide is excellent in threadability and mechanical properties. In particular, polycaproamide (nylon 6) and polyhexamethylene adipamide (nylon 66) are preferred, and polycaproamide (nylon 6) is more preferred because of its difficulty in gelation and good spinning properties. In the above, mainly, in polycaproamide, ε-caprolactam constituting polycaproamide is a constituent unit, and in polyhexamethylene adipamide, hexamethylene diammonium adipate constituting polyhexamethylene adipamide is a constituent unit As 80 mol% or more, more preferably 90 mol% or more. Other components are not particularly limited. For example, polydodecanoamide, polyhexamethylene adipamide, polyhexamethylene azelamide, polyhexamethylene sebacamide, polyhexamethylene dodecanoamide, polymethaxylylene adipa And monomers such as amino carboxylic acid, dicarboxylic acid and diamine which are monomers constituting the polymer, polyhexamethylene terephthalamide, polyhexamethylene isophthalamide and the like.
また、本発明の効果を有効に発現するためには、ポリアミドには酸化チタンに代表される艶消し剤など各種添加剤を含有しないことが好ましいが、耐熱剤など効果を阻害しない範囲で添加剤を必要に応じて含有していてもよい。また、その含有量は0.001〜0.1wt%の間で必要に応じて混合していてもよい。 Further, in order to effectively exhibit the effects of the present invention, it is preferable that the polyamide does not contain various additives such as a matting agent represented by titanium oxide, but the additives such as a heat-resistant agent are not added May be contained as required. Moreover, the content may be mixed as needed between 0.001-0.1 wt%.
本発明のポリアミドマルチフィラメントは、15%強度、強伸度積、U%の全てをかかる、前記範囲とすることが必要である。すなわち、細繊度化することで、レース地糸の透明感が増して柄が綺麗に映えるレース編物や優れた透明感とソフト性を有するストッキングは得られるものの製品強度が低くなり、耐久性が実使用に耐えないレベルとなる。耐久性が実使用に耐えるレベルとするためには、強伸度積を高くする必要が生じる。また、高次通過性や製品品位を保つためには、適正な15%強度、U%とする必要がある。 The polyamide multifilament of the present invention is required to have all of 15% strength, tensile elongation product and U% in the above ranges. That is, by reducing the fineness, the transparency of the lace base yarn is increased and the lace knitted fabric with a beautiful pattern and the stocking having excellent transparency and softness can be obtained, but the product strength is lowered and the durability is actually improved. It becomes the level which can not stand use. In order for the durability to be at a level that can withstand actual use, it is necessary to increase the strength and elongation product. In addition, in order to maintain high-order passability and product quality, it is necessary to make the strength 15% and U% appropriate.
そこで、本発明者らは鋭意検討し、高次通過性と製品品位に優れ、耐久性に優れ、レース地糸の透明感が増して柄が綺麗に映えるレース編物や優れた透明感とソフト性を有するストッキングを提供するためには、15%強度、強伸度積、およびU%を適正領域とすることが必須であることを見出した。 Therefore, the inventors of the present invention diligently study and are superior in high-order passing property and product quality, excellent in durability, and a lace knitted fabric with excellent transparency and softness, in which the transparency of the lace base yarn is increased and the pattern looks beautiful. It has been found that 15% strength, strength and elongation product, and U% are essential areas in order to provide a stocking having.
本発明のポリアミドマルチフィラメントは、強伸度積が10.0以上であることが必要である。かかる範囲とすることにより、ストッキングやレースの耐久性が実使用に耐えるレベルとなる。強伸度積が10.0未満の場合、ストッキングやレースの耐久性が実使用に耐えないレベルとなり、また、高次加工工程での糸切れが増加し高次通過性が悪化する。本発明のポリアミドマルチフィラメントは、強伸度積が10.3以上であることが更に好ましい。また、強伸度積は大きいほど好ましいが、本発明におけるその上限値は11.0程度である。 The polyamide multifilament of the present invention is required to have a strength and elongation product of 10.0 or more. By setting it as this range, the durability of a stocking or a race becomes the level which endures actual use. If the strength-elongation product is less than 10.0, the durability of the stocking or the lace will be at a level which can not withstand actual use, and yarn breakage in the high-order processing step will increase and the high-order passability will deteriorate. It is further preferable that the polyamide multifilament of the present invention has a tenacity and elongation product of 10.3 or more. Also, although the strength and elongation product is preferably as large as possible, the upper limit value in the present invention is about 11.0.
本発明のポリアミドマルチフィラメントは、原糸物性の1つの指標である15%伸長時の引張強度(以下、これを称して「15%強度」と称す)が4.0〜6.0cN/dtexであることが必要である。15%強度の測定は、JIS L1013−2010−引張強さ及び伸び率に準じて測定し、引張強さ−伸び曲線を描き、15%伸長時の引張強さ(cN)を繊度で除した値を15%強度とした。15%強度は、繊維モジュラスを簡易的に表す値であり、15%強度が高いと引張強さ−伸び曲線の勾配が高く繊維モジュラスが高いことを示し、一方15%強度が低いと引張強さ−伸び曲線の勾配が低く繊維モジュラスが低いことを示す。 The polyamide multifilament of the present invention has a tensile strength at 15% elongation (hereinafter referred to as "15% strength") of 4.0 to 6.0 cN / dtex, which is one index of raw yarn physical properties. It is necessary to be there. The measurement of 15% strength is measured according to JIS L1013-2010-tensile strength and elongation, and a tensile strength-elongation curve is drawn, and the value obtained by dividing the tensile strength (cN) at 15% elongation by the fineness Of 15% strength. The 15% strength is a value simply representing the fiber modulus, and the higher the 15% strength, the higher the gradient of the tensile strength-elongation curve and the higher the fiber modulus, while the lower the 15% strength, the tensile strength. -It shows that the slope of the elongation curve is low and the fiber modulus is low.
本発明のポリアミドマルチフィラメントをかかる範囲とすることにより、ストッキングやレース編物の耐久性が実使用に耐えるレベルとなり、ソフト性にも優れる。15%強度が4.0cN/dtex未満の場合、強伸度積が低下し、ストッキングやレース編物の耐久性が実使用に耐えないレベルとなる。15%強度が6.0cN/dtexを超えると、伸度が低下し、ストッキングやレース編物の風合いが硬くなりソフト性が低下し、また、高次加工工程での糸切れが増加し高次通過性が悪化し、製品品位が低下する。好ましくは4.5〜5.5cN/dtexである。 By setting the polyamide multifilament of the present invention in such a range, the durability of the stocking or lace knitted fabric becomes a level that withstands actual use, and the softness is also excellent. When the 15% strength is less than 4.0 cN / dtex, the strength and elongation product decreases, and the durability of the stocking and the lace knitted fabric becomes a level which can not withstand actual use. If the 15% strength exceeds 6.0 cN / dtex, the elongation decreases, the texture of the stocking or lace knit becomes hard and the softness decreases, and the yarn breakage in the high-order processing step increases and the high-order passage And the product quality is reduced. Preferably it is 4.5-5.5 cN / dtex.
本発明のポリアミドマルチフィラメントは、伸度が30〜50%であることが好ましい。かかる範囲とすることにより、高次加工工程での糸切れが減少し高次通過性や製品品位が良好となる。特に、高速で編立、製織する際に高次通過性に優れる。伸度が30%以上であると、ストッキング製造工程(カバリング糸製造工程やストッキング編立工程)やレース編み物製造工程(整経工程、製織工程)などの高次加工工程での糸切れが少なく高次通過性が良好である。さらには、ストッキングやレース編物の風合いがソフトで良好である。伸度が50%以下であると、強伸度積が十分であり、ストッキングやレース編物の耐久性も実使用に耐えられ、また、高次加工工程での糸切れが少なく高次通過性、製品品位も向上する。さらに好ましくは、35〜45%である。 The polyamide multifilament of the present invention preferably has an elongation of 30 to 50%. By setting it as this range, the thread breakage in a high-order processing process reduces, and high-order passage property and product quality become favorable. In particular, when knitting and weaving at high speed, it is excellent in high-order passage. When the elongation is 30% or more, there are few yarn breakages in high-order processing steps such as a stocking production step (covering yarn production step and a stocking knitting step) and a lace knitting production step (warping step and weaving step) Next passability is good. Furthermore, the texture of the stocking and lace knit is soft and good. If the elongation is 50% or less, the strength-elongation product is sufficient, the durability of the stocking and the lace knitted fabric can withstand the actual use, and the yarn breakage in the high-order processing process is small and the high-order passageability Product quality also improves. More preferably, it is 35 to 45%.
本発明のポリアミドマルチフィラメントは、結晶量と剛直非晶量の和が70〜90%であることが好ましい。結晶量と剛直非晶量は以下のとおり算出される値である。 The polyamide multifilament of the present invention preferably has a sum of the crystal amount and the rigid non-crystal amount of 70 to 90%. The crystal amount and the rigid amorphous amount are values calculated as follows.
結晶量(Xc)は、DSC法により、融解熱量と冷結晶化熱量の差(ΔHm−ΔHc)を計算し、(1)式により算出する。ここで、ΔHm0は、結晶性ポリアミドの融解熱量であり、その値は、229.76J/gである。 The amount of crystallization (Xc) is calculated according to equation (1) by calculating the difference (ΔHm−ΔHc) between the heat of fusion and the amount of cold crystallization heat by the DSC method. Here, ΔHm 0 is the heat of fusion of the crystalline polyamide, and its value is 229.76 J / g.
また、剛直非晶量(Xra)は、結晶量(Xc)および可動非晶量(Xma)から(2)式により算出する。可動非晶量(Xma)は、温度変調DSC法(TMDSC)による、温度−熱流速可逆曲線上のガラス転移前後での比熱変化(ΔCp)から算出する。ここでのΔCpは、ガラス転移前後の温度−熱流可逆曲線に接線を外挿して算出したガラス転移前後の比熱ギャップを用いる。可動非晶量(Xma)は、(3)式により算出する。ここで、ΔCp0は、非晶ポリアミドのTg前後での比熱差であり、その値は、0.4745J/gである。 The rigid amorphous amount (Xra) is calculated from the crystalline amount (Xc) and the movable amorphous amount (Xma) according to the equation (2). The movable amorphous amount (Xma) is calculated from the specific heat change (ΔCp) before and after the glass transition on the temperature-heat flow rate reversible curve by temperature modulation DSC method (TMDSC). Here, ΔCp uses the specific heat gap before and after the glass transition calculated by extrapolating the tangent to the temperature-heat flow reversible curve before and after the glass transition. The movable amorphous amount (Xma) is calculated by equation (3). Here, ΔCp0 is a specific heat difference around the Tg of the amorphous polyamide, and the value is 0.4745 J / g.
なお、剛直非晶量は、温度変調DSCおよびDSCの2回測定の平均値より算出した。 The amount of rigid amorphous was calculated from the average value of two measurements of temperature modulation DSC and DSC.
結晶量:Xc(%)=(ΔHm−ΔHc)/ΔHm0×100・・・(1)
剛直非晶量:Xra(%)=100−(Xc+Xma) ・・・(2)
可動非晶量:Xma(%)=ΔCp/ΔCp0×100 ・・・(3) 。Crystal amount: Xc (%) = (ΔHm-ΔHc) / ΔHm 0 × 100 (1)
Rigid amorphous amount: Xra (%) = 100-(Xc + Xma) (2)
Mobile amorphous amount: Xma (%) = ΔCp / ΔCp0 × 100 (3).
ここでいう結晶量と剛直非晶量の和は、ポリアミドポリマーの分子鎖の配向緩和の程度を簡易的に表す値である。結晶量と剛直非晶量の和が高いと分子鎖の歪みが少なく、結晶性の高い繊維であることを示し、結晶量と剛直非晶量の和が低いと分子鎖の絡み合いが大きく、結晶性の低い繊維であることを示す。結晶量と剛直非晶量の和を90%以下とすることにより、ポリアミドポリマーの分子鎖の歪み量が適度となり、結晶性の高すぎないポリアミド繊維が得られ、ストッキングやレース編物の風合いやソフト性に優れる。結晶量と剛直非晶量の和を70%以上とすることにより、ポリアミドポリマーの分子鎖の歪みが適度にとれるため、結晶性に優れるポリアミド繊維が得られ、ストッキングやレース編物の耐久性に優れる。さらに好ましくは、75〜85%である。 The sum of the amount of crystallization and the amount of rigid non-crystalline amount mentioned here is a value simply representing the degree of relaxation of the orientation of the molecular chain of the polyamide polymer. When the sum of the crystal amount and the rigid non-crystalline amount is high, the strain of the molecular chain is small and the fiber is highly crystalline. When the sum of the crystalline amount and the rigid non-crystalline amount is low, the molecular chain entanglement is large, the crystal Indicates that it is a low-quality fiber. By setting the sum of the crystalline amount and the rigid non-crystalline amount to 90% or less, the amount of distortion of molecular chains of the polyamide polymer becomes appropriate, and polyamide fibers not having high crystallinity can be obtained, and the texture and softness of the stocking and lace knitted fabric Excellent in quality. By setting the sum of the crystalline amount and the rigid non-crystalline amount to 70% or more, the molecular chain of the polyamide polymer can be strained appropriately, so that a polyamide fiber having excellent crystallinity can be obtained, and the durability of the stocking or lace knitted fabric is excellent. . More preferably, it is 75 to 85%.
本発明のポリアミドマルチフィラメントは、U%が1.2以下であることが必要である。かかる範囲とすることで、製品品位に優れたものとなる。U%が1.2を超えるとレース編物を染色した後に、糸条の太い部分が濃染となる、筋が発生するなど、外観不良となり製品品位に劣るものとなる。さらに好ましくは、ストッキング用途の場合は1.0以下、レース編物用途の場合は1.0以下である。また、U%は小さいほど好ましいが、本発明におけるその下限値は0.4程度である。 The polyamide multifilament of the present invention needs to have a U% of 1.2 or less. With this range, the product quality is excellent. If the U% exceeds 1.2, after dyeing a knitted lace, the thick portion of the yarn becomes deep-stained and streaks occur, resulting in poor appearance and inferior product quality. More preferably, it is 1.0 or less for stocking applications and 1.0 or less for lace knit applications. In addition, the smaller U% is more preferable, but the lower limit value in the present invention is about 0.4.
本発明のポリアミドマルチフィラメントの総繊度は、衣料用途の点で4.0〜33.0dtexが好ましい。ストッキング用途の場合4.0〜11.0dtex、レース用途の場合20.0〜30.0dtexがさらに好ましい。 The total fineness of the polyamide multifilament of the present invention is preferably 4.0 to 33.0 dtex in terms of clothing use. More preferably, 4.0 to 11.0 dtex for stocking application and 20.0 to 30.0 dtex for racing application.
本発明のポリアミドマルチフィラメントは、単糸繊度が1.3〜3.4dtexであることが好ましい。かかる範囲とすることにより、ストッキングやレースの耐久性およびソフト性に優れる。さらに好ましくは、1.6〜3.2dtexである。 The polyamide multifilament of the present invention preferably has a single yarn fineness of 1.3 to 3.4 dtex. By setting it as this range, it is excellent in durability and softness of a stocking or a race. More preferably, it is 1.6 to 3.2 dtex.
本発明のポリアミドマルチフィラメントは、硫酸相対粘度が2.5〜4.0であることが好ましい。さらに好ましくは3.2〜3.8である。硫酸相対粘度を2.5〜4.0とすることにより、ストッキングやレース編物の耐久性が実使用に耐えるレベルとなる。さらには、製品品位が良好となる。 The polyamide multifilament of the present invention preferably has a sulfuric acid relative viscosity of 2.5 to 4.0. More preferably, it is 3.2-3.8. By setting the relative viscosity of sulfuric acid to 2.5 to 4.0, the durability of the stocking or lace knitted fabric becomes a level that can withstand actual use. Furthermore, the product quality is good.
本発明のポリアミドマルチフィラメントの断面形状は、特に限定されるものではなく、例えば、 丸断面、偏平断面、レンズ型断面、三葉断面、マルチローバル断面、3〜8個の凸部と同数の凹部を有する異形断面、中空断面その他公知の異形断面でもよい。 The cross-sectional shape of the polyamide multifilament of the present invention is not particularly limited. For example, a round cross section, a flat cross section, a lens type cross section, a trilobal cross section, a multi-lobal cross section, and the same number of recesses as 3 to 8 convex sections It may be a modified cross section having a hollow section, a hollow cross section or any other known known cross section.
次に本発明の高強力ポリアミドマルチフィラメントの製造方法の一例を、具体的に説明する。図1は本発明の高強力ポリアミドマルチフィラメントの製造方法に好ましく用いる直接紡糸延伸法による製造装置の一実施形態を示す。 Next, an example of the method for producing the high-strength polyamide multifilament of the present invention will be specifically described. FIG. 1 shows an embodiment of a direct spin-drawing apparatus for producing a high-strength polyamide multifilament according to the present invention.
本発明のポリアミドマルチフィラメントは、ポリアミド樹脂を溶融し、ポリアミドポリマーをギヤポンプにて計量・輸送し、紡糸口金1に設けられた吐出孔から最終的に押し出され、各フィラメントが形成される。このようにして紡糸口金1から吐出された各フィラメントを、図1に示す紡糸口金の経時汚れを抑制するために蒸気を吹き出す気体供給装置2、徐冷するために設けられた全周に囲繞する多層の加熱筒3、冷却装置4に通して、糸条を室温まで冷却固化する。その後、給油装置5で油剤付与するとともに各フィラメントを集束しマルチフィラメントを形成し、流体交絡ノズル装置6で交絡し、引き取りローラー7、延伸ローラー8を通過し、その際引き取りローラー7と延伸ローラー8の周速度の比に従って延伸する。さらに、糸条を延伸ローラー8の加熱により熱処理し、巻取装置9で巻き取る。 The polyamide multifilament of the present invention melts the polyamide resin, measures and transports the polyamide polymer with a gear pump, and is finally extruded from the discharge holes provided in the spinneret 1 to form each filament. The filaments discharged from the spinneret 1 in this manner are surrounded by the gas supply device 2 for blowing out steam to suppress the time-dependent contamination of the spinneret shown in FIG. 1 and the entire circumference provided for gradual cooling. The yarn is passed through a multilayer heating cylinder 3 and a cooling device 4 to cool and solidify the yarn to room temperature. After that, oiling is applied by the feeding device 5 and each filament is converged to form a multifilament, and it is entangled by the fluid entangled nozzle device 6 and passes through the take-off roller 7 and the drawing roller 8. Stretch according to the ratio of the circumferential speed of Furthermore, the yarn is heat-treated by heating the drawing roller 8 and taken up by the winding device 9.
本発明のポリアミドマルチフィラメントの製造において、ポリアミド樹脂の硫酸相対粘度は2.5〜4.0が好ましい。かかる範囲とすることにより、強伸度積の高い高強力ポリアミドマルチフィラメントが得られる。 In the production of the polyamide multifilament of the present invention, the relative viscosity of sulfuric acid of the polyamide resin is preferably 2.5 to 4.0. By setting this range, a high strength polyamide multifilament having a high strength and elongation product can be obtained.
また、溶融温度は、ポリアミドの融点に対して20℃より高く、かつ95℃より低くすることが好ましい。 The melting temperature is preferably higher than 20 ° C. and lower than 95 ° C. with respect to the melting point of the polyamide.
本発明のポリアミドマルチフィラメントの製造において、冷却装置4の上部には、各フィラメントを全周に囲繞するように加熱筒3が設けられていることが必要である。加熱筒を冷却装置4の上部に設置し、加熱筒内の雰囲気温度を100〜300℃の範囲内とすることにより、紡糸口金1から吐出されたポリアミドポリマーを、熱劣化することが少なく、配向緩和させることができる。口金面から冷却までの徐冷による配向緩和によって、15%強度、強伸度積の高いマルチフィラメントが得られる。加熱筒を設置しない場合、口金面から冷却までの徐冷による配向緩和が足りないため、15%強度、強伸度積共に満足する繊維が得にくい傾向にある。 In the production of the polyamide multifilament of the present invention, the heating cylinder 3 needs to be provided on the upper part of the cooling device 4 so as to surround each filament in the entire circumference. By setting the heating cylinder above the cooling device 4 and setting the ambient temperature in the heating cylinder within the range of 100 to 300 ° C., the polyamide polymer discharged from the spinneret 1 is less likely to be thermally degraded, and oriented It can be relieved. The orientation relaxation by slow cooling from the die surface to cooling provides a multifilament having a high strength and elongation product of 15% strength. When the heating cylinder is not installed, there is a tendency that it is difficult to obtain fibers satisfying both the 15% strength and the strength and elongation product because the relaxation of orientation due to slow cooling from the die surface to cooling is insufficient.
本発明の高強力ポリアミドマルチフィラメントの製造において、加熱筒は多層であることが必要である。特許文献3において、徐冷の為に口金直下の雰囲気温度を250〜450℃に保つ加熱筒が提案されているが、産業用の太繊度領域においては有効であるものの、本発明のポリアミドマルチフィラメントのような衣料用の細繊度領域においては、加熱筒内での温度分布が一定であるため、熱対流が乱れた状態になり易く、各フィラメントの固化状態に影響し、U%を悪化させる要因となる。その為、加熱筒を多層にして上層から下層にかけて段階的に温度設定を下げることで、上層から下層への熱対流を意図的に作り出し、糸の随伴流と同方向の下降気流とすることで、加熱筒内での熱対流の乱れを抑制し、糸揺れも小さく、U%の小さいマルチフィラメントが得られる。 In the production of the high strength polyamide multifilament of the present invention, the heating cylinder needs to be multilayer. Patent Document 3 proposes a heating cylinder for maintaining the atmosphere temperature immediately below the die at 250 to 450 ° C. for slow cooling, but the polyamide multifilament of the present invention is effective in the area of fineness for industrial use. In the fineness region for clothing like this, since the temperature distribution in the heating cylinder is constant, the thermal convection is likely to be disturbed, which affects the solidified state of each filament and causes the deterioration of U% It becomes. Therefore, by setting the heating cylinder in multiple layers and gradually reducing the temperature setting from the upper layer to the lower layer, thermal convection from the upper layer to the lower layer is intentionally created, and the downward flow of air in the same direction as the accompanying flow of yarn. This suppresses the disturbance of the thermal convection in the heating cylinder, reduces the yarn sway, and obtains a small multifilament of U%.
多層加熱筒長さLは、フィラメントの繊度にもよるが、40〜100mmであることが好ましい。また、多層加熱筒は2層以上から構成されることが好ましく、多層加熱筒の単層長さL1は、10〜25mmの範囲が好ましい。 The multilayer heating cylinder length L is preferably 40 to 100 mm although it depends on the fineness of the filament. Moreover, it is preferable that a multilayer heating pipe | tube is comprised from two or more layers, and the single layer length L1 of a multilayer heating pipe | tube has the preferable range of 10-25 mm.
また、多層加熱筒内の雰囲気温度は100〜300℃の範囲内であり、各層間において緩やかな温度勾配を設けることが必要である。例えば、多層加熱筒長さLを75mm、単層長さL1を25mmとした場合、上層の雰囲気温度を250〜300℃、中層の雰囲気温度を200〜250℃、下層の雰囲気温度100〜200℃とすることが必要である。 Further, the ambient temperature in the multilayer heating cylinder is in the range of 100 to 300 ° C., and it is necessary to provide a gentle temperature gradient between each layer. For example, when the multilayer heating cylinder length L is 75 mm and the single layer length L1 is 25 mm, the upper atmosphere temperature is 250-300 ° C., the middle atmosphere temperature is 200-250 ° C., the lower atmosphere temperature 100-200 ° C. It is necessary to
かかる構成とすることで、口金−冷却間の雰囲気温度プロフィールを100〜300℃に段階的にコントロールし、15%強度、強伸度積、U%の良好な高強力ポリアミドマルチフィラメントが得られる。 With this configuration, the atmospheric temperature profile between the die and the cooling can be controlled stepwise at 100 to 300 ° C., and a high strength polyamide multifilament of 15% strength, tensile elongation product, and U% can be obtained.
本発明のポリアミドマルチフィラメントの製造において、冷却装置4は、一定方向から冷却整流風Aを吹き出す冷却装置、あるいは外周側から中心側に向けて冷却整流風Aを吹き出す環状冷却装置、あるいは中心側から外周に向けて冷却整流風を吹き出す環状冷却装置など、いずれの方法においても製造可能である。紡糸口金の下面から冷却装置4の冷却風吹出し部の上端部までの鉛直方向距離LS(以下、冷却開始距離と称す)は、159〜219mmの範囲にあることが糸揺れやU%を抑制する点で好ましく、169〜189mmがより好ましい。冷却風吹出し面から吹き出される冷却風速に関しては、該冷却吹出し部上端面から下端面までの区間の平均で20.0〜40.0(m/分)の範囲にあることがU%および強伸度積の点から好ましい。 In the production of the polyamide multifilament of the present invention, the cooling device 4 is a cooling device that blows out the cooled rectified air A from a certain direction, or an annular cooling device that blows out the cooled rectified air A from the outer peripheral side toward the central side, or It can be manufactured by any method, such as an annular cooling device that blows out the cooling rectified air toward the outer periphery. The vertical distance LS (hereinafter referred to as the cooling start distance) from the lower surface of the spinneret to the upper end of the cooling air blowout portion of the cooling device 4 is in the range of 159 to 219 mm to suppress yarn swaying and U% The point is preferable, and 169 to 189 mm is more preferable. With regard to the cooling air velocity blown out from the cooling air outlet surface, the average of the sections from the upper end face to the lower end face of the cooling outlet portion is in the range of 20.0 to 40.0 (m / min) U% and strong It is preferable from the point of elongation product.
本発明のポリアミドマルチフィラメントの製造において、給油装置5の位置、すなわち図1における紡糸口金下面から給油装置5の給油ノズル位置までの鉛直方向距離Lg(以下、給油位置と称す)は、単糸繊度および冷却装置からのフィラメントの冷却効率にもよるが、800〜1500(mm)が好ましく、より好ましくは1000〜1300(mm)である。800(mm)以上である場合にはフィラメント温度が油剤付与時に適切な程度に下がり、1500(mm)以下である場合には下降気流による糸揺れも小さく、U%の低いマルチフィラメントが得られる。また、1500(mm)以下である場合には、固化点から給油位置までの距離が短くなることで随伴流が低減し、紡糸張力が低下することで紡糸配向が抑制され、延伸性に優れるため、強伸度積、15%強度の高い高強力マルチフィラメントが得られる。800(mm)以上である場合には、口金から給油ガイドまでの糸屈曲が適正となり、ガイドでの擦過による影響を受けにくく、強伸度積、15%強度の低減が少なくなる。 In the production of the polyamide multifilament of the present invention, the position of the fueling device 5, that is, the vertical distance Lg from the lower surface of the spinneret in FIG. 1 to the fueling nozzle position of the fueling device 5 (hereinafter referred to as the fueling position) And although it depends on the cooling efficiency of the filament from the cooling device, 800 to 1500 (mm) is preferable, and more preferably 1000 to 1300 (mm). When it is 800 (mm) or more, the filament temperature is lowered to an appropriate level at the time of oil application, and when it is 1500 (mm) or less, the yarn swaying by the downdraft is small, and a low multifilament of U% is obtained. In the case of 1500 (mm) or less, the distance from the solidification point to the refueling position is shortened, the accompanying flow is reduced, and the spinning tension is reduced, so that the spinning orientation is suppressed and the drawability is excellent. High strength multifilament having high strength and elongation product and 15% strength can be obtained. When it is 800 (mm) or more, the yarn bending from the mouthpiece to the oil supply guide becomes appropriate, and the influence by the rubbing with the guide is hardly affected, and the reduction in strength and elongation product and 15% strength decreases.
本発明のポリアミドマルチフィラメントの製造において、紡糸速度は、引き取りローラー7を低速度の領域である1000〜2000m/minとすることが好ましく、ドラフト延伸ムラの抑制、糸条冷却の均一化が可能となり、U%を1.2以下と低く抑えることができる。また、2000m/min以下である場合には、紡糸配向が抑制されると共に、加熱筒の徐冷効果が促進することで、分子鎖の歪み緩和が大きくなり、15%強度、強伸度積の高い高強力マルチフィラメントが得られる。 In the production of the polyamide multifilament of the present invention, the spinning speed is preferably 1000 to 2000 m / min, which is a low speed area of the take-up roller 7, and it becomes possible to suppress draft stretching unevenness and equalize yarn cooling. , U% can be as low as 1.2 or less. In addition, in the case of 2000 m / min or less, while the spinning orientation is suppressed, the slow cooling effect of the heating cylinder is promoted, so that the strain relaxation of the molecular chain becomes large, and the strength elongation of 15% High high strength multifilament is obtained.
また、延伸ローラー8を加熱ローラーとして熱処理を施し、その熱セット長は500〜1200mm、熱処理温度は120〜180℃が好ましい。適度な熱処理を施すことでマルチフィラメントの熱収縮を設計することが可能となるためである。熱セット長を500mm以上とすることで、繊維の結晶化が十分となるため、15%強度が大きくなり、耐久性に優れる製品となる。熱セット長を1200mm以下とすると、繊維の結晶化が進みすぎず、15%強度が適正な範囲となると共に製品の風合いが柔らかく、共に、高次加工工程での工程通過性に優れる高強力ポリアミドマルチフィラメントが得られる。 Further, heat treatment is performed using the drawing roller 8 as a heating roller, and the heat setting length is preferably 500 to 1,200 mm, and the heat treatment temperature is preferably 120 to 180 ° C. It is because it becomes possible to design the heat contraction of a multifilament by giving appropriate heat treatment. By setting the heat set length to 500 mm or more, the crystallization of the fibers becomes sufficient, so the strength becomes 15% high, and the product is excellent in durability. When the heat setting length is 1200 mm or less, the crystallization of the fiber does not proceed too much, and the 15% strength is in an appropriate range and the texture of the product is soft. Both are high strength polyamide excellent in process passability in higher order processing steps. Multifilament is obtained.
本発明のポリアミドマルチフィラメントは、加熱筒を冷却装置4の上部に設置し、加熱筒内の雰囲気温度を100〜300℃の範囲内とし、更に、加熱筒を多層型とすることで、加熱筒内に温度勾配を設け、糸の随伴流と同方向の下降気流を意図的に作り出し、給油位置を口金面から800〜1500mm、紡糸速度を1000〜2000m/min、延伸後の熱セット長を500〜1200mmとすることで製造することができる。 In the polyamide multifilament of the present invention, the heating cylinder is disposed at the upper part of the cooling device 4, the ambient temperature in the heating cylinder is in the range of 100 to 300 ° C., and the heating cylinder is a multilayer type. A temperature gradient is provided inside to intentionally create a downdraft in the same direction as the accompanying flow of yarn, the oiling position 800 to 1500 mm from the base surface, the spinning speed 1000 to 2000 m / min, and the heat set length after drawing 500 It can manufacture by setting it as -1200 mm.
このような直接紡糸延伸法での条件を採用することにより、10.0cN/dtex以上の高い強伸度積、4.0〜6.0cN/dtexの15%強度、1.2以下のU%の高強力ポリアミドマルチフィラメントが得られる。 By adopting the conditions in such a direct spinning and drawing method, a high tenacity product of 10.0 cN / dtex or more, 15% strength of 4.0 to 6.0 cN / dtex, U% of 1.2 or less High strength polyamide multifilament is obtained.
本発明のポリアミドマルチフィラメントは、生糸のまま地糸としてレース編み機に供給されて通常の方法でレース地に編成される。レース地は、エンブロイダルレース、ラッセルレース、リバーレース等の通常の編組織とすればよい。 The polyamide multifilament of the present invention is supplied to a lace knitting machine as raw silk as raw silk and knitted on a lace ground in the usual manner. The race site may be a normal knitting structure such as emboloidal race, russell race, river race and the like.
本発明のポリアミドマルチフィラメントは、カバリング糸の被覆糸として用いられる。カバリング糸は、ポリウレタン系弾性繊維、ポリアミド系エラストマ弾性繊維等の弾性糸を芯糸とし、被覆糸を一重に巻き付けるシングルカバリング糸、被覆糸を二重に巻き付けるダブルカバリング糸に用いられる。 The polyamide multifilament of the present invention is used as a covering yarn of covering yarn. The covering yarn is used as a single covering yarn in which an elastic yarn such as a polyurethane elastic fiber or a polyamide elastomer elastic fiber is used as a core yarn and the covering yarn is wound in a single layer, and a double covering yarn in which the covering yarn is double wound.
本発明のポリアミドマルチフィラメントは、上記記載のカバリング糸を一部に使用したストッキングに用いられる。また、ストッキングの編機として、通常の靴下編み機を用いることができ、制限はなく、2口あるいは4口給糸の編機を用い、本発明のカバリング糸を供給して編成するという通常の方法で編成すればよい。 The polyamide multifilament of the present invention is used in a stocking which partially uses the covering yarn described above. In addition, as a stocking knitting machine, an ordinary sock knitting machine can be used without limitation, and a usual method of supplying and covering the covering yarn of the present invention using a 2- or 4-part feeding machine. It should be organized with
さらに編成後の染色やそれに続く後加工、ファイナルセット条件についても公知の方法にしたがい行えばよく、染料として酸性染料、反応染料を用いることや、色なども限定されるものではない。 Furthermore, dyeing after knitting and subsequent post-processing and final setting conditions may be performed according to a known method, and the use of acid dyes and reactive dyes as dyes, color and the like are not limited.
以下、実施例により本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail by way of examples.
A.強度、伸度、強伸度積、15%強度
JIS L1013−2010−引張強さ及び伸び率に準じて繊維試料を測定し、引張強さ−伸び曲線を描く。試験条件としては、試験機の種類は定速伸長形、つかみ間隔50cm、引張速度50cm/minにて行った。なお、切断時の引張強さが最高強さより小さい場合は、最高引張強さおよびそのときの伸びを測定した。A. Strength, elongation, strength elongation product, 15% strength JIS L1013-2010-A fiber sample is measured according to tensile strength and elongation, and a tensile strength-elongation curve is drawn. As a test condition, the type of tester was a constant speed extension type, a grip interval of 50 cm, and a tensile speed of 50 cm / min. In addition, when the tensile strength at the time of cutting was smaller than the maximum strength, the maximum tensile strength and the elongation at that time were measured.
強度、強伸度積は、下記式にて求めた。 The strength and strength and elongation product were determined by the following equation.
伸度=切断時の伸長(%)
強度=切断時の引張強さ(cN)/繊度(dtex)
強伸度積={強度(cN/dtex)}×{伸度(%)+100}/100
15%強度=15%伸長時の引張強さ(cN)/繊度(dtex) 。Elongation = elongation at break (%)
Strength = tensile strength at cutting (cN) / fineness (dtex)
Strength and elongation product = {strength (cN / dtex)} × {elongation (%) + 100} / 100
15% strength = tensile strength at 15% elongation (cN) / fineness (dtex).
B.総繊度、単糸繊度
1.125m/周の検尺器に繊維試料をセットし、500回転させて、ループ状かせを作成し、熱風乾燥機にて乾燥後(105±2℃×60分)、天秤にてかせの質量を量り、公定水分率を乗じた値から繊度を算出した。なお、公定水分率は4.5%とした。B. The fiber sample is set on a measuring instrument with a total fineness and a single yarn fineness of 1.125 m / perimeter, and it is rotated 500 times to make a loop-like skein and dried with a hot air dryer (105 ± 2 ° C. × 60 minutes) The weight of the skein was measured with a balance, and the fineness was calculated from the value obtained by multiplying the official moisture percentage. The official moisture content was 4.5%.
C.硫酸相対粘度(ηr)
ポリアミドチップ試料又は繊維試料0.25gを、濃度98質量%の硫酸100mlに対して1gになるように溶解し、オストワルド型粘度計を用いて25℃での流下時間(T1)を測定した。引き続き、濃度98質量%の硫酸のみの流下時間(T2)を測定した。T2に対するT1の比、すなわちT1/T2を硫酸相対粘度とした。C. Sulfuric acid relative viscosity (η r)
A polyamide chip sample or a fiber sample of 0.25 g was dissolved to 1 g per 100 ml of sulfuric acid having a concentration of 98 mass%, and the flow time (T1) at 25 ° C. was measured using an Ostwald viscometer. Subsequently, the flow time (T2) of only sulfuric acid having a concentration of 98% by mass was measured. The ratio of T1 to T2, that is, T1 / T2 was taken as the relative viscosity of sulfuric acid.
D.糸斑(U%)
zellweger uster社製のUSTER TESTER IVを用いて試料長:500m、測定糸速度V:100m/min、Twister:S、30000/min、1/2Inertで繊維試料を測定した。D. Thread spot (U%)
A fiber sample was measured at a sample length of 500 m, a measurement yarn velocity V of 100 m / min, a Twister of S, 30000 / min, and 1/2 Inert using USTER TESTER IV manufactured by zellweger uster.
E.結晶量、剛直非晶量
(Xc)は、DSC法により、融解熱量と冷結晶化熱量の差(ΔHm−ΔHc)を計算し、(1)式により算出する。ここで、ΔHm0は、結晶性ポリアミドの融解熱量であり、その値は、229.76J/gである。E. The difference between the heat of fusion and the heat of cold crystallization (ΔHm−ΔHc) is calculated by the DSC method, and the crystal amount and the rigid amorphous amount (Xc) are calculated by the equation (1). Here, ΔHm 0 is the heat of fusion of the crystalline polyamide, and its value is 229.76 J / g.
また、剛直非晶量(Xra)は、結晶量化度(Xc)および可動非晶量(Xma)から(2)式により算出する。可動非晶量(Xma)は、温度変調DSC法(TMDSC)による、温度−熱流速可逆曲線上のガラス転移前後での比熱変化(ΔCp)から算出する。ここでのΔCpは、ガラス転移前後の温度−熱流可逆曲線に接線を外挿して算出したガラス転移前後の比熱ギャップを用いる。可動非晶量(Xma)は、(3)式により算出する。ここで、ΔCp0は、非晶ポリアミドのTg前後での比熱差であり、その値は、0.4745J/g℃である。 The rigid amorphous amount (Xra) is calculated from the degree of crystallization (Xc) and the movable amorphous amount (Xma) according to equation (2). The movable amorphous amount (Xma) is calculated from the specific heat change (ΔCp) before and after the glass transition on the temperature-heat flow rate reversible curve by temperature modulation DSC method (TMDSC). Here, ΔCp uses the specific heat gap before and after the glass transition calculated by extrapolating the tangent to the temperature-heat flow reversible curve before and after the glass transition. The movable amorphous amount (Xma) is calculated by equation (3). Here, ΔCp 0 is the specific heat difference around the Tg of the amorphous polyamide, and the value is 0.4745 J / g ° C.
なお、剛直非晶量は、温度変調DSCおよびDSCの2回測定の平均値より算出した。 The amount of rigid amorphous was calculated from the average value of two measurements of temperature modulation DSC and DSC.
結晶量:Xc(%)=(ΔHm−ΔHc)/ΔHm0×100・・・(1)
剛直非晶量:Xra(%)=100−(Xc+Xma) ・・・(2)
可動非晶量:Xma(%)=ΔCp/ΔCp0×100 ・・・(3) 。Crystal amount: Xc (%) = (ΔHm-ΔHc) / ΔHm 0 × 100 (1)
Rigid amorphous amount: Xra (%) = 100-(Xc + Xma) (2)
Mobile amorphous amount: Xma (%) = ΔCp / ΔCp0 × 100 (3).
また、通常DSCおよび温度変調DSCの測定条件は以下の条件で実施した。 Moreover, the measurement conditions of normal DSC and temperature modulation DSC were implemented on condition of the following.
(a)通常DSC
TA Instrument社製Q1000を用いUniversal Analysis2000にてデータ処理を実施した。測定は窒素流下(50mL/min)で、温度範囲0〜300℃、昇温速度10℃/min、試料重量約5mg(熱量データは測定後重量で規格化)にて測定を実施した。(A) Normal DSC
Data processing was performed on Universal Analysis 2000 using TA Instrument Q1000. The measurement was performed under a nitrogen flow (50 mL / min) at a temperature range of 0 to 300 ° C., a temperature rising rate of 10 ° C./min, and a sample weight of about 5 mg (the thermal data is normalized by the weight after measurement).
上記のDSC法の詳細は、次の[文献1]に記載されている。 The details of the above-mentioned DSC method are described in the following [Document 1].
[文献1]
Wunderlich B.,Thermal Analysis of Polymeric Materials,Appendix1(The ATHAS Data Bank),Springer(2005)。[Reference 1]
Wunderlich B. , Thermal Analysis of Polymeric Materials, Appendix 1 (The ATHAS Data Bank), Springer (2005).
(b)温度変調DSC
TA Instrument社製Q1000を用いUniversal Analysis2000にてデータ処理を実施した。測定は窒素流下(50mL/min)で、温度範囲0〜200℃、昇温速度2℃/min、試料重量約5mg(熱量データは測定後重量で規格化)にて測定を実施した。(B) Temperature modulated DSC
Data processing was performed on Universal Analysis 2000 using TA Instrument Q1000. The measurement was carried out under a nitrogen flow (50 mL / min) at a temperature range of 0 to 200 ° C., a temperature rising rate of 2 ° C./min, and a sample weight of about 5 mg (calorimetric data are normalized by weight after measurement).
該手法は、加熱と冷却を一定の周期および振幅で繰り返しながら平均的に昇温して測定する方法であり、全体のDSC シグナル(Total Heat Flow:全熱流)を、ガラス転移などの可逆的な成分(Reversing Heat Flow)と、エンタルピー緩和、硬化反応、脱溶媒などの不可逆的な成分(Nonreversing Heat Flow)とに分離できる。ただし結晶の融解ピークは、可逆成分と、不可逆成分のどちらにも現れる。 This method is a method in which heating and cooling are repeated with a constant cycle and amplitude, and the temperature is averaged to measure, and the total DSC signal (Total Heat Flow) is reversible such as glass transition. It can be separated into components (Reversing Heat Flow) and irreversible components (Nonreversing Heat Flow) such as enthalpy relaxation, curing reaction, desolvation and the like. However, the melting peak of the crystal appears in both the reversible component and the irreversible component.
上記の温度変調DSC法の詳細は、上述の[文献1]に記載されている。 The details of the above-mentioned temperature modulation DSC method are described in the above-mentioned [Document 1].
F.レースの評価
(a)ソフト性
レース製品について、風合い評価経験豊富な検査者(5人)のソフト性を相対評価した。その結果は、各検査者の評価点の平均値をとり小数点以下は四捨五入して、平均値が、5をS、4をA、3をB、1〜2をCとした。F. Evaluation of the race (a) Softness With respect to the race product, the softness of the experienced tester (5 persons) who has experienced the texture evaluation was relatively evaluated. As a result, the average value of the evaluation points of the respective inspectors is taken and rounded after the decimal point, and the average value is 5 for S, 4 for A, 3 for B, and 1-2 for C.
5点:非常に優れる
4点:やや優れる
3点:普通
2点:やや劣る
1点:劣る 。5 points: very good 4 points: slightly excellent 3 points: normal 2 points: slightly inferior 1 point: inferior.
S、Aをソフト性合格とした。 S and A were considered to be soft.
(b)耐久性
破裂強度はJIS L1096−2010、ミューレン形法(A法)による破裂強さ試験方法に準じて、任意の3ヶ所の破裂強度を測定し、その平均値より、次の基準で4段階評価した。(B) Durability Burst strength is measured according to JIS L 1096-2010, Burst strength test method according to the Muren type method (Method A), and the burst strength at any three locations is measured, and from the average value, the following standard It rated four steps.
S:130kPa以上
A:100kPa以上130kPa未満
B:90kPa以上100kPa未満
C:90kPa未満 。S: 130 kPa or more A: 100 kPa or more and less than 130 kPa B: 90 kPa or more and less than 100 kPa C: less than 90 kPa
S、Aを耐久性合格とした。 S and A were considered to be durable.
(c)品位
レース製品を、検査者(5人)の染め斑の程度を相対評価した。その結果は、各検査者の評価点の平均値をとり小数点以下は四捨五入して、平均値が、5をS、4をA、3をB、1〜2をCとした。(C) Quality The race products were evaluated relative to the degree of dyeing spots on the inspectors (5 persons). As a result, the average value of the evaluation points of the respective inspectors is taken and rounded after the decimal point, and the average value is 5 for S, 4 for A, 3 for B, and 1-2 for C.
5点:非常に優れる
4点:やや優れる
3点:普通
2点:やや劣る
1点:劣る
S、Aを品位合格とした。5 points: very excellent 4 points: slightly excellent 3 points: normal 2 points: slightly inferior 1 point: inferior S, A was regarded as a grade passing.
(d)工程通過性
編成操業性:編成途中での断糸回数をレース生地一反(80m)当たりの断糸件数として、次の基準で表示した。(D) Process Passability Knitting operation: The number of yarn breakages during knitting was indicated as the number of yarn breakage per lace fabric (80 m) according to the following criteria.
S:0件以上5件未満
A:5件以上10件未満
B:10件以上20件未満
C:20件以上30件未満
S、Aを工程通過性合格とした。S: 0 or more and less than 5 A: 5 or more and less than 10 B: 10 or more and less than 20
C: 20 or more and less than 30
S and A were taken as process passability.
G.ストッキングの評価
(a)ソフト性
ストッキング製品について、人体足型に履かせた状態で、風合い評価経験豊富な検査者(5人)のレック部のソフト性を相対評価した。その結果は、各検査者の評価点の平均値をとり小数点以下は四捨五入して、平均値が、5をS、4をA、3をB、1〜2をCとした。G. Evaluation of Stocking (a) Softness The stocking product was relatively worn on a human foot type, and the softness of the Lec part of an examiner (5 persons) who had experienced the evaluation of texture was relatively evaluated. As a result, the average value of the evaluation points of the respective inspectors is taken and rounded after the decimal point, and the average value is 5 for S, 4 for A, 3 for B, and 1-2 for C.
5点:非常に優れる
4点:やや優れる
3点:普通
2点:やや劣る
1点:劣る
S、Aをソフト性合格とした。5 points: very excellent 4 points: slightly excellent 3 points: normal 2 points: slightly inferior 1 point: inferior S, A was regarded as a softness pass.
(b)耐久性
ストッキング製品を人体足型に表を外側にして履かせ、踵から大腿部方向に60cmの位置にガーター部を合わせた上で、踵から大腿部方向に52.5cmの位置を中心として、足形の大腿部裏側に測定枠の大きさに合わせて円形の印を付けておく。測定枠に製品を固定する際には先につけた円形の印に合わせて固定することで、着用状態と同じ状態で破裂強さを測定し、耐久性の指標とした。(B) Durability The stocking product is put on the outside in the form of a human foot and the garter is aligned at a position 60 cm from the heel to the thigh, and 52.5 cm from the heel to the thigh A circular mark is placed on the back of the foot-shaped thigh according to the size of the measurement frame centering on the position. When fixing the product to the measurement frame, the burst strength was measured in the same state as the worn state by fixing according to the circular mark attached earlier, and it was used as an indicator of durability.
破裂強度はJIS L1096−2010、ミューレン形法(A法)による破裂強さ試験方法に準じて、任意の3箇所の破裂強度を測定し、その平均値より、次の基準で4段階評価した。 The burst strength was measured according to JIS L 1096-2010, the burst strength test method according to the Muren type method (method A), and the burst strength at any three places was measured, and four levels were evaluated based on the following criteria based on the average value.
S:117.7kPa以上
A:98.1kPa以上117.7kPa未満
B:88.3kPa以上98.1kPa未満
C:88.3kPa未満 。S: 117.7 kPa or more A: 98.1 kPa or more and less than 117.7 kPa B: 88.3 kPa or more and less than 98.1 kPa C: less than 88.3 kPa
S、Aを耐久性合格とした。 S and A were considered to be durable.
(c)品位
ストッキング製品を、検査者(5人)の染め斑の程度を相対評価した。その結果は、各検査者の評価点の平均値の小数点以下は四捨五入して、その平均値が、5をS、4をA、3をB、1〜2をCとした。(C) Quality The stocking product was relatively evaluated for the degree of dyeing spots on the examiner (5 persons). As a result, the decimal places of the average value of each examiner's evaluation point were rounded off, and the average value made 5 as S, 4 as A, 3 as B, and 1-2 as C.
5点:非常に優れる
4点:やや優れる
3点:普通
2点:やや劣る
1点:劣る 。5 points: very good 4 points: slightly excellent 3 points: normal 2 points: slightly inferior 1 point: inferior.
S、Aを品位合格とした。 S and A were graded.
(d)工程通過性
靴下編機にて、回転数400rpm、ストッキングを1時間連続運転し編立した際の編立時の糸切れによる停台回数を、次の基準で評価した。 (D) Process Passability With a sock knitting machine, the number of stops due to yarn breakage at the time of knitting was evaluated based on the following criteria when the stocking was continuously operated for 1 hour at a rotational speed of 400 rpm and knitting.
S:糸切れ2回未満、
A:糸切れ2回以上4回未満、
B:糸切れ4回以上6回未満、
C:糸切れ6回以上。S: Less than 2 thread breaks,
A: Thread breakage 2 or more and less than 4 times,
B: Thread breakage 4 times or more and less than 6 times,
C: Thread breakage 6 times or more.
S、Aを工程通過性合格とした。 S and A were taken as process passability.
〔実施例1〕
(ポリアミドマルチフィラメントの製造)
ポリアミドとして、硫酸相対粘度(ηr)が3.3、融点225℃のナイロン6チップを水分率0.03質量%以下となるよう常法にて乾燥した。得られたナイロン6チップを紡糸温度(溶融温度)290℃にて溶融し、紡糸口金より吐出させた。紡糸口金は、ホール数が42、丸形、孔径φ0.25、6糸条/口金のものを使用した。Example 1
(Production of polyamide multifilament)
As a polyamide, a nylon 6 chip having a sulfuric acid relative viscosity (η r) of 3.3 and a melting point of 225 ° C. was dried by a conventional method so as to have a moisture content of 0.03 mass% or less. The obtained nylon 6 chip was melted at a spinning temperature (melting temperature) of 290 ° C., and was discharged from a spinneret. The spinneret used had a hole number of 42, a round shape, a hole diameter of φ0.25, and 6 yarns / die.
紡糸機は、図1に示す態様の紡糸機(直接紡糸延伸機)を用いて紡糸した。なお、加熱筒は、加熱筒長さLを50mm、単層長さL1、L2それぞれ25mmの2層の加熱筒を用い、上層の加熱筒の雰囲気温度300℃、下層の加熱筒の雰囲気温度150℃となるように温度設定した。 The spinning machine was spun using a spinning machine (direct spinning and drawing machine) of the embodiment shown in FIG. The heating cylinder uses a heating cylinder length L of 50 mm and single-layer lengths L1 and L2 of 25 mm each, and the atmosphere temperature of the upper heating cylinder is 300 ° C. and the atmosphere temperature of the lower heating cylinder is 150 The temperature was set to be ° C.
紡糸口金から吐出された各フィラメントを、2層の加熱筒内で雰囲気温度150〜300℃にて徐冷し、冷却開始距離LS169mm、18℃の冷風の環状冷却装置を通過させて糸条を室温まで冷却固化する。その後、口金面からの給油位置Lgを1300mmの位置で油剤付与するとともに各フィラメントを集束しマルチフィラメントを形成し、流体交絡ノズル装置で交絡を施した後、引き取りローラー速度(紡糸速度)1500m/min、熱セット長600mm、155℃に加熱した延伸ローラーを介して延伸倍率2.8倍で延伸し、巻き取りを行い、22.0dtex、7フィラメントのナイロン6マルチフィラメントを得た。 Each filament discharged from the spinneret is gradually cooled in a two-layer heating cylinder at an ambient temperature of 150 to 300 ° C., passed through a cold air ring cooling device with a cooling start distance of LS 169 mm, 18 ° C. Cool to solidify. Thereafter, an oil agent is applied at an oiling position Lg of 1300 mm from the spinneret surface, each filament is converged to form a multifilament, and entanglement is performed with a fluid entangled nozzle device, and then the take-up roller speed (spinning speed) 1500 m / min. The film was drawn at a draw ratio of 2.8 times via a drawing roller heated to a heat setting length of 600 mm at 155 ° C. and wound up to obtain a nylon 6 multifilament of 22.0 dtex and 7 filaments.
得られたナイロン6マルチフィラメントについて評価した結果を表1に示す。 The results of evaluation of the obtained nylon 6 multifilament are shown in Table 1.
(レース編物の製造)
次に該マルチフィラメントを整経し28Gラッセルレース地糸のバック側の糸としてランナー長21.0cm、更に、地糸のフロント側の糸としてもランナー長100.0cm、柄糸235〜330dtexとともに製編した。つぎに生機を精練、染色、仕上げセットすることでインナー用レース編物を得た。得られたレース製品について評価した結果を表1に示す。(Manufacture of lace knitted fabric)
Next, the multifilament is warped and made with a runner length of 21.0 cm as a yarn on the back side of a 28G russell lace ground yarn, and further with a runner length of 100.0 cm as a yarn on the front side of the ground yarn and 235 to 330 dtex. Ed. Next, the inner fabric was obtained by scouring, dyeing and finishing the raw machine. The results of evaluation of the obtained race products are shown in Table 1.
〔実施例2〕
上層の加熱筒の雰囲気温度300℃、下層の加熱筒の雰囲気温度を100℃となるように温度設定し、加熱筒内で雰囲気温度100〜300℃にて徐冷、引き取りローラー速度1700m/min、延伸倍率2.7倍とした以外は実施例1と同様の方法で、22dtex、7フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表1に示す。Example 2
The atmosphere temperature of the upper heating cylinder is set to 300 ° C., the atmosphere temperature of the lower heating cylinder is set to 100 ° C., the atmosphere temperature is 100 to 300 ° C., the take-off roller speed is 1700 m / min. A 22 dtex, 7-filament nylon 6 multifilament was obtained and a lace knit was obtained in the same manner as in Example 1 except that the draw ratio was 2.7 times. The evaluation results are shown in Table 1.
〔実施例3〕
上層の加熱筒の雰囲気温度300℃、下層の加熱筒の雰囲気温度を200℃となるように温度設定し、加熱筒内で雰囲気温度200〜300℃にて徐冷、延伸倍率3.0倍とした以外は実施例1と同様の方法で、22dtex、7フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表1に示す。[Example 3]
The atmosphere temperature of the upper heating cylinder is set to 300 ° C., the atmosphere temperature of the lower heating cylinder is set to 200 ° C., and the inside of the heating cylinder is slowly cooled at an atmosphere temperature of 200 to 300 ° C. A 22 dtex 7-filament nylon 6 multifilament was obtained and a lace knit was obtained in the same manner as in Example 1 except for the above. The evaluation results are shown in Table 1.
〔実施例4〕
ポリアミドとして、硫酸相対粘度(ηr)が3.2、融点265℃のナイロン66チップとした以外は実施例1と同様の方法で、22dtex、7フィラメントのナイロン66マルチフィラメントを得、レース編物を得た。評価結果を表1に示す。Example 4
A 22 dtex 7-filament nylon 66 multifilament is obtained and a lace knitted fabric is obtained in the same manner as in Example 1 except that the polyamide is a nylon 66 chip having a relative viscosity (ηr) of 3.2 and a melting point of 265 ° C. The The evaluation results are shown in Table 1.
〔比較例1〕
加熱筒は、加熱筒長さLを50mmの単層加熱筒を用い、雰囲気温度300℃となるように温度設定、延伸倍率3.2倍とした以外は実施例1と同様の方法で、22dtex、7フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表1に示す。Comparative Example 1
The heating cylinder was 22 dtex in the same manner as in Example 1 except that the heating cylinder length L was set to 50 ° C. using a single-layer heating cylinder, and the temperature was set to an atmosphere temperature of 300 ° C. , 7 filament nylon 6 multifilaments were obtained, and lace knits were obtained. The evaluation results are shown in Table 1.
単層加熱筒のため、加熱筒内での雰囲気温度が一定となり、加熱筒内の熱対流が乱れ、U%が悪化した。また、加熱筒内の雰囲気温度設定が300℃と紡糸温度に近い温度であるため、口金面から冷却までの徐冷による配向緩和が充分ではなく、15%強度が高かった。そのため、レース編物の工程通過性、品位、ソフト性に劣っていた。 Because of the single-layer heating cylinder, the ambient temperature in the heating cylinder became constant, the heat convection in the heating cylinder was disturbed, and the U% deteriorated. In addition, since the ambient temperature setting in the heating cylinder is 300 ° C., which is a temperature close to the spinning temperature, orientation relaxation by slow cooling from the die surface to cooling is not sufficient, and the 15% strength is high. Therefore, it was inferior to the process passability, the grade, and the soft property of the lace knitted fabric.
〔比較例2〕
上層の加熱筒の雰囲気温度200℃、下層の加熱筒の雰囲気温度を100℃となるように温度設定し、加熱筒内で雰囲気温度100〜200℃にて徐冷、引き取りローラー速度1700m/minとした以外は実施例1と同様の方法で、22dtex、7フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表1に示す。Comparative Example 2
The atmosphere temperature of the upper heating cylinder is set at 200 ° C., and the atmosphere temperature of the lower heating cylinder is set at 100 ° C. The atmosphere temperature is 100 to 200 ° C., and the take-off roller speed is 1700 m / min. A 22 dtex 7-filament nylon 6 multifilament was obtained and a lace knit was obtained in the same manner as in Example 1 except for the above. The evaluation results are shown in Table 1.
加熱筒内での雰囲気温度設定が100〜200℃と紡糸温度より90℃低い温度であるため、口金面から冷却までの徐冷による配向緩和が充分ではなく、強伸度積、15%強度が低かった。そのため、レース編物の耐久性に劣っていた。 Since the ambient temperature setting in the heating cylinder is 100 to 200 ° C., which is 90 ° C. lower than the spinning temperature, orientation relaxation by slow cooling from the die surface to cooling is not sufficient, and the tensile elongation product, 15% strength is It was low. Therefore, it was inferior to the durability of the lace knit.
〔比較例3〕
加熱筒を設置しないとした以外は実施例1と同様の方法で、22dtex、7フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表1に示す。Comparative Example 3
A 22 dtex, 7-filament nylon 6 multifilament was obtained and a lace knit was obtained in the same manner as in Example 1 except that the heating cylinder was not installed. The evaluation results are shown in Table 1.
加熱筒を設置していないため、口金面から冷却までの徐冷による配向緩和が不足し、強伸度積、15%強度が低かった。そのため、レース編物の耐久性に劣っていた。 Since the heating cylinder was not installed, the orientation relaxation by slow cooling from the die surface to cooling was insufficient, and the strength and elongation product and the 15% strength were low. Therefore, it was inferior to the durability of the lace knit.
〔実施例5〕
給油位置Lgを800mm、延伸倍率3.0倍とした以外は実施例1と同様の方法で、22dtex、7フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表2に示す。[Example 5]
A nylon 6 multifilament of 22 dtex and 7 filaments was obtained by the same method as in Example 1 except that the feeding position Lg was 800 mm and the draw ratio was 3.0 times, and a lace knit was obtained. The evaluation results are shown in Table 2.
〔実施例6〕
給油位置Lgを1500mm、延伸倍率2.7倍とした以外は実施例1と同様の方法で、22dtex、7フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表2に示す。[Example 6]
A nylon 6 multifilament of 22 dtex and 7 filaments was obtained and a lace knit was obtained in the same manner as in Example 1 except that the feeding position Lg was 1500 mm and the draw ratio was 2.7 times. The evaluation results are shown in Table 2.
〔比較例4〕
給油位置Lgを600mm、延伸倍率3.2倍とした以外は実施例1と同様の方法で、22dtex、7フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表2に示す。Comparative Example 4
A nylon 6 multifilament of 22 dtex and 7 filaments was obtained by the same method as in Example 1 except that the feeding position Lg was 600 mm and the draw ratio was 3.2 times, to obtain a lace knit. The evaluation results are shown in Table 2.
フィラメント温度が室温まで下がっていない状態で油剤付与を行ったため、U%が悪化した。また、口金面から給油ガイドまでの糸屈曲が大きく、給油ガイドでの擦過による影響で、強伸度積、15%強度が低かった。そのため、レース編物の工程通過性、耐久性、品位に劣っていた。 Since the oil solution was applied while the filament temperature did not drop to room temperature, the U% deteriorated. In addition, the line bending from the cap face to the fueling guide was large, and the strength and elongation product and 15% strength were low due to the influence of the rubbing with the fueling guide. Therefore, it was inferior to the process passage property of a lace knit, durability, and a grade.
〔比較例5〕
給油位置Lgを3000mm、延伸倍率2.7倍とした以外は実施例1と同様の方法で、22dtex、7フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表2に示す。Comparative Example 5
A nylon 6 multifilament of 22 dtex and 7 filaments was obtained by the same method as in Example 1 except that the feeding position Lg was 3000 mm and the draw ratio was 2.7 times, and a lace knit was obtained. The evaluation results are shown in Table 2.
下降気流による糸揺れの影響が大きく、U%が悪化した。また、随伴流による影響で、紡糸張力が高くなり、紡糸配向が進んだため、15%強度、強伸度積が低かった。そのため、レース編物の品位、耐久性に劣っていた。 The influence of yarn swaying by the downdraft is large, and the U% is deteriorated. In addition, due to the influence of the accompanying flow, the spinning tension increased and the spinning orientation advanced, so the strength and elongation product were low by 15%. Therefore, it was inferior to the grade and durability of a lace knit.
〔実施例7〕
引き取りローラー速度(紡糸速度)1000m/min、延伸倍率3.8倍とした以外は実施例1と同様の方法で、22dtex、7フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表2に示す。[Example 7]
A 22 dtex, 7 filaments nylon 6 multifilament was obtained and a lace knit was obtained in the same manner as in Example 1 except that the take-up roller speed (spinning speed) was 1000 m / min and the draw ratio was 3.8 times. The evaluation results are shown in Table 2.
〔実施例8〕
引き取りローラー速度(紡糸速度)2000m/min、延伸倍率2.3倍とした以外は実施例1と同様の方法で、22dtex、7フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表2に示す。Example 8
A nylon 6 multifilament of 22 dtex and 7 filaments was obtained by the same method as Example 1 except that the take-up roller speed (spinning speed) was 2000 m / min, and the draw ratio was 2.3 times, to obtain a lace knit. The evaluation results are shown in Table 2.
〔比較例6〕
引き取りローラー速度(紡糸速度)800m/min、延伸倍率4.5倍とした以外は実施例1と同様の方法で、22dtex、7フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表2に示す。Comparative Example 6
A 22 dtex 7-filament nylon 6 multifilament was obtained and a lace knit was obtained in the same manner as in Example 1 except that the take-up roller speed (spinning speed) was 800 m / min and the draw ratio was 4.5 times. The evaluation results are shown in Table 2.
紡糸速度が低いため、紡糸張力が低くなり、糸揺れの影響が大きく、U%が悪化した。また、加熱筒の徐冷効果が大きくなり、ポリアミド分子鎖の歪み緩和が進みすぎ15%強度が高かった。そのため、レース編物の工程通過性、品位、ソフト性に劣っていた。 Since the spinning speed was low, the spinning tension was low, the influence of the yarn fluctuation was large, and the U% deteriorated. In addition, the slow cooling effect of the heating tube became large, and strain relaxation of the polyamide molecular chain progressed too much, and the strength was 15% high. Therefore, it was inferior to the process passability, the grade, and the soft property of the lace knitted fabric.
〔比較例7〕
引き取りローラー速度(紡糸速度)2500m/min、延伸倍率1.9倍とした以外は実施例1と同様の方法で、22dtex、7フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表2に示す。Comparative Example 7
A nylon 6 multifilament of 22 dtex and 7 filaments was obtained by the same method as in Example 1 except that the take-up roller speed (spinning speed) was 2500 m / min and the draw ratio was 1.9 times, to obtain a lace knit. The evaluation results are shown in Table 2.
紡糸速度が高いため、ひずみ速度が高くなり、ひずみ速度のバラツキが増し、ドラフト延伸ムラが増大しU%が悪化した。また、加熱筒の徐冷効果が低くなり、ポリアミド分子差の歪み緩和が不十分で、15%強度、強伸度積が低かった。そのため、レース編物の品位、耐久性に劣っていた。 Since the spinning speed was high, the strain rate was high, the variation in strain rate was increased, the draft unevenness was increased, and the U% was deteriorated. In addition, the slow cooling effect of the heating tube was low, strain relaxation of the polyamide molecular difference was insufficient, and the strength and elongation product was low at 15% strength. Therefore, it was inferior to the grade and durability of a lace knit.
〔実施例9〕
径の異なる延伸ローラーを用い、熱セット長1200mmとした以外は実施例1と同様の方法で、22dtex、7フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表2に示す。[Example 9]
A nylon 6 multifilament of 22 dtex and 7 filaments was obtained and a lace knit was obtained in the same manner as in Example 1 except that draw rollers having different diameters were used and the heat setting length was 1200 mm. The evaluation results are shown in Table 2.
〔比較例8〕
径の異なる延伸ローラーを用い、熱セット長1800mmとした以外は実施例1と同様の方法で、22dtex、7フィラメントのナイロン6マルチフィラメントを得、レース編物を得た。評価結果を表2に示す。Comparative Example 8
A nylon 6 multifilament of 22 dtex and 7 filaments was obtained and a lace knit was obtained in the same manner as in Example 1 except that stretching rollers having different diameters were used and the heat setting length was set to 1800 mm. The evaluation results are shown in Table 2.
熱による繊維の結晶化が進みすぎ、15%強度が高かった。そのため、レース編物の工程通過性、ソフト性に劣っていた。 The crystallization of the fiber by heat progressed too much, and the 15% strength was high. Therefore, it was inferior to the process passability of a lace knit and soft property.
〔実施例10〕
(ポリアミドマルチフィラメントの製造)
ポリアミドとして、硫酸相対粘度(ηr)が3.3、融点225℃のナイロン6チップを水分率0.03質量%以下となるよう常法にて乾燥した。得られたナイロン6チップを紡糸温度(溶融温度)290℃にて溶融し、紡糸口金より吐出させた。紡糸口金は、ホール数が30、丸形、孔径φ0.20、6糸条/口金のものを使用した。[Example 10]
(Production of polyamide multifilament)
As a polyamide, a nylon 6 chip having a sulfuric acid relative viscosity (η r) of 3.3 and a melting point of 225 ° C. was dried by a conventional method so as to have a moisture content of 0.03 mass% or less. The obtained nylon 6 chip was melted at a spinning temperature (melting temperature) of 290 ° C., and was discharged from a spinneret. As the spinneret, one having a hole number of 30, a round shape, a hole diameter of 0.20, and 6 threads / base was used.
紡糸機は、図1に示す態様の紡糸機を用いて紡糸した。なお、加熱筒は、加熱筒長さLを50mm、単層長さL1、L2それぞれ25mmの2層の加熱筒を用い、上層の加熱筒の雰囲気温度300℃、下層の加熱筒の雰囲気温度150℃となるように温度設定した。 The spinning machine was spun using the spinning machine of the embodiment shown in FIG. The heating cylinder uses a heating cylinder length L of 50 mm and single-layer lengths L1 and L2 of 25 mm each, and the atmosphere temperature of the upper heating cylinder is 300 ° C. and the atmosphere temperature of the lower heating cylinder is 150 The temperature was set to be ° C.
紡糸口金から吐出された各フィラメントを、2層の加熱筒内で雰囲気温度150〜300℃にて徐冷し、冷却開始距離LS169mm、18℃の冷風の環状冷却装置を通過させて糸条を室温まで冷却固化する。その後、口金面からの給油位置Lgを1300mmの位置で油剤付与するとともに各フィラメントを集束しマルチフィラメントを形成し、流体交絡ノズル装置で交絡を施した後、引き取りローラー速度(紡糸速度)1500m/min、熱セット長600mm、155℃に加熱した延伸ローラーを介して延伸倍率2.6倍で延伸し、巻き取りを行い、8.0dtex、5フィラメントのナイロン6マルチフィラメントを得た。 Each filament discharged from the spinneret is gradually cooled in a two-layer heating cylinder at an ambient temperature of 150 to 300 ° C., passed through a cold air ring cooling device with a cooling start distance of LS 169 mm, 18 ° C. Cool to solidify. Thereafter, an oil agent is applied at an oiling position Lg of 1300 mm from the spinneret surface, each filament is converged to form a multifilament, and entanglement is performed with a fluid entangled nozzle device, and then the take-up roller speed (spinning speed) 1500 m / min. The film was drawn at a draw ratio of 2.6 times through a drawing roller heated to a heat setting length of 600 mm and 155 ° C. and wound up to obtain a nylon 6 multifilament of 8.0 dtex and 5 filaments.
得られたナイロン6マルチフィラメントについて評価した結果を表3に示す。 The results evaluated for the obtained nylon 6 multifilament are shown in Table 3.
(ストッキングの製造)
次に該マルチフィラメントをカバリング糸の被服糸に用い、22デシテックスのポリウレタン弾性糸を芯糸とし、ドラフト3.0倍に設定し、撚数2400t/m(S,Z方向)でシングルカバリングして、シングルカバリグ弾性糸(SCY)を製造した。(Manufacture of stocking)
Next, the multifilament is used as a covering yarn of covering yarn, a polyurethane elastic yarn of 22 dtex is used as a core yarn, draft is set to 3.0 times, and single covering is performed at a twist number of 2400 t / m (S, Z direction). , Single covered elastic yarn (SCY).
得られたSCYを用い、靴下編機で編成した。つぎに生編を精錬、染色、120℃で30秒ファイナルセットを行い、パンティストッキング製品を得た。得られたパンティストッキング製品のレッグ部について評価した結果を表3に示す。 Using the obtained SCY, it was knitted with a sock knitting machine. Next, the raw hen was refined, dyed, and final set at 120 ° C. for 30 seconds to obtain pantyhose products. The results of evaluation of the leg portion of the obtained pantyhose product are shown in Table 3.
〔比較例9〕
加熱筒を設置しないとした以外は実施例10と同様の方法で、8dtex、5フィラメントのナイロン6マルチフィラメントを得、ストッキング製品を得た。評価結果を表3に示す。Comparative Example 9
A nylon 6 multifilament of 8 dtex and 5 filaments was obtained and a stocking product was obtained in the same manner as in Example 10 except that the heating cylinder was not installed. The evaluation results are shown in Table 3.
加熱筒を設置していないため、口金面から冷却までの徐冷による配向緩和が不足し、強伸度積、15%強度が低かった。そのため、ストッキング製品の耐久性に劣っていた。 Since the heating cylinder was not installed, the orientation relaxation by slow cooling from the die surface to cooling was insufficient, and the strength and elongation product and the 15% strength were low. Therefore, the durability of the stocking product was inferior.
〔比較例10〕
加熱筒を設置しない、引き取りローラー速度(紡糸速度)2500m/min、延伸倍率1.5倍とした以外は実施例10と同様の方法で、8dtex、5フィラメントのナイロン6マルチフィラメントを得、ストッキング製品を得た。評価結果を表3に示す。Comparative Example 10
A nylon 6 multifilament of 8 dtex and 5 filaments is obtained by the same method as in Example 10 except that the heating roller is not installed, the take-up roller speed (spinning speed) is 2500 m / min, and the draw ratio is 1.5 times. I got The evaluation results are shown in Table 3.
紡糸速度が高いため、ひずみ速度が高くなることにより、ひずみ速度のバラツキが増し、ドラフト延伸ムラが増大しU%が悪化した。また、加熱筒を設置していないため、口金面から冷却までの徐冷による歪み緩和が不足し、15%強度、強伸度積が低かった。そのため、ストッキング製品の品位、耐久性に劣っていた。 Since the spinning speed is high, the strain rate is increased, so that the variation in strain rate is increased, the draft stretching unevenness is increased, and the U% is deteriorated. Moreover, since the heating cylinder was not installed, distortion relaxation by slow cooling from a nozzle face to cooling was insufficient, and 15% strength and strength and elongation product were low. Therefore, the quality and durability of the stocking product were inferior.
〔比較例11〕
加熱筒は、加熱筒長さLを50mmの単層加熱筒を用い、雰囲気温度300℃となるように温度設定、給油位置Lgを3000mm、引き取りローラー速度(紡糸速度)600m/min、延伸倍率4.5倍とした以外は実施例10と同様の方法で、8dtex、5フィラメントのナイロン6マルチフィラメントを得、ストッキング製品を得た。評価結果を表3に示す。Comparative Example 11
The heating cylinder uses a single-layer heating cylinder with a heating cylinder length L of 50 mm, the temperature is set so that the atmosphere temperature is 300 ° C., the oiling position Lg is 3000 mm, the take-off roller speed (spinning speed) 600 m / min, the draw ratio 4 In the same manner as in Example 10 except that .5 times was used, a nylon 6 multifilament of 8 dtex and 5 filaments was obtained to obtain a stocking product. The evaluation results are shown in Table 3.
単層加熱筒のため加熱筒内での雰囲気温度分布が一定となり加熱筒内の熱対流が乱れ、更には、給油位置が低い(口金から給油までの距離が長い)ことや紡糸速度が低いため糸揺れの影響が大きくU%が悪化した。また、紡糸速度が低いことで、加熱筒の徐冷効果が大きくなり、ポリアミド分子鎖の歪み緩和が進みすぎ、更には熱セット長大による繊維の結晶化が進みすぎ、15%強度が高かった。そのため、ストッキング製品の工程通過性、品位、ソフト性に劣っていた。 Due to the single-layer heating cylinder, the ambient temperature distribution in the heating cylinder becomes constant, the heat convection in the heating cylinder is disturbed, and furthermore, the oiling position is low (the distance from the nozzle to oiling is long) and the spinning speed is low. The influence of yarn swaying was large and U% deteriorated. In addition, since the spinning speed is low, the slow cooling effect of the heating cylinder is increased, strain relaxation of the polyamide molecular chain proceeds too much, and further, crystallization of the fiber due to heat setting length too much, and the 15% strength is high. Therefore, it was inferior to the process passability, the grade, and the softness of a stocking product.
1:紡糸口金
2:気体噴出装置
3:加熱筒
4:冷却装置
5:給油装置
6:流体交絡ノズル装置
7:引き取りローラー
8:延伸ローラー
9:巻取装置
L:多層加熱筒長さ
L1:多層加熱筒の単層長さ
LS:冷却開始距離
Lg:給油位置
1: Spinneret 2: Gas jet device 3: Heating cylinder 4: Cooling device 5: Oiling device 6: Fluid entanglement nozzle device 7: Take-up roller 8: Stretching roller 9: Winding device L: Multilayer heating cylinder length L1: Multilayer Single layer length LS of heating cylinder: Cooling start distance Lg: Refueling position
Claims (6)
A stocking using the polyamide multifilament according to any one of claims 1 to 4 as a covering coated yarn, and partially using the covering yarn.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016146049 | 2016-07-26 | ||
JP2016146049 | 2016-07-26 | ||
PCT/JP2017/025223 WO2018021011A1 (en) | 2016-07-26 | 2017-07-11 | Polyamide multifilament, and lace knit and stockings using same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2018021011A1 true JPWO2018021011A1 (en) | 2019-05-09 |
JP6687035B2 JP6687035B2 (en) | 2020-04-22 |
Family
ID=61016521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017550778A Active JP6687035B2 (en) | 2016-07-26 | 2017-07-11 | Polyamide multifilament and lace knitting and stockings using the same |
Country Status (9)
Country | Link |
---|---|
US (1) | US20190174837A1 (en) |
EP (1) | EP3492636B1 (en) |
JP (1) | JP6687035B2 (en) |
KR (1) | KR102363120B1 (en) |
CN (1) | CN109477250B (en) |
IL (1) | IL264428A (en) |
RU (1) | RU2019101900A (en) |
TW (1) | TWI745408B (en) |
WO (1) | WO2018021011A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6879362B2 (en) * | 2018-01-25 | 2021-06-02 | 東レ株式会社 | Polyamide multifilament and lace knitting using it |
JP7173014B2 (en) * | 2018-04-25 | 2022-11-16 | 東レ株式会社 | Polyamide fiber, woven and knitted fabric, and method for producing polyamide fiber |
KR20210089669A (en) * | 2018-11-21 | 2021-07-16 | 도레이 카부시키가이샤 | Polyamide Multifilament and Covering Elastic Yarn |
WO2022039033A1 (en) * | 2020-08-21 | 2022-02-24 | 東レ株式会社 | Polyamide multifilament, and method for manufacturing same |
WO2022113810A1 (en) * | 2020-11-30 | 2022-06-02 | 東レ株式会社 | Polyamide multifilament, method for manufacturing same, and woven/knitted article |
WO2022132101A1 (en) * | 2020-12-15 | 2022-06-23 | Aydin Örme San. Ve Ti̇c. A.Ş. | Use of lyocell yarn in the production of lace |
CN118749036A (en) * | 2022-05-27 | 2024-10-08 | 东丽株式会社 | Polyamide profiled fiber and fiber comprising core-sheath type composite yarn |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS512528B1 (en) * | 1967-12-13 | 1976-01-27 | ||
JPS61124622A (en) * | 1984-11-22 | 1986-06-12 | Toyobo Co Ltd | Monofilament of nylon 46 |
JP2001020128A (en) * | 1999-07-12 | 2001-01-23 | Unitika Ltd | Production of synthetic fiber |
WO2016076184A1 (en) * | 2014-11-12 | 2016-05-19 | 東レ株式会社 | Ultra-fine high-strength polyamide multifilament, and covering yarn, stocking, and fabric using same |
WO2016104278A1 (en) * | 2014-12-26 | 2016-06-30 | 東レ株式会社 | High-shrinkage polyamide fibers, combined-filament yarn using same in portion thereof, and woven or knitted fabric |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63159521A (en) | 1986-12-24 | 1988-07-02 | Toray Ind Inc | High-tenacity polyamide fiber |
EP0729713B1 (en) * | 1994-09-13 | 2001-05-09 | Toray Industries, Inc. | Stockings |
JPH11279884A (en) * | 1998-03-25 | 1999-10-12 | Toray Ind Inc | Covered elastic yarn, production of covering yarn for elastic yarn and stocking |
JP2002088514A (en) * | 2000-09-13 | 2002-03-27 | Toray Ind Inc | Stocking |
JP4013110B2 (en) | 2001-10-18 | 2007-11-28 | 東洋紡績株式会社 | Lace knitting |
JP2008240211A (en) * | 2007-03-28 | 2008-10-09 | Kuroda Tex Co Ltd | Method for producing knitted lace and knitted lace |
JP2010106393A (en) | 2008-10-30 | 2010-05-13 | Toray Ind Inc | Apparatus and method for producing multifilament yarn |
-
2017
- 2017-07-11 WO PCT/JP2017/025223 patent/WO2018021011A1/en unknown
- 2017-07-11 US US16/320,998 patent/US20190174837A1/en not_active Abandoned
- 2017-07-11 RU RU2019101900A patent/RU2019101900A/en not_active Application Discontinuation
- 2017-07-11 EP EP17834019.6A patent/EP3492636B1/en active Active
- 2017-07-11 JP JP2017550778A patent/JP6687035B2/en active Active
- 2017-07-11 CN CN201780046231.8A patent/CN109477250B/en active Active
- 2017-07-11 KR KR1020197001908A patent/KR102363120B1/en active IP Right Grant
- 2017-07-24 TW TW106124745A patent/TWI745408B/en active
-
2019
- 2019-01-23 IL IL264428A patent/IL264428A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS512528B1 (en) * | 1967-12-13 | 1976-01-27 | ||
JPS61124622A (en) * | 1984-11-22 | 1986-06-12 | Toyobo Co Ltd | Monofilament of nylon 46 |
JP2001020128A (en) * | 1999-07-12 | 2001-01-23 | Unitika Ltd | Production of synthetic fiber |
WO2016076184A1 (en) * | 2014-11-12 | 2016-05-19 | 東レ株式会社 | Ultra-fine high-strength polyamide multifilament, and covering yarn, stocking, and fabric using same |
WO2016104278A1 (en) * | 2014-12-26 | 2016-06-30 | 東レ株式会社 | High-shrinkage polyamide fibers, combined-filament yarn using same in portion thereof, and woven or knitted fabric |
Also Published As
Publication number | Publication date |
---|---|
KR102363120B1 (en) | 2022-02-15 |
EP3492636B1 (en) | 2023-05-10 |
RU2019101900A (en) | 2020-08-26 |
CN109477250A (en) | 2019-03-15 |
KR20190032373A (en) | 2019-03-27 |
WO2018021011A1 (en) | 2018-02-01 |
IL264428A (en) | 2019-02-28 |
EP3492636A1 (en) | 2019-06-05 |
TWI745408B (en) | 2021-11-11 |
RU2019101900A3 (en) | 2020-08-26 |
JP6687035B2 (en) | 2020-04-22 |
US20190174837A1 (en) | 2019-06-13 |
EP3492636A4 (en) | 2019-12-18 |
CN109477250B (en) | 2021-08-31 |
TW201809385A (en) | 2018-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6687035B2 (en) | Polyamide multifilament and lace knitting and stockings using the same | |
JP5780237B2 (en) | Polyamide ultrafine fiber and melt spinning method and apparatus thereof | |
JP5741434B2 (en) | Hygroscopic fiber and method for producing the same | |
JP6127969B2 (en) | Polyamide fiber and method for producing the same | |
JP6879362B2 (en) | Polyamide multifilament and lace knitting using it | |
TW201704571A (en) | Hygroscopic core-sheath conjugate yarn and production method therefor | |
JP7363766B2 (en) | polyamide multifilament and covering elastic yarn | |
TW201734273A (en) | Core-sheath composite cross-section fiber having excellent moisture absorbency and wrinkle prevention | |
WO2022209813A1 (en) | Polyamide multifilament | |
WO2022113810A1 (en) | Polyamide multifilament, method for manufacturing same, and woven/knitted article | |
JP2004502882A (en) | Polymer filaments with irregular cross sections | |
JP2021085122A (en) | Polyamide fibers, and lace and knit fabric using the same | |
JP2006325717A (en) | String | |
JPS59187640A (en) | Polyamide tire cord and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191210 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20191210 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20191216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200303 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200316 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6687035 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |