JPWO2017169807A1 - Resist pattern forming method and resist - Google Patents

Resist pattern forming method and resist Download PDF

Info

Publication number
JPWO2017169807A1
JPWO2017169807A1 JP2018508999A JP2018508999A JPWO2017169807A1 JP WO2017169807 A1 JPWO2017169807 A1 JP WO2017169807A1 JP 2018508999 A JP2018508999 A JP 2018508999A JP 2018508999 A JP2018508999 A JP 2018508999A JP WO2017169807 A1 JPWO2017169807 A1 JP WO2017169807A1
Authority
JP
Japan
Prior art keywords
radiation
compound
resist
alkali
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018508999A
Other languages
Japanese (ja)
Other versions
JP7044058B2 (en
Inventor
信紀 阿部
信紀 阿部
信寛 佐藤
信寛 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Publication of JPWO2017169807A1 publication Critical patent/JPWO2017169807A1/en
Application granted granted Critical
Publication of JP7044058B2 publication Critical patent/JP7044058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

本発明のレジストパターン形成方法は、アルカリ可溶性樹脂(a)、架橋成分(b)、及び活性放射線を吸収する化合物(c)を含有する感放射線性樹脂組成物であって、樹脂(a)100質量部に対して、化合物(c)を1.0質量部超含む、感放射線性樹脂組成物を調製する調製工程と、基板上に、感放射線性樹脂組成物の塗膜を形成する塗布工程と、塗膜を第1の温度で加熱する第1熱処理工程と、得られたレジスト膜に対して活性放射線を照射する露光工程と、露光工程の開始以降にレジスト膜を第2の温度条件下で保持する第2熱処理工程と、を含む。ここで、第1の温度は第2の温度以上である。The resist pattern forming method of the present invention is a radiation-sensitive resin composition containing an alkali-soluble resin (a), a crosslinking component (b), and a compound (c) that absorbs actinic radiation, the resin (a) 100 A preparation step of preparing a radiation-sensitive resin composition containing more than 1.0 part by weight of compound (c) with respect to parts by weight, and a coating step of forming a coating film of the radiation-sensitive resin composition on a substrate A first heat treatment step for heating the coating film at a first temperature, an exposure step for irradiating the obtained resist film with actinic radiation, and after the exposure step starts, the resist film is subjected to a second temperature condition. And a second heat treatment step held at Here, the first temperature is equal to or higher than the second temperature.

Description

本発明は、レジストパターン形成方法及びレジストに関するものであり、特に、断面が逆テーパー状のレジストパターンを形成可能なレジストパターン形成方法及び、断面が逆テーパー状のレジストパターンを有するレジストに関するものである。   The present invention relates to a resist pattern forming method and a resist, and more particularly to a resist pattern forming method capable of forming a resist pattern having a reverse tapered section, and a resist having a resist pattern having a reverse tapered section. .

フォトリソグラフィ技術において、断面が逆テーパー形状のレジストパターンを形成することができるレジスト材料が要求されることがある。具体的には、リフトオフ法によりパターンを形成する場合や、有機EL表示素子の電気絶縁性の隔壁を形成する場合が挙げられる。例えば、断面が逆テーパー形状のレジストパターンを用いて、リフトオフ法により配線を形成する際には、断面が逆テーパー形状のレジストパターンの最表面と底部にて金属配線材料を堆積させ、その後、最表面に堆積された金属配線材料と共にレジストパターンを除去する。レジストパターンの断面が逆テーパー形状であれば、金属配線材料の堆積時に、逆テーパー形状を構成する側壁に対して金属配線材料が堆積することを抑制できるために、レジストパターンの底部に堆積した金属配線材料よりなる配線パターンを良好に形成することができる。   In the photolithography technique, a resist material that can form a resist pattern having a reverse taper in cross section may be required. Specifically, there are a case where a pattern is formed by a lift-off method and a case where an electrically insulating partition wall of an organic EL display element is formed. For example, when a wiring is formed by a lift-off method using a resist pattern having a reverse taper cross section, a metal wiring material is deposited on the outermost surface and the bottom of the resist pattern having a reverse taper cross section. The resist pattern is removed together with the metal wiring material deposited on the surface. If the cross section of the resist pattern is a reverse taper shape, it is possible to suppress the metal wiring material from being deposited on the side walls constituting the reverse taper shape when the metal wiring material is deposited. A wiring pattern made of a wiring material can be satisfactorily formed.

そこで従来、逆テーパー形状が良好であるとともに高感度なレジストパターンを形成可能なフォトレジスト組成物が提案されてきた(例えば、特許文献1参照)。特許文献1によるフォトレジスト組成物は、アルカリ可溶性樹脂、2種類の光酸発生剤、架橋剤、及び溶剤を含む。より具体的には、かかるフォトレジスト組成物に含まれる2種類の光酸発生剤は、一方がフォトレジスト組成物を基板上に塗布して得た塗膜の上部に分布しやすいハロゲン含有光酸発生剤であり、他方が露光及び現像工程においてフォトレジスト組成物の感度を向上させうるトリアジン系光酸発生剤である。特に、ハロゲン含有光酸発生剤が塗膜上部に偏在させて露光や熱処理により塗膜上部にて比較的多くの酸を発生させて塗膜上部にて比較的多くの架橋構造を形成することで、良好な逆テーパー形状のレジストパターンを形成することができた。   Therefore, conventionally, there has been proposed a photoresist composition having a good reverse taper shape and capable of forming a highly sensitive resist pattern (see, for example, Patent Document 1). The photoresist composition according to Patent Document 1 includes an alkali-soluble resin, two types of photoacid generators, a crosslinking agent, and a solvent. More specifically, two types of photoacid generators contained in such a photoresist composition are halogen-containing photoacids, one of which is likely to be distributed on top of a coating film obtained by applying a photoresist composition on a substrate. The other is a triazine photoacid generator that can improve the sensitivity of the photoresist composition in the exposure and development steps. In particular, the halogen-containing photoacid generator is unevenly distributed on the upper part of the coating, and a relatively large amount of acid is generated on the upper part of the coating by exposure or heat treatment to form a relatively large number of crosslinked structures on the upper part of the coating As a result, a resist pattern having a good reverse taper shape could be formed.

ここで、金属配線材料をレジストパターン上に堆積させる工程は、一般に、高温環境下で実施される。従って、レジストパターンには、優れた耐熱性が求められる。そこで従来、耐熱性に優れる、断面が逆テーパー形状のレジストパターンを形成可能な感放射線性樹脂組成物が提案されてきた(例えば、特許文献2参照)。特許文献2による感放射線性樹脂組成物は、特定のアルカリ可溶性樹脂、アルカリ可溶性樹脂を架橋する架橋成分、及び活性放射線を吸収する化合物を含有する。特に、かかる樹脂組成物は、アルカリ可溶性樹脂として、特定配合の樹脂を用いることで、高い耐熱性を実現していた。   Here, the process of depositing the metal wiring material on the resist pattern is generally performed in a high temperature environment. Therefore, the resist pattern is required to have excellent heat resistance. Therefore, conventionally, a radiation-sensitive resin composition that is excellent in heat resistance and capable of forming a resist pattern having a cross-section with a reverse taper has been proposed (see, for example, Patent Document 2). The radiation sensitive resin composition by patent document 2 contains the specific alkali-soluble resin, the crosslinking component which bridge | crosslinks alkali-soluble resin, and the compound which absorbs actinic radiation. In particular, such a resin composition has realized high heat resistance by using a resin having a specific composition as an alkali-soluble resin.

特開第2013−527940号公報JP 2013-527940 A 特開第2005−316412号公報Japanese Patent Laid-Open No. 2005-316412

近年、半導体デバイスの配線パターンを一層微細化することが必要とされている。配線パターンの微細化に当たり、レジストパターンの逆テーパー形状を構成する側壁が、レジスト表面に対してなす角度をより鋭角化させて、即ち、テーパー角度(側壁同士がなす角)を鈍角化させることが必要である。
しかし、特許文献1に開示されたフォトレジスト組成物、及び特許文献2に開示された感放射線性樹脂組成物では、テーパー角度が十分に大きい、良好な逆テーパー形状のレジストパターンを形成するとともに、高温環境下でもかかる良好な逆テーパー形状を維持するという点に関して、改善の余地があった。
In recent years, it is necessary to further miniaturize the wiring pattern of a semiconductor device. In miniaturization of the wiring pattern, the angle formed by the side walls constituting the reverse taper shape of the resist pattern with respect to the resist surface is made sharper, that is, the taper angle (the angle formed by the side walls) is made obtuse. is necessary.
However, in the photoresist composition disclosed in Patent Document 1 and the radiation-sensitive resin composition disclosed in Patent Document 2, a taper angle is sufficiently large, and a favorable reverse taper-shaped resist pattern is formed. There is room for improvement in terms of maintaining such a good reverse taper shape even in a high temperature environment.

そこで、本発明は、テーパー角度が十分に大きい、良好な逆テーパー形状のレジストパターンを形成するとともに、高温環境下でも良好な逆テーパー形状を維持することが可能な、レジストパターン形成方法を提供することを目的とする。また、本発明は、テーパー角度が十分に大きい、良好な逆テーパー形状のレジストパターンを有すると共に、高温環境下でも良好な逆テーパー形状を維持することが可能な、レジストを提供することを目的とする。   Therefore, the present invention provides a resist pattern forming method capable of forming a resist pattern having a good reverse taper shape with a sufficiently large taper angle and capable of maintaining a good reverse taper shape even in a high temperature environment. For the purpose. Another object of the present invention is to provide a resist having a resist pattern having a good reverse taper shape with a sufficiently large taper angle and capable of maintaining a good reverse taper shape even in a high temperature environment. To do.

本発明者らは、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者らは、感放射線性樹脂組成物に対して、所定量以上の活性放射線を吸収する化合物を配合し、さらに、かかる感放射線性組成物を用いてレジストパターンを形成するに当たり、所定の温度条件下でレジストパターンの形成を行うことで、テーパー角度が十分に大きい、良好な逆テーパー形状のレジストパターンを形成するとともに、高温環境下でもかかる良好な逆テーパー形状を維持することが可能なことを見出し、本発明を完成させた。   The present inventors have intensively studied for the purpose of solving the above problems. Then, the present inventors blended a compound that absorbs a predetermined amount or more of active radiation with respect to the radiation-sensitive resin composition, and further, in forming a resist pattern using such a radiation-sensitive composition, By forming a resist pattern under a predetermined temperature condition, it is possible to form a resist pattern with a sufficiently large taper angle and a good reverse taper shape and maintain such a good reverse taper shape even in a high temperature environment. We have found that this is possible and have completed the present invention.

即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のレジストパターン形成方法は、感放射線性樹脂組成物を調製する調製工程と、基板上に、前記感放射線性樹脂組成物を塗布及び乾燥して塗膜を形成する塗布工程と、前記塗膜を第1の温度で加熱する第1熱処理工程と、前記第1熱処理工程を経て得られたレジスト膜に対して、活性放射線を照射する露光工程と、前記露光工程の開始以降に、前記レジスト膜を第2の温度条件下に保持する第2熱処理工程と、を含み、前記感放射線性樹脂組成物が、アルカリ可溶性樹脂(a)、活性放射線の照射、又は、活性放射線の照射及びその後の熱処理により、前記アルカリ可溶性樹脂を架橋する架橋成分(b)、及び前記活性放射線を吸収する化合物(c)を含有する感放射線性樹脂組成物であって、(1)前記架橋成分(b)が、前記活性放射線の照射によって酸を発生する化合物と、前記活性放射線によって発生した酸を触媒として前記アルカリ可溶性樹脂(a)を架橋する化合物との組み合わせであり、(2)前記活性放射線を吸収する化合物(c)を、前記アルカリ可溶性樹脂(a)100質量部に対して、1.0質量部超含み、且つ前記第1の温度が前記第2の温度以上であることを特徴とする。活性放射線を吸収する化合物(c)を、アルカリ可溶性樹脂(a)100質量部に対して、1.0質量部超含む感放射線性樹脂組成物を用いて、露光工程前の第1熱処理工程における加熱温度である第1の温度を、露光工程開始以降の第2熱処理工程における第2の温度以上として、レジストパターンを形成すれば、良好な逆テーパー形状が得られるとともに、高温環境下でもかかる良好な逆テーパー形状を維持することができる。
ここで、本明細書において、「逆テーパー形状」とは、テーパー頂点に向かって傾斜する面により構成される標準的なテーパー形状に加えて、レジスト表面における開放面積がレジスト底部における開放面積よりも小さい、オーバーハング形状の構造も含むものとする。
That is, the present invention aims to advantageously solve the above-mentioned problems, and the resist pattern forming method of the present invention comprises a preparation step for preparing a radiation-sensitive resin composition, and the above-mentioned sensitivity on a substrate. An application process for forming a coating film by applying and drying the radiation resin composition, a first heat treatment process for heating the coating film at a first temperature, and a resist film obtained through the first heat treatment process In contrast, the radiation-sensitive resin composition includes an exposure step of irradiating actinic radiation, and a second heat treatment step of maintaining the resist film under a second temperature condition after the start of the exposure step. A crosslinking component (b) that crosslinks the alkali-soluble resin by irradiation with an alkali-soluble resin (a), actinic radiation, or irradiation with actinic radiation and subsequent heat treatment, and a compound (c) that absorbs the actinic radiation Contains (1) The crosslinking component (b) is a compound that generates an acid upon irradiation with the active radiation, and the alkali-soluble resin (with the acid generated by the active radiation as a catalyst). a) is a combination with a compound that crosslinks, and (2) the compound (c) that absorbs actinic radiation is more than 1.0 part by mass with respect to 100 parts by mass of the alkali-soluble resin (a), and The first temperature is equal to or higher than the second temperature. In the first heat treatment step before the exposure step, the radiation-sensitive resin composition containing more than 1.0 parts by mass of the compound (c) that absorbs active radiation with respect to 100 parts by mass of the alkali-soluble resin (a). If the resist pattern is formed by setting the first temperature, which is the heating temperature, to be equal to or higher than the second temperature in the second heat treatment step after the start of the exposure step, a good reverse taper shape can be obtained, and good in a high temperature environment. A reverse taper shape can be maintained.
Here, in this specification, the “reverse taper shape” means that the open area on the resist surface is larger than the open area on the resist bottom in addition to the standard taper shape constituted by the surface inclined toward the apex of the taper. Including small, overhang-shaped structures.

さらに、本発明のレジストパターン形成方法は、前記感放射線性樹脂組成物が塩基性化合物(d)をさらに含むことが好ましい。感放射線性樹脂組成物が塩基性化合物を含有すれば、第2の温度の変動に対する許容範囲を拡大させることができ、レジストパターン形成方法の柔軟性を向上させることができるからである。   Furthermore, in the resist pattern forming method of the present invention, it is preferable that the radiation-sensitive resin composition further includes a basic compound (d). This is because, if the radiation-sensitive resin composition contains a basic compound, the allowable range for the second temperature variation can be expanded, and the flexibility of the resist pattern forming method can be improved.

また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のレジストは、アルカリ可溶性樹脂(a)、活性放射線の照射、又は、活性放射線の照射及びその後の熱処理により、前記アルカリ可溶性樹脂を架橋する架橋成分(b)、及び前記活性放射線を吸収する化合物(c)を含有する感放射線性樹脂組成物であって、(1)前記架橋成分(b)が、前記活性放射線の照射によって酸を発生する化合物と、前記活性放射線によって発生した酸を触媒として前記アルカリ可溶性樹脂(a)を架橋する化合物との組み合わせであり、(2)前記活性放射線を吸収する化合物(c)を、前記アルカリ可溶性樹脂(a)100質量部に対して、1.0質量部超含む、感放射線性樹脂組成物を用いて形成され、ライン及びスペースからなる、断面が逆テーパー形状のレジストパターンを形成した場合に、非露光面におけるライン幅Wbに対する露光面におけるライン幅Wtの比率Wb/Wtが、0.7未満であり、120℃の温度条件下で1分間加熱した後に前記レジストパターンの逆テーパー形状を構成する前記ラインの側壁がレジスト表面に対してなす角度が、90°未満であることを特徴とする。かかるレジストは、テーパー形状が良好であると共に、耐熱性に優れる。   Moreover, this invention aims at solving the said subject advantageously, Resist of this invention is alkali-soluble resin (a), irradiation of actinic radiation, or irradiation of actinic radiation, and heat processing after that. A radiation-sensitive resin composition containing a crosslinking component (b) for crosslinking the alkali-soluble resin and a compound (c) that absorbs the actinic radiation, wherein (1) the crosslinking component (b) It is a combination of a compound that generates an acid upon irradiation with the actinic radiation and a compound that crosslinks the alkali-soluble resin (a) using the acid generated by the actinic radiation as a catalyst, and (2) a compound that absorbs the actinic radiation (C) is formed by using a radiation-sensitive resin composition containing more than 1.0 part by mass with respect to 100 parts by mass of the alkali-soluble resin (a). The ratio Wb / Wt of the line width Wt on the exposed surface to the line width Wb on the non-exposed surface is less than 0.7 and a temperature of 120 ° C. The angle formed by the side wall of the line constituting the reverse tapered shape of the resist pattern after heating for 1 minute under the conditions is less than 90 °. Such a resist has a good taper shape and excellent heat resistance.

本発明によれば、逆テーパー形状が良好であり、更にかかる良好な逆テーパー形状を高温環境下でも維持することができるレジストパターンを形成することができる。
本発明によれば、逆テーパー形状が良好であると共に、耐熱性に優れるレジストパターンを有するレジストを提供することができる。
According to the present invention, it is possible to form a resist pattern that has a good reverse taper shape and that can maintain such a good reverse taper shape even in a high temperature environment.
ADVANTAGE OF THE INVENTION According to this invention, while having a reverse taper shape favorable, the resist which has a resist pattern excellent in heat resistance can be provided.

以下、本発明の実施形態について詳細に説明する。本発明のレジストパターン形成方法は、半導体デバイスの製造プロセスや、有機EL表示素子の電気絶縁性の隔壁を形成する際に用いられうる。特に、本発明のレジストパターン形成方法は、逆テーパー形状のレジストパターンに関連するものであり、本発明のレジストパターン形成方法により、本発明のレジストを形成することができる。   Hereinafter, embodiments of the present invention will be described in detail. The resist pattern forming method of the present invention can be used when a semiconductor device manufacturing process or an electrically insulating partition wall of an organic EL display element is formed. In particular, the resist pattern forming method of the present invention relates to a resist pattern having a reverse taper shape, and the resist of the present invention can be formed by the resist pattern forming method of the present invention.

(レジストパターン形成方法)
本発明のレジストパターン形成方法は、感放射線性樹脂組成物を調製する調製工程と、基板上に、樹脂組成物を塗布及び乾燥して塗膜を形成する塗布工程と、塗膜を第1の温度で加熱する第1熱処理工程と、第1熱処理工程を経て得られたレジスト膜に対して、活性放射線を照射する露光工程と、露光工程の開始以降に、レジスト膜を第2の温度条件下に保持する第2熱処理工程と、を含む。調製工程で調製する感放射線性樹脂組成物は、アルカリ可溶性樹脂(a)、活性放射線の照射、又は、活性放射線の照射及びその後の熱処理により、アルカリ可溶性樹脂を架橋する架橋成分(b)、及び活性放射線を吸収する化合物(c)を含有する。さらに、樹脂組成物は、架橋成分(b)が、活性放射線の照射によって酸を発生する化合物と、活性放射線によって発生した酸を触媒としてアルカリ可溶性樹脂を架橋する化合物との組み合わせであることを特徴とする。さらにまた、樹脂組成物は、活性放射線を吸収する化合物(c)を、アルカリ可溶性樹脂(a)100質量部に対して、1.0質量部超含む。
加えて、本発明のレジストパターン形成方法は、第2熱処理工程を経たレジスト膜を現像する現像工程を含みうる。
そして、本発明のレジストパターン形成方法は、第1の温度(いわゆる、プリベーク温度)が第2の温度(いわゆる、ポストベーク温度)以上であることを特徴とする。このように、樹脂組成物を用いてレジストパターンを形成するに当たり、露光工程前の第1熱処理工程における加熱温度を、露光工程開始以降の第2熱処理工程における第2の温度以上とすることで、逆テーパー形状が良好であり、更にかかる良好な逆テーパー形状を高温環境下でも維持することができるレジストパターンを形成することができる。その理由は明らかではないが、以下の通りであると推察される。
(Resist pattern formation method)
The resist pattern forming method of the present invention includes a preparation step of preparing a radiation-sensitive resin composition, a coating step of coating and drying the resin composition on a substrate to form a coating film, A first heat treatment step for heating at a temperature; an exposure step for irradiating active radiation to the resist film obtained through the first heat treatment step; and after the start of the exposure step, the resist film is subjected to a second temperature condition. And a second heat treatment step to be held. The radiation-sensitive resin composition prepared in the preparation step includes an alkali-soluble resin (a), a crosslinking component (b) that crosslinks the alkali-soluble resin by irradiation with actinic radiation, or irradiation with actinic radiation and subsequent heat treatment, and Contains compound (c) that absorbs actinic radiation. Further, in the resin composition, the crosslinking component (b) is a combination of a compound that generates an acid upon irradiation with actinic radiation and a compound that crosslinks an alkali-soluble resin using the acid generated by the actinic radiation as a catalyst. And Furthermore, a resin composition contains more than 1.0 mass part of compounds (c) which absorb actinic radiation with respect to 100 mass parts of alkali-soluble resin (a).
In addition, the resist pattern forming method of the present invention may include a developing step of developing the resist film that has undergone the second heat treatment step.
The resist pattern forming method of the present invention is characterized in that the first temperature (so-called pre-bake temperature) is equal to or higher than the second temperature (so-called post-bake temperature). Thus, in forming the resist pattern using the resin composition, the heating temperature in the first heat treatment step before the exposure step is set to be equal to or higher than the second temperature in the second heat treatment step after the start of the exposure step. A reverse taper shape is good, and a resist pattern that can maintain such a good reverse taper shape even in a high temperature environment can be formed. The reason is not clear, but it is assumed that it is as follows.

従来、露光工程前の第1熱処理工程における加熱温度を、露光処理後の第2熱処理工程における加熱温度よりも低くすることが一般的であった。これは、露光工程における露光量を過剰に高めてレジスト感度を低下させることなく、得られるレジストパターンを高精細化するためであった。ここで、調製工程で調製する感放射線性樹脂組成物は、特に、活性放射線を吸収する化合物(c)の配合量が、アルカリ可溶性樹脂(a)100質量部に対して、1.0質量部超と従来よりも多いことを特徴とする。活性放射線を吸収する化合物(c)の配合量が多ければ、塗布工程において、樹脂組成物用いて形成した塗膜内にて、化合物(c)が均一に分散せずに偏る蓋然性が高まることが想定される。そこで、本発明では、化合物(c)の配合量が多い樹脂組成物を用いて形成した塗膜を、ポストベーク温度以上のプリベーク温度で熱処理することで、高含有量の化合物(c)が均一に分散したレジスト膜を形成することができると推察される。さらに、プリベーク温度をポストベーク温度以上とする、換言すれば、ポストベーク温度をプリベーク温度よりも高くしないことで、ポストベークによりレジスト膜内にて均一分散された各種成分の、レジスト膜内における分散状態が維持され、結果的に、良好な逆テーパー形状を形成することができるようになると推察される。
以下、本発明のレジストパターン形成方法に含まれる各工程について説明する。
Conventionally, the heating temperature in the first heat treatment step before the exposure step is generally lower than the heating temperature in the second heat treatment step after the exposure treatment. This was to increase the exposure amount in the exposure step and to increase the definition of the resulting resist pattern without reducing the resist sensitivity. Here, in the radiation sensitive resin composition prepared in the preparation step, in particular, the compounding amount of the compound (c) that absorbs active radiation is 1.0 part by mass with respect to 100 parts by mass of the alkali-soluble resin (a). It is characterized by being super and more than conventional. If the compounding amount of the compound (c) that absorbs actinic radiation is large, the probability that the compound (c) is unevenly distributed without being uniformly dispersed in the coating film formed using the resin composition in the coating process may be increased. is assumed. Therefore, in the present invention, a coating film formed using a resin composition containing a large amount of compound (c) is heat-treated at a pre-baking temperature equal to or higher than the post-baking temperature, so that a high content of compound (c) is uniform. It is presumed that a resist film dispersed in can be formed. Furthermore, the pre-bake temperature is set to be higher than the post-bake temperature, in other words, the post-bake temperature is not higher than the pre-bake temperature, so that various components uniformly dispersed in the resist film by the post-bake are dispersed in the resist film. It is presumed that the state is maintained, and as a result, a good reverse taper shape can be formed.
Hereinafter, each process included in the resist pattern forming method of the present invention will be described.

<調製工程>
調製工程では、アルカリ可溶性樹脂(a)、架橋成分(b)、及び活性放射線を吸収する化合物(c)を含み、任意で塩基性化合物(d)及びその他の成分をさらに含む感放射線性樹脂組成物を調製する。感放射線性樹脂組成物は、例えば、成分(a)〜(d)を混合することによって得られる。得られた感放射線性樹脂組成物は、そのまま塗布工程に供されうる。或いは、溶剤に対して、上記成分(a)〜(d)を添加して溶解させ、任意でろ過処理等を実施することで、感放射線性樹脂組成物溶液を調製することができる。成分(a)〜(d)の混合、或いは(a)〜(d)の溶剤への溶解に際して、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの既知の混合機を用いることができる。また、濾過に際して、フィルター等のろ材を用いた一般的なろ過方法を採用することができる。以下、感放射線性樹脂組成物に含有されうる各成分、及び感放射線性樹脂組成物溶液の調製に際して使用しうる溶剤について説明する。
<Preparation process>
In the preparation step, the radiation-sensitive resin composition includes an alkali-soluble resin (a), a crosslinking component (b), and a compound (c) that absorbs active radiation, and optionally further includes a basic compound (d) and other components. Prepare the product. The radiation sensitive resin composition can be obtained, for example, by mixing the components (a) to (d). The obtained radiation-sensitive resin composition can be used for the coating process as it is. Alternatively, the radiation-sensitive resin composition solution can be prepared by adding the components (a) to (d) to the solvent and dissolving them, and optionally performing a filtration treatment or the like. When mixing components (a) to (d) or dissolving (a) to (d) in a solvent, a ball mill, a sand mill, a bead mill, a pigment disperser, a grinder, an ultrasonic disperser, a homogenizer, a planetary mixer A known mixer such as a fill mix can be used. Moreover, the general filtration method using filter media, such as a filter, can be employ | adopted at the time of filtration. Hereinafter, each component that can be contained in the radiation-sensitive resin composition and a solvent that can be used in preparing the radiation-sensitive resin composition solution will be described.

[感放射線性樹脂組成物]
本発明のレジストパターン形成方法で使用する感放射線性樹脂組成物(以下、単に「樹脂組成物とも称する」)は、アルカリ可溶性樹脂(a)、活性放射線の照射、又は、活性放射線の照射及びその後の熱処理により、アルカリ可溶性樹脂を架橋する架橋成分(b)、及び活性放射線を吸収する化合物(c)を含有する。さらに、樹脂組成物は、架橋成分(b)が、活性放射線の照射によって酸を発生する化合物と、活性放射線によって発生した酸を触媒としてアルカリ可溶性樹脂を架橋する化合物との組み合わせであることを特徴とする。さらにまた、樹脂組成物は、活性放射線を吸収する化合物(c)を、アルカリ可溶性樹脂(a)100質量部に対して、1.0質量部超含むことを特徴とする。樹脂組成物は、特に、化合物(c)を1.0質量部超含むことで、良好な逆テーパー形状のレジストパターンを形成するとともに、高温環境下でもかかる良好な逆テーパー形状を維持することができる。その理由は明らかではないが、以下の通りであると推察される。
[Radiation sensitive resin composition]
The radiation-sensitive resin composition (hereinafter also simply referred to as “resin composition”) used in the resist pattern forming method of the present invention is an alkali-soluble resin (a), irradiation with actinic radiation, or irradiation with actinic radiation and thereafter By the heat treatment, a crosslinking component (b) for crosslinking the alkali-soluble resin and a compound (c) for absorbing actinic radiation are contained. Further, in the resin composition, the crosslinking component (b) is a combination of a compound that generates an acid upon irradiation with actinic radiation and a compound that crosslinks an alkali-soluble resin using the acid generated by the actinic radiation as a catalyst. And Furthermore, the resin composition is characterized by containing more than 1.0 part by mass of the compound (c) that absorbs actinic radiation with respect to 100 parts by mass of the alkali-soluble resin (a). In particular, the resin composition contains a compound (c) in an amount exceeding 1.0 part by mass, thereby forming a good reverse taper-shaped resist pattern and maintaining such a good reverse taper shape even in a high temperature environment. it can. The reason is not clear, but it is assumed that it is as follows.

まず、活性放射線を吸収する化合物(c)は、樹脂組成物を用いてレジストパターンを有するレジストを形成するに当たり、樹脂組成物を基板上に塗布して得たレジスト膜に対して活性放射線を照射する露光工程にて活性放射線を吸収するように機能する。従って、レジスト膜の厚み方向にて露光面に近い側からレジスト膜の露光面とは反対側の面に向かって、到達する活性放射線の線量に勾配が形成される。具体的には、露光面に近い側に到達する線量が高くなり、露光面と反対側の面に近づくに従って到達する線量が低くなる。ここで、樹脂組成物は架橋成分(b)として、活性放射線の照射によって酸を発生する化合物と、活性放射線によって発生した酸を触媒としてアルカリ可溶性樹脂を架橋する化合物を含有する。このため、レジスト膜の厚み方向にて、到達する活性放射線の線量に勾配があれば、線量の高い露光面付近では、より多くの架橋が形成され、露光面から遠ざかるにつれて、形成される架橋が減少する。このため、露光面付近のレジスト膜は、現像工程において除去されにくくなり、反対に、露光面と反対側の面に近づくにつれて、レジスト膜の現像液に対する溶解性が高くなる。このようにして、逆テーパー形状のレジストパターンを有するレジストを形成することができる。   First, the compound (c) that absorbs actinic radiation irradiates the resist film obtained by applying the resin composition on the substrate when the resist composition having a resist pattern is formed using the resin composition. It functions to absorb actinic radiation in the exposure process. Accordingly, a gradient is formed in the dose of active radiation that reaches from the side closer to the exposure surface in the thickness direction of the resist film toward the surface opposite to the exposure surface of the resist film. Specifically, the dose that reaches the side closer to the exposure surface increases, and the dose that reaches the lower surface as the surface approaches the surface opposite to the exposure surface decreases. Here, the resin composition contains, as a crosslinking component (b), a compound that generates an acid upon irradiation with actinic radiation and a compound that crosslinks an alkali-soluble resin using an acid generated by actinic radiation as a catalyst. For this reason, if there is a gradient in the dose of actinic radiation that reaches in the thickness direction of the resist film, more crosslinks are formed in the vicinity of the exposure surface where the dose is high, and the crosslinks that are formed as the distance from the exposure surface increases. Decrease. For this reason, the resist film in the vicinity of the exposed surface is difficult to be removed in the development process, and on the contrary, the solubility of the resist film in the developer increases as the surface approaches the surface opposite to the exposed surface. In this manner, a resist having a reverse tapered resist pattern can be formed.

そして、本発明では、樹脂組成物中における化合物(c)の含有比率を、アルカリ可溶性樹脂(a)100質量部に対して、1.0質量部超とした。かかる含有比率は、従来、活性放射線を吸収する化合物に対して採用されてきた含有比率よりも高い。樹脂組成物にて、このように高い含有比率で化合物(c)を含有させることで、露光面付近における架橋形成量と、露光面と反対側の面における架橋形成量との差を拡大させることができると推察される。換言すると、レジストパターンの逆テーパー形状を構成する側壁が、レジスト表面に対してなす角度を鋭角化して、良好な逆テーパー形状を形成することができる。そして、レジストの露光面付近における架橋形成が、レジスト底部と比較して強固であれば、レジストが高温環境下におかれた場合であっても、レジスト底部における熱影響を架橋形成のより強固な露光面付近のレジストにより補償することが出来るために、結果的に高温環境下でも良好な逆テーパー形状を維持することができると推察される。さらに、樹脂組成物を用いて形成したレジストが、レジストの露光面付近に、レジスト底部付近の架橋構造と比較して強固な架橋構造を有するために、高温環境下にてレジスト底部付近にて生じた歪みを、露光面付近のレジストにより補償することが可能であると推察される。
なお、本明細書において、「側壁がレジスト表面に対してなす角度」は、逆テーパー構造を形成する側壁とレジスト表面とがなす、鋭角側の角度をいう。
And in this invention, the content rate of the compound (c) in a resin composition was more than 1.0 mass part with respect to 100 mass parts of alkali-soluble resin (a). Such a content ratio is higher than the content ratio that has been conventionally employed for compounds that absorb actinic radiation. Increasing the difference between the amount of crosslink formation near the exposed surface and the amount of crosslink formation on the surface opposite to the exposed surface by including the compound (c) in such a high content ratio in the resin composition. It is inferred that In other words, it is possible to form an excellent reverse taper shape by sharpening the angle formed by the side walls constituting the reverse taper shape of the resist pattern with respect to the resist surface. If the cross-linking formation in the vicinity of the exposed surface of the resist is stronger than the bottom of the resist, even if the resist is placed in a high temperature environment, the heat effect at the bottom of the resist is more robust in the cross-linking formation. Since it can be compensated by the resist in the vicinity of the exposed surface, it is presumed that as a result, a good reverse taper shape can be maintained even in a high temperature environment. Furthermore, since the resist formed using the resin composition has a stronger cross-linked structure near the exposed surface of the resist than the cross-linked structure near the bottom of the resist, it occurs near the bottom of the resist in a high temperature environment. It is assumed that the distortion can be compensated by the resist near the exposure surface.
In the present specification, the “angle formed by the side wall with respect to the resist surface” refers to an acute angle formed by the side wall forming the inverse tapered structure and the resist surface.

[[アルカリ可溶性樹脂(a)]]
アルカリ可溶性樹脂としては、特に限定されることなく、レジストの形成に一般的に用いられうるアルカリ可溶性樹脂を用いることができる。本明細書において「アルカリ可溶性樹脂」とは、当該成分を含むネガ型感光性樹脂組成物の現像処理工程において用いられる現像液、特に好ましくはアルカリ現像液に対して溶解性を有する樹脂である。なお、「アルカリ現像液に対して溶解性を有する」とは、アルカリ現像液と樹脂溶液とを混合した際に、目視で透明な混合溶液が得られることを意味する。より具体的には、本明細書において「アルカリ可溶性」とは、pH8以上の溶液に溶解したときに、不溶分率が0.1質量%未満である樹脂をいう。例えば、アルカリ可溶性樹脂としては、ノボラック樹脂、ポリビニルフェノール樹脂、ポリビニルアルコール樹脂、レゾール樹脂、アクリル樹脂、スチレン-アクリル酸共重合体樹脂、ヒドロキシスチレン重合体樹脂、及びポリビニルヒドロキシベンゾエート、並びにこれらの混合樹脂等が挙げられる。中でも、ノボラック樹脂を単独で、或いは他の樹脂と混合して用いることが好ましい。
[[Alkali-soluble resin (a)]]
The alkali-soluble resin is not particularly limited, and an alkali-soluble resin that can be generally used for forming a resist can be used. In the present specification, the “alkali-soluble resin” is a resin having solubility in a developer, particularly preferably an alkali developer, used in a development processing step of a negative photosensitive resin composition containing the component. Note that “having solubility in an alkali developer” means that a transparent mixed solution can be obtained visually when the alkali developer and the resin solution are mixed. More specifically, in the present specification, “alkali-soluble” refers to a resin having an insoluble content of less than 0.1 mass% when dissolved in a solution having a pH of 8 or higher. For example, examples of the alkali-soluble resin include novolak resin, polyvinyl phenol resin, polyvinyl alcohol resin, resol resin, acrylic resin, styrene-acrylic acid copolymer resin, hydroxystyrene polymer resin, polyvinyl hydroxybenzoate, and mixed resins thereof. Etc. Among these, it is preferable to use the novolac resin alone or in combination with other resins.

-ノボラック樹脂-
ノボラック樹脂としては、市販のノボラック樹脂や、例えば、フェノール類とアルデヒド類またはケトン類とを酸性触媒(例えば、シュウ酸)の存在下で反応させることにより得たノボラック樹脂を使用することができる。
-Novolac resin-
As the novolak resin, a commercially available novolak resin or a novolak resin obtained by reacting phenols with aldehydes or ketones in the presence of an acidic catalyst (for example, oxalic acid) can be used.

フェノール類としては、例えば、フェノール、オルトクレゾール、メタクレゾール、パラクレゾール、2,3−ジメチルフェノール、2,5−ジメチルフェノール、3,4−ジメチルフェノール、3,5−ジメチルフェノール、2,4−ジメチルフェノール、2,6−ジメチルフェノール、2,3,5−トリメチルフェノール、2,3,6−トリメチルフェノール、2−t−ブチルフェノール、3−t−ブチルフェノール、4−t−ブチルフェノール、2−メチルレゾルシノール、4−メチルレゾルシノール、5−メチルレゾルシノール、4−t−ブチルカテコール、2−メトキシフェノール、3−メトキシフェノール、2−プロピルフェノール、3−プロピルフェノール、4−プロピルフェノール、2−イソプロピルフェノール、2−メトキシ−5−メチルフェノール、2−t−ブチル−5−メチルフェノール、チモール、イソチモールなどが挙げられる。これらは、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。   Examples of phenols include phenol, orthocresol, metacresol, paracresol, 2,3-dimethylphenol, 2,5-dimethylphenol, 3,4-dimethylphenol, 3,5-dimethylphenol, 2,4- Dimethylphenol, 2,6-dimethylphenol, 2,3,5-trimethylphenol, 2,3,6-trimethylphenol, 2-t-butylphenol, 3-t-butylphenol, 4-t-butylphenol, 2-methylresorcinol 4-methylresorcinol, 5-methylresorcinol, 4-t-butylcatechol, 2-methoxyphenol, 3-methoxyphenol, 2-propylphenol, 3-propylphenol, 4-propylphenol, 2-isopropylphenol, 2- Meto Shi-5-methylphenol, 2-t-butyl-5-methylphenol, thymol, and the like Isochimoru. These can be used alone or in combination of two or more.

アルデヒド類としては、例えば、ホルムアルデヒド、ホルマリン、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、プロピルアルデヒド、ベンズアルデヒド、フェニルアセトアルデヒド、α−フェニルプロピルアルデヒド、β−フェニルプロピルアルデヒド、o−ヒドロキシベンズアルデヒド、m−ヒドロキシベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−クロロベンズアルデヒド、m−クロロベンズアルデヒド、p−クロロベンズアルデヒド、o−メチルベンズアルデヒド、m−メチルベンズアルデヒド、p−メチルベンズアルデヒド、p−エチルベンズアルデヒド、p−n−ブチルベンズアルデヒド、テレフタルアルデヒドなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトン、ジエチルケトン、ジフェニルケトンなどが挙げられる。これらは、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。   Examples of aldehydes include formaldehyde, formalin, paraformaldehyde, trioxane, acetaldehyde, propylaldehyde, benzaldehyde, phenylacetaldehyde, α-phenylpropylaldehyde, β-phenylpropylaldehyde, o-hydroxybenzaldehyde, m-hydroxybenzaldehyde, p- Hydroxybenzaldehyde, o-chlorobenzaldehyde, m-chlorobenzaldehyde, p-chlorobenzaldehyde, o-methylbenzaldehyde, m-methylbenzaldehyde, p-methylbenzaldehyde, p-ethylbenzaldehyde, pn-butylbenzaldehyde, terephthalaldehyde, etc. It is done. Examples of ketones include acetone, methyl ethyl ketone, diethyl ketone, and diphenyl ketone. These can be used alone or in combination of two or more.

上述した中でも、メタクレゾールとパラクレゾールとを併用し、これらとホルムアルデヒド、ホルマリンまたはパラホルムアルデヒドとを縮合反応させて、ノボラック樹脂を調製することが好ましい。ノボラック樹脂を構成するポリマーの分子量分布の制御が容易であるため、レジストの感度を容易に制御することができるからである。メタクレゾールとパラクレゾールとの仕込み比は、質量基準で、通常、80:20〜20:80、好ましくは70:30〜40:60である。   Among the above-mentioned, it is preferable to prepare a novolak resin by using metacresol and paracresol together and subjecting these to formaldehyde, formalin or paraformaldehyde to condensation reaction. This is because the molecular weight distribution of the polymer constituting the novolak resin can be easily controlled, so that the sensitivity of the resist can be easily controlled. The charging ratio of metacresol and paracresol is usually 80:20 to 20:80, preferably 70:30 to 40:60 on a mass basis.

なお、ノボラック樹脂の平均分子量は、ゲル浸透クロマトグラフィー(Gel Permeation Chromatography:GPC)により測定した単分散ポリスチレン換算の重量平均分子量で、通常1000以上、好ましくは2000以上、より好ましくは2500以上、通常10000以下、好ましくは7000以下、より好ましくは6000以下である。ノボラック樹脂の重量平均分子量が上記下限値未満の場合、露光部の架橋反応が起こっても、分子量増大効果が小さく、現像液に対して溶解し易くなる。ノボラック樹脂の重量平均分子量が上記上限値超の場合、レジスト内の露光部と未露光部とのアルカリ現像液に対する溶解度の差が小さくなり、良好なレジストパターンを得ることが難しくなる。   The average molecular weight of the novolak resin is a weight average molecular weight in terms of monodisperse polystyrene measured by gel permeation chromatography (GPC), and is usually 1000 or more, preferably 2000 or more, more preferably 2500 or more, usually 10,000. Hereinafter, it is preferably 7000 or less, more preferably 6000 or less. When the weight average molecular weight of the novolak resin is less than the above lower limit value, the effect of increasing the molecular weight is small even when a crosslinking reaction occurs in the exposed area, and the novolak resin is easily dissolved in the developer. When the weight average molecular weight of the novolak resin exceeds the above upper limit, the difference in solubility in the alkaline developer between the exposed and unexposed areas in the resist becomes small, making it difficult to obtain a good resist pattern.

-ポリビニルフェノール樹脂-
ポリビニルフェノール樹脂としては、例えば、ビニルフェノールの単独重合体、及びビニルフェノールとこれと共重合可能な単量体との共重合体などが挙げられる。ビニルフェノール樹脂と共重合可能な単量体としては、例えば、イソプロペニルフェノール、アクリル酸、メタクリル酸、スチレン、無水マレイン酸、マレイン酸イミド、酢酸ビニルが挙げられる。ポリビニルフェノール樹脂としては、ビニルフェノールの単独重合体が好ましく、p−ビニルフェノールの単独重合体がより好ましい。
-Polyvinylphenol resin-
Examples of the polyvinyl phenol resin include a homopolymer of vinyl phenol and a copolymer of vinyl phenol and a monomer copolymerizable therewith. Examples of the monomer copolymerizable with the vinylphenol resin include isopropenylphenol, acrylic acid, methacrylic acid, styrene, maleic anhydride, maleic imide, and vinyl acetate. As a polyvinyl phenol resin, the homopolymer of vinylphenol is preferable and the homopolymer of p-vinylphenol is more preferable.

ポリビニルフェノール樹脂の平均分子量は、GPCにより測定した単分散ポリスチレン換算の重量平均分子量(Mw)で、通常1000以上、好ましくは1500以上、より好ましくは2000以上、通常20000以下、好ましくは10000以下、より好ましくは15000以下である。ポリビニルフェノール樹脂の重量平均分子量が上記下限値以上であれば、レジスト膜の露光部にて架橋反応が生じた際に、十分な分子量増大効果を得ることができ、露光部の現像液に対する不溶性を十分に高めることができる。ポリビニルフェノールの重量平均分子量が上記上限値以下であれば、レジスト内の露光部と未露光部とのアルカリ現像液に対する溶解度の差を十分に確保して、良好なレジストパターンを得ることができる。   The average molecular weight of the polyvinyl phenol resin is a weight average molecular weight (Mw) in terms of monodisperse polystyrene measured by GPC, and is usually 1000 or more, preferably 1500 or more, more preferably 2000 or more, usually 20000 or less, preferably 10,000 or less. Preferably it is 15000 or less. If the weight average molecular weight of the polyvinylphenol resin is not less than the above lower limit, when a crosslinking reaction occurs in the exposed portion of the resist film, a sufficient molecular weight increasing effect can be obtained, and the exposed portion is insoluble in the developer. It can be raised enough. If the weight average molecular weight of polyvinylphenol is not more than the above upper limit value, a sufficient resist pattern can be obtained by ensuring a sufficient difference in solubility in an alkaline developer between an exposed area and an unexposed area in the resist.

-各樹脂の重量平均分子量調節方法-
ノボラック樹脂及びポリビニルフェノール樹脂の重量平均分子量は、合成条件を調整することにより、所望の範囲に制御することができる。例えば、ノボラック樹脂又はポリビニルフェノール樹脂の製造時に添加する反応原料の添加量を調節することにより各樹脂の重量平均分子量を調節することができる。より具体的には、縮合反応のために添加するホルムアルデヒド、ホルマリンまたはパラホルムアルデヒドの配合量を多くすることで、得られるノボラック樹脂の重量平均分子量を大きくすることができる。また、例えば、ポリビニルフェノール樹脂の重合時に添加する重合開始剤の量を少なくすることにより、得られるポリビニルフェノール樹脂の重量平均分子量を大きくすることができる。さらには、例えば、ノボラック樹脂又はポリビニルフェノール樹脂の合成時の反応時間を長くすることによっても、得られる各樹脂の重量平均分子量を大きくしうる。
この他、例えば、(1)合成により得られた樹脂や市販の樹脂を粉砕し、適当な溶解度を持つ有機溶剤で固−液抽出する方法、(2)合成により得られた樹脂や市販の樹脂を良溶剤に溶解させ、貧溶剤中に滴下するか、または貧溶剤を滴下して、固−液もしくは液−液抽出する方法などにより、重量平均分子量を制御することができる。
-Method for adjusting the weight average molecular weight of each resin-
The weight average molecular weights of the novolac resin and the polyvinylphenol resin can be controlled within a desired range by adjusting the synthesis conditions. For example, the weight average molecular weight of each resin can be adjusted by adjusting the amount of reaction raw material added during the production of the novolak resin or polyvinylphenol resin. More specifically, the weight average molecular weight of the resulting novolak resin can be increased by increasing the amount of formaldehyde, formalin or paraformaldehyde added for the condensation reaction. For example, the weight average molecular weight of the obtained polyvinylphenol resin can be increased by reducing the amount of the polymerization initiator added during polymerization of the polyvinylphenol resin. Furthermore, for example, the weight average molecular weight of each resin obtained can be increased by increasing the reaction time during synthesis of the novolak resin or the polyvinylphenol resin.
In addition, for example, (1) a method of pulverizing a resin obtained by synthesis or a commercially available resin, and solid-liquid extraction with an organic solvent having an appropriate solubility, (2) a resin obtained by synthesis or a commercially available resin Can be dissolved in a good solvent and dropped into a poor solvent, or a poor solvent can be dropped into a solid-liquid or liquid-liquid extraction to control the weight average molecular weight.

[[架橋成分(b)]]
架橋成分は、活性放射線の照射、又は、活性放射線の照射及びその後の熱処理によってアルカリ可溶性樹脂(a)を架橋する成分である。この架橋成分の作用によりレジストの露光領域にて架橋構造が形成されることで、露光領域のアルカリ可溶性樹脂の分子量が大きくなって、アルカリ現像液に対する溶解速度が極端に低下する。それによって、樹脂組成物は、アルカリ現像液による現像が可能なネガ型レジスト材料として機能する。
[[Crosslinking component (b)]]
A crosslinking component is a component which bridge | crosslinks alkali-soluble resin (a) by irradiation of actinic radiation, or irradiation of actinic radiation, and subsequent heat processing. By forming a crosslinked structure in the exposed region of the resist by the action of the crosslinking component, the molecular weight of the alkali-soluble resin in the exposed region is increased, and the dissolution rate in the alkaline developer is extremely reduced. Thereby, the resin composition functions as a negative resist material that can be developed with an alkaline developer.

架橋成分(b)は、活性放射線の照射によって酸を発生する化合物(以下、「光酸発生剤」とも称する)と、光によって発生した酸を触媒としてアルカリ可溶性樹脂を架橋する化合物(感酸物質:以下、「酸架橋剤」とも称する)との組み合わせである。これらの化合物は、共に、アルカリ可溶性樹脂との相溶性に優れ、かつアルカリ可溶性樹脂と組み合わせることにより感度が良好な架橋型化学増幅レジストを提供することができる点で好ましい。   The crosslinking component (b) includes a compound that generates an acid upon irradiation with actinic radiation (hereinafter also referred to as “photoacid generator”) and a compound that crosslinks an alkali-soluble resin using an acid generated by light as a catalyst (acid-sensitive substance). : Hereinafter referred to as “acid crosslinking agent”). Both of these compounds are preferred in that they are excellent in compatibility with alkali-soluble resins and can provide a cross-linked chemically amplified resist having good sensitivity when combined with alkali-soluble resins.

[[[光酸発生剤]]]
活性放射線によって酸を発生する化合物である光酸発生剤としては、活性放射線を照射されると、ブレンステッド酸またはルイス酸を発生する物質であれば特に制限はなく、オニウム塩、ハロゲン化有機化合物、キノンジアジド化合物、スルホン化合物、有機酸エステル化合物、有機酸アミド化合物、有機酸イミド化合物など公知のものを用いることができる。これらの光酸発生剤は、パターンを露光する光源の波長に応じて、分光感度の面から選択することが好ましい。
[[[Photoacid generator]]]
The photoacid generator which is a compound that generates an acid by actinic radiation is not particularly limited as long as it is a substance that generates a Bronsted acid or a Lewis acid when irradiated with actinic radiation, and is an onium salt or a halogenated organic compound. Known compounds such as quinonediazide compounds, sulfone compounds, organic acid ester compounds, organic acid amide compounds, and organic acid imide compounds can be used. These photoacid generators are preferably selected from the viewpoint of spectral sensitivity in accordance with the wavelength of the light source that exposes the pattern.

オニウム塩としては、ジアゾニウム塩、アンモニウム塩、ジフェニルヨードニウムトリフレートなどのヨードニウム塩、トリフェニルスルホニウムトリフレートなどのスルホニウム塩、ホスホニウム塩、アルソニウム塩、オキソニウム塩などが挙げられる。   Examples of onium salts include diazonium salts, ammonium salts, iodonium salts such as diphenyliodonium triflate, sulfonium salts such as triphenylsulfonium triflate, phosphonium salts, arsonium salts, and oxonium salts.

ハロゲン化有機化合物としては、ハロゲン含有オキサジアゾール系化合物、ハロゲン含有トリアジン系化合物、ハロゲン含有アセトフェノン系化合物、ハロゲン含有ベンゾフェノン系化合物、ハロゲン含有スルホキサイド系化合物、ハロゲン含有スルホン系化合物、ハロゲン含有チアゾール系化合物、ハロゲン含有オキサゾール系化合物、ハロゲン含有トリアゾール系化合物、ハロゲン含有2−ピロン系化合物、その他のハロゲン含有ヘテロ環状化合物、ハロゲン含有脂肪族炭化水素化合物、ハロゲン含有芳香族炭化水素化合物、スルフェニルハライド化合物などが挙げられる。   Halogenated organic compounds include halogen-containing oxadiazole compounds, halogen-containing triazine compounds, halogen-containing acetophenone compounds, halogen-containing benzophenone compounds, halogen-containing sulfoxide compounds, halogen-containing sulfone compounds, halogen-containing thiazole compounds. Halogen-containing oxazole compounds, halogen-containing triazole compounds, halogen-containing 2-pyrone compounds, other halogen-containing heterocyclic compounds, halogen-containing aliphatic hydrocarbon compounds, halogen-containing aromatic hydrocarbon compounds, sulfenyl halide compounds, etc. Is mentioned.

ハロゲン化有機化合物の具体例としては、トリス(2,3−ジブロモプロピル)ホスフェート、トリス(2,3−ジブロモ−3−クロロプロピル)ホスフェート、テトラブロモクロロブタン、2−[2−(3,4−ジメトキシフェニル)エテニル]−4,6−ビス(トリクロロメチル)−S−トリアジン、2−[2−(4−メトキシフェニル)エテニル]−4,6−ビス(トリクロロメチル)−S−トリアジン、ヘキサクロロベンゼン、ヘキサブロモベンゼン、ヘキサブロモシクロドデカン、ヘキサブロモシクロドデセン、ヘキサブロモビフェニル、アリルトリブロモフェニルエーテル、テトラクロロビスフェノールA、テトラブロモビスフェノールA、テトラクロロビスフェノールAのビス(クロロエチル)エーテル、テトラブロモビスフェノールAのビス(ブロモエチル)エーテル、ビスフェノールAのビス(2,3−ジクロロプロピル)エーテル、ビスフェノールAのビス(2,3−ジブロモプロピル)エーテル、テトラクロロビスフェノールAのビス(2,3−ジクロロプロピル)エーテル、テトラブロモビスフェノールAのビス(2,3−ジブロモプロピル)エーテル、テトラクロロビスフェノールS、テトラブロモビスフェノールS、テトラクロロビスフェノールSのビス(クロロエチル)エーテル、テトラブロモビスフェノールSのビス(ブロモエチル)エーテル、ビスフェノールSのビス(2,3−ジクロロプロピル)エーテル、ビスフェノールSのビス(2,3−ジブロモプロピル)エーテル、トリス(2,3−ジブロモプロピル)イソシアヌレート、2,2−ビス(4−ヒドロキシ−3,5−ジブロモフェニル)プロパン、2,2−ビス(4−(2−ヒドロキシエトキシ)−3,5−ジブロモフェニル)プロパンなどのハロゲン系難燃剤;などが例示される。   Specific examples of the halogenated organic compound include tris (2,3-dibromopropyl) phosphate, tris (2,3-dibromo-3-chloropropyl) phosphate, tetrabromochlorobutane, 2- [2- (3,4). -Dimethoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -S-triazine, 2- [2- (4-methoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -S-triazine, hexa Chlorobenzene, hexabromobenzene, hexabromocyclododecane, hexabromocyclododecene, hexabromobiphenyl, allyltribromophenyl ether, tetrachlorobisphenol A, tetrabromobisphenol A, bis (chloroethyl) ether of tetrachlorobisphenol A, tetrabromo Bisf Bis (bromoethyl) ether of diol A, bis (2,3-dichloropropyl) ether of bisphenol A, bis (2,3-dibromopropyl) ether of bisphenol A, bis (2,3-dichloropropyl) of tetrachlorobisphenol A ) Ether, bis (2,3-dibromopropyl) ether of tetrabromobisphenol A, tetrachlorobisphenol S, tetrabromobisphenol S, bis (chloroethyl) ether of tetrachlorobisphenol S, bis (bromoethyl) ether of tetrabromobisphenol S Bis (2,3-dichloropropyl) ether of bisphenol S, bis (2,3-dibromopropyl) ether of bisphenol S, tris (2,3-dibromopropyl) isocyanurate, 2,2- And halogen-based flame retardants such as bis (4-hydroxy-3,5-dibromophenyl) propane and 2,2-bis (4- (2-hydroxyethoxy) -3,5-dibromophenyl) propane; .

キノンジアジド化合物の具体例としては、1,2−ベンゾキノンジアジド−4−スルホン酸エステル、1,2−ナフトキノンジアジド−4−スルホン酸エステル、1,2−ナフトキノンジアジド−5−スルホン酸エステル、2,1−ナフトキノンジアジド−4−スルホン酸エステル、2,1−ベンゾキノンジアジド−5−スルホン酸エステルのようなキノンジアジド誘導体のスルホン酸エステル;1,2−ベンゾキノン−2−ジアジド−4−スルホン酸クロライド、1,2−ナフトキノン−2−ジアジド−4−スルホン酸クロライド、1,2−ナフトキノン−2−ジアジド−5−スルホン酸クロライド、1,2−ナフトキノン−1−ジアジド−6−スルホン酸クロライド、1,2−ベンゾキノン−1−ジアジド−5−スルホン酸クロライド等のキノンジアジド誘導体のスルホン酸クロライド;などが挙げられる。   Specific examples of the quinonediazide compound include 1,2-benzoquinonediazide-4-sulfonic acid ester, 1,2-naphthoquinonediazide-4-sulfonic acid ester, 1,2-naphthoquinonediazide-5-sulfonic acid ester, 2,1 Sulfonic acid esters of quinonediazide derivatives such as naphthoquinonediazide-4-sulfonic acid ester, 2,1-benzoquinonediazide-5-sulfonic acid ester; 1,2-benzoquinone-2-diazide-4-sulfonic acid chloride, 1, 2-naphthoquinone-2-diazide-4-sulfonic acid chloride, 1,2-naphthoquinone-2-diazide-5-sulfonic acid chloride, 1,2-naphthoquinone-1-diazide-6-sulfonic acid chloride, 1,2- Benzoquinone-1-diazide-5-sulfonic acid chloride, etc. Sulfonic acid chloride quinonediazide derivative; and the like.

スルホン化合物の具体例としては、未置換、対称的もしくは非対称的に置換されたアルキル基、アルケニル基、アラルキル基、芳香族基、またはヘテロ環状基を有するスルホン化合物、ジスルホン化合物などが挙げられる。   Specific examples of the sulfone compounds include sulfone compounds and disulfone compounds having unsubstituted, symmetrically or asymmetrically substituted alkyl groups, alkenyl groups, aralkyl groups, aromatic groups, or heterocyclic groups.

有機酸エステルとしては、カルボン酸エステル、スルホン酸エステル、リン酸エステルなどが挙げられ、有機酸アミドとしては、カルボン酸アミド、スルホン酸アミド、リン酸アミドなどが挙げられ、有機酸イミドとしては、カルボン酸イミド、スルホン酸イミド、リン酸イミドなどが挙げられる。   Examples of organic acid esters include carboxylic acid esters, sulfonic acid esters, and phosphoric acid esters. Organic acid amides include carboxylic acid amides, sulfonic acid amides, phosphoric acid amides, and the like. Examples thereof include carboxylic acid imide, sulfonic acid imide, and phosphoric acid imide.

このほか、シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウムトリフルオロメタンスルホナート、ジシクロヘキシル(2−オキソシクロヘキシル)スルホニウムトリフルオロメタンスルホナート、2−オキソシクロヘキシル(2−ノルボルニル)スルホニウムトリフルオロメタンスルホナート、2−シクロヘキシルスルホニルシクロヘキサノン、ジメチル(2−オキソシクロヘキシル)スルホニウムトリフルオロメタンスルホナート、トリフェニルスルホニウムトリフルオロメタンスルホナート、ジフェニルヨードニウムトリフルオロメタンスルホナート、N−ヒドロキシスクシイミドトリフルオロメタンスルホナート、フェニルパラトルエンスルホナート等が挙げられる。   In addition, cyclohexylmethyl (2-oxocyclohexyl) sulfonium trifluoromethanesulfonate, dicyclohexyl (2-oxocyclohexyl) sulfonium trifluoromethanesulfonate, 2-oxocyclohexyl (2-norbornyl) sulfonium trifluoromethanesulfonate, 2-cyclohexylsulfonylcyclohexanone Dimethyl (2-oxocyclohexyl) sulfonium trifluoromethanesulfonate, triphenylsulfonium trifluoromethanesulfonate, diphenyliodonium trifluoromethanesulfonate, N-hydroxysuccinimide trifluoromethanesulfonate, phenylparatoluenesulfonate, and the like.

光酸発生剤は、アルカリ可溶性樹脂(a)100質量部に対して、通常0.1〜10質量部、好ましくは0.3〜8質量部、より好ましくは0.5〜5質量部の割合で使用される。光酸発生剤の割合が過小または過大であると、レジストパターンの形状が劣化するおそれがある。   A photo-acid generator is 0.1-10 mass parts normally with respect to 100 mass parts of alkali-soluble resin (a), Preferably it is 0.3-8 mass parts, More preferably, it is a ratio of 0.5-5 mass parts. Used in. If the ratio of the photoacid generator is too small or too large, the shape of the resist pattern may be deteriorated.

[[[酸架橋剤]]]
酸架橋剤は、活性放射線の照射(露光)によって生じた酸の存在下で、アルカリ可溶性樹脂を架橋しうる化合物(感酸物質)である。このような酸架橋剤としては、例えば、アルコキシメチル化尿素樹脂、アルコキシメチル化メラミン樹脂、アルコキシメチル化ウロン樹脂、アルコキシメチル化グリコールウリル樹脂、アルコキシメチル化アミノ樹脂などの周知の酸架橋性化合物を挙げることができる。
[[[Acid crosslinking agent]]]
An acid crosslinking agent is a compound (acid-sensitive substance) that can crosslink an alkali-soluble resin in the presence of an acid generated by irradiation (exposure) with actinic radiation. Examples of such acid cross-linking agents include known acid cross-linking compounds such as alkoxymethylated urea resins, alkoxymethylated melamine resins, alkoxymethylated uron resins, alkoxymethylated glycoluril resins, and alkoxymethylated amino resins. Can be mentioned.

この他、酸架橋剤として、アルキルエーテル化メラミン樹脂、ベンゾグアナミン樹脂、アルキルエーテル化ベンゾグアナミン樹脂、ユリア樹脂、アルキルエーテル化ユリア樹脂、ウレタン−ホルムアルデヒド樹脂、レゾール型フェノールホルムアルデヒド樹脂、アルキルエーテル化レゾール型フェノールホルムアルデヒド樹脂、エポキシ樹脂などが挙げられる。
なお、酸架橋剤は、重量平均分子量が300以上の樹脂であることが好ましい。
In addition, as an acid crosslinking agent, alkyl etherified melamine resin, benzoguanamine resin, alkyl etherified benzoguanamine resin, urea resin, alkyl etherified urea resin, urethane-formaldehyde resin, resol type phenol formaldehyde resin, alkyl etherified resole type phenol formaldehyde Examples thereof include resins and epoxy resins.
The acid crosslinking agent is preferably a resin having a weight average molecular weight of 300 or more.

これらの中でも、アルコキシメチル化メラミン樹脂が好ましく、その具体例としては、メトキシメチル化メラミン樹脂、エトキシメチル化メラミン樹脂、n−プロポキシメチル化メラミン樹脂、n−ブトキシメチル化メラミン樹脂等を挙げることができる。これらの中でも、解像度が良好である点で、ヘキサメトキシメチルメラミンなどのメトキシメチル化メラミン樹脂が特に好ましい。アルコキシメチル化メラミン樹脂の市販品としては、例えば、PL−1170、PL−1174、UFR65、CYMEL(登録商標)300、CYMEL(登録商標)303(以上、三井サイテック社製)、BX−4000、ニカラックMW−30、MX290(以上、三和ケミカル社製)を挙げることができる。   Among these, alkoxymethylated melamine resins are preferable, and specific examples thereof include methoxymethylated melamine resins, ethoxymethylated melamine resins, n-propoxymethylated melamine resins, and n-butoxymethylated melamine resins. it can. Among these, a methoxymethylated melamine resin such as hexamethoxymethylmelamine is particularly preferable in terms of good resolution. Commercially available products of alkoxymethylated melamine resins include, for example, PL-1170, PL-1174, UFR65, CYMEL (registered trademark) 300, CYMEL (registered trademark) 303 (manufactured by Mitsui Cytec), BX-4000, Nicarak Examples thereof include MW-30 and MX290 (manufactured by Sanwa Chemical Co., Ltd.).

これらの酸架橋剤は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。酸架橋剤は、アルカリ可溶性樹脂(a)100質量部に対して、通常0.5〜60質量部、好ましくは1〜50質量部、より好ましくは2〜40質量部の割合で配合することが好ましい。酸架橋剤の配合量が上記下限値以上であれば、架橋反応を十分に進行させて、アルカリ現像液を用いた現像後のレジストパターンの残膜率が低下したり、レジストパターンの膨潤や蛇行などの変形が生じ易くなることを回避することができる。酸架橋剤の配合量が上記上限値以下であれば、得られるレジストパターンを高解像度化することができる。   These acid crosslinking agents can be used alone or in combination of two or more. The acid crosslinking agent may be blended in an amount of usually 0.5 to 60 parts by mass, preferably 1 to 50 parts by mass, more preferably 2 to 40 parts by mass with respect to 100 parts by mass of the alkali-soluble resin (a). preferable. If the blending amount of the acid crosslinking agent is not less than the above lower limit value, the crosslinking reaction is sufficiently advanced to reduce the residual film ratio of the resist pattern after development using an alkali developer, or the resist pattern is swollen or meandered. It is possible to avoid the occurrence of such deformation. If the compounding amount of the acid crosslinking agent is not more than the above upper limit, the resulting resist pattern can have high resolution.

[[活性放射線を吸収する化合物(c)]]
活性放射線を吸収する化合物(c)は、レジスト膜に対して照射された活性放射線を吸収する。これにより、逆テーパー形状のレジストパターンを形成することができる。さらに、レジストパターンの形状は、レジスト膜に対して照射された活性放射線が、レジスト膜を通過して基板や基板上に形成されたITO膜などにより反射されることによっても影響されうる。そこで、樹脂組成物に含有される化合物(c)が反射された活性放射線を吸収することによって、レジストパターンの形状を良好に制御することができる。特に架橋成分として光酸発生剤と酸架橋剤との組み合わせを用いた樹脂組成物は、架橋型の化学増幅レジストであって、光の照射により生成した酸がレジスト膜内で拡散し、光が当たらない領域にまで架橋反応を起こすため、活性放射線を吸収する化合物(c)を存在させることにより、レジストパターンの形状を良好に制御することができる。
なお、本明細書にて「活性放射線を吸収する」とは、波長13.5nm以上450nmの範囲の何れかの波長域において、少なくとも一つの極大吸収波長λmaxをもつことをいう。
[[Compound that absorbs actinic radiation (c)]]
The compound (c) that absorbs actinic radiation absorbs actinic radiation irradiated to the resist film. Thereby, a reverse taper-shaped resist pattern can be formed. Furthermore, the shape of the resist pattern can also be affected by the fact that the active radiation applied to the resist film is reflected by the substrate, the ITO film formed on the substrate, etc. through the resist film. Therefore, the shape of the resist pattern can be favorably controlled by absorbing the active radiation reflected by the compound (c) contained in the resin composition. In particular, a resin composition using a combination of a photoacid generator and an acid crosslinking agent as a crosslinking component is a cross-linked chemical amplification resist, and the acid generated by light irradiation diffuses in the resist film, and light is emitted. Since the cross-linking reaction is caused to a non-contact region, the presence of the compound (c) that absorbs active radiation makes it possible to satisfactorily control the shape of the resist pattern.
In the present specification, “absorbing actinic radiation” means having at least one maximum absorption wavelength λmax in any wavelength range of 13.5 nm to 450 nm.

活性放射線を吸収する化合物(c)としては、例えば、ビスアジド化合物、アゾ染料、メチン染料、アゾメチン染料、クルクミン、キサントンなどの天然化合物、シアノビニルスチレン系化合物、1−シアノ−2−(4−ジアルキルアミノフェニル)エチレン類、p−(ハロゲン置換フェニルアゾ)−ジアルキルアミノベンゼン類、1−アルコキシ−4−(4′−N,N−ジアルキルアミノフェニルアゾ)ベンゼン類、ジアルキルアミノ化合物、1,2−ジシアノエチレン、9−シアノアントラセン、9−アントリルメチレンマロノニトリル、N−エチル−3−カルバゾリルメチレンマロノニトリル、2−(3,3−ジシアノ−2−プロペニリデン)−3−メチル−1,3−チアゾリンなどが挙げられる。これらは一種単独で或いは複数種を混合して用いることができる。中でも、化合物(c)としては、両末端にアジド基を有するビスアジド化合物を使用することが好ましい。さらに、特に、ビスアジド化合物としては、波長200〜500nmの領域で活性放射線を吸収するものを使用することが好ましい。   Examples of the compound (c) that absorbs active radiation include bisazide compounds, azo dyes, methine dyes, azomethine dyes, natural compounds such as curcumin and xanthone, cyanovinylstyrene compounds, 1-cyano-2- (4-dialkyl). Aminophenyl) ethylenes, p- (halogen-substituted phenylazo) -dialkylaminobenzenes, 1-alkoxy-4- (4′-N, N-dialkylaminophenylazo) benzenes, dialkylamino compounds, 1,2-dicyano Ethylene, 9-cyanoanthracene, 9-anthrylmethylenemalononitrile, N-ethyl-3-carbazolylmethylenemalononitrile, 2- (3,3-dicyano-2-propenylidene) -3-methyl-1,3- Examples include thiazoline. These can be used singly or in combination. Among them, as the compound (c), it is preferable to use a bisazide compound having an azide group at both ends. Furthermore, it is particularly preferable to use a bisazide compound that absorbs actinic radiation in the wavelength region of 200 to 500 nm.

ビスアジド化合物としては、例えば、4,4′−ジアジドカルコン、2,6−ビス(4′−アジドベンザル)シクロヘキサノン、2,6−ビス(4′−アジドベンザル)−4−メチルシクロヘキサノン、2,6−ビス(4′−アジドベンザル)−4−エチルシクロヘキサノン、4,4′−ジアジドスチルベン−2,2′−ジスルホン酸ナトリウム、4,4′−ジアジドジフェニルスルフィド、4,4′−ジアジドベンゾフェノン、4,4′−ジアジドジフェニル、2,7−ジアジドフルオレン、4,4′−ジアジドフェニルメタンが挙げられる。   Examples of the bisazide compound include 4,4′-diazidochalcone, 2,6-bis (4′-azidobenzal) cyclohexanone, 2,6-bis (4′-azidobenzal) -4-methylcyclohexanone, 2,6- Bis (4′-azidobenzal) -4-ethylcyclohexanone, sodium 4,4′-diazidostilbene-2,2′-disulfonate, 4,4′-diazidodiphenyl sulfide, 4,4′-diazidobenzophenone, 4,4'-diazidodiphenyl, 2,7-diazidofluorene, 4,4'-diazidophenylmethane.

-活性放射線を吸収する化合物(c)の含有量-
樹脂組成物は、化合物(c)を、アルカリ可溶性樹脂(a)100質量部に対して、1質量部超含み、好ましくは1.2質量部以上含み、より好ましくは1.5質量部以上含み、さらに好ましくは1.8質量部以上含み、通常、10.0質量部以下、好ましくは8.0質量部以下、より好ましくは5.0質量部以下、さらにより好ましくは3.5質量部以下含む。樹脂組成物における化合物(c)の配合量がアルカリ可溶性樹脂(a)100質量部に対して、1質量部超であれば、かかる樹脂組成物を用いて形成したレジストにおいて良好な逆テーパー形状のレジストパターンを形成するとともに、高温環境下でもかかる良好な逆テーパー形状を維持することができる。さらに、化合物(c)の配合量を上記上限値以下とすることで、樹脂組成物を用いて形成したレジストの耐熱性を一層向上させることができる。さらに、一般に、レジスト膜厚が厚い場合には、活性放射線がレジスト膜を透過し難いので、化合物(c)の配合量が比較的少なくてもよく、薄い場合には、比較的多く用いることが好ましい。
-Content of compound (c) that absorbs actinic radiation-
The resin composition contains the compound (c) in an amount of more than 1 part by weight, preferably 1.2 parts by weight or more, more preferably 1.5 parts by weight or more with respect to 100 parts by weight of the alkali-soluble resin (a). More preferably 1.8 parts by weight or more, usually 10.0 parts by weight or less, preferably 8.0 parts by weight or less, more preferably 5.0 parts by weight or less, and even more preferably 3.5 parts by weight or less. Including. If the compounding amount of the compound (c) in the resin composition is more than 1 part by mass with respect to 100 parts by mass of the alkali-soluble resin (a), the resist formed using the resin composition has a good reverse taper shape. While forming a resist pattern, it is possible to maintain such a good reverse tapered shape even under a high temperature environment. Furthermore, the heat resistance of the resist formed using the resin composition can be further improved by setting the compounding amount of the compound (c) to the upper limit value or less. Furthermore, in general, when the resist film thickness is large, actinic radiation hardly penetrates the resist film, so that the compounding amount of the compound (c) may be relatively small. preferable.

[[塩基性化合物]]
好ましくは、樹脂組成物に対して、塩基性化合物を配合する。本明細書において、塩基性化合物とは、光酸発生剤に由来する酸を捕捉しうる化合物を意味する。塩基性化合物を配合すれば、樹脂組成物の保存安定性を向上させるとともに、第2熱処理工程における熱処理温度の温度許容範囲(PEB温度マージン)を拡大することができるからである。第2熱処理工程における熱処理温度の温度許容範囲が拡大することで、レジストパターンの製造ばらつきを抑制することができるため、本発明のレジストパターン形成方法の柔軟性を高めることができる。塩基性化合物(d)としては、無機塩基性化合物及び有機塩基性化合物が挙げられる。樹脂組成物を用いたレジストの形成にあたり、有機溶媒への溶解性が高いことから、有機塩基性化合物がより好ましい。樹脂組成物溶液を基板上に塗布して形成した塗膜の均一性を向上させることができるからである。有機塩基性化合物としては、例えば、含窒素塩基性化合物、有機ハロゲン化物、アルコキシド、フォスファゼン誘導体、及びVerkade塩基などが挙げられる。中でも、塩基性化合物としては、含窒素塩基性化合物を用いることが好ましい。樹脂組成物の保存安定性を向上させることができるからである。
[[Basic compounds]]
Preferably, a basic compound is blended with the resin composition. In the present specification, the basic compound means a compound capable of capturing an acid derived from a photoacid generator. This is because if the basic compound is blended, the storage stability of the resin composition can be improved and the temperature tolerance range (PEB temperature margin) of the heat treatment temperature in the second heat treatment step can be expanded. Since the temperature tolerance range of the heat treatment temperature in the second heat treatment step is expanded, manufacturing variations of the resist pattern can be suppressed, so that the flexibility of the resist pattern forming method of the present invention can be enhanced. Examples of the basic compound (d) include inorganic basic compounds and organic basic compounds. In forming a resist using the resin composition, an organic basic compound is more preferable because of its high solubility in an organic solvent. This is because the uniformity of the coating film formed by applying the resin composition solution on the substrate can be improved. Examples of the organic basic compound include nitrogen-containing basic compounds, organic halides, alkoxides, phosphazene derivatives, and Verkade bases. Among these, as the basic compound, it is preferable to use a nitrogen-containing basic compound. This is because the storage stability of the resin composition can be improved.

そして、含窒素塩基性化合物としては、脂肪族第一級アミン、脂肪族第二級アミン、脂肪族第三級アミン、アミノアルコール、芳香族アミン、第四級アンモニウムヒドロキシド、脂環式アミンなどが挙げられる。好ましくは、含窒素塩基性化合物としては、脂肪族第一級アミン、脂肪族第二級アミン、脂肪族第三級アミンを配合する。含窒素塩基性化合物の具体例としては、ブチルアミン、ヘキシルアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、2−エチルヘキシルアミン、2−エチルヘキシルオキシプロピルアミン、メトキシプロピルアミン、ジエチルアミノプロピルアミン、N−メチルアニリン、N−エチルアニリン、N−プロピルアニリン、ジメチル−N−メチルアニリン、ジエチル−N−メチルアニリン、ジイソプロピル−N−ジメチルアニリン、N−メチルアミノフェノール、N−エチルアミノフェノール、N,N−ジメチルアニリン、N,N−ジエチルアニリン、N,N−ジメチルアミノフェノール、テトラブチルアンモニウムヒドロキシド、テトラメチルアンモニウムヒドロキシド、1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エン、1,5−ジアザビシクロ[4.3.0]ノン−5−エン、などが挙げられる。なかでも、トリエタノールアミンが好ましい。   Examples of nitrogen-containing basic compounds include aliphatic primary amines, aliphatic secondary amines, aliphatic tertiary amines, amino alcohols, aromatic amines, quaternary ammonium hydroxides, and alicyclic amines. Is mentioned. Preferably, an aliphatic primary amine, an aliphatic secondary amine, and an aliphatic tertiary amine are blended as the nitrogen-containing basic compound. Specific examples of the nitrogen-containing basic compound include butylamine, hexylamine, ethanolamine, diethanolamine, triethanolamine, 2-ethylhexylamine, 2-ethylhexyloxypropylamine, methoxypropylamine, diethylaminopropylamine, N-methylaniline, N-ethylaniline, N-propylaniline, dimethyl-N-methylaniline, diethyl-N-methylaniline, diisopropyl-N-dimethylaniline, N-methylaminophenol, N-ethylaminophenol, N, N-dimethylaniline, N, N-diethylaniline, N, N-dimethylaminophenol, tetrabutylammonium hydroxide, tetramethylammonium hydroxide, 1,8-diazabicyclo [5.4.0] unde 7-ene, 1,5-diazabicyclo [4.3.0] non-5-ene, and the like. Of these, triethanolamine is preferable.

-塩基性化合物(d)の性状-
さらに、塩基性化合物(d)としては、比較的沸点が高い塩基性化合物が好ましい。具体的には、塩基性化合物(d)は、沸点が60℃以上であることが好ましく、100℃以上であることがより好ましく、150℃以上であることがさらに好ましく、通常、500℃以下である。塩基性化合物(d)の沸点が高ければ、後述する第1熱処理工程や第2熱処理工程における揮発が少なくなり、得られたポスト露光ベーク工程済みのレジスト膜中における塩基性化合物(d)の残存量が、樹脂組成物中における塩基性化合物(d)の配合比率に近い量となる。これにより、樹脂組成物を調製時に設計した通りの塩基性化合物(d)による酸の中和効果を、実際のレジストにて発揮させて、架橋反応が過剰に進行することを抑制して、レジストパターンが太くなることを、設計通りに、効果的に抑制することができる。かかる効果に鑑みて、塩基性化合物の沸点は、第1熱処理工程における熱処理温度(以下、「プリベーク温度」とも称する)及び第2熱処理工程における熱処理温度(以下、「ポスト露光ベーク温度」とも称する)よりも10℃以上高いことが好ましく、30℃以上高いことがより好ましく、50℃以上高いことがさらに好ましい。
さらにまた、塩基性化合物は、重量平均分子量が300未満の化合物であることが好ましい。
-Properties of basic compound (d)-
Furthermore, the basic compound (d) is preferably a basic compound having a relatively high boiling point. Specifically, the basic compound (d) preferably has a boiling point of 60 ° C. or higher, more preferably 100 ° C. or higher, further preferably 150 ° C. or higher, and usually 500 ° C. or lower. is there. If the boiling point of the basic compound (d) is high, volatilization in the first heat treatment step and the second heat treatment step, which will be described later, decreases, and the basic compound (d) remains in the obtained resist film after the post-exposure baking step. The amount is close to the blending ratio of the basic compound (d) in the resin composition. As a result, the neutralization effect of the acid by the basic compound (d) as designed at the time of preparing the resin composition is exhibited in the actual resist, and it is possible to prevent the crosslinking reaction from proceeding excessively. A thick pattern can be effectively suppressed as designed. In view of such effects, the boiling point of the basic compound is determined by the heat treatment temperature in the first heat treatment step (hereinafter also referred to as “pre-bake temperature”) and the heat treatment temperature in the second heat treatment step (hereinafter also referred to as “post-exposure bake temperature”). It is preferably 10 ° C. or higher, more preferably 30 ° C. or higher, and even more preferably 50 ° C. or higher.
Furthermore, the basic compound is preferably a compound having a weight average molecular weight of less than 300.

-塩基性化合物(d)の配合量(アルカリ可溶性樹脂(a)100質量部に対して)-
樹脂組成物は、塩基性化合物(d)を、アルカリ可溶性樹脂(a)100質量部に対して、通常0.001〜10質量部、好ましくは0.005〜8質量部、より好ましくは0.01〜5質量部含有することができる。塩基性化合物(d)の含有量が上記下限値以上であれば、樹脂組成物の保存安定性を向上させるとともにPEB温度マージンを拡大することができる。さらに、塩基性化合物(d)の含有量が上記上限値超えとなると、保存安定性の改善効果が飽和すると共に、レジスト特性に悪影響を及ぼす虞がある。
-Blending amount of basic compound (d) (based on 100 parts by mass of alkali-soluble resin (a))-
A resin composition is 0.001-10 mass parts normally with respect to 100 mass parts of alkali-soluble resin (a), Preferably 0.005-8 mass parts, More preferably, a basic compound (d) is 0.00. It can contain 01-5 mass parts. If content of a basic compound (d) is more than the said lower limit, the storage stability of a resin composition can be improved and a PEB temperature margin can be expanded. Furthermore, when the content of the basic compound (d) exceeds the above upper limit value, the effect of improving storage stability is saturated and the resist characteristics may be adversely affected.

-塩基性化合物(d)の配合量(光酸発生剤を基準として)-
さらに、樹脂組成物における塩基性化合物(d)の配合量は、質量基準で、光酸発生剤の配合量の0.001倍以上が好ましく、0.050倍以上がより好ましく、0.200倍以上がさらに好ましく、3.500倍未満が好ましく、2.000倍未満がより好ましく、0.500倍未満がさらに好ましい。光酸発生剤に対して塩基性化合物(d)を上記下限値以上の比率で配合することで、PEB温度マージンの許容範囲を拡大することができる。また、塩基性化合物(d)の配合量を上記上限値以下とすることで、露光により生じた酸を過剰に中和して架橋反応の進行を阻害することを回避することができる。これにより、樹脂組成物を用いて形成したレジストパターンの逆テーパー形状を良好なものとすることができる。また、塩基性化合物(d)の配合量を上記上限値以下とすることで、樹脂組成物を用いて形成したレジストの感度を向上させることができる。
-Blending amount of basic compound (d) (based on photoacid generator)-
Furthermore, the compounding amount of the basic compound (d) in the resin composition is preferably 0.001 times or more, more preferably 0.050 times or more, more preferably 0.200 times the compounding amount of the photoacid generator on a mass basis. The above is more preferable, less than 3.500 times is preferable, less than 2.000 times is more preferable, and less than 0.500 times is more preferable. By adding the basic compound (d) to the photoacid generator at a ratio equal to or higher than the above lower limit, the allowable range of the PEB temperature margin can be expanded. Moreover, by making the compounding quantity of a basic compound (d) below the said upper limit, it can avoid inhibiting the progress of a crosslinking reaction by excessively neutralizing the acid produced by exposure. Thereby, the reverse taper shape of the resist pattern formed using the resin composition can be made favorable. Moreover, the sensitivity of the resist formed using the resin composition can be improved by making the compounding quantity of a basic compound (d) below into the said upper limit.

[[その他の添加剤]]
樹脂組成物に対して、任意で、界面活性剤を添加することができる。界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類;ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェノルエーテルなどのポリオキシエチレンアリールエーテル類;ポリエチレングリコールジラウレート、エチレングリコールジステアレート等のポリエチレングリコールジアルキルエステル類;エフトップ EF301、EF303、EF352(新秋田化成社製)、メガファックス F171、F172、F173、F177(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガード AG710、サーフロン S−382、SC−101、SC−102、SC−103、SC−104、SC−105、SC−106(旭硝子社製)等のフッ素界面活性剤;オルガノシロキサンポリマー KP341(信越化学工業社製);アクリル酸系またはメタクリル酸系(共)重合体ポリフローNo.75、No.95(共栄社油脂化学工業社製)が挙げられる。これらの界面活性剤の配合量は、樹脂組成物の固形分100質量部当り、通常2質量部以下、好ましくは1質量部以下である。
[[Other additives]]
A surfactant can be optionally added to the resin composition. Examples of the surfactant include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, and polyoxyethylene oleyl ether; polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenol ether, and other polyoxyethylene alkyl ethers. Oxyethylene aryl ethers; polyethylene glycol dialkyl esters such as polyethylene glycol dilaurate and ethylene glycol distearate; EFTOP EF301, EF303, EF352 (manufactured by Shin-Akita Kasei Co., Ltd.), Megafax F171, F172, F173, F177 (Dainippon) Ink), Florard FC430, FC431 (Sumitomo 3M), Asahi Guard AG710, Surflon S-382, S Fluorine surfactants such as C-101, SC-102, SC-103, SC-104, SC-105, SC-106 (Asahi Glass Co., Ltd.); organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.); acrylic acid type Or methacrylic acid (co) polymer polyflow No. 75, no. 95 (manufactured by Kyoeisha Yushi Chemical Co., Ltd.). The compounding amount of these surfactants is usually 2 parts by mass or less, preferably 1 part by mass or less, per 100 parts by mass of the solid content of the resin composition.

[溶剤]
上述した各成分を溶解させる溶剤としては、有機溶剤を用いることが好ましい。有機溶剤は、上述したような各成分を均一に溶解または分散し得るために十分な量で用いられる。樹脂組成物溶液中の固形分濃度は、通常5〜50質量%、好ましくは10〜40質量%程度である。
[solvent]
An organic solvent is preferably used as a solvent for dissolving the above-described components. The organic solvent is used in an amount sufficient to uniformly dissolve or disperse each component as described above. The solid content concentration in the resin composition solution is usually 5 to 50% by mass, preferably about 10 to 40% by mass.

有機溶剤としては、例えば、n−プロピルアルコール、i−プロピルアルコール、n−ブチルアルコール、シクロヘキシルアルコール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン類;ギ酸プロピル、ギ酸ブチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸イソアミル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、酪酸エチル、乳酸メチル、乳酸エチル、エトキシプロピオン酸エチル、ピルビン酸エチル等のエステル類;テトラヒドロフラン、ジオキサン等の環状エーテル類;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ等のセロソルブ類;エチルセロソルブアセテート、プロピルセロソルブアセテート、ブチルセロソルブアセテートなどのセロソルブアセテート類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのアルコールエーテル類;プロピレングリコール、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルアセテート、プロピレングリコールモノブチルエーテルなどのプロピレングリコール類;ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテルなどのジエチレングリコール類;γ−ブチロラクトンなどのラクトン類;トリクロロエチレンなどのハロゲン化炭化水素類;トルエン、キシレンなどの芳香族炭化水素類;ジメチルアセトアミド、ジメチルホルムアミド、N−メチルアセトアミドなどの極性有機溶剤;これらの2種以上の混合溶剤などが挙げられる。   Examples of the organic solvent include alcohols such as n-propyl alcohol, i-propyl alcohol, n-butyl alcohol and cyclohexyl alcohol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone; propyl formate, Esters such as butyl formate, ethyl acetate, propyl acetate, butyl acetate, isoamyl acetate, methyl propionate, ethyl propionate, methyl butyrate, ethyl butyrate, methyl lactate, ethyl lactate, ethyl ethoxypropionate, ethyl pyruvate; tetrahydrofuran, Cyclic ethers such as dioxane; cellosolves such as methyl cellosolve, ethyl cellosolve, butyl cellosolve; ethyl cellosolve acetate, propyl cellosolve acetate, butyl cellosolve acetate Cellosolve acetates such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and other alcohol ethers; propylene glycol, propylene glycol monomethyl ether acetate, propylene glycol monoethyl acetate, propylene glycol Propylene glycols such as monobutyl ether; diethylene glycols such as diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether and diethylene glycol diethyl ether; lactones such as γ-butyrolactone; halogenated hydrocarbons such as trichloroethylene; toluene, Aromatic hydrocarbons such as xylene; polar organic solvents such as dimethylacetamide, dimethylformamide, N-methylacetamide; mixed solvents of two or more of these.

<塗布工程>
塗布工程では、調製工程で得られた樹脂組成物を基板上に塗布及び乾燥して塗膜を形成する。また、基板は、半導体基板として使用されうる一般的な基板であれば特に限定されることなく、例えば、シリコン基板、ガラス基板、ITO膜形成基板、クロム膜形成基板、樹脂基板でありうる。また、塗布方法としては、スピンコーティング、スプレー、ハケ塗り等により塗布する方法、ディップコーティング等の一般的な塗布方法を採用することができる。
<Application process>
In the coating step, the resin composition obtained in the preparation step is coated on a substrate and dried to form a coating film. The substrate is not particularly limited as long as it is a general substrate that can be used as a semiconductor substrate, and may be, for example, a silicon substrate, a glass substrate, an ITO film formation substrate, a chromium film formation substrate, or a resin substrate. In addition, as a coating method, a general coating method such as spin coating, spraying, brush coating, or dip coating can be employed.

<第1熱処理工程>
第1熱処理工程では、塗布工程にて形成した塗膜を第1の温度で加熱する。ここで、第1の温度であるプリベーク温度は、第2の温度であるポストベーク温度よりも高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことがさらに好ましい。プリベーク温度がポストベーク温度よりも高ければ、得られるレジストパターンの逆テーパー形状を一層良好なものとするとともに、かかる良好な逆テーパー形状を高温環境下でも一層良好に維持することができる。なお、第1の温度であるプリベーク温度は80℃以上が好ましく、100℃以上がより好ましく、105℃以上がさらに好ましく、130℃以下が好ましく、125℃以下がより好ましい。また、第1熱処理工程の時間は、10秒以上200秒以下でありうる。また、第1熱処理工程は、特に限定されることなく、一般的なベーク装置に備えられたホットプレート等の加熱機構上に塗膜を形成した基板を載置することにより、実施可能であり、プリベーク温度は、ホットプレートの設定温度を変更することにより、制御することができる。そして、第1熱処理工程を経て得られたレジスト膜の膜厚は、通常0.1μm以上15μm以下である。
<First heat treatment step>
In the first heat treatment step, the coating film formed in the coating step is heated at a first temperature. Here, the pre-baking temperature that is the first temperature is preferably higher than the post-baking temperature that is the second temperature, more preferably 5 ° C. or more, and even more preferably 10 ° C. or more. If the pre-baking temperature is higher than the post-baking temperature, the reverse taper shape of the resulting resist pattern can be made better, and such a good reverse taper shape can be better maintained even in a high temperature environment. The pre-bake temperature, which is the first temperature, is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, further preferably 105 ° C. or higher, preferably 130 ° C. or lower, and more preferably 125 ° C. or lower. The time for the first heat treatment step may be 10 seconds or more and 200 seconds or less. Further, the first heat treatment step is not particularly limited, and can be performed by placing a substrate on which a coating film is formed on a heating mechanism such as a hot plate provided in a general baking apparatus, The pre-baking temperature can be controlled by changing the set temperature of the hot plate. And the film thickness of the resist film obtained through the 1st heat processing process is 0.1 to 15 micrometer normally.

<露光工程>
露光工程では、第1熱処理工程を経て得られたレジスト膜に対して、活性放射線を照射する。活性放射線は、波長13.5nm以上450nm以下であり、具体的には、紫外線、遠紫外線、エキシマレーザー光、X線、電子線、極端紫外光(Extreme Ultra Violet)などが挙げられる。露光光源としては、活性放射線を照射することが可能な光源であれば特に限定されることなく、例えば、紫外線光源、半導体レーザー照射装置、メタルハライドランプ、高圧水銀灯、エキシマレーザー(KrF,ArF,F2)照射装置、X線露光装置、電子線露光装置、及びEUV露光装置等が挙げられる。
そして、露光量は、通常、10mJ/cm以上、2000mJ/cm以下であり、露光時間は、通常、1秒以上180秒以下である。
<Exposure process>
In the exposure step, the resist film obtained through the first heat treatment step is irradiated with actinic radiation. The active radiation has a wavelength of 13.5 nm or more and 450 nm or less, and specifically includes ultraviolet rays, far ultraviolet rays, excimer laser light, X-rays, electron beams, extreme ultraviolet light (Extreme Ultra Violet), and the like. The exposure light source is not particularly limited as long as it is a light source capable of irradiating actinic radiation. For example, an ultraviolet light source, a semiconductor laser irradiation device, a metal halide lamp, a high-pressure mercury lamp, an excimer laser (KrF, ArF, F2) Examples include an irradiation apparatus, an X-ray exposure apparatus, an electron beam exposure apparatus, and an EUV exposure apparatus.
The exposure amount is usually 10 mJ / cm 2 or more and 2000 mJ / cm 2 or less, and the exposure time is usually 1 second or more and 180 seconds or less.

<第2熱処理工程>
第2熱処理工程では、露光工程開始後のレジスト膜を第2の温度条件下に保持する。具体的には、第2熱処理工程は露光工程の開始後であれば、露光工程が完了する前に開始しても良いし、露光工程が完了した後に開始しても良い。第2熱処理工程は、第1熱処理工程と同様の装置により実施することができるが、露光工程が完了する前に第2熱処理工程を開始する場合には、露光装置の試料台がホットプレート様の機能を有することが好ましい。第2の温度は、第1の温度以下であり、好ましくは20℃以上、より好ましくは80℃以上、通常130℃以下、好ましくは120℃以下、より好ましくは115℃以下でありうる。また、第2熱処理工程の時間は、通常10秒以上、好ましくは、60秒以上、より好ましくは100秒以上であり、通常200秒以下である。第2熱処理工程にて、露光工程を経たレジスト膜を第2の温度条件下に保持することで、架橋成分(b)の架橋反応を促進することができる。なお、活性放射線の照射のみにより十分な架橋反応が生じるアルカリ可溶性樹脂(a)及び架橋成分(b)の組み合わせを採用した場合にあっては、第2熱処理工程では、レジスト膜を「加熱」せずに、室温程度(例えば、25℃)の雰囲気下にて所定時間保持しても良い。
<Second heat treatment step>
In the second heat treatment step, the resist film after the start of the exposure step is held under the second temperature condition. Specifically, as long as the second heat treatment step is after the start of the exposure step, it may be started before the exposure step is completed, or may be started after the exposure step is completed. The second heat treatment step can be performed by the same apparatus as the first heat treatment step. However, when the second heat treatment step is started before the exposure step is completed, the sample stage of the exposure device is a hot plate-like one. It preferably has a function. The second temperature is not higher than the first temperature, preferably 20 ° C. or higher, more preferably 80 ° C. or higher, usually 130 ° C. or lower, preferably 120 ° C. or lower, more preferably 115 ° C. or lower. The time for the second heat treatment step is usually 10 seconds or longer, preferably 60 seconds or longer, more preferably 100 seconds or longer, and usually 200 seconds or shorter. In the second heat treatment step, the cross-linking reaction of the cross-linking component (b) can be promoted by maintaining the resist film that has undergone the exposure step under the second temperature condition. When a combination of an alkali-soluble resin (a) and a crosslinking component (b) that cause a sufficient crosslinking reaction only by irradiation with actinic radiation is employed, the resist film is “heated” in the second heat treatment step. Instead, it may be held for a predetermined time in an atmosphere of about room temperature (eg, 25 ° C.).

<現像工程>
アルカリ現像液を用いて、パドル現像、スプレー現像、及びディップ現像等の一般的な現像方法により、レジストパターンを現像する。現像工程にて使用するアルカリ現像液は、pH8以上のアルカリ水溶液でありうる。アルカリとしては、水酸化ナトリウム、水酸化カリウム、ケイ酸ナトリウム、アンモニアなどの無機アルカリ;エチルアミン、プロピルアミンなどの第一級アミン類;ジエチルアミン、ジプロピルアミンなどの第二級アミン類;トリメチルアミン、トリエチルアミンなどの第三級アミン類;ジエチルエタノールアミン、トリエタノールアミンなどのアルコールアミン類;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、トリエチルヒドロキシメチルアンモニウムヒドロキシド、トリメチルヒドロキシエチルアンモニウムヒドロキシドなどの第四級アンモニウムヒドロキシド類;などが挙げられる。また、必要に応じて、アルカリ水溶液には、メチルアルコール、エチルアルコール、プロピルアルコール、エチレングリコールなどの水溶性有機溶剤、界面活性剤、樹脂の溶解抑制剤などを添加することができる。
<Development process>
The resist pattern is developed using an alkaline developer by a general development method such as paddle development, spray development, and dip development. The alkaline developer used in the development process may be an alkaline aqueous solution having a pH of 8 or higher. Examples of the alkali include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium silicate and ammonia; primary amines such as ethylamine and propylamine; secondary amines such as diethylamine and dipropylamine; trimethylamine and triethylamine Tertiary amines such as; alcohol amines such as diethylethanolamine and triethanolamine; quaternary such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, triethylhydroxymethylammonium hydroxide, trimethylhydroxyethylammonium hydroxide Ammonium hydroxides; and the like. If necessary, a water-soluble organic solvent such as methyl alcohol, ethyl alcohol, propyl alcohol, and ethylene glycol, a surfactant, a resin dissolution inhibitor, and the like can be added to the alkaline aqueous solution.

そして、現像工程を経て得られたレジストパターンは、リフトオフ法に用いられる場合は、その上から基板全面に対して金属配線材料を蒸着させて、金属蒸着膜などの各種膜を形成する。その後、レジストパターンを、その上に形成された膜と共に除去し、基板上に形成された金属蒸着膜などの膜を残す。有機EL表示素子を作成する場合には、現像により得られたレジストパターンの上から有機EL材料を蒸着し、次いで、アルミニウムなどの金属を蒸着する。この場合、レジストパターンは、除去することなく残しておく。   When the resist pattern obtained through the development process is used in the lift-off method, a metal wiring material is vapor-deposited on the entire surface of the substrate to form various films such as a metal vapor deposition film. Thereafter, the resist pattern is removed together with the film formed thereon to leave a film such as a metal vapor deposition film formed on the substrate. When producing an organic EL display element, an organic EL material is vapor-deposited on the resist pattern obtained by development, and then a metal such as aluminum is vapor-deposited. In this case, the resist pattern is left without being removed.

(レジスト)
本発明のレジストは、アルカリ可溶性樹脂(a)、活性放射線の照射、又は、活性放射線の照射及びその後の熱処理により、アルカリ可溶性樹脂を架橋する架橋成分(b)、及び活性放射線を吸収する化合物(c)を含有する感放射線性樹脂組成物であって、(1)架橋成分(b)が、活性放射線の照射によって酸を発生する化合物と、活性放射線によって発生した酸を触媒としてアルカリ可溶性樹脂(a)を架橋する化合物との組み合わせであり、(2)活性放射線を吸収する化合物(c)を、アルカリ可溶性樹脂(a)100質量部に対して、1.0質量部超含む、感放射線性樹脂組成物を用いて形成され、ライン及びスペースからなる、断面が逆テーパー形状のレジストパターンを形成した場合に、非露光面におけるライン幅Wbに対する露光面におけるライン幅Wtの比率Wb/Wtが、0.7未満、好ましくは0.6未満であり、120℃の温度条件下で1分間加熱した後にレジストパターンの逆テーパー形状を構成するラインの側壁がレジスト表面に対してなす角度が、90°未満である。かかるレジストは、本発明のレジストパターン形成方法により得られ、テーパー角度が十分に大きく、さらに高温環境下においた場合であっても良好な逆テーパー形状を維持することができるレジストパターンを有する。そして、かかるレジストには、少なくとも、アルカリ可溶性樹脂(a)、架橋成分(b)、及び活性放射線を吸収する化合物(c)が含有されており、任意で、塩基性化合物(d)及びその他の成分が含有されている。なお、レジスト中に含まれている各成分は、上記感放射線性樹脂組成物に含有されていたものであり、それらの好適な存在比は、樹脂組成物中の各成分の好適な存在比と同じである。さらに、レジスト中では、アルカリ可溶性樹脂(a)が相互に架橋された状態で存在する。本発明のレジストは、配線パターンの形成に用いた場合に、微細な配線パターンを良好に形成することができる。また、本発明のレジストは、耐熱性に優れるため、レジストパターンを加熱してもテーパー形状を維持することでき、例えば、一般的に高温環境下で行われる金属蒸着による配線パターンの形成に用いた場合に、微細な配線パターンを良好に形成することができる。
(Resist)
The resist of the present invention comprises an alkali-soluble resin (a), irradiation with actinic radiation, or a crosslinking component (b) that crosslinks the alkali-soluble resin by irradiation with actinic radiation and subsequent heat treatment, and a compound that absorbs actinic radiation ( a radiation-sensitive resin composition containing c), wherein (1) the crosslinking component (b) is a compound capable of generating an acid upon irradiation with actinic radiation and an alkali-soluble resin (catalyst) using the acid generated by the actinic radiation as a catalyst. Radiation sensitivity, which is a combination with a compound that crosslinks a), and includes (2) compound (c) that absorbs actinic radiation in excess of 1.0 part by mass with respect to 100 parts by mass of alkali-soluble resin (a). When a resist pattern formed of a resin composition and made of lines and spaces and having a cross-section with a reverse taper is formed, The ratio Wb / Wt of the line width Wt on the exposed surface is less than 0.7, preferably less than 0.6, and forms a reverse tapered shape of the resist pattern after heating for 1 minute at a temperature of 120 ° C. Is less than 90 ° with respect to the resist surface. Such a resist is obtained by the resist pattern forming method of the present invention, and has a resist pattern that has a sufficiently large taper angle and can maintain a good reverse taper shape even in a high temperature environment. Such a resist contains at least an alkali-soluble resin (a), a crosslinking component (b), and a compound (c) that absorbs active radiation, and optionally, a basic compound (d) and other compounds. Contains ingredients. Each component contained in the resist was contained in the radiation-sensitive resin composition, and a suitable abundance ratio thereof was a suitable abundance ratio of each component in the resin composition. The same. Further, in the resist, the alkali-soluble resin (a) exists in a state of being cross-linked with each other. The resist of the present invention can satisfactorily form a fine wiring pattern when used for forming a wiring pattern. In addition, since the resist of the present invention is excellent in heat resistance, it can maintain a tapered shape even when the resist pattern is heated. For example, the resist of the present invention is generally used for forming a wiring pattern by metal vapor deposition performed in a high temperature environment. In this case, a fine wiring pattern can be formed satisfactorily.

以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
実施例および比較例において、レジストの逆テーパー形状及び耐熱性は、それぞれ、以下のようにして測定及び評価した。また、実施例及び比較例に用いたアルカリ可溶性樹脂の重量平均分子量の測定条件は以下の通りとした。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the following description, “%” and “part” representing amounts are based on mass unless otherwise specified.
In the examples and comparative examples, the reverse taper shape and heat resistance of the resist were measured and evaluated as follows. Moreover, the measurement conditions of the weight average molecular weight of alkali-soluble resin used for the Example and the comparative example were as follows.

<逆テーパー形状>
実施例、比較例で形成した、ライン(現像工程後に溶解せずに残る部分)とスペース(現像工程にてレジスト膜が溶解し、空隙となった部分)からなるレジストパターンについて、レジスト膜下面(即ち、基板側)におけるライン幅(ボトム線幅)と、レジスト膜上面におけるライン幅(トップ線幅)とを走査型電子顕微鏡(SEM)観察下でそれぞれ測定した。得られたボトム線幅をトップ線幅で除して、以下の基準に従って評価した。ボトム線幅/トップ線幅の値が大きいほど、ライン(現像工程後に溶解せずに残る部分)の逆台形の上底及び下底の長さの差が大きく、レジストパターンのテーパー角度が大きいことを意味する。
A:ボトム線幅/トップ線幅の値が0.6未満
B:ボトム線幅/トップ線幅の値が0.6以上0.7未満
C:ボトム線幅/トップ線幅の値が0.7以上
<耐熱性>
実施例、比較例でレジストパターンを形成した基板を、更に、ホットプレート上で120℃ で1分間加熱した。その後、レジストパターンを形成した基板について、SEMを用いて断面形状を観察し、逆テーパー形状を構成するレジストの側壁がレジスト表面に対してなす角度を測定し、以下の基準に従って耐熱性を評価した。本評価方法によれば、現像工程後に更に加熱した後にテーパー角が十分に大きい良好な逆テーパー形状を維持することができたことを評価することができる。即ち、形成されたレジストパターンが、例えば、金属配線材料等の蒸着工程に供されて加熱された場合であっても、良好な逆テーパー形状を維持しうるか評価することができる。
A:側壁がレジスト表面に対してなす角度が70°以下
B:側壁がレジスト表面に対してなす角度が70°超80°以下
C:側壁がレジスト表面に対してなす角度が80°超90°以下
C:側壁がレジスト表面に対してなす角度が90°超
<Reverse taper shape>
For the resist pattern formed in the examples and comparative examples, consisting of lines (parts that remain undissolved after the development process) and spaces (parts in which the resist film dissolves and becomes voids in the development process), the resist film lower surface ( That is, the line width (bottom line width) on the substrate side) and the line width (top line width) on the upper surface of the resist film were measured under observation with a scanning electron microscope (SEM). The obtained bottom line width was divided by the top line width and evaluated according to the following criteria. The larger the bottom line width / top line width value, the greater the difference in length between the upper and lower bases of the inverted trapezoid of the line (the portion that remains undissolved after the development process), and the greater the taper angle of the resist pattern. Means.
A: Bottom line width / top line width value of less than 0.6 B: Bottom line width / top line width value of 0.6 or more and less than 0.7 C: Bottom line width / top line width value of 0. 7 or more <Heat resistance>
The substrate on which the resist pattern was formed in Examples and Comparative Examples was further heated at 120 ° C. for 1 minute on a hot plate. Thereafter, the cross-sectional shape of the substrate on which the resist pattern was formed was observed using an SEM, the angle formed by the resist sidewalls constituting the inverse tapered shape with respect to the resist surface was measured, and the heat resistance was evaluated according to the following criteria. . According to this evaluation method, it can be evaluated that a good reverse taper shape having a sufficiently large taper angle can be maintained after further heating after the development step. That is, it is possible to evaluate whether or not the formed resist pattern can maintain a good reverse taper shape even when it is heated by being subjected to a vapor deposition process of a metal wiring material or the like.
A: Angle formed by the side wall with respect to the resist surface is 70 ° or less B: Angle formed by the side wall with respect to the resist surface is more than 70 ° and less than 80 ° C: Angle formed by the side wall with respect to the resist surface is more than 80 ° and 90 ° C: Angle formed by the side wall with respect to the resist surface exceeds 90 °

<重量平均分子量の測定>
-条件-
装置 :HLC−8120GPC(東ソー製)
カラム:TSKgel G5000HXL、内径7.8mm×長さ30cm(東ソー製)の2連
温度 :40℃
溶媒 :テトラヒドロフラン(THF)
流速 :1.0ml/分
試料 :濃度0.05〜0.1質量%の試料を0.05〜0.2ml注入
-検量線-
分子量がそれぞれ、5.0×10、2.5×10、9.83×10、3.72×10、1.89×10、7.07×10、1.11×10である、7種の東ソー製単分散ポリスチレン標準試料を用いて作成した分子量校正曲線を使用した。
<Measurement of weight average molecular weight>
-conditions-
Apparatus: HLC-8120GPC (manufactured by Tosoh)
Column: TSKgel G5000HXL, inner diameter 7.8 mm × length 30 cm (manufactured by Tosoh Corp.) Temperature: 40 ° C.
Solvent: Tetrahydrofuran (THF)
Flow rate: 1.0 ml / min Sample: 0.05-0.2 ml of a sample having a concentration of 0.05-0.1% by mass is injected.
-Calibration curve-
The molecular weights are 5.0 × 10 2 , 2.5 × 10 3 , 9.83 × 10 3 , 3.72 × 10 4 , 1.89 × 10 5 , 7.07 × 10 5 , 1.11 ×, respectively. A molecular weight calibration curve prepared using 7 types of Tosoh monodisperse polystyrene standard samples, 10 6 , was used.

(実施例1)
<感放射線性樹脂組成物溶液の調製(調製工程)>
m-クレゾール70部及びp-クレゾール30部を、ホルムアルデヒド19部と脱水縮合して得た重量平均分子量3000のノボラック樹脂をアルカリ可溶性樹脂(a)として用いた。
かかるアルカリ可溶性樹脂(a)100部と、架橋成分(b)としての、ハロゲン含有トリアジン系光酸発生剤(みどり化学製、商品名「TAZ110」)2部、メラミン系架橋剤(酸架橋剤:三井サイテック製、商品名「サイメル303」)8部と、活性放射線を吸収する化合物(c)としてのビスアジド化合物(東洋合成工業製、商品名「BAC−M」)2部とを、有機溶剤としてのプロピレングリコールモノメチルエーテルアセテート(PGMEA)176部中に溶解させた。得られた感放射線性樹脂組成物の分散液を、孔径0.1μmのポリテトラフルオロエチレン製メンブランフィルターで濾過して、固形分濃度が39質量%の感放射線性樹脂組成物溶液を調製した。
Example 1
<Preparation of radiation-sensitive resin composition solution (preparation process)>
A novolak resin having a weight average molecular weight of 3000 obtained by dehydrating and condensing 70 parts of m-cresol and 30 parts of p-cresol with 19 parts of formaldehyde was used as the alkali-soluble resin (a).
100 parts of the alkali-soluble resin (a), 2 parts of a halogen-containing triazine photoacid generator (manufactured by Midori Chemical, trade name “TAZ110”) as a crosslinking component (b), a melamine-based crosslinking agent (acid crosslinking agent: 8 parts of Mitsui Cytec, trade name “Cymel 303”) and 2 parts of a bisazide compound (trade name “BAC-M”, manufactured by Toyo Gosei Co., Ltd.) as the compound (c) that absorbs active radiation, as an organic solvent In 176 parts of propylene glycol monomethyl ether acetate (PGMEA). The obtained dispersion of the radiation sensitive resin composition was filtered through a polytetrafluoroethylene membrane filter having a pore size of 0.1 μm to prepare a radiation sensitive resin composition solution having a solid content concentration of 39% by mass.

<レジストパターンの形成>
基材としてのシリコンウェハ上に、スピンコーターを用いて感放射線性樹脂組成物溶液を塗布及び乾燥させて塗膜を形成した(塗布工程)。次いで、第1の温度(プリベーク温度)110℃に設定したホットプレート上に、表面に塗膜を有するシリコンウェハを載置し、90秒間保持して第1熱処理(プリベーク)工程を実施した。得られたレジスト膜の膜厚は4μmであった。
このレジスト膜の上から、20μmのライン&スペース(L&S)パターンのマスクを用いて、パラレルライトマスクアライナー(キャノン製、商品名「PLA501F」、紫外線光源、照射波長365nm〜436nm)で露光した。露光量は、ライン部分の幅とスペース部分の幅との比率が1:1となる露光量とした(露光工程)。露光工程後、第2の温度(ポストベーク温度)100℃に設定してホットプレート上にレジスト膜付きのシリコンウェハを載置し、100秒間保持して第2熱処理(ポストベーク)工程を実施した。第2熱処理工程後、2.38質量%のテトラメチルアンモニウムヒドロキシド(TMAH)水溶液で、70秒間パドル現像し、L&Sのレジストパターンを得た。レジストパターンの断面形状は、逆テーパー形状であった。そして、得られたレジストパターンについて上述の方法に従って評価を行った結果を表1に示す。
<Formation of resist pattern>
On the silicon wafer as a base material, the radiation sensitive resin composition solution was apply | coated and dried using the spin coater, and the coating film was formed (application | coating process). Next, a silicon wafer having a coating film on the surface was placed on a hot plate set at a first temperature (pre-baking temperature) of 110 ° C., and held for 90 seconds to perform a first heat treatment (pre-baking) step. The film thickness of the obtained resist film was 4 μm.
The resist film was exposed with a parallel light mask aligner (manufactured by Canon, trade name “PLA501F”, ultraviolet light source, irradiation wavelength 365 nm to 436 nm) using a 20 μm line & space (L & S) pattern mask. The exposure amount was an exposure amount at which the ratio of the width of the line portion to the width of the space portion was 1: 1 (exposure process). After the exposure process, the second temperature (post-bake temperature) was set to 100 ° C., a silicon wafer with a resist film was placed on the hot plate, and the second heat treatment (post-bake) process was performed by holding for 100 seconds. . After the second heat treatment step, paddle development was performed for 70 seconds with a 2.38 mass% aqueous tetramethylammonium hydroxide (TMAH) solution to obtain an L & S resist pattern. The cross-sectional shape of the resist pattern was a reverse taper shape. Table 1 shows the results of evaluating the obtained resist pattern according to the above-described method.

(実施例2)
感放射線性樹脂組成物溶液の調製にあたり塩基性化合物(d)として、トリエタノールアミン(TEOA)0.5部をさらに配合した以外は、実施例1と同様として、レジストパターンを形成した。そして、得られたレジストパターンについて上述の方法に従って評価を行った結果を表1に示す。
(Example 2)
A resist pattern was formed in the same manner as in Example 1 except that 0.5 parts of triethanolamine (TEOA) was further added as a basic compound (d) in preparing the radiation-sensitive resin composition solution. Table 1 shows the results of evaluating the obtained resist pattern according to the above-described method.

(実施例3〜4)
感放射線性樹脂組成物溶液の調製にあたり、活性放射線を吸収する化合物(c)の配合量を表1に示す通りに変更した以外は実施例1と同様にして、レジストパターンを形成した。そして、得られたレジストパターンについて上述の方法に従って評価を行った結果を表1に示す。
(Examples 3 to 4)
In preparing the radiation-sensitive resin composition solution, a resist pattern was formed in the same manner as in Example 1 except that the amount of compound (c) that absorbs active radiation was changed as shown in Table 1. Table 1 shows the results of evaluating the obtained resist pattern according to the above-described method.

(実施例5〜9)
レジストパターンの形成にあたり、それぞれ、第1熱処理(プリベーク)工程における第1の温度及び第2熱処理(ポストベーク)工程における第2の温度の組み合わせをそれぞれ表1に示す通りに変更した以外は、実施例1と同様にして、レジストパターンを形成した。そして、得られたレジストパターンについて上述の方法に従って評価を行った結果を表1に示す。
(Examples 5 to 9)
In forming the resist pattern, the combination of the first temperature in the first heat treatment (pre-baking) step and the combination of the second temperature in the second heat treatment (post-baking) step was changed as shown in Table 1, respectively. In the same manner as in Example 1, a resist pattern was formed. Table 1 shows the results of evaluating the obtained resist pattern according to the above-described method.

(比較例1〜3)
レジストパターンの形成にあたり、それぞれ、第1熱処理(プリベーク)工程における第1の温度よりも、第2熱処理(ポストベーク)工程における第2の温度を高く設定した以外は、実施例1と同様にして、レジストパターンを形成した。そして、得られたレジストパターンについて上述の方法に従って評価を行った結果を表1に示す。
(Comparative Examples 1-3)
In forming the resist pattern, the same procedure as in Example 1 was conducted except that the second temperature in the second heat treatment (post-baking) step was set higher than the first temperature in the first heat treatment (pre-baking) step. A resist pattern was formed. Table 1 shows the results of evaluating the obtained resist pattern according to the above-described method.

(比較例4)
レジストパターンの形成にあたり、それぞれ、第1熱処理(プリベーク)工程における第1の温度と、第2熱処理(ポストベーク)工程における第2の温度とを同一温度に設定し、且つ、活性放射線を吸収する化合物(c)の配合量を1質量部に変更した以外は、実施例1と同様にして、レジストパターンを形成した。そして、得られたレジストパターンについて上述の方法に従って評価を行った結果を表1に示す。
(Comparative Example 4)
In forming the resist pattern, the first temperature in the first heat treatment (pre-baking) step and the second temperature in the second heat treatment (post-baking) step are set to the same temperature, and actinic radiation is absorbed. A resist pattern was formed in the same manner as in Example 1 except that the amount of compound (c) was changed to 1 part by mass. Table 1 shows the results of evaluating the obtained resist pattern according to the above-described method.

(比較例5)
レジストパターンの形成にあたり、第1熱処理(プリベーク)工程における第1の温度を、第2熱処理(ポストベーク)工程における第2の温度よりも高く設定したが、活性放射線を吸収する化合物(c)の配合量は1質量部に変更した。この点以外は、実施例1と同様にして、レジストパターンを形成した。そして、得られたレジストパターンについて上述の方法に従って評価を行った結果を表1に示す。
(Comparative Example 5)
In forming the resist pattern, the first temperature in the first heat treatment (pre-baking) step was set higher than the second temperature in the second heat treatment (post-baking) step, but the compound (c) that absorbs active radiation is used. The blending amount was changed to 1 part by mass. Except for this point, a resist pattern was formed in the same manner as in Example 1. Table 1 shows the results of evaluating the obtained resist pattern according to the above-described method.

Figure 2017169807
Figure 2017169807

表1より、アルカリ可溶性樹脂(a)、架橋成分(b)である光酸発生剤及び酸架橋剤、及び、活性放射線を吸収する化合物(c)を含有する感放射線性樹脂組成物であって、化合物(c)を、アルカリ可溶性樹脂(a)100質量部に対して、1.0質量部超含む樹脂組成物を用い、プリベーク温度がポストベーク温度以上である実施例1〜9では、良好な逆テーパー形状のレジストパターンを形成するとともに、高温環境下でも良好な逆テーパー形状を維持することができることが分かる。一方、プリベーク温度がポストベーク温度未満である比較例1〜3、及び化合物(c)の含有量が1質量部以下である比較例4〜5では、良好なテーパー形状と耐熱性とを両立することができないことが分かる。   From Table 1, it is a radiation-sensitive resin composition containing an alkali-soluble resin (a), a photoacid generator and an acid crosslinking agent as a crosslinking component (b), and a compound (c) that absorbs active radiation. In Examples 1 to 9, in which the pre-baking temperature is equal to or higher than the post-baking temperature, using a resin composition containing more than 1.0 part by weight of the compound (c) with respect to 100 parts by weight of the alkali-soluble resin (a) It can be seen that a resist pattern having a reverse taper shape can be formed, and a good reverse taper shape can be maintained even in a high temperature environment. On the other hand, in Comparative Examples 1 to 3 in which the pre-baking temperature is lower than the post-baking temperature and Comparative Examples 4 to 5 in which the content of the compound (c) is 1 part by mass or less, both a good taper shape and heat resistance are achieved. I can't understand.

本発明によれば、逆テーパー形状が良好であり、更に耐熱性に優れるレジストパターンを形成することができる。
また、本発明のレジストは、レジストパターンの逆テーパー形状が良好であり、耐熱性に優れる。
According to the present invention, it is possible to form a resist pattern having a good reverse taper shape and further excellent heat resistance.
In addition, the resist of the present invention has a good reverse taper shape of the resist pattern and is excellent in heat resistance.

Claims (3)

感放射線性樹脂組成物を調製する調製工程と、
基板上に、前記感放射線性樹脂組成物を塗布及び乾燥して塗膜を形成する塗布工程と、
前記塗膜を第1の温度で加熱する第1熱処理工程と、
前記第1熱処理工程を経て得られたレジスト膜に対して、活性放射線を照射する露光工程と、
前記露光工程の開始以降に、前記レジスト膜を第2の温度条件下に保持する第2熱処理工程と、を含み、
前記感放射線性樹脂組成物が、アルカリ可溶性樹脂(a)、活性放射線の照射、又は、活性放射線の照射及びその後の熱処理により、前記アルカリ可溶性樹脂を架橋する架橋成分(b)、及び前記活性放射線を吸収する化合物(c)を含有する感放射線性樹脂組成物であって、(1)前記架橋成分(b)が、前記活性放射線の照射によって酸を発生する化合物と、前記活性放射線によって発生した酸を触媒として前記アルカリ可溶性樹脂(a)を架橋する化合物との組み合わせであり、(2)前記活性放射線を吸収する化合物(c)を、前記アルカリ可溶性樹脂(a)100質量部に対して、1.0質量部超含み、且つ、
前記第1の温度が前記第2の温度以上である、レジストパターン形成方法。
A preparation step of preparing a radiation-sensitive resin composition;
On the substrate, an application step of applying and drying the radiation sensitive resin composition to form a coating film,
A first heat treatment step of heating the coating film at a first temperature;
An exposure step of irradiating actinic radiation to the resist film obtained through the first heat treatment step;
A second heat treatment step of holding the resist film under a second temperature condition after the start of the exposure step,
The radiation-sensitive resin composition comprises an alkali-soluble resin (a), actinic radiation, or a crosslinking component (b) that crosslinks the alkali-soluble resin by irradiation with actinic radiation and subsequent heat treatment, and the actinic radiation. A radiation-sensitive resin composition containing a compound (c) that absorbs the radiation, wherein (1) the crosslinking component (b) is generated by the active radiation and the compound that generates an acid upon irradiation with the active radiation It is a combination with a compound that crosslinks the alkali-soluble resin (a) using an acid as a catalyst, and (2) the compound (c) that absorbs active radiation is added to 100 parts by mass of the alkali-soluble resin (a). More than 1.0 parts by weight, and
A resist pattern forming method, wherein the first temperature is equal to or higher than the second temperature.
前記感放射線性樹脂組成物が、塩基性化合物(d)をさらに含む、請求項1に記載のレジストパターン形成方法。   The resist pattern formation method of Claim 1 with which the said radiation sensitive resin composition further contains a basic compound (d). アルカリ可溶性樹脂(a)、活性放射線の照射、又は、活性放射線の照射及びその後の熱処理により、前記アルカリ可溶性樹脂を架橋する架橋成分(b)、及び前記活性放射線を吸収する化合物(c)を含有する感放射線性樹脂組成物であって、(1)前記架橋成分(b)が、前記活性放射線の照射によって酸を発生する化合物と、前記活性放射線によって発生した酸を触媒として前記アルカリ可溶性樹脂(a)を架橋する化合物との組み合わせであり、(2)前記活性放射線を吸収する化合物(c)を、前記アルカリ可溶性樹脂(a)100質量部に対して、1.0質量部超含む、感放射線性樹脂組成物を用いて形成され、
ライン及びスペースからなる、断面が逆テーパー形状のレジストパターンを形成した場合に、非露光面におけるライン幅Wbに対する露光面におけるライン幅Wtの比率Wb/Wtが、0.7未満であり、
120℃の温度条件下で1分間加熱した後に前記レジストパターンの逆テーパー形状を構成する前記ラインの側壁がレジスト表面に対してなす角度が、90°未満である、レジスト。
Contains alkali-soluble resin (a), actinic radiation, or a crosslinking component (b) that crosslinks alkali-soluble resin by irradiation with actinic radiation and subsequent heat treatment, and compound (c) that absorbs actinic radiation (1) The alkali-soluble resin (1) wherein the crosslinking component (b) is a compound that generates an acid upon irradiation with the active radiation and an acid generated by the active radiation as a catalyst. a combination with a compound that crosslinks a), and (2) a compound (c) that absorbs active radiation contains more than 1.0 part by mass with respect to 100 parts by mass of the alkali-soluble resin (a). Formed using a radiation resin composition,
When a resist pattern having a cross section with a reverse taper shape formed of lines and spaces is formed, the ratio Wb / Wt of the line width Wt on the exposed surface to the line width Wb on the non-exposed surface is less than 0.7,
A resist in which an angle formed by a side wall of the line constituting an inversely tapered shape of the resist pattern with respect to a resist surface after heating for 1 minute under a temperature condition of 120 ° C. is less than 90 °.
JP2018508999A 2016-03-31 2017-03-15 Resist pattern formation method and resist Active JP7044058B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016071558 2016-03-31
JP2016071558 2016-03-31
PCT/JP2017/010518 WO2017169807A1 (en) 2016-03-31 2017-03-15 Resist pattern formation method and resist

Publications (2)

Publication Number Publication Date
JPWO2017169807A1 true JPWO2017169807A1 (en) 2019-02-14
JP7044058B2 JP7044058B2 (en) 2022-03-30

Family

ID=59964319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018508999A Active JP7044058B2 (en) 2016-03-31 2017-03-15 Resist pattern formation method and resist

Country Status (5)

Country Link
JP (1) JP7044058B2 (en)
KR (1) KR102417026B1 (en)
CN (1) CN108700835B (en)
TW (1) TWI781094B (en)
WO (1) WO2017169807A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7189217B2 (en) * 2017-12-28 2022-12-13 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Negative lift-off resist composition comprising alkali-soluble resin and cross-linking agent, and method for producing metal film pattern on substrate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106919A (en) * 1988-10-17 1990-04-19 Toshiba Corp Manufacture of semiconductor device
JPH1124286A (en) * 1997-07-02 1999-01-29 Citizen Watch Co Ltd Pattern forming method for photosensitive resin
JP2002139842A (en) * 2000-11-01 2002-05-17 Fujitsu Ltd Pattern forming method and semiconductor device
JP2005284208A (en) * 2004-03-31 2005-10-13 Nippon Zeon Co Ltd Photosensitive resin composition and pattern forming method
JP2009198962A (en) * 2008-02-25 2009-09-03 Sumitomo Bakelite Co Ltd Resin composition
WO2011102064A1 (en) * 2010-02-19 2011-08-25 Jsr株式会社 METHOD FOR FORMATION OF ELECTRODE ON n-TYPE SEMICONDUCTOR LAYER
JP2015028576A (en) * 2013-07-01 2015-02-12 富士フイルム株式会社 Pattern forming method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3320397B2 (en) * 2000-03-09 2002-09-03 クラリアント ジャパン 株式会社 Method of forming reverse tapered resist pattern
JP4513965B2 (en) 2004-03-31 2010-07-28 日本ゼオン株式会社 Radiation sensitive resin composition
JP2008311474A (en) * 2007-06-15 2008-12-25 Fujifilm Corp Method of forming pattern
WO2011114846A1 (en) * 2010-03-18 2011-09-22 東レ株式会社 Photosensitive conductive paste and method for forming conductive pattern
WO2011139073A2 (en) 2010-05-04 2011-11-10 주식회사 엘지화학 Negative photoresist composition, and method for patterning device
JP2012178394A (en) * 2011-02-25 2012-09-13 Renesas Electronics Corp Method of manufacturing semiconductor device, semiconductor device and exposure apparatus
JP6126961B2 (en) * 2013-09-30 2017-05-10 富士フイルム株式会社 Pattern forming method, pattern mask forming method, and electronic device manufacturing method
CN105404418B (en) * 2015-11-03 2018-09-04 京东方科技集团股份有限公司 touch screen and preparation method thereof, display panel and display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106919A (en) * 1988-10-17 1990-04-19 Toshiba Corp Manufacture of semiconductor device
JPH1124286A (en) * 1997-07-02 1999-01-29 Citizen Watch Co Ltd Pattern forming method for photosensitive resin
JP2002139842A (en) * 2000-11-01 2002-05-17 Fujitsu Ltd Pattern forming method and semiconductor device
JP2005284208A (en) * 2004-03-31 2005-10-13 Nippon Zeon Co Ltd Photosensitive resin composition and pattern forming method
JP2009198962A (en) * 2008-02-25 2009-09-03 Sumitomo Bakelite Co Ltd Resin composition
WO2011102064A1 (en) * 2010-02-19 2011-08-25 Jsr株式会社 METHOD FOR FORMATION OF ELECTRODE ON n-TYPE SEMICONDUCTOR LAYER
JP2015028576A (en) * 2013-07-01 2015-02-12 富士フイルム株式会社 Pattern forming method

Also Published As

Publication number Publication date
TWI781094B (en) 2022-10-21
KR102417026B1 (en) 2022-07-05
JP7044058B2 (en) 2022-03-30
TW201800877A (en) 2018-01-01
CN108700835B (en) 2022-05-27
CN108700835A (en) 2018-10-23
KR20180132042A (en) 2018-12-11
WO2017169807A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP4799800B2 (en) Chemically amplified negative photoresist composition
TWI460536B (en) Photoresist composition and method of forming a photoresist pattern using the same
JP4513965B2 (en) Radiation sensitive resin composition
JP3287057B2 (en) Resist composition
JPH0792678A (en) Resist composition
KR100869458B1 (en) Resist composition
JPH0792680A (en) Resist composition
JPH0792681A (en) Resist composition
JP7028160B2 (en) Radiation-sensitive resin composition and resist
JP7044058B2 (en) Resist pattern formation method and resist
JP2005284208A (en) Photosensitive resin composition and pattern forming method
JPH0792679A (en) Resist composition
KR101148454B1 (en) Radiation-sensitive resin composition
JP2017181924A (en) Radiation-sensitive resin composition
JPWO2018180045A1 (en) Method of forming resist pattern
WO2018123626A1 (en) Negative resist composition for protruding electrode and method for manufacturing protruding electrode
KR101357701B1 (en) Negative photoresist composition for forming a pattern and method of forming a pattern of display using the same
JPH06289617A (en) Resist composition
KR101718107B1 (en) Negative photoresist composition having characteristics possible to perform organic pattern coating process on pattern formed with the composition, method for manufacturing optical sensors using the composition and the optical sensors manufactured thereby
JPH0728243A (en) Negative type radiation sensitive resist composition
JPH0777803A (en) Resist composition
JPH06289616A (en) Resist composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220228

R150 Certificate of patent or registration of utility model

Ref document number: 7044058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150