JPWO2017221322A1 - 二酸化炭素含有ガス回収装置 - Google Patents

二酸化炭素含有ガス回収装置 Download PDF

Info

Publication number
JPWO2017221322A1
JPWO2017221322A1 JP2017519581A JP2017519581A JPWO2017221322A1 JP WO2017221322 A1 JPWO2017221322 A1 JP WO2017221322A1 JP 2017519581 A JP2017519581 A JP 2017519581A JP 2017519581 A JP2017519581 A JP 2017519581A JP WO2017221322 A1 JPWO2017221322 A1 JP WO2017221322A1
Authority
JP
Japan
Prior art keywords
carbon dioxide
containing gas
chamber
water
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017519581A
Other languages
English (en)
Other versions
JP6389330B2 (ja
Inventor
横井 康名
康名 横井
加藤 利明
利明 加藤
英幸 岡野
英幸 岡野
伊藤 義展
義展 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anlet Co Ltd
Original Assignee
Anlet Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anlet Co Ltd filed Critical Anlet Co Ltd
Publication of JPWO2017221322A1 publication Critical patent/JPWO2017221322A1/ja
Application granted granted Critical
Publication of JP6389330B2 publication Critical patent/JP6389330B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • B01F21/30Workflow diagrams or layout of plants, e.g. flow charts; Details of workflow diagrams or layout of plants, e.g. controlling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/60Pump mixers, i.e. mixing within a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C2/00Rotary-piston engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C4/00Oscillating-piston engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • B01D2258/0291Flue gases from waste incineration plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/05Biogas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/18Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】低コストで、かつ、二酸化炭素含有ガスの回収効率を向上させた二酸化炭素含有ガス回収装置を提供すること。【解決手段】二酸化炭素含有ガス回収装置10のポンプハウジング11は、隔壁20aで区画された第1室23と第2室26が形成され、第1室と第2室は、第3室20を介して連通されている。第1室は水の供給口と二酸化炭素含有ガスのガス導入口に連通されている。第1室に満たされた水中に二酸化炭素含有ガスを吹き込んだとき、二酸化炭素含有ガスは水に溶け込むとともに溶けきらなかった同ガスが気泡Aとして水中に存在する。第3室20内に二軸41a,41bで対向配置した一対の六葉ロータ40,40が気泡Aを圧縮し、気泡Bに微細化すると、圧縮作用によって二酸化炭素含有ガスを水へさらに溶け込ませることができ、生成された二酸化炭素含有ガス水溶液が第2室に連通している排出口から排出される。【選択図】図2

Description

本発明は、二酸化炭素含有ガス回収装置に関するものである。
従来より二酸化炭素含有ガスは、地球温暖化を惹起する温室効果を有するガスとして知られている。当該二酸化炭素含有ガスを大量に発生させる大規模発生源は、たとえば火力発電所、製鉄所、ごみ焼却場といった場所である。当該大規模発生源において発生した二酸化炭素含有ガスを回収するため、様々な二酸化炭素含有ガスの回収装置が開示されている。
特許第4231735号公報に開示されている二酸化炭素の分離回収装置は、高炉ガスから二酸化炭素含有ガスを化学吸収液で吸収して、当該化学吸収液を製鉄所からの排熱によって加熱し二酸化炭素含有ガスを分離している。
また、特許第4385424号公報に開示されている二酸化炭素濃縮装置は、電解質をしみ込ませた多孔質物質製電解質板を多孔質体製のカソードとアノードで両面から挟んでなる濃縮セルを用いて、カソードとアノード間に電位を与え、カソードに供給した原料ガスから電気化学反応によって炭酸イオンを生成し、当該炭酸イオンをアノードで電気化学反応させて二酸化炭素を選択的に分離させている。当該二酸化炭素と希釈用ガスとしての水蒸気又は窒素からなる混合ガスは、濃縮セル外に取り出され、水蒸気又は窒素を分離除去することによって、二酸化炭素含有ガスを回収している。
特許第4231735号公報 特許第4385424号公報
しかし、上記の装置は、化学吸収液の循環路、排熱を取り込む加熱装置又は濃縮セル、電位印加装置等の設備を要し、いずれも多大な設備コストを必要とするものであった。
これに対し、本発明者は、以前、水に二酸化炭素含有ガスが溶け込むことに着目して、二酸化炭素含有ガスと水を撹拌し、二酸化炭素含有ガスを回収するようにした低コストの二酸化炭素含有ガス回収装置を発明した。
しかしながら、先に発明した二酸化炭素含有ガス回収装置は、二酸化炭素含有ガスが溶け込んだ水をタンク内で単純に撹拌してさらに溶解させるものであって、二酸化炭素含有ガスの回収効率が想定していたよりも低かった。
したがって、本発明が解決しようとする課題は、低コストで、かつ、二酸化炭素含有ガスの回収効率を向上させた二酸化炭素含有ガス回収装置を提供することである。
請求項1に記載の二酸化炭素含有ガス回収装置は、二酸化炭素含有ガスを水に溶け込ませて回収する二酸化炭素含有ガス回収装置であって、
水の供給口と二酸化炭素含有ガスの導入口を設けた第1室と、水の排出口を設けた第2室と、第1室と第2室を連通する第3室とを有するポンプハウジングと、
一対の複葉ロータと、同ロータを駆動するモータからなり、第3室に設置された回転混合部を備え、
第1室に供給口から水を供給するとともに、導入口から二酸化炭素含有ガスを供給して水に二酸化炭素含有ガスを溶け込ませ、
二酸化炭素含有ガスの溶け込んだ水を回転混合部で第1室から第3室に圧送し、排出口から排出するようにしたことを特徴とする。
請求項2に記載の二酸化炭素含有ガス回収装置は、請求項1に記載の発明において、前記複葉ロータが、六葉ロータであって、前記回転混合部が、当該六葉ロータを二軸平行に配した二軸六葉式ポンプであることを特徴とする。
本発明に係る二酸化炭素含有ガス回収装置によれば、第1室で水中に溶け込んだ二酸化炭素含有ガスによって発生した気泡は、第3室に設けた回転混合部で第2室へ圧送されるとき、一方の複葉ロータの突出部と他方の複葉ロータの突出部で囲まれた空間の容積の減縮に伴い加圧圧縮されて微細化する。そのため、二酸化炭素含有ガスを水中に効率よく溶け込ませることができ、二酸化炭素含有ガスの回収効率を向上させることができる。特に六葉ロータを二軸平行に配した二軸六葉式ポンプの場合には、二酸化炭素含有ガスの回収効率を向上させることができる。
そして、本発明に係る二酸化炭素含有ガス回収装置によれば、ポンプハウジングを3室に区画形成して第3室に回転混合部を収めるという簡単な構造である。これによって、容易に小型化することができ、従来の二酸化炭素回収装置と比べて、大幅に設備コストを低減することができる。
第1実施例に係る二酸化炭素含有ガス回収装置の構成の概略を示す正面図である。 第1実施例に係る二酸化炭素含有ガス回収装置の二軸六葉式ポンプの内部構造の構成の概略を示す内部構造正面図である。 第1実施例に係る二酸化炭素含有ガス回収装置の二軸六葉式ポンプの内部構造の構成の概略を示す内部構造側面図である。 第1実施例に係る二酸化炭素含有ガス回収装置について、二酸化炭素含有ガスの回収効率を検証する実験装置の構成の概略を示す説明図である。 第1実施例に係る二酸化炭素含有ガス回収装置について、二酸化炭素含有ガスの回収効率実験の実験結果を示す一覧表である。
本発明に係る二酸化炭素含有ガス回収装置は、二酸化炭素含有ガスの大規模発生源、たとえば、火力発電所、製鉄所、ゴミ焼却炉等の二酸化炭素含有ガスの排出口近傍に設置され、二酸化炭素含有ガスを水に溶け込ませた二酸化炭素含有ガス水溶液を回収して、二酸化炭素含有ガスの回収を図るものである。
本発明を実施するための形態を説明するため、図1〜図5を添付し、当該図面にしたがって実施例を以下に示す。
図1は、当該実施例に係る二酸化炭素含有ガス回収装置10の構成の概略を示す正面図である。図2は、当該二酸化炭素含有ガス回収装置10の内部構造を説明するため、当該内部構造の構成の概略を示した内部構造正面図である。本図面では図1においてポンプハウジングの上に載置して示したモータの記載を省略している。図3は、図2に記載された二酸化炭素含有ガス回収装置10の内部構造について補足説明するため、当該内部構造の構成の概略を示した内部構造側面図である。
さらに、本実施例では、二酸化炭素含有ガスの回収効率を検証する実験を行った。当該実験では、二酸化炭素含有ガスの大規模発生源に替えて炭酸ガスボンベを使用し、規定水量を容易に把握するため水槽から水を供給するようにした。当該実験に係る実験装置及び実験環境の概略を示す説明図を図4に示し、当該実験の結果を図5に示す。
本発明に係る二酸化炭素含有ガス回収装置の実施例を添付した図面にしたがって説明する。本実施例において、二酸化炭素含有ガスとは、大規模発生源から排出される排出ガスに少なくとも二酸化炭素ガスが含有されているガスをいい、当該二酸化炭素含有ガスを水に溶け込ませた水溶液を二酸化炭素含有ガス水溶液という。
二酸化炭素含有ガス回収装置10は、図1に示すように、ポンプハウジング11と、モータ12と、当該モータ12とポンプハウジング11を連結する伝動ベルト13と、ポンプハウジング11及びモータ12が載置される基台14とからなる。
ポンプハウジング11は、その内部が、図2に示すように、隔壁20aを挟んで第1室23と、第2室26が対向するように区画形成され、第1室23と第2室26の連通部には第3室20が形成されている。
これによって、ポンプハウジング11は、第1室23の水と第2室26の水が隔壁20aによって混ざり合うことがなく、さらに第1室23から第2室26へ水を送るためには、第3室20を経由しなければならないように形成されている。
第1室23には、水の供給口15aと二酸化炭素含有ガスが導入されるガス導入口24が設けられている。
供給口15aのフランジには、図1に示すように、フランジ金具16のフランジが接続可能に対向配置されている。当該フランジ金具16には、ポンプハウジング11へ水を供給する水供給管17が接続されている。
ガス導入口24には、図3に示すように、ガス導入管30が接続されている。ガス導入管30は、開閉弁31を有している。当該開閉弁31を開放することによって、第1室23へ二酸化炭素含有ガスが導入される。
供給口15aから水を供給して第1室23内を水で満たし、ガス導入管30から二酸化炭素含有ガスを当該水へ吹き込んだとき、第1室23内の水中に二酸化炭素含有ガスを溶け込ませることができ、余剰の二酸化炭素含有ガスは、図2に示すように、気泡Aとして水中に存在している。
第1室23の下端には第1室23内の水を排水可能な水抜き穴25が形成されている。これにより、メンテナンス等の際に第1室23内に貯留する水を容易に排水することができる。
第2室26には、水の排出口15bと呼び水供給口27が設けられている。
排出口15bのフランジには、図1に示すように、フランジ金具18のフランジが接続可能に対向配置されている。当該フランジ金具18には、ポンプハウジング11外へ水を排水する水排出管19が接続されている。
呼び水給水口27には、図3に示すように、呼び水給水管32の一端が接続されている。呼び水給水管32の他端には、呼び水給水栓33が嵌合されている。二酸化炭素含有ガス回収装置10を始動する際、呼び水給水管32からポンプハウジング11内へ呼び水が給水され、少なくとも第3室20内が水で満たされるようにポンプハウジング11には呼び水が溜められる。これによって、後述する六葉ロータ40,40の空転を防止することができる。
第2室26の下端には排水室23内の水を排水可能に水抜き穴28が形成されている。これにより、メンテナンス等の際にポンプハウジング11内の排水室23内に貯留する水を容易に排水することができる。
第3室20には、図2に示すように、二軸平行に配置された一対の六葉ロータ40,40が収められている。また当該第3室20は、第1室24に連通する吸込口21と第2室26に連通する吐出口22を備えている。
六葉ロータ40,40はそれぞれロータ軸41a,41bを有している。六葉ロータ40,40は、それぞれロータ軸41a,41を中心として放射状に6つの突出部が形成されている。六葉ロータ40,40を互いに反対方向へ回転させたとき、吸込口21側では、一の六葉ロータの隣り合う突出部と、他の六葉ロータの突出部の三辺によって囲堯された空間が形成される。当該空間は、六葉ロータ40,40の回転に伴って容積が減縮し、当該空間に取り込まれた水は加圧され、また気体は圧縮される。さらに六葉ロータ40,40が回転すると、形成された空間は吐出側で復元されて、水は減圧され、また気体は復元されて吐出口22から第3室20外へ吐出される。このように、六葉ロータ40,40が互いに反対方向へ回転することによって、加圧と減圧を繰り返しながら水及び二酸化炭素含有ガスを吸込口21側から吐出口22側へ送り出している。
ロータ軸41aは、図3に示すように、第3室20の背面外側に配されたベアリングユニット42によって回動自在に支持されている。一方、ロータ軸41bは、図3に示すように、第3室20の正面外側に配されたベアリングユニット43によって回動自在に支持されている。ベアリングユニット42,43はそれぞれギヤボックス44,45に収納されている。
また、ロータ軸41a,41bが第3室20を貫通する軸封部と、ベアリングユニット42,43との間には、第3室20の内外部を遮蔽するメカニカルシール50,50が設けられている。これによって、第3室20を密封することができる。
ロータ軸41bは、第3室20を貫通するように形成され、一端がギヤボックス44に位置し、他端がギヤボックス45から突出して、当該他端側にプーリ芯46aが形成されている。プーリ芯46aには、図1に示すようにプーリ46が取り付けられている(図3ではプーリ46及び伝動ベルト13を略している)。プーリ46には、伝動ベルト13が巻装されている。当該伝導ベルト13を、モータ12の駆動ローラ12aとプーリ46へ所定の張力によって張架することによって、モータ12の駆動力をプーリ46を経てロータ軸41bへ伝導することができる。
また、ロータ軸41bの一端にはギヤボックス44内でタイミングギア47が固定されている。
当該タイミングギア47は、図3に示すように、タイミングギア48が噛合されている。タイミングギア48は、ロータ軸41aに固定されているので、タイミングギア47からタイミングギア48を経てモータ12の駆動力をロータ軸41aへ伝導することができる。
タイミングギア47,48からなるタイミングギアユニットは、ギヤカバー49に覆われている。タイミングギアユニットが動作することによって、ロータ軸41aが正方向へ回転し、ロータ軸41bが逆方向へ回転するように形成されている。すなわち、ロータ軸41a,41bは、互いに反対方向へ対向回転するように形成されている。これによって、第3室20内で一対の六葉ロータ40,40は互いに反対方向へ対向回転し、吸込口21から吐出口22へ向かって第3室20内の液体を圧送することができる。
なお、本実施例では、二軸平行に配された六葉ロータ40,40を備えた二軸六葉式ポンプを用いたが、これに限定されるものでは無い。すなわち、吸込口から第3室20内に吸い込まれた水と気泡を共に圧縮可能であって、二酸化炭素含有ガスと水を混ぜ合わせる混合機であれば良く、たとえば、本実施例に挙げた二軸六葉式ポンプ以外にも、軸から一対の突出部が対向して突出する二葉ロータを、二軸平行に対で備える二葉ポンプ、又は軸から3つの突出部が放射状に突出する三葉ロータを、二軸平行に対で備える三葉ポンプといったような、少なくとも二葉以上を備えた複葉ロータの回転運動によって第3室20内へ水と気泡を吸込み圧縮可能な回転混合機であれば良い。
なお、本実施例において、二軸六葉式ポンプを採用した理由は、六葉ロータ40,40の場合、ロータの一回転で水と二酸化炭素含有ガスを加圧圧縮する回数が多く、二酸化炭素含有ガスの回収効率を上げることができるからである。
上記の構成を有する二酸化炭素含有ガス回収装置10は、次に説明するように動作する。
図1に表した矢印は、二酸化炭素含有ガス回収装置10へ供給され、また排出される水の流れを示すものである。当該矢印の向きにしたがって、水を水給水管17から給水口15aを介してポンプハウジング11内へ給水したとき、給水された水で満たされた第1室23内へガス導入口24から二酸化炭素含有ガスを吹き込むと、水中に二酸化炭素含有ガスが溶け込むと共に、溶け残った余剰の二酸化炭素含有ガスは、図2に示すように、水中で気泡Aとして多数存在することとなる。
そして、多数の気泡Aを含んだ水は、図2に示すように、吸込口21から六葉ロータ40,40の回転によって第3室20内へ吸い込まれる。このとき、一の六葉ロータ40の隣り合う突出部と、他の六葉ロータの突出部の三辺によって囲堯された空間に吸い込まれた水と気泡Aは、対向配置された一対の六葉ロータ40,40によって圧縮される。気泡Aが圧縮されたとき、気泡Aは、気泡Bに微細化される。
気泡Aが気泡Bに微細化される際に、二酸化炭素含有ガスは六葉ロータ40,40の圧縮作用によってさらに水へ溶け込むこととなる。
一方、図2に示すように、第2室に有る溶け残った気泡Bについても、微細化された気泡Bに含まれる二酸化炭素含有ガスは、気泡Aに含まれていた二酸化炭素含有ガスよりも容積が小さいので、気泡Bが排出口15bから排出され、二酸化炭素含有ガスが大気中に放出された場合であっても、気泡Aがそのまま排出口15bから排出されるよりも二酸化炭素含有ガスの排出量を減らすことができる。
そして、二酸化炭素含有ガス水溶液は、図2に示すように、吐出口22から第3室20外へ吐出され、第2室26を通って、排出口15bから図1に示す水排出管19へ排出される。
これによって、二酸化炭素含有ガス回収装置10は、二酸化炭素含有ガスを水に溶解することで化学吸収液又は多くの電力を消費する従来の方法と比べて、環境負荷を軽くし、省エネを図ることができる。
次に、本実施例に係る二酸化炭素含有ガス回収装置10の回収効率に係る検証実験を行ったので、添付した図面にしたがって説明する。
検証実験は、図4に示す実験環境の下で行った。二酸化炭素含有ガス回収装置10の水供給管17は、水槽100と水流量計101が接続されている。これによって、供給する水の流量を容易に把握することができる。ガス導入口24には、二酸化炭素含有ガスの発生源を接続する替わりに炭酸ガスボンベ102と、空気流量計104が接続されている。炭酸ガスボンベ102は、炭酸ガス調整弁103を有し、空気流量計104は、流入空気調整弁105を有している。炭酸ガス調整弁103と流入空気調整弁105を調整することによって、空気と炭酸ガスとの混合比率を調整して、二酸化炭素ガスの濃度を変化させた混合ガスを形成することができるので、実験の場合分けを容易に行うことができる。
ここで、火力発電所等の大規模発生源から排出される二酸化炭素含有ガスにおける二酸化炭素ガスの濃度は20%〜30%と想定して、これに合せて実験を行った。その他の実験条件は以下の通りである。
二軸六葉式ポンプの吸込口21、吐出口22の口径:50mm
六葉ロータ40,40の回転速度:1700rpm
モータ12の定格出力:1.5kW
注水する水の水温:20℃
外気温:25℃
注水する水及びポンプハウジング11内に貯留する原水内の溶存二酸化炭素ガス量:18.2mg/L
二酸化炭素ガス密度:1.81g/L(25℃)
二酸化炭素ガス溶存量測定器:株式会社東興化学研究所 Ti−9004
行った実験は次の3例である。当該実験の実験結果を図5に示す。
1)実験A
注入二酸化炭素ガス量:10L/min、注入空気量:90L/min、注入水量:120L/min
二酸化炭素ガス濃度:10%
モータ12の出力:1.2kW
2)実験B
注入二酸化炭素ガス量:20L/min、注入空気量:80L/min、注入水量:130L/min
二酸化炭素ガス濃度:20%
モータ12の出力:1.2kW
3)実験C
注入二酸化炭素ガス量:30L/min、注入空気量:70L/min、注入水量:190L/min
二酸化炭素ガス濃度:30%
モータ12の出力:1.6kW
実験の結果、実験Aでは、水中の二酸化炭素の測定値が81.2mg/L、注入水内の二酸化炭素量は131.0g/h、注入空気内の二酸化炭素量は1086.0g/h、水中に溶存していた二酸化炭素の測定値が584.6g/hとなり、本実施例に係る二酸化炭素含有ガス回収装置10が回収した二酸化炭素量は453.6g/hとなる。ここで回収できずに大気中に放出された二酸化炭素量が763.4g/hであるから、二酸化炭素含有ガス回収装置10による二酸化炭素ガスの回収効率は37.3%となる。
これに加えて、モータ12の出力で消費された電力を作り出すために排出された二酸化炭素の排出量は、596.4g/hとみなされるから、実験Aにおける二酸化炭素の総回収量は、−142.8g/hとなる。
続いて実験Bでは、水中の二酸化炭素の測定値が147.2mg/L、注入水内の二酸化炭素量は142.0g/h、注入空気内の二酸化炭素量は2172.0g/h、水中に溶存していた二酸化炭素の測定値が1148.2g/hとなり、本実施例に係る二酸化炭素含有ガス回収装置10が回収した二酸化炭素量は1006.2g/hとなる。ここで回収できずに大気中に放出された二酸化炭素量が1307.8g/hであるから、二酸化炭素含有ガス回収装置10による二酸化炭素ガスの回収効率は43.5%となる。
これに加えて、モータ12の出力で消費された電力を作り出すために排出された二酸化炭素の排出量は、596.4g/hとみなされるから、実験Aにおける二酸化炭素の総回収量は、409.8g/hとなる。
そして、実験Cでは、水中の二酸化炭素の測定値が149.7mg/L、注入水内の二酸化炭素量は207.5g/h、注入空気内の二酸化炭素量は3258.0g/h、水中に溶存していた二酸化炭素の測定値が1706.6g/hとなり、本実施例に係る二酸化炭素含有ガス回収装置10が回収した二酸化炭素量は1499.1g/hとなる。ここで回収できずに大気中に放出された二酸化炭素量が1966.4g/hであるから、二酸化炭素含有ガス回収装置10による二酸化炭素ガスの回収効率は43.3%となる。
これに加えて、駆動モータ12の出力で消費された電力を作り出すために排出された二酸化炭素の排出量は、795.2g/hとみなされるから、実験Aにおける二酸化炭素の総回収量は、703.9g/hとなる。
ここで、図5に示した各実験A〜Cにおける諸元の算出方法を、実験Cを使って説明する。
注入水内の二酸化炭素の量は、原水に18.2mg/Lの二酸化炭素が含まれ、1分間に190Lの割合で注水したことから、

注入水内二酸化炭素量=18.2[mg/L]×190[L/min]×60÷1000=207.5[g/h]
となる。
次に、ガス導入口24からポンプハウジング11内へ導入した空気内における二酸化炭素の量は、1分間に30Lの割合で注入し、実験環境下における二酸化炭素の密度が1.81g/Lであることから、

注入空気内二酸化炭素量=30[L/min]×1.81[g/L]×60=3258[g/h]
となる。
したがって、実験Cにおける全二酸化炭素注入量は、元々の水に含まれていた207.5g/hと注入した3258g/hを合せた3465.5g/hとなる。
一方、水中の二酸化炭素の測定値が149.7mg/Lであって、1分間に190Lの割合で注水したことから、水中に溶存した二酸化炭素量の合算測定値は、実験を行った1時間において、

溶存二酸化炭素測定値=149.7[mg/L]×190[L/min]÷1000×60=1706.6[g/h]
となる。
これによって、本実施例に係る二酸化炭素含有ガス回収装置10が水中に溶け込ませた二酸化炭素の量は、溶存二酸化炭素測定値から元々注入水内に有った二酸化炭素量207.5g/hを引いた量であるから、

溶解二酸化炭素量=1706.6[g/h]−207.5[g/h]=1499.1[g/h]
となる。
以上から、回収できずに大気に放出された二酸化炭素の量は、全二酸化炭素注入量から上記の溶解二酸化炭素量を引いた量となるから、

放出二酸化炭素量=3465.5[g/h]−1499.1[g/h]=1966.4[g/h]
となる。
これによって、本実施例に係る二酸化炭素含有ガス回収装置10の二酸化炭素回収率は、溶解させた二酸化炭素量と全二酸化炭素注入量とから、

二酸化炭素回収率=1499.1[g/h]÷3465.5[g/h]×100=43.3[%]
となる。
また、実験Cにおいて、モータ12の出力は1.6kWである。当該モータ12で消費された電力を作り出すために排出された二酸化炭素の実排出係数は、本発明者が実験を行った地域、時期では497gCO/kWhとされていた。ここから、モータ12が排出したものとみなす二酸化炭素の排出量は、

モータ12の二酸化炭素排出量=1.6[kW]×497[gCO/kWh]=795.2[g/h]
となる。
そして、本実施例に係る二酸化炭素含有ガス回収装置10によって回収した二酸化炭素の量は1499.1g/hであるので、実験Cにおける二酸化炭素の総回収量は、

二酸化炭素総回収量=1499.1[g/h]−795.2[g/h]=703.9[g/h]
となる。
したがって、図4に示した実験環境のみならず、モータ12を動作させる電力を作り出すために排出された二酸化炭素まで考慮すると、都合703.9[g/h]の二酸化炭素を回収することができた。
以上から、二酸化炭素ガスの濃度を20%とした実験B、及び当該濃度を30%とした実験Cにおいて、それぞれ、二酸化炭素ガスの回収率は、図5に示すように、約43%となることが確認できる。当該濃度は発電所、製鉄所、ごみ焼却場といった大規模発生源から排出される二酸化炭素含有ガスにおける二酸化炭素ガスの濃度と略同じ濃度であることから、大規模発生源に適用した場合にも同様の二酸化炭素含有ガスの回収率を得ることができると推察される。
本実施例に係る二酸化炭素含有ガス回収装置10によれば、二酸化炭素ガスが水に溶けやすいという性質を利用し、火力発電所、製鉄所、ゴミ焼却炉等の二酸化炭素の大規模発生源から排出される二酸化炭素含有ガスを水中に吹き込むことで溶け込ませ、さらに溶け残った二酸化炭素含有ガスの気泡を六葉ロータ40,40で圧縮して微細化し、圧縮作用によって二酸化炭素含有ガスを水に溶け込ませるようにした。
これによって、単純に撹拌混合するよりも、より多くの二酸化炭素含有ガスを水に溶解させて二酸化炭素含有ガス水溶液を生成し、二酸化炭素含有ガスの回収効率を上げることができる。
10…二酸化炭素含有ガス回収装置、
11…ポンプハウジング、12…モータ、12a…駆動ローラ、13…伝動ベルト、14…基台、15a…供給口、15b…排出口、
16,18…フランジ金具、17…水供給管、19…水排出管、
20…第3室、20a…隔壁、21…吸込口、22…吐出口、23…第1室、24…ガス導入口、25,28…水抜き穴、26…第2室、27…呼び水給水口、
30…ガス導入管、31…開閉弁、32…呼び水給水管、33…呼び水給水栓、
40…六葉ロータ、41a,41b…ロータ軸、42…背面側ベアリングユニット、43…正面側ベアリングユニット、44…背面側ギヤボックス、45…正面側ギヤボックス、46…プーリ、46a…プーリ芯、47…ロータ軸41b側タイミングギア、48…ロータ軸41a側タイミングギア、49…ギヤカバー、
50…メカニカルシール、
100…水槽、101…水流量計、102…炭酸ガスボンベ、103…炭酸ガス調整弁、104…空気流量計、105…流入空気調整弁。

Claims (2)

  1. 二酸化炭素含有ガスを水に溶け込ませて回収する二酸化炭素含有ガス回収装置であって、
    水の供給口と二酸化炭素含有ガスの導入口を設けた第1室と、水の排出口を設けた第2室と、第1室と第2室を連通する第3室とを有するポンプハウジングと、
    一対の複葉ロータと、同ロータを駆動するモータからなり、第3室に設置された回転混合部を備え、
    第1室に供給口から水を供給するとともに、導入口から二酸化炭素含有ガスを供給して水に二酸化炭素含有ガスを溶け込ませ、
    二酸化炭素含有ガスの溶け込んだ水を回転混合部で第1室から第3室に圧送し、排出口から排出するようにしたことを特徴とする二酸化炭素含有ガス回収装置。
  2. 前記複葉ロータが、六葉ロータであって、前記回転混合部が、当該六葉ロータを二軸平行に配した二軸六葉式ポンプであることを特徴とする請求項1に記載の二酸化炭素含有ガス回収装置。


JP2017519581A 2016-06-21 2016-06-21 二酸化炭素含有ガス回収装置 Active JP6389330B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/068373 WO2017221322A1 (ja) 2016-06-21 2016-06-21 二酸化炭素含有ガス回収装置

Publications (2)

Publication Number Publication Date
JPWO2017221322A1 true JPWO2017221322A1 (ja) 2018-07-05
JP6389330B2 JP6389330B2 (ja) 2018-09-12

Family

ID=60784494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017519581A Active JP6389330B2 (ja) 2016-06-21 2016-06-21 二酸化炭素含有ガス回収装置

Country Status (6)

Country Link
US (1) US10328385B2 (ja)
EP (1) EP3473325A4 (ja)
JP (1) JP6389330B2 (ja)
KR (1) KR102159249B1 (ja)
CN (1) CN107771099B (ja)
WO (1) WO2017221322A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101860066B1 (ko) * 2016-10-06 2018-05-24 주식회사 미로 공기청정기
CN110237654A (zh) * 2018-03-09 2019-09-17 杨筑驿 气体清净装置
CN109876654B (zh) * 2019-03-27 2021-10-29 安徽荣泰玻璃制品有限公司 一种玻璃窑炉高效脱硫脱硝机构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH099784A (ja) * 1995-06-29 1997-01-14 Kiyoshi Owada ハウス病回避方法とハウス病回避装置
JP3170128U (ja) * 2011-06-23 2011-09-01 株式会社アンレット 6葉式2軸容積回転ポンプ
JP2011240322A (ja) * 2010-04-19 2011-12-01 Anlet Co Ltd 二酸化炭素ガス回収装置
JP2012090964A (ja) * 2010-10-01 2012-05-17 Anlet Co Ltd 2軸容積式回転ポンプを用いた炭酸泉生成装置
JP2013022528A (ja) * 2011-07-22 2013-02-04 Anlet Co Ltd 水浄化装置
JP2013146702A (ja) * 2012-01-20 2013-08-01 Masa Tagome 貫流ポンプ微細気泡発生装置
JP2015077566A (ja) * 2013-10-17 2015-04-23 株式会社アスプ 気体含有液生成装置および気体含有液噴射機構

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE461941C (de) * 1924-10-01 1928-07-16 Albert Klein Dr Ing Verfahren und Einrichtung zum Verdichten eines Gas- bzw. Dampfgemisches und gleichzeitigem Abtrennen eines Teils des Gemisches durch Absorption
US2058326A (en) * 1935-05-27 1936-10-20 Bour Harry E La Gas absorption machine
JP3170128B2 (ja) * 1993-12-28 2001-05-28 トキコ株式会社 スクロール式流体機械
JP4385424B2 (ja) 1999-02-10 2009-12-16 株式会社Ihi 二酸化炭素濃縮方法及び装置
NO20010345L (no) * 2001-01-19 2002-07-22 Abb Gas Technology As Fremgangsmåte og anordning til behandling av gasser, samt anvendelse derav
JP4231735B2 (ja) 2003-02-04 2009-03-04 新日本製鐵株式会社 二酸化炭素の分離回収方法および装置
ITBG20030014A1 (it) * 2003-02-19 2004-08-20 Garo Dr Ing Roberto Gabbioneta Sp A Processo e apparecchiatura per il trattamento di gas di raffineria.
WO2008143524A1 (en) * 2007-05-24 2008-11-27 Co2 Purification As Device and process for removal of carbon dioxide from combustion gases.
JP2010269301A (ja) * 2009-04-24 2010-12-02 Anlet Co Ltd 微細気泡発生装置
JP2012087663A (ja) * 2010-10-19 2012-05-10 Anlet Co Ltd 6葉式2軸容積回転ポンプ
JP5707948B2 (ja) * 2011-01-12 2015-04-30 株式会社豊田自動織機 エアコンプレッサ
CN202646000U (zh) * 2012-06-29 2013-01-02 山东阳春羊奶乳业有限公司 一种用于输送高粘稠度液体奶的输送泵
DE102012112722A1 (de) * 2012-12-20 2014-06-26 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Pumpe

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH099784A (ja) * 1995-06-29 1997-01-14 Kiyoshi Owada ハウス病回避方法とハウス病回避装置
JP2011240322A (ja) * 2010-04-19 2011-12-01 Anlet Co Ltd 二酸化炭素ガス回収装置
JP2012090964A (ja) * 2010-10-01 2012-05-17 Anlet Co Ltd 2軸容積式回転ポンプを用いた炭酸泉生成装置
JP3170128U (ja) * 2011-06-23 2011-09-01 株式会社アンレット 6葉式2軸容積回転ポンプ
JP2013022528A (ja) * 2011-07-22 2013-02-04 Anlet Co Ltd 水浄化装置
JP2013146702A (ja) * 2012-01-20 2013-08-01 Masa Tagome 貫流ポンプ微細気泡発生装置
JP2015077566A (ja) * 2013-10-17 2015-04-23 株式会社アスプ 気体含有液生成装置および気体含有液噴射機構

Also Published As

Publication number Publication date
WO2017221322A1 (ja) 2017-12-28
CN107771099A (zh) 2018-03-06
US20180185783A1 (en) 2018-07-05
EP3473325A1 (en) 2019-04-24
EP3473325A4 (en) 2020-05-06
CN107771099B (zh) 2020-11-27
KR20190017616A (ko) 2019-02-20
KR102159249B1 (ko) 2020-09-23
JP6389330B2 (ja) 2018-09-12
US10328385B2 (en) 2019-06-25

Similar Documents

Publication Publication Date Title
JP6389330B2 (ja) 二酸化炭素含有ガス回収装置
CN108529841A (zh) 一种污泥处理
CN207344850U (zh) 一种建筑用混凝土回收再利用搅拌装置
JP2010506043A (ja) メタノールを製造する方法及び装置
JP4979096B2 (ja) 二酸化炭素ガス回収装置
JP2005155409A (ja) ルーツ型圧縮機の起動装置及び方法
CN210495961U (zh) 一种多气体在线混合装置
CN206492428U (zh) 一种化工反应用混合设备
CN109378503A (zh) 一种具有能量回收装置的燃料电池空压机
EP0189681A2 (en) Generator apparatus employing fluid flow
JP2009138713A (ja) 水素ポンプ及びこれを備えた燃料電池システム
JP2010505723A (ja) 空気から二酸化炭素を抽出する方法及び装置
CN213563514U (zh) 一种混凝土砌块加工用物料混合设备
CN103952775A (zh) 一种卧式双轴溶解脱泡装置
CN206960428U (zh) 水电解联合检验装置
RU2399786C1 (ru) Гидроэлектроводородный генератор (гэвг)
CN218741153U (zh) 一种工厂预制封闭式的吸附塔
CN213314537U (zh) 一种可变频的浆料搅拌装置
CN210728752U (zh) 一种高效离心脱泡机
WO2023238829A1 (ja) 水素化ホウ素化合物製造装置及び水素化ホウ素化合物の製造方法
CN219701594U (zh) 一种水溶解装置
CN219399725U (zh) 一种用于制备磷酸铁锂材料的装置
CN209906723U (zh) 一种沼气安全净化装置
CN202968086U (zh) 倒灌装置
CN213347594U (zh) 一种用于提高均匀度的飞灰螯合搅拌系统

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180816

R150 Certificate of patent or registration of utility model

Ref document number: 6389330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250