WO2011102064A1 - METHOD FOR FORMATION OF ELECTRODE ON n-TYPE SEMICONDUCTOR LAYER - Google Patents

METHOD FOR FORMATION OF ELECTRODE ON n-TYPE SEMICONDUCTOR LAYER Download PDF

Info

Publication number
WO2011102064A1
WO2011102064A1 PCT/JP2010/073768 JP2010073768W WO2011102064A1 WO 2011102064 A1 WO2011102064 A1 WO 2011102064A1 JP 2010073768 W JP2010073768 W JP 2010073768W WO 2011102064 A1 WO2011102064 A1 WO 2011102064A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
type semiconductor
electrode
forming
resist
Prior art date
Application number
PCT/JP2010/073768
Other languages
French (fr)
Japanese (ja)
Inventor
真也 周布本
石川 悟司
明理 佐古
哲也 山村
雄一朗 有村
政暁 花村
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2012500477A priority Critical patent/JPWO2011102064A1/en
Priority to KR1020127010194A priority patent/KR20120127386A/en
Publication of WO2011102064A1 publication Critical patent/WO2011102064A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes

Definitions

  • the present invention relates to a method for forming an electrode on an n-type semiconductor layer. More specifically, the present invention relates to a method for forming an electrode on an n-type semiconductor layer of a semiconductor light emitting device, an electrode obtained by the forming method, and a chemically amplified negative resist used in the forming method.
  • an upper electrode and a lower electrode are formed for electrical connection.
  • a trench type semiconductor light emitting device in which the upper electrode and the lower electrode are in the same direction, it is necessary to form the lower electrode on the n-type semiconductor layer.
  • a method for forming this electrode a method for forming an electrode by a lithography method using a resist, which is called a lift-off method, is known (Patent Documents 1 to 3).
  • a positive resist has been used in consideration of the peeling of the resist after the electrode is formed, etc.
  • a positive resist when used, it is generated by exposure. There was a tendency for the diffusion of acid to be inhibited on the side closer to the surface of the n-type semiconductor layer. This tendency is particularly noticeable when a nitride semiconductor is used. Therefore, the resist pattern obtained from the positive resist has a skirting shape (footing shape) as shown in FIG. 1, and the electrode after resist peeling has a burr on the edge portion. There was a problem that was not preferable.
  • the present invention is intended to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide a method capable of satisfactorily forming an electrode on an n-type semiconductor layer by a lift-off method.
  • the present inventors can form an electrode having a good shape when forming an electrode by MOCVD (metal organic chemical vapor deposition) or the like. It was found that the resist could be peeled off well after electrode formation, and the present invention was completed.
  • MOCVD metal organic chemical vapor deposition
  • the present invention includes, for example, the following aspects.
  • the present invention since a resist having a good reverse taper shape can be formed on the n-type semiconductor layer, an electrode having a good shape can be formed, and the resist can be peeled well after the electrode is formed.
  • the present invention has a special effect that a resist having a good reverse taper shape can be formed even on a nitride semiconductor layer that tends to be in a footing shape.
  • the method for forming an electrode on an n-type semiconductor layer according to the present invention is performed on the n-type semiconductor layer by a lithography method using a chemically amplified negative resist (hereinafter, also simply referred to as “negative resist” or “resist”).
  • a step of forming a resist pattern hereinafter also referred to as “step (1)”
  • step (2) a step of forming a metal film between the resist patterns
  • step (3) A step of peeling and obtaining an electrode made of the metal film formed on the n-type semiconductor layer.
  • the lithography method refers to a pattern formed by selectively irradiating a coating film obtained from a radiation-sensitive composition with radiation (no limitation of wavelength) through a mask as necessary, and then developing. It is a general term for the forming method.
  • the n-type semiconductor layer is not particularly limited except that it is made of an n-type semiconductor, but is preferably made of an n-type nitride semiconductor.
  • the nitride semiconductor include GaN, AlN, InN, InGaN, AlGaN, Examples include InAlGaN, GaPN, GaNAs, InGaPN, InGaAsN, AlGaPN, AlGaAsN, AlInGaPN, AlInGaAsN, AlGaPAsN, InGaPAsN, and AlInGaPAsN.
  • a resist pattern having a good reverse taper shape can be formed even on a nitride semiconductor layer that tends to be a footing shape when a positive resist is used.
  • the electrode can be formed.
  • the n-type semiconductor layer is an n-type semiconductor layer in a semiconductor light emitting device.
  • Examples of the configuration and shape of the electrodes of the semiconductor light emitting device include a normal type in which the upper electrode and the lower electrode face each other and a trench type in which the upper electrode and the lower electrode are in the same direction. Moreover, as a structure and shape of the semiconductor layer of a semiconductor light-emitting device, a double heterojunction type, a quantum well junction type, etc. are mentioned, for example.
  • the configuration and shape of the semiconductor light emitting device include, for example, Japanese Patent Application Laid-Open Nos. 2009-170655, 2007-173530, 2007-157778, 2005-294870, and 2004. -29679, JP-A-2004-047662, JP-A-2003-243703, JP-A-2003-88641, JP-A-2002-329885, JP-A-2002-066421, JP-A-2001-274456 JP, 2001-196629, 2001-177147, 2001-068786, 2000-261029, 2000-124502, 10-294531 JP 09-31442 A and JP It includes structural and shape according to the flat 09-237916 JP.
  • FIG. 4 shows a cross-sectional view of a current blocking semiconductor light emitting device as a typical example of a semiconductor light emitting device.
  • the semiconductor light emitting device of FIG. 4 is provided on a sapphire substrate 100 in the order of a buffer layer 101, a semiconductor layer 110, a current diffusion layer 120, and an upper electrode 131.
  • a current blocking layer 140 is provided so as to be located below the upper electrode without being in contact with the upper electrode 131 and to be covered with the current diffusion layer 120.
  • the semiconductor layer 110 is a double heterojunction type, and is provided on the buffer layer 101 in the order of an n-type cladding layer 111, an active layer 112, and a p-type cladding layer 113.
  • the lower electrode 132 is provided on a part of the n-type cladding layer and is provided in the same direction as the upper electrode 131.
  • the buffer layer 101, the semiconductor layer 110, the current diffusion layer 120, and the current blocking layer 140 may be formed by a known method such as a vapor phase epitaxial growth method, a liquid phase epitaxial growth method, a hydride vapor phase growth method, a metal organic vapor phase growth method (MOCVD method). ), Molecular beam epitaxy (MBE), metalorganic molecular beam epitaxy (MOMBE), sputtering, etc., and then, if necessary, can be formed by etching or grinding using a resist as a mask. .
  • a known method such as a vapor phase epitaxial growth method, a liquid phase epitaxial growth method, a hydride vapor phase growth method, a metal organic vapor phase growth method (MOCVD method).
  • MOCVD method metal organic vapor phase growth method
  • MBE Molecular beam epitaxy
  • MOMBE metalorganic molecular beam epitaxy
  • sputtering etc.
  • step (1) of the present invention a resist pattern is formed on the n-type semiconductor layer by a lithography method using a negative resist.
  • a negative resist composition is applied directly on the n-type semiconductor layer 11 so as to be in contact with the n-type semiconductor layer 11 and dried.
  • a resist film (coating film) 12 is formed by irradiating the resist film 12 with a radiation having a desired pattern if necessary (exposure), and then developing to form a resist pattern 13 To do.
  • the resist composition coating method examples include a dipping method, a spray method, a bar coating method, a roll coating method, and a spin coating method.
  • the thickness of the coating film can be appropriately controlled by adjusting the solid content concentration and viscosity of the coating means and resist composition.
  • the thickness of the coating film can be controlled by changing the rotation speed.
  • Examples of radiation used for exposure include ultraviolet rays and electron beams emitted from low-pressure mercury lamps, high-pressure mercury lamps, metal halide lamps, g-line steppers, h-line steppers, i-line steppers, KrF steppers, ArF steppers, EB exposure apparatuses, and the like. And laser beam.
  • the exposure amount can be appropriately set depending on the light source used and the film thickness of the coating film. For example, in the case of ultraviolet rays irradiated from a high-pressure mercury lamp, when the coating film thickness is 0.05 to 50 ⁇ m, 100 to It can be about 20,000 J / m 2 .
  • PEB heat treatment
  • the PEB conditions vary depending on the components and solids concentration of the resist composition used for forming the coating film and the film thickness of the coating film, but are usually 50 to 180 ° C., preferably 60 to 150 ° C., and 1 to 60. It is about a minute.
  • a desired pattern can be formed by developing the unexposed portion with an alkaline developer or the like, and dissolving and removing the unexposed portion.
  • the development method include a shower development method, a spray development method, an immersion development method, and a paddle development method.
  • the development conditions are usually about 20 to 40 ° C. and about 0.5 to 10 minutes.
  • the alkaline developer examples include an alkaline aqueous solution in which an alkaline compound such as sodium hydroxide, potassium hydroxide, aqueous ammonia, tetramethylammonium hydroxide, and choline is dissolved in water so as to have a concentration of 1 to 10% by mass. Can be mentioned.
  • an appropriate amount of a water-soluble organic solvent such as methanol or ethanol, a surfactant, or the like can be added to the alkaline aqueous solution.
  • it is usually washed with water and dried.
  • the resist pattern may be further cured by heat treatment.
  • Such curing conditions are not particularly limited, but are usually 50 to 600 ° C., more preferably about 1 minute to 10 hours.
  • the heat treatment after the development may be performed in two or more steps in order to sufficiently cure the obtained resist pattern or prevent its deformation.
  • the resist pattern is cured by heating at a temperature of 100 to 250 ° C. for about 5 minutes to 2 hours in the first stage and heating at a temperature of 250 to 500 ° C. for about 10 minutes to 10 hours in the second stage. Also good.
  • the composition containing an alkali-soluble polymer, the compound which has a radically polymerizable unsaturated bond group, and a radiation sensitive radical generator Alkali-soluble polymer A composition containing a compound that undergoes a crosslinking reaction by the action of an acid and a radiation-sensitive acid generator; a polymer that is alkali-soluble and has a radical-polymerizable unsaturated bond group; and a radiation-sensitive radical A composition containing a generator; a composition containing a polymer that is soluble in alkali and has a group that undergoes a crosslinking reaction by the action of an acid, and a radiation-sensitive acid generator, and the like.
  • a composition containing is preferred.
  • the negative resist further preferably contains a compound (D) that absorbs the wavelength of exposure light used in the lithography method (hereinafter also referred to as “light absorbing compound (D)”).
  • the negative resist may contain other components as long as the effects of the present invention are not impaired.
  • this invention is not limited to the following aspect.
  • the alkali-soluble polymer is a (co) polymer whose solubility in a 2.38% by mass tetraammonium hydroxide aqueous solution (alkaline liquid) of the coating film made of the polymer is 100 kg / sec or more. It is.
  • alkali-soluble polymers (A) examples include novolak resins, polyhydroxystyrene and copolymers thereof, phenol-xylylene glycol condensed resins, cresol-xylylene glycol condensed resins, phenol-dicyclopentadiene. Examples thereof include condensed resins and polybenzoxazole precursors. Of these, novolak resins, polyhydroxystyrene and copolymers thereof, and polybenzoxazole precursors are preferred. These resins may be used alone or in combination of two or more.
  • the novolak resin is obtained by condensing phenols and aldehydes in the presence of a catalyst.
  • the phenols include phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, o-butylphenol, m-butylphenol, p-butylphenol, 2 , 3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, 2,3,5-trimethylphenol, 3,4,5- Examples include trimethylphenol, catechol, resorcinol, pyrogallol, ⁇ -naphthol, ⁇ -naphthol and the like.
  • the aldehydes include formaldehyde, paraformaldehyde, acetaldehy
  • novolak resins include phenol / formaldehyde condensed novolak resins, cresol / formaldehyde condensed novolak resins, phenol-naphthol / formaldehyde condensed novolak resins, and the like.
  • the polyhydroxystyrene and the copolymer thereof include a copolymer composed of a structural unit (1) represented by the following general formula (1) and a structural unit (2) represented by the following general formula (2).
  • Combined (A1) is preferably used.
  • the copolymer (A1) is a copolymer of a monomer that can form the structural unit (1) and a monomer that can form the structural unit (2).
  • Ra represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group or an allyl group.
  • Rb represents a hydrogen atom or a methyl group.
  • n is an integer of 0 to 3
  • m is an integer of 1 to 3.
  • Rc represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group or an allyl group.
  • Rd represents a hydrogen atom or a methyl group.
  • n is an integer of 0 to 3.
  • Examples of the monomer that can form the structural unit (1) include p-hydroxystyrene, m-hydroxystyrene, o-hydroxystyrene, p-isopropenylphenol, m-isopropenylphenol, o-isopropenylphenol, and the like. Can be mentioned. Of these, p-hydroxystyrene and p-isopropenylphenol are preferred.
  • the structural unit (1) may be obtained, for example, by polymerizing a monomer having a hydroxyl group protected with a t-butyl group, an acetyl group or the like.
  • the obtained polymer or copolymer is converted into a hydroxystyrene-based structural unit by a known method, for example, deprotection under an acid catalyst.
  • Examples of the monomer capable of forming the structural unit (2) include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-methoxystyrene, m-methoxystyrene, p- Examples include methoxystyrene. Among these, styrene and p-methoxystyrene are preferable, and styrene is more preferable.
  • These monomers may be used alone or in combination of two or more.
  • the copolymer (A1) is a copolymer of a monomer that can form the structural unit (1) and a monomer that can form the structural unit (2), and is essentially a structural unit (1) and a structural unit. Although it is preferable to consist only of (2), other monomers may be copolymerized.
  • Examples of the other monomers include unsaturated carboxylic acids or their anhydrides, esters of the unsaturated carboxylic acids, unsaturated nitriles, unsaturated amides, unsaturated imides, and alicyclic skeletons.
  • the amount of structural units formed from other monomers is 100 parts by mass or less with respect to a total of 100 parts by mass of the structural unit (1) and the structural unit (2). Is 50 parts by mass or less, more preferably 25 parts by mass or less.
  • the content of the structural unit (1) is 10 to 99 mol%, preferably 20 to 97 mol%, more preferably 30 to 95 mol%, and the structural unit (2)
  • the content of is 90 to 1 mol%, preferably 80 to 3 mol%, more preferably 70 to 5 mol% (provided that the total amount of structural units constituting the copolymer (A1) is 100 mol%) And).
  • the patterning characteristics may be deteriorated, and physical properties such as thermal shock properties of the cured film may be deteriorated.
  • the arrangement of the structural unit (1), the structural unit (2), and the structural unit formed from the other monomers is not particularly limited, and the copolymer (A1) is a random copolymer. Either a polymer or a block copolymer may be used.
  • the copolymer (A1) a compound that can form the structural unit (1) or a compound that protects the hydroxyl group thereof, a monomer that can form the structural unit (2), and the above-mentioned other units as necessary.
  • the monomer may be polymerized in a solvent in the presence of an initiator.
  • the polymerization method is not particularly limited, and may be performed by radical polymerization or anionic polymerization in order to obtain a compound having a desired molecular weight.
  • the molecular weight of the polymer (A) is not particularly limited, but the weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography (GPC) is, for example, 200,000 or less, preferably 2,000 to 100. , 000.
  • Mw weight average molecular weight
  • GPC gel permeation chromatography
  • the acid generator (B) is a component that generates an acid by the exposure. Due to the catalytic action of the acid generated by the acid generator (B), the crosslinking agent (C) can undergo a crosslinking reaction to form a negative pattern.
  • the acid generator (B) is not particularly limited as long as it is a compound that generates an acid upon irradiation with radiation or the like.
  • onium salt compounds including thiophenium salt compounds
  • halogen-containing compounds diazoketone compounds, sulfone compounds , Sulfonic acid compounds, sulfonimide compounds, diazomethane compounds and the like.
  • onium salt compounds and halogen-containing compounds are preferable from the viewpoint of resolution and sensitivity of the negative resist, and thiophenium salt compounds and halogen-containing compounds having a triazine structure are more preferable.
  • onium salt compound examples include 4,7-di-n-butoxynaphthyltetrahydrothiophenium salt compound, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium salt compound, 1- ( Thiophenium salt compounds such as 6-n-butoxynaphthalen-2-yl) tetrahydrothiophenium salt compound, 1- (3,5-dimethyl-4-hydroxyphenyl) tetrahydrothiophenium salt compound; bis (4-t- Iodonium salt compounds such as butylphenyl) iodonium salt compounds and diphenyliodonium salt compounds; triphenylsulfonium salt compounds, 4-tert-butylphenyldiphenylsulfonium salt compounds, 4-cyclohexylphenyldiphenylsulfonium salt compounds, 4-methanesulfonylphenyldi Sulfonium salt compounds such as E sulf
  • halogen-containing compound examples include haloalkyl group-containing hydrocarbon compounds and haloalkyl group-containing heterocyclic compounds. Specifically, 1,10-dibromo-n-decane, 1,1-bis (4-chlorophenyl) -2,2,2-trichloroethane, and phenyl-bis (trichloromethyl) -1,3,5- Triazine, 4-methoxyphenyl-bis (trichloromethyl) -1,3,5-triazine, styryl-bis (trichloromethyl) -1,3,5-triazine, naphthyl-bis (trichloromethyl) -1,3,5 -Triazine, 2,4-trichloromethyl (piperonyl) -1,3,5-triazine, 2,4-trichloromethyl- (4-methoxystyryl) -1,3,5-triazine, 2- (1,3- Benzodioxol-5
  • the acid generator (B) may be used alone or in combination of two or more.
  • the blending amount of the acid generator (B) is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of the polymer (A) from the viewpoint of ensuring the sensitivity, resolution, pattern shape, etc. of the negative resist. 30 parts by mass, more preferably 0.1 to 20 parts by mass, and still more preferably 0.1 to 15 parts by mass.
  • the blending amount is within the above range, the sensitivity and resolution are excellent, the composition is sufficiently cured to improve the heat resistance of the cured film, and has good transparency to radiation, and has a pattern shape. Degradation is less likely to occur.
  • the crosslinking agent (C) is a compound that can form a crosslinked structure in the presence of an acid generated from the acid generator (B) by the action of radiation.
  • a cross-linking agent (C) is not particularly limited as long as it is a compound exhibiting the above-mentioned action. However, since it can form a pattern that can resist the load on the resist pattern during the formation of the metal film, a methylol group or an alkoxymethylol group can be formed. The compound which has is preferable.
  • Examples of the compound having a methylol group or an alkoxymethylol group include melamine compounds, urea compounds, benzoguanamine compounds and glycoluril compounds having a methylol group or an alkoxymethylol group.
  • melamine compounds, benzoguanamine compounds, and glycoluril compounds having a methylol group or an alkoxymethylol group are preferred, and in particular, because a pattern with excellent heat resistance that can counter the thermal history applied during metal film formation can be formed.
  • a melamine compound having a methylol group or an alkoxymethylol group is preferred.
  • Examples of the melamine compound having a methylol group or an alkoxymethylol group include methoxymethylated melamine, ethoxymethylated melamine, n-propoxymethylated melamine, n-butoxymethylated melamine, and more specifically, Examples include hexamethoxymethyl melamine and hexabutoxymethyl melamine.
  • benzoguanamine compounds having a methylol group or an alkoxymethylol group include, for example, tetramethylol benzoguanamine, alkylated methylol benzoguanamine (the number of alkylation is 1 to 4.
  • Alkyl is an alkyl group having 1 to 6 carbon atoms. Etc.).
  • glycoluril-based compound having a methylol group or an alkoxymethylol group examples include methoxymethylated glycoluril, ethoxymethylated glycoluril, n-propoxymethylated glycoluril, n-butoxymethylated glycoluril, and the like. More specifically, tetramethoxymethyl glycoluril, tetrabutoxymethyl glycoluril and the like can be mentioned.
  • the crosslinking agent (C) may be used alone or in combination of two or more.
  • the amount of the crosslinking agent (C) is preferably 3 to 60 parts by weight, more preferably 3 to 40 parts by weight, and still more preferably 5 to 30 parts by weight with respect to 100 parts by weight of the polymer (A). Part.
  • the amount of the crosslinking agent is too small, it is difficult to sufficiently advance the crosslinking reaction, and as a resist, the residual film ratio is decreased, pattern swelling, meandering, etc. are likely to occur.
  • the amount is too large, the resolution as a resist tends to be lowered.
  • the light-absorbing compound (D) is a compound that absorbs the wavelength of exposure light used in the lithography method, and the negative resist contains the light-absorbing compound (D), so that the light is n-type semiconductor substrate. Therefore, a larger resist pattern having a reverse taper shape can be formed.
  • Examples of the light absorbing compound (D) include curcumin and 3-methyl-5-hydroxy-1- (phenyl) -4- (tolylazo) -pyrazole.
  • the light absorbing compound (D) may be used alone or in combination of two or more.
  • the amount of the light absorbing compound (D) is preferably 0.01 to 20 parts by weight, more preferably 0.05 to 10 parts by weight, and still more preferably 100 parts by weight of the polymer (A). Is 0.1 to 5 parts by mass. When the blending amount is within the above range, the reverse taper shape of the resist pattern can be formed satisfactorily, and the resist pattern can be formed without reducing the sensitivity.
  • ⁇ Other ingredients examples include solvents, surfactants, solubility aids, crosslinked polymer particles, adhesion aids, leveling agents, antifoaming agents, crosslinking accelerators, acid diffusion control agents, sensitizers, and sensitizers.
  • An auxiliary agent etc. are mentioned.
  • the solvent is added to improve the handleability of the resist composition and to adjust the viscosity and storage stability.
  • a solvent is not particularly limited. Ethylene glycol monoalkyl ether acetates such as ethylene glycol monomethyl ether acetate and ethylene glycol monoethyl ether acetate; Propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether; Propylene glycol dialkyl ethers such as propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dipropyl ether, propylene glycol dibutyl ether; Propylene glycol monoalkyl ether acetates such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropy
  • the above solvents may be used alone or in combination of two or more.
  • the amount of the solvent is not particularly limited as long as the composition can be made uniform, but is preferably 10 to 500 parts by weight, more preferably 100 to 300 parts by weight with respect to 100 parts by weight of the polymer. More preferably, it is 150 to 250 parts by mass.
  • the above surfactant is added to improve the flattening of the coating film, the flattening of the outer periphery of the substrate, the striation, and the like.
  • surfactants include silicon surfactants, fluorine surfactants, and acrylic surfactants.
  • F-top EF301, EF303, EF352 manufactured by Tochem Products
  • MegaFuck F171, F172, F173 manufactured by Dainippon Ink and Chemicals
  • Florard FC430, FC431 manufactured by Sumitomo 3M
  • Surflon Fluorosurfactants such as S-381, S-382, SC101, SC102, SC103, SC104, SC105, SC106 (made by Asahi Glass Co., Ltd.), Footgent 250, 251, 222F, FTX-218 (made by Neos), etc.
  • S-381, S-382, SC101, SC102, SC103, SC104, SC105, SC106 made by Asahi Glass Co., Ltd.
  • Footgent 250, 251, 222F, FTX-218 made by Neos
  • the above surfactants may be used alone or in combination of two or more.
  • the surfactant is preferably 0.01 to 1 part by mass, more preferably 0.01 to 0.5 part by mass with respect to 100 parts by mass of the polymer (A).
  • solubility aid examples include 4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenyl ether, tris (4-hydroxyphenyl) methane, and 1,1-bis (4-hydroxyphenyl) -1-phenyl.
  • Ethane tris (4-hydroxyphenyl) ethane, 1,3-bis [1- (4-hydroxyphenyl) -1-methylethyl] benzene, 1,4-bis [1- (4-hydroxyphenyl) -1- Methylethyl] benzene, 4,6-bis [1- (4-hydroxyphenyl) -1-methylethyl] -1,3-dihydroxybenzene, 1,1-bis (4-hydroxyphenyl) -1- [4- ⁇ 1- (4-hydroxyphenyl) -1-methylethyl ⁇ phenyl] ethane, 1,1,2,2-tetra (4-hydroxyphenyl) ethane, 4 , 4 '-[1- ⁇ 4- [2- (4-hydroxyphenyl) -2-propyl] phenyl ⁇ ethylidene] bisphenol, 4,4'-[1- ⁇ 4- [1- (4-hydroxyphenyl)] -1-methylethyl] bis
  • solubility aids may be used alone or in combination of two or more. Further, the blending amount of the solubility aid is preferably 1 to 50 parts by mass, more preferably 2 to 30 parts by mass, and further preferably 3 to 20 parts by mass with respect to 100 parts by mass of the polymer (A). It is.
  • acid diffusion control agent examples include acid diffusion control agents described in JP-A-2008-192774, for example, mono (cyclo) alkylamines such as n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine, cyclohexylamine; Di-n-butylamine, di-n-pentylamine, di-n-hexylamine, di-n-heptylamine, di-n-octylamine, di-n-nonylamine, di-n-decylamine, cyclohexylmethylamine, Di (cyclo) alkylamines such as dicyclohexylamine; Triethylamine, tri-n-propylamine, tri-n-butylamine, tri-n-pentylamine, tri-n-hexylamine, tri-n-heptylamine, tri-n-o
  • an amine having a carbamate structure is preferable because a good reverse taper shape can be easily obtained.
  • the above acid diffusion controller may be used alone or in combination of two or more.
  • the amount of the acid diffusion control agent is preferably 0.001 to 10 parts by mass, more preferably 0.005 to 5 parts by mass, and still more preferably 0 to 100 parts by mass of the polymer (A). 0.01 to 1 part by mass.
  • Step (2) In the step (2) of the present invention, as shown in FIG. 3C, a metal film 14 is formed between the resist patterns 13 formed in the step (1).
  • Examples of the method for forming the metal film include a vacuum deposition method and a sputtering method.
  • the metal material which comprises an electrode is not specifically limited, For example, gold
  • step (3) of the present invention as shown in FIG. 3 (d), after forming the metal film 14 in the step (2), the resist pattern 13 is peeled off to form on the n-type semiconductor layer 1.
  • the electrode 14 made of the metal film is obtained.
  • the resist pattern peeling method is not particularly limited, and examples thereof include a method of immersing the substrate in a peeling solution at about 20 to 80 ° C. for about 1 to 30 minutes.
  • the stripper include dimethyl sulfoxide, N, N-dimethylformamide, N-methylpyrrolidone, ⁇ -butyrolactone, methanolamine, ethanolamine, propanolamine, butanolamine, and mixed solvents thereof.
  • the resist pattern can be favorably peeled without impairing the electrode shape.
  • the electrode having a good shape can be formed on the n-type semiconductor substrate by the above-described method for forming an electrode on the n-type semiconductor layer of the present invention.
  • weight average molecular weight in the following is a weight average molecular weight in terms of standard polystyrene measured by GPC under the following conditions.
  • Component A1 A copolymer containing 80 mol% of p-hydroxystyrene units and 20 mol% of styrene units (weight average molecular weight: 10,000).
  • a novolak resin (weight average molecular weight: 7,000) obtained by polycondensation of mixed phenols of component A3: m-cresol: p-cresol 50: 50 (molar ratio) with formalin.
  • Component A4 A copolymer (weight average molecular weight: 10,000) containing 80 mol% of units composed of p-hydroxystyrene, 10 mol% of units of styrene, and 10 mol% of units composed of hydroxybutyl acrylate.
  • RA1 component a copolymer containing 50% by mass of 1-ethylcyclohexyl methacrylate structural unit and 50% by mass of 2-ethoxyethyl acrylate structural unit (weight average molecular weight: 350,000).
  • B1 2- [2- (5-methylfuran-2-yl) ethenyl] -4,6-bis- (trichloromethyl) -1,3,5-triazine.
  • B2 component 2,4-trichloromethyl (piperonyl) -1,3,5-triazine.
  • B3 component 2,4-trichloromethyl- (4-methoxystyryl) -1,3,5-triazine.
  • B4 component 1- (4,7-dibutoxy-1-naphthalenyl) tetrahydrothiophenium trifluoromethanesulfonate.
  • B5 component a compound represented by the following formula.
  • Component B6 4,4 ′-[1- [4- [1- [4-hydroxyphenyl] -1-methylethyl] phenyl] ethylidene] bisphenol (1.0 mol) and 1,2-naphthoquinonediazide-5 A condensate of sulfonic acid chloride (2.0 mol).
  • ⁇ C component; cross-linking agent> C1 component: hexamethoxymethyl melamine.
  • Component C2 tetramethoxymethyl glycoluril.
  • C3 component Tetramethylol benzoguanamine.
  • D1 component curcumin.
  • Component D2 3-methyl-5-hydroxy-1- (phenyl) -4- (tolylazo) -pyrazole.
  • E1 component Fluorosurfactant (trade name “Factent 251”, manufactured by Neos).
  • F1 component 4,4 ′-[1- ⁇ 4 [1- (4-hydroxyphenyl) -1-methylethyl] phenyl ⁇ ethylidene] bisphenol.
  • G component methyl 3-methoxypropionate.
  • G2 component propylene glycol monomethyl ether acetate.
  • H1 component N, N-dicyclohexylcarbamic acid-1,1-dimethylethyl ester.
  • H2 component Nt-butoxycarbonylpyrrolidine.
  • H3 component Nt monobutoxycarbonyl-2 monophenylbenzimidazole.
  • the obtained pattern has a good reverse taper shape with no footing.
  • Defect The obtained pattern has at least one shape of footing and forward taper shape.
  • n-type GaN substrate surface state having protrusions with a height of 1.2 ⁇ m to 0.4 ⁇ m.
  • the film thickness of the coating film in the case of an n-type GaN substrate indicates the thickness from a protrusion having a height of 1.2 ⁇ m.
  • ITO substrate a substantially flat surface state having a tin-doped indium oxide film on the surface.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Materials For Photolithography (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

Disclosed is a method for forming an electrode on an n-type semiconductor satisfactorily by a lift-off process. Specifically disclosed is a method for forming an electrode on an n-type semiconductor layer, which is characterized by comprising the steps of: forming resist patterns on the n-type semiconductor layer by a lithography technique using a chemically amplified negative-type resist; forming a metal film between the resist patterns; and detaching the resist patterns to produce an electrode that comprises the metal film and is formed on the n-type semiconductor layer.

Description

n型半導体層上の電極の形成方法Method for forming electrode on n-type semiconductor layer
 本発明は、n型半導体層上の電極の形成方法に関する。より詳しくは、半導体発光素子のn型半導体層上の電極の形成方法、該形成方法により得られる電極、および該形成方法に用いられる化学増幅型ネガ型レジストに関する。 The present invention relates to a method for forming an electrode on an n-type semiconductor layer. More specifically, the present invention relates to a method for forming an electrode on an n-type semiconductor layer of a semiconductor light emitting device, an electrode obtained by the forming method, and a chemically amplified negative resist used in the forming method.
 半導体レーザー、LEDおよび有機EL等の半導体発光素子の製造方法において、電気的接続を行うために、上部電極や下部電極が形成される。特に上部電極と下部電極が同じ向きとなるトレンチ型の半導体発光素子では、n型半導体層上に下部電極を形成する必要がある。この電極の形成方法としては、リフトオフ法といわれる、レジストを用いたリソグラフィー法による電極の形成方法が知られている(特許文献1~3)。 In a method for manufacturing a semiconductor light emitting device such as a semiconductor laser, an LED, and an organic EL, an upper electrode and a lower electrode are formed for electrical connection. In particular, in a trench type semiconductor light emitting device in which the upper electrode and the lower electrode are in the same direction, it is necessary to form the lower electrode on the n-type semiconductor layer. As a method for forming this electrode, a method for forming an electrode by a lithography method using a resist, which is called a lift-off method, is known (Patent Documents 1 to 3).
 しかしながら、従来のレジストを用いたリソグラフィー法による電極の形成方法では、電極形成後のレジストの剥離等を考慮してポジ型レジストが用いられてきたが、ポジ型レジストを用いた場合、露光により発生する酸の拡散がn型半導体層の表面に近い側で阻害される傾向にあった。特に窒化物半導体を用いた場合、この傾向が顕著に表れる。そのため、ポジ型レジストから得られるレジストパターンは、図1に示すような、すそ引き形状(フッティング形状)となり、レジスト剥離後の電極はエッジ部分にバリを有するものになってしまうため、電極形成には好ましくないという問題があった。 However, in the conventional electrode forming method using a lithography method using a resist, a positive resist has been used in consideration of the peeling of the resist after the electrode is formed, etc. However, when a positive resist is used, it is generated by exposure. There was a tendency for the diffusion of acid to be inhibited on the side closer to the surface of the n-type semiconductor layer. This tendency is particularly noticeable when a nitride semiconductor is used. Therefore, the resist pattern obtained from the positive resist has a skirting shape (footing shape) as shown in FIG. 1, and the electrode after resist peeling has a burr on the edge portion. There was a problem that was not preferable.
特開2009-170655号公報JP 2009-170655 A 特開2004-047662号公報JP 2004-047662 A 特開平08-340132号公報Japanese Patent Laid-Open No. 08-340132
 本発明は、上述した従来技術の課題を解決しようとするものであり、リフトオフ法によりn型半導体層上に電極を良好に形成できる方法を提供することを目的とする。 The present invention is intended to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide a method capable of satisfactorily forming an electrode on an n-type semiconductor layer by a lift-off method.
 本発明者らは、図2に示すような逆テーパー形状のレジストパターンを形成できるレジストを用いることにより、MOCVD(有機金属気相成長法)等で電極を形成する際に良好な形状の電極を形成できるとともに、電極形成後に良好にレジストを剥離することができることを見出し、本発明を完成するに至った。 By using a resist capable of forming a reverse taper-shaped resist pattern as shown in FIG. 2, the present inventors can form an electrode having a good shape when forming an electrode by MOCVD (metal organic chemical vapor deposition) or the like. It was found that the resist could be peeled off well after electrode formation, and the present invention was completed.
 本発明としては、例えば以下の態様が挙げられる。 The present invention includes, for example, the following aspects.
 [1] 化学増幅型ネガ型レジストを用いたリソグラフィー法によりn型半導体層上にレジストパターンを形成する工程と、前記レジストパターン間に金属膜を形成する工程と、前記レジストパターンを剥離し、前記n型半導体層上に形成された前記金属膜からなる電極を得る工程とを含むことを特徴とするn型半導体層上の電極の形成方法。 [1] A step of forming a resist pattern on an n-type semiconductor layer by a lithography method using a chemically amplified negative resist, a step of forming a metal film between the resist patterns, peeling the resist pattern, and a step of obtaining an electrode made of the metal film formed on the n-type semiconductor layer.
 [2] 前記n型半導体層が、半導体発光素子におけるn型半導体層であることを特徴とする[1]に記載のn型半導体層上の電極の形成方法。 [2] The method for forming an electrode on an n-type semiconductor layer according to [1], wherein the n-type semiconductor layer is an n-type semiconductor layer in a semiconductor light emitting device.
 [3] 前記化学増幅型ネガ型レジストが、前記リソグラフィー法に用いる露光光の波長を光吸収する化合物を含有することを特徴とする[1]または[2]に記載のn型半導体層上の電極の形成方法。 [3] The n type semiconductor layer according to [1] or [2], wherein the chemically amplified negative resist contains a compound that absorbs a wavelength of exposure light used in the lithography method. Electrode formation method.
 [4] 前記化学増幅型ネガ型レジストが、酸の作用により架橋反応を起こす架橋剤として、メチロール基又はアルコキシメチロール基を有する化合物を含有することを特徴とする[1]~[3]のいずれかに記載のn型半導体層上の電極の形成方法。 [4] Any of [1] to [3], wherein the chemically amplified negative resist contains a compound having a methylol group or an alkoxymethylol group as a crosslinking agent that causes a crosslinking reaction by the action of an acid. A method for forming an electrode on an n-type semiconductor layer.
 [5] 前記メチロール基またはアルコキシメチロール基を有する化合物がメラミン化合物であることを特徴とする[4]に記載のn型半導体層上の電極の形成方法。 [5] The method for forming an electrode on an n-type semiconductor layer according to [4], wherein the compound having a methylol group or an alkoxymethylol group is a melamine compound.
 [6] 前記n型半導体層がn型窒化物半導体からなることを特徴とする[1]~[5]のいずれかに記載のn型半導体層上の電極の形成方法。 [6] The method for forming an electrode on the n-type semiconductor layer according to any one of [1] to [5], wherein the n-type semiconductor layer is made of an n-type nitride semiconductor.
 [7] [1]~[6]のいずれかに記載のn型半導体層上の電極の形成方法により得られたことを特徴とするn型半導体層上の電極。 [7] An electrode on an n-type semiconductor layer obtained by the method for forming an electrode on an n-type semiconductor layer according to any one of [1] to [6].
 [8] [1]~[6]のいずれかに記載のn型半導体層上の電極の形成方法に用いられる化学増幅型ネガ型レジスト。 [8] A chemically amplified negative resist used in the method for forming an electrode on an n-type semiconductor layer according to any one of [1] to [6].
 [9] アルカリ可溶性重合体(A)、感放射線性酸発生剤(B)および酸の作用により架橋反応を起こす架橋剤(C)を含有することを特徴とする[8]に記載の化学増幅型ネガ型レジスト。 [9] The chemical amplification according to [8], comprising an alkali-soluble polymer (A), a radiation-sensitive acid generator (B), and a crosslinking agent (C) that causes a crosslinking reaction by the action of an acid. Type negative resist.
 [10] 前記n型半導体層上の電極の形成方法におけるリソグラフィー法に用いる露光光の波長を光吸収する化合物(D)をさらに含有することを特徴とする[9]に記載の化学増幅型ネガ型レジスト。 [10] The chemically amplified negative according to [9], further comprising a compound (D) that absorbs a wavelength of exposure light used in a lithography method in the method for forming an electrode on the n-type semiconductor layer. Type resist.
 本発明によれば、n型半導体層上に良好な逆テーパー形状のレジストを形成できるため、良好な形状の電極を形成できるとともに、電極形成後に良好にレジストを剥離することができる。特に、本発明は、フッティング形状となる傾向が強い窒化物半導体層上においても、良好な逆テーパー形状のレジストを形成できるという格別な効果を奏するものである。 According to the present invention, since a resist having a good reverse taper shape can be formed on the n-type semiconductor layer, an electrode having a good shape can be formed, and the resist can be peeled well after the electrode is formed. In particular, the present invention has a special effect that a resist having a good reverse taper shape can be formed even on a nitride semiconductor layer that tends to be in a footing shape.
ポジ型レジストを用いた場合のパターン形状(フッティング形状)を示す模式図である。It is a schematic diagram which shows the pattern shape (footing shape) at the time of using a positive resist. ネガ型レジストを用いた場合のパターン形状(逆テーパー形状)を示す模式図である。It is a schematic diagram which shows the pattern shape (reverse taper shape) at the time of using a negative resist. 本発明の電極形成方法の概略図である。It is the schematic of the electrode formation method of this invention. 電流阻止型の半導体発光素子の断面図である。It is sectional drawing of a current blocking type semiconductor light emitting element.
 以下、本発明に係るn型半導体層上の電極の形成方法について詳細に説明する。 Hereinafter, a method for forming an electrode on an n-type semiconductor layer according to the present invention will be described in detail.
 本発明に係るn型半導体層上の電極の形成方法は、化学増幅型ネガ型レジスト(以下、単に「ネガ型レジスト」または「レジスト」ともいう。)を用いたリソグラフィー法によりn型半導体層上にレジストパターンを形成する工程(以下「工程(1)」ともいう。)と、前記レジストパターン間に金属膜を形成する工程(以下「工程(2)」ともいう。)と、前記レジストパターンを剥離し、前記n型半導体層上に形成された前記金属膜からなる電極を得る工程(以下「工程(3)」ともいう。)とを含むことを特徴とする。なお、リソグラフィー法とは、感放射線性組成物から得られる塗膜に、必要に応じてマスクを介して、放射線(波長の限定はない)を選択的に照射し、その後現像することによりパターンを形成する方法の総称である。 The method for forming an electrode on an n-type semiconductor layer according to the present invention is performed on the n-type semiconductor layer by a lithography method using a chemically amplified negative resist (hereinafter, also simply referred to as “negative resist” or “resist”). A step of forming a resist pattern (hereinafter also referred to as “step (1)”), a step of forming a metal film between the resist patterns (hereinafter also referred to as “step (2)”), and the resist pattern. A step of peeling and obtaining an electrode made of the metal film formed on the n-type semiconductor layer (hereinafter also referred to as “step (3)”). The lithography method refers to a pattern formed by selectively irradiating a coating film obtained from a radiation-sensitive composition with radiation (no limitation of wavelength) through a mask as necessary, and then developing. It is a general term for the forming method.
 [n型半導体層]
 上記n型半導体層は、n型半導体からなること以外は特に限定されないが、n型窒化物半導体からなることが好ましく、該窒化物半導体としては、例えば、GaN、AlN、InN、InGaN、AlGaN、InAlGaN、GaPN、GaNAs、InGaPN、InGaAsN、AlGaPN、AlGaAsN、AlInGaPN、AlInGaAsN、AlGaPAsN、InGaPAsN、AlInGaPAsNなどが挙げられる。本発明によれば、ポジ型レジストを用いた場合にフッティング形状となる傾向が強い窒化物半導体層上にも良好な逆テーパー形状のレジストパターンを形成することができ、その結果、良好な形状の電極を形成することができる。また、上記n型半導体層が半導体発光素子におけるn型半導体層であることが、本発明の好ましい態様である。
[N-type semiconductor layer]
The n-type semiconductor layer is not particularly limited except that it is made of an n-type semiconductor, but is preferably made of an n-type nitride semiconductor. Examples of the nitride semiconductor include GaN, AlN, InN, InGaN, AlGaN, Examples include InAlGaN, GaPN, GaNAs, InGaPN, InGaAsN, AlGaPN, AlGaAsN, AlInGaPN, AlInGaAsN, AlGaPAsN, InGaPAsN, and AlInGaPAsN. According to the present invention, a resist pattern having a good reverse taper shape can be formed even on a nitride semiconductor layer that tends to be a footing shape when a positive resist is used. The electrode can be formed. Moreover, it is a preferable aspect of the present invention that the n-type semiconductor layer is an n-type semiconductor layer in a semiconductor light emitting device.
 [半導体発光素子]
 半導体発光素子の電極の構成や形状としては、例えば、上部電極と下部電極が対向するような通常型、および、上部電極と下部電極が同じ向きにあるトレンチ型などが挙げられる。また、半導体発光素子の半導体層の構成や形状としては、例えば、ダブルへテロ接合型および量子井戸接合型などが挙げられる。
[Semiconductor light emitting device]
Examples of the configuration and shape of the electrodes of the semiconductor light emitting device include a normal type in which the upper electrode and the lower electrode face each other and a trench type in which the upper electrode and the lower electrode are in the same direction. Moreover, as a structure and shape of the semiconductor layer of a semiconductor light-emitting device, a double heterojunction type, a quantum well junction type, etc. are mentioned, for example.
 半導体発光素子の構成や形状の具体例としては、例えば、特開2009-170655号公報、特開2007-173530号公報、特開2007-157778号公報、特開2005-294870号公報、特開2004-296979号公報、特開2004-047662号公報、特開2003-243703号公報、特開2003-86841号公報、特開2002-329885号公報、特開2002-064221号公報、特開2001-274456号公報、特開2001-196629号公報、特開2001-177147号公報、特開2001-068786号公報、特開2000-261029号公報、特開2000-124502号公報、特開平10-294531号公報、特開平09-312442号公報および特開平09-237916号公報に記載の構成や形状が挙げられる。 Specific examples of the configuration and shape of the semiconductor light emitting device include, for example, Japanese Patent Application Laid-Open Nos. 2009-170655, 2007-173530, 2007-157778, 2005-294870, and 2004. -29679, JP-A-2004-047662, JP-A-2003-243703, JP-A-2003-88641, JP-A-2002-329885, JP-A-2002-066421, JP-A-2001-274456 JP, 2001-196629, 2001-177147, 2001-068786, 2000-261029, 2000-124502, 10-294531 JP 09-31442 A and JP It includes structural and shape according to the flat 09-237916 JP.
 半導体発光素子の代表例として、図4に電流阻止型の半導体発光素子の断面図を示す。図4の半導体発光素子は、サファイヤ基板100上に、バッファ層101、半導体層110、電流拡散層120、上部電極131の順に設けられている。そして、前記上部電極131に接せず上部電極の下方に位置し、かつ前記電流拡散層120により覆われるように、電流阻止層140が設けられている。半導体層110はダブルヘテロ接合型であり、バッファ層101上に、n型クラッド層111、活性層112、p型クラッド層113の順に設けられている。下部電極132は、前記n型クラッド層の一部分上に設けられ上部電極131と同じ向きに設けられている。 FIG. 4 shows a cross-sectional view of a current blocking semiconductor light emitting device as a typical example of a semiconductor light emitting device. The semiconductor light emitting device of FIG. 4 is provided on a sapphire substrate 100 in the order of a buffer layer 101, a semiconductor layer 110, a current diffusion layer 120, and an upper electrode 131. A current blocking layer 140 is provided so as to be located below the upper electrode without being in contact with the upper electrode 131 and to be covered with the current diffusion layer 120. The semiconductor layer 110 is a double heterojunction type, and is provided on the buffer layer 101 in the order of an n-type cladding layer 111, an active layer 112, and a p-type cladding layer 113. The lower electrode 132 is provided on a part of the n-type cladding layer and is provided in the same direction as the upper electrode 131.
 バッファ層101、半導体層110、電流拡散層120および電流阻止層140は、公知の方法、例えば、気相エピタキシャル成長法、液相エピタキシャル成長法、ハイドライド気相成長法、有機金属気相成長法(MOCVD法)、分子線エピタキシャル法(MBE法)、有機金属分子線エピタキシャル法(MOMBE法)およびスパッタ法などにより膜を形成後、必要に応じて、レジストをマスクとしたエッチングや研削により形成することができる。 The buffer layer 101, the semiconductor layer 110, the current diffusion layer 120, and the current blocking layer 140 may be formed by a known method such as a vapor phase epitaxial growth method, a liquid phase epitaxial growth method, a hydride vapor phase growth method, a metal organic vapor phase growth method (MOCVD method). ), Molecular beam epitaxy (MBE), metalorganic molecular beam epitaxy (MOMBE), sputtering, etc., and then, if necessary, can be formed by etching or grinding using a resist as a mask. .
 [工程(1)]
 本発明の工程(1)では、ネガ型レジストを用いたリソグラフィー法によりn型半導体層上にレジストパターンを形成する。
[Step (1)]
In step (1) of the present invention, a resist pattern is formed on the n-type semiconductor layer by a lithography method using a negative resist.
 より具体的には、図3(a)、(b)に示すように、n型半導体層11の直上に、ネガ型レジスト組成物をn型半導体層11と接するように塗布して乾燥することによりレジスト膜(塗膜)12を形成し、該レジスト膜12に、必要に応じて所望のパターンを有するマスクを介して、放射線を照射(露光)した後、現像することによりレジストパターン13を形成する。 More specifically, as shown in FIGS. 3A and 3B, a negative resist composition is applied directly on the n-type semiconductor layer 11 so as to be in contact with the n-type semiconductor layer 11 and dried. A resist film (coating film) 12 is formed by irradiating the resist film 12 with a radiation having a desired pattern if necessary (exposure), and then developing to form a resist pattern 13 To do.
 レジスト組成物の塗布方法としては、例えば、ディッピング法、スプレー法、バーコート法、ロールコート法、スピンコート法などが挙げられる。なお、塗膜の厚さは、塗布手段やレジスト組成物の固形分濃度および粘度等を調整することにより、適宜制御することができる。例えば、スピンコート法の場合、回転数を変えることで塗膜の厚さを制御することができる。 Examples of the resist composition coating method include a dipping method, a spray method, a bar coating method, a roll coating method, and a spin coating method. The thickness of the coating film can be appropriately controlled by adjusting the solid content concentration and viscosity of the coating means and resist composition. For example, in the case of the spin coating method, the thickness of the coating film can be controlled by changing the rotation speed.
 露光に用いられる放射線としては、例えば、低圧水銀灯、高圧水銀灯、メタルハライドランプ、g線ステッパー、h線ステッパー、i線ステッパー、KrFステッパー、ArFステッパー、EB露光装置等から照射される、紫外線、電子線およびレーザ光線などが挙げられる。また、露光量は、使用する光源および塗膜の膜厚などによって適宜設定することができ、例えば、高圧水銀灯から照射される紫外線の場合、塗膜の膜厚0.05~50μmでは、100~20,000J/m2程度とすることができる。 Examples of radiation used for exposure include ultraviolet rays and electron beams emitted from low-pressure mercury lamps, high-pressure mercury lamps, metal halide lamps, g-line steppers, h-line steppers, i-line steppers, KrF steppers, ArF steppers, EB exposure apparatuses, and the like. And laser beam. The exposure amount can be appropriately set depending on the light source used and the film thickness of the coating film. For example, in the case of ultraviolet rays irradiated from a high-pressure mercury lamp, when the coating film thickness is 0.05 to 50 μm, 100 to It can be about 20,000 J / m 2 .
 通常、露光後の塗膜に対して加熱処理(以下、この加熱処理を「PEB」ともいう。)を行う。PEBを行うことにより、露光によって発生した酸をより効率よく作用させることができる。PEB条件は、塗膜形成に用いられたレジスト組成物の成分および固形分濃度、ならびに塗膜の膜厚等によって異なるが、通常、50~180℃、好ましくは60~150℃で、1~60分程度である。 Usually, a heat treatment (hereinafter, this heat treatment is also referred to as “PEB”) is performed on the exposed coating film. By performing PEB, the acid generated by exposure can be made to act more efficiently. The PEB conditions vary depending on the components and solids concentration of the resist composition used for forming the coating film and the film thickness of the coating film, but are usually 50 to 180 ° C., preferably 60 to 150 ° C., and 1 to 60. It is about a minute.
 その後、未露光部を、アルカリ性現像液等により現像して、溶解、除去することにより、所望のパターンを形成することができる。現像方法としては、例えば、シャワー現像法、スプレー現像法、浸漬現像法およびパドル現像法などが挙げられる。現像条件は、通常、20~40℃で0.5~10分程度である。 Then, a desired pattern can be formed by developing the unexposed portion with an alkaline developer or the like, and dissolving and removing the unexposed portion. Examples of the development method include a shower development method, a spray development method, an immersion development method, and a paddle development method. The development conditions are usually about 20 to 40 ° C. and about 0.5 to 10 minutes.
 アルカリ性現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、アンモニア水、テトラメチルアンモニウムヒドロキシド、コリン等のアルカリ性化合物を、1~10質量%濃度となるように水に溶解させたアルカリ性水溶液が挙げられる。また、アルカリ性水溶液には、例えば、メタノール、エタノール等の水溶性の有機溶剤および界面活性剤などを適量配合することもできる。なお、アルカリ性現像液で現像した後は、通常、水で洗浄し、乾燥させる。 Examples of the alkaline developer include an alkaline aqueous solution in which an alkaline compound such as sodium hydroxide, potassium hydroxide, aqueous ammonia, tetramethylammonium hydroxide, and choline is dissolved in water so as to have a concentration of 1 to 10% by mass. Can be mentioned. In addition, an appropriate amount of a water-soluble organic solvent such as methanol or ethanol, a surfactant, or the like can be added to the alkaline aqueous solution. In addition, after developing with an alkaline developer, it is usually washed with water and dried.
 現像後、加熱処理を行ってレジストパターンをさらに硬化させてもよい。このような硬化条件は特に限定されないが、通常、50~600℃の温度で、より好ましくは、1分~10時間程度である。この現像後の加熱処理は、得られたレジストパターンの硬化を十分に進行させたり、その変形を防止するために、二段階以上の工程で実施してもよい。例えば、第一段階で100~250℃の温度で5分~2時間程度加熱し、第二段階で250~500℃の温度で10分~10時間程度加熱することにより、レジストパターンを硬化させてもよい。 After development, the resist pattern may be further cured by heat treatment. Such curing conditions are not particularly limited, but are usually 50 to 600 ° C., more preferably about 1 minute to 10 hours. The heat treatment after the development may be performed in two or more steps in order to sufficiently cure the obtained resist pattern or prevent its deformation. For example, the resist pattern is cured by heating at a temperature of 100 to 250 ° C. for about 5 minutes to 2 hours in the first stage and heating at a temperature of 250 to 500 ° C. for about 10 minutes to 10 hours in the second stage. Also good.
 [ネガ型レジスト]
 上記ネガ型レジストとしては、特に限定されないが、例えば、アルカリ可溶性重合体と、ラジカル重合性の不飽和結合基を有する化合物と、感放射線性ラジカル発生剤とを含有する組成物;アルカリ可溶性重合体と、酸の作用により架橋反応を起こす化合物と、感放射線性酸発生剤とを含有する組成物;アルカリ可溶性であり、かつラジカル重合性の不飽和結合基を有する重合体と、感放射線性ラジカル発生剤とを含有する組成物;アルカリ可溶性であり、かつ酸の作用により架橋反応起こす基を有する重合体と、感放射線性酸発生剤とを含有する組成物などが挙げられる。これらの中では、アルカリ可溶性重合体(A)、感放射線性酸発生剤(B)(以下「酸発生剤(B)」ともいう。)および酸の作用により架橋反応を起こす架橋剤(C)を含有する組成物が好ましい。また、上記ネガ型レジストは、上記リソグラフィー法に用いる露光光の波長を光吸収する化合物(D)(以下「光吸収化合物(D)」ともいう。)をさらに含有することが、より好ましい。さらに、上記ネガ型レジストは、本発明の効果を損なわない範囲で、他の成分を含有してもよい。以下、本発明で用いられるネガ型レジストとして好ましい態様を説明するが、本発明は下記態様に限定されるものではない。
[Negative resist]
Although it does not specifically limit as said negative resist, For example, the composition containing an alkali-soluble polymer, the compound which has a radically polymerizable unsaturated bond group, and a radiation sensitive radical generator; Alkali-soluble polymer A composition containing a compound that undergoes a crosslinking reaction by the action of an acid and a radiation-sensitive acid generator; a polymer that is alkali-soluble and has a radical-polymerizable unsaturated bond group; and a radiation-sensitive radical A composition containing a generator; a composition containing a polymer that is soluble in alkali and has a group that undergoes a crosslinking reaction by the action of an acid, and a radiation-sensitive acid generator, and the like. Among these, the alkali-soluble polymer (A), the radiation-sensitive acid generator (B) (hereinafter also referred to as “acid generator (B)”), and the crosslinking agent (C) that causes a crosslinking reaction by the action of an acid. A composition containing is preferred. The negative resist further preferably contains a compound (D) that absorbs the wavelength of exposure light used in the lithography method (hereinafter also referred to as “light absorbing compound (D)”). Furthermore, the negative resist may contain other components as long as the effects of the present invention are not impaired. Hereinafter, although a preferable aspect as a negative resist used by this invention is demonstrated, this invention is not limited to the following aspect.
 <アルカリ可溶性重合体(A)>
 上記アルカリ可溶性重合体とは、該重合体からなる塗膜の、2.38質量%のテトラアンモニウムハイドロオキサイド水溶液(アルカリ性の液)に対する溶解度が、100Å/秒以上となる(共)重合体のことである。
<Alkali-soluble polymer (A)>
The alkali-soluble polymer is a (co) polymer whose solubility in a 2.38% by mass tetraammonium hydroxide aqueous solution (alkaline liquid) of the coating film made of the polymer is 100 kg / sec or more. It is.
 このようなアルカリ可溶性重合体(A)としては、例えば、ノボラック樹脂の他、ポリヒドロキシスチレンおよびその共重合体、フェノール-キシリレングリコール縮合樹脂、クレゾール-キシリレングリコール縮合樹脂、フェノール-ジシクロペンタジエン縮合樹脂、ポリベンゾオキサゾール前駆体などが挙げられる。これらの中では、ノボラック樹脂、ポリヒドロキシスチレンおよびその共重合体、ならびにポリベンゾオキサゾール前駆体が好ましい。これらの樹脂は、1種単独で用いても、2種以上を組み合わせて用いてもよい。 Examples of such alkali-soluble polymers (A) include novolak resins, polyhydroxystyrene and copolymers thereof, phenol-xylylene glycol condensed resins, cresol-xylylene glycol condensed resins, phenol-dicyclopentadiene. Examples thereof include condensed resins and polybenzoxazole precursors. Of these, novolak resins, polyhydroxystyrene and copolymers thereof, and polybenzoxazole precursors are preferred. These resins may be used alone or in combination of two or more.
 上記ノボラック樹脂は、触媒の存在下でフェノール類とアルデヒド類とを縮合させて得られる。上記フェノール類としては、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、o-エチルフェノール、m-エチルフェノール、p-エチルフェノール、o-ブチルフェノール、m-ブチルフェノール、p-ブチルフェノール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール、2,3,5-トリメチルフェノール、3,4,5-トリメチルフェノール、カテコール、レゾルシノール、ピロガロール、α-ナフトール、β-ナフトールなどが挙げられる。また、上記アルデヒド類としては、例えば、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、ベンズアルデヒドなどが挙げられる。 The novolak resin is obtained by condensing phenols and aldehydes in the presence of a catalyst. Examples of the phenols include phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, o-butylphenol, m-butylphenol, p-butylphenol, 2 , 3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, 2,3,5-trimethylphenol, 3,4,5- Examples include trimethylphenol, catechol, resorcinol, pyrogallol, α-naphthol, β-naphthol and the like. Examples of the aldehydes include formaldehyde, paraformaldehyde, acetaldehyde, and benzaldehyde.
 このようなノボラック樹脂としては、具体的には、フェノール/ホルムアルデヒド縮合ノボラック樹脂、クレゾール/ホルムアルデヒド縮合ノボラック樹脂、フェノール-ナフトール/ホルムアルデヒド縮合ノボラック樹脂などが挙げられる。 Specific examples of such novolak resins include phenol / formaldehyde condensed novolak resins, cresol / formaldehyde condensed novolak resins, phenol-naphthol / formaldehyde condensed novolak resins, and the like.
 上記ポリヒドロキシスチレンおよびその共重合体としては、具体的には、下記一般式(1)で示される構造単位(1)および下記一般式(2)で示される構造単位(2)からなる共重合体(A1)が好適に用いられる。前記共重合体(A1)は、構造単位(1)を形成し得るモノマーと、構造単位(2)を形成し得るモノマーとの共重合体である。 Specifically, the polyhydroxystyrene and the copolymer thereof include a copolymer composed of a structural unit (1) represented by the following general formula (1) and a structural unit (2) represented by the following general formula (2). Combined (A1) is preferably used. The copolymer (A1) is a copolymer of a monomer that can form the structural unit (1) and a monomer that can form the structural unit (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)中、Raは炭素数1~4のアルキル基、アルコキシ基またはアリル基を表す。Rbは水素原子またはメチル基を表す。nは0~3の整数、mは1~3の整数である。 In formula (1), Ra represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group or an allyl group. Rb represents a hydrogen atom or a methyl group. n is an integer of 0 to 3, and m is an integer of 1 to 3.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(2)中、Rcは炭素数1~4のアルキル基、アルコキシ基またはアリル基を表す。Rdは水素原子またはメチル基を表す。nは0~3の整数である。 In the formula (2), Rc represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group or an allyl group. Rd represents a hydrogen atom or a methyl group. n is an integer of 0 to 3.
 上記構造単位(1)を形成し得るモノマーとしては、例えば、p-ヒドロキシスチレン、m-ヒドロキシスチレン、o-ヒドロキシスチレン、p-イソプロペニルフェノール、m-イソプロペニルフェノール、o-イソプロペニルフェノールなどが挙げられる。これらの中では、p-ヒドロキシスチレンおよびp-イソプロペニルフェノールが好ましい。 Examples of the monomer that can form the structural unit (1) include p-hydroxystyrene, m-hydroxystyrene, o-hydroxystyrene, p-isopropenylphenol, m-isopropenylphenol, o-isopropenylphenol, and the like. Can be mentioned. Of these, p-hydroxystyrene and p-isopropenylphenol are preferred.
 上記構造単位(1)は、例えば、t-ブチル基、アセチル基などで水酸基が保護されたモノマーを重合して得てもよい。得られた重合体または共重合体は、公知の方法、たとえば、酸触媒下で脱保護することにより、ヒドロキシスチレン系構造単位に変換される。 The structural unit (1) may be obtained, for example, by polymerizing a monomer having a hydroxyl group protected with a t-butyl group, an acetyl group or the like. The obtained polymer or copolymer is converted into a hydroxystyrene-based structural unit by a known method, for example, deprotection under an acid catalyst.
 上記構造単位(2)を形成し得るモノマーとしては、例えば、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o-メトキシスチレン、m-メトキシスチレン、p-メトキシスチレンなどが挙げられる。これらの中では、スチレンおよびp-メトキシスチレンが好ましく、スチレンがより好ましい。 Examples of the monomer capable of forming the structural unit (2) include styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-methoxystyrene, m-methoxystyrene, p- Examples include methoxystyrene. Among these, styrene and p-methoxystyrene are preferable, and styrene is more preferable.
 これらのモノマーは、それぞれ1種単独で用いても、2種以上を組み合わせて用いてもよい。 These monomers may be used alone or in combination of two or more.
 上記共重合体(A1)は、構造単位(1)を形成し得るモノマーと、構造単位(2)を形成し得るモノマーとの共重合体であり、本質的に構造単位(1)および構造単位(2)のみからなることが好ましいが、その他のモノマーが共重合されていてもよい。 The copolymer (A1) is a copolymer of a monomer that can form the structural unit (1) and a monomer that can form the structural unit (2), and is essentially a structural unit (1) and a structural unit. Although it is preferable to consist only of (2), other monomers may be copolymerized.
 上記その他のモノマーとしては、例えば、不飽和カルボン酸またはそれらの酸無水物類、上記不飽和カルボン酸のエステル類、不飽和ニトリル類、不飽和アミド類、不飽和イミド類、脂環式骨格を有する化合物、不飽和アルコール類、N-ビニル-ε-カプロラクタム、N-ビニルピロリドン、N-ビニルイミダゾール、N-ビニルカルバゾールなどが挙げられる。 Examples of the other monomers include unsaturated carboxylic acids or their anhydrides, esters of the unsaturated carboxylic acids, unsaturated nitriles, unsaturated amides, unsaturated imides, and alicyclic skeletons. Compounds, unsaturated alcohols, N-vinyl-ε-caprolactam, N-vinylpyrrolidone, N-vinylimidazole, N-vinylcarbazole and the like.
 上記共重合体(A1)において、構造単位(1)と構造単位(2)との合計100質量部に対して、その他のモノマーから形成される構造単位の量は100質量部以下であり、好ましくは50質量部以下であり、より好ましくは25質量部以下である。 In the copolymer (A1), the amount of structural units formed from other monomers is 100 parts by mass or less with respect to a total of 100 parts by mass of the structural unit (1) and the structural unit (2). Is 50 parts by mass or less, more preferably 25 parts by mass or less.
 上記共重合体(A1)中、構造単位(1)の含有量は10~99モル%であり、好ましくは20~97モル%、より好ましくは30~95モル%であり、構造単位(2)の含有量は90~1モル%であり、好ましくは80~3モル%、より好ましくは70~5モル%である(ただし、共重合体(A1)を構成する構造単位の全量を100モル%とする。)。構造単位(1)および構造単位(2)の含有量が上記範囲外であると、パターニング特性が低下することがあり、硬化膜の熱衝撃性などの物性が低下することがある。 In the copolymer (A1), the content of the structural unit (1) is 10 to 99 mol%, preferably 20 to 97 mol%, more preferably 30 to 95 mol%, and the structural unit (2) The content of is 90 to 1 mol%, preferably 80 to 3 mol%, more preferably 70 to 5 mol% (provided that the total amount of structural units constituting the copolymer (A1) is 100 mol%) And). When the content of the structural unit (1) and the structural unit (2) is out of the above range, the patterning characteristics may be deteriorated, and physical properties such as thermal shock properties of the cured film may be deteriorated.
 上記共重合体(A1)において、構造単位(1)と構造単位(2)と上記その他のモノマーから形成される構造単位との配列は特に限定されず、共重合体(A1)はランダム共重合体、ブロック共重合体のいずれであっても構わない。 In the copolymer (A1), the arrangement of the structural unit (1), the structural unit (2), and the structural unit formed from the other monomers is not particularly limited, and the copolymer (A1) is a random copolymer. Either a polymer or a block copolymer may be used.
 上記共重合体(A1)を得るには、構造単位(1)を形成し得る化合物またはその水酸基を保護した化合物と、構造単位(2)を形成し得るモノマーと、必要に応じて上記その他のモノマーとを、開始剤の存在下、溶剤中で重合させればよい。重合方法は特に限定されず、所望の分子量の化合物を得るために、ラジカル重合やアニオン重合などにより行えばよい。 In order to obtain the copolymer (A1), a compound that can form the structural unit (1) or a compound that protects the hydroxyl group thereof, a monomer that can form the structural unit (2), and the above-mentioned other units as necessary. The monomer may be polymerized in a solvent in the presence of an initiator. The polymerization method is not particularly limited, and may be performed by radical polymerization or anionic polymerization in order to obtain a compound having a desired molecular weight.
 上記重合体(A)の分子量は特に限定されないが、ゲルパーミエーションクロマトグラフィー(GPC)法で測定したポリスチレン換算の重量平均分子量(Mw)が、たとえば200,000以下、好ましくは2,000~100,000である。Mwが前記下限未満であると、硬化膜の耐熱性や伸びなどの物性が低下することがあり、前記上限を超えると、他成分との相溶性が低下したり、パターニング特性が低下することがある。 The molecular weight of the polymer (A) is not particularly limited, but the weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography (GPC) is, for example, 200,000 or less, preferably 2,000 to 100. , 000. When Mw is less than the lower limit, physical properties such as heat resistance and elongation of the cured film may be deteriorated. When the upper limit is exceeded, compatibility with other components may be deteriorated and patterning characteristics may be deteriorated. is there.
 <感放射線性酸発生剤(B)>
 上記酸発生剤(B)は、上記露光により酸を発生する成分である。酸発生剤(B)により発生した酸の触媒作用により、架橋剤(C)が架橋反応を起こし、ネガ型のパターンを形成することができる。
<Radiation sensitive acid generator (B)>
The acid generator (B) is a component that generates an acid by the exposure. Due to the catalytic action of the acid generated by the acid generator (B), the crosslinking agent (C) can undergo a crosslinking reaction to form a negative pattern.
 上記酸発生剤(B)としては、放射線などの照射により酸を発生する化合物であれば特に限定されないが、例えば、オニウム塩化合物(チオフェニウム塩化合物を含む)、ハロゲン含有化合物、ジアゾケトン化合物、スルホン化合物、スルホン酸化合物、スルホンイミド化合物、ジアゾメタン化合物などを挙げることができる。これらの中でも、ネガ型レジストの解像度や感度の点から、オニウム塩化合物およびハロゲン含有化合物が好ましく、チオフェニウム塩化合物およびトリアジン構造を有するハロゲン含有化合物がより好ましい。 The acid generator (B) is not particularly limited as long as it is a compound that generates an acid upon irradiation with radiation or the like. For example, onium salt compounds (including thiophenium salt compounds), halogen-containing compounds, diazoketone compounds, sulfone compounds , Sulfonic acid compounds, sulfonimide compounds, diazomethane compounds and the like. Among these, onium salt compounds and halogen-containing compounds are preferable from the viewpoint of resolution and sensitivity of the negative resist, and thiophenium salt compounds and halogen-containing compounds having a triazine structure are more preferable.
 上記オニウム塩化合物としては、例えば、4,7-ジ-n-ブトキシナフチルテトラヒドロチオフェニウム塩化合物、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウム塩化合物、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウム塩化合物、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウム塩化合物などのチオフェニウム塩化合物;ビス(4-t-ブチルフェニル)ヨードニウム塩化合物、ジフェニルヨードニウム塩化合物などのヨードニウム塩化合物;トリフェニルスルホニウム塩化合物、4-t-ブチルフェニルジフェニルスルホニウム塩化合物、4-シクロヘキシルフェニルジフェニルスルホニウム塩化合物、4-メタンスルホニルフェニルジフェニルスルホニウム塩化合物などのスルホニウム塩化合物;ホスホニウム塩化合物;ジアゾニウム塩化合物;ピリジニウム塩化合物などが挙げられる。 Examples of the onium salt compound include 4,7-di-n-butoxynaphthyltetrahydrothiophenium salt compound, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium salt compound, 1- ( Thiophenium salt compounds such as 6-n-butoxynaphthalen-2-yl) tetrahydrothiophenium salt compound, 1- (3,5-dimethyl-4-hydroxyphenyl) tetrahydrothiophenium salt compound; bis (4-t- Iodonium salt compounds such as butylphenyl) iodonium salt compounds and diphenyliodonium salt compounds; triphenylsulfonium salt compounds, 4-tert-butylphenyldiphenylsulfonium salt compounds, 4-cyclohexylphenyldiphenylsulfonium salt compounds, 4-methanesulfonylphenyldi Sulfonium salt compounds such as E sulfonyl sulfonium salt compound; phosphonium salt compound; diazonium salt compound; pyridinium salt compounds and the like.
 上記ハロゲン含有化合物としては、例えば、ハロアルキル基含有炭化水素化合物、ハロアルキル基含有複素環式化合物などが挙げられる。具体的には、1,10-ジブロモ-n-デカン、1,1-ビス(4-クロロフェニル)-2,2,2-トリクロロエタン、ならびに、フェニル-ビス(トリクロロメチル)-1,3,5-トリアジン、4-メトキシフェニル-ビス(トリクロロメチル)-1,3,5-トリアジン、スチリル-ビス(トリクロロメチル)-1,3,5-トリアジン、ナフチル-ビス(トリクロロメチル)-1,3,5-トリアジン、2,4-トリクロロメチル(ピペロニル)-1,3,5-トリアジン、2,4-トリクロロメチル-(4-メトキシスチリル)-1,3,5-トリアジン、2-(1,3-ベンゾジオキソール-5-イル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジンおよび2-[2-(5-メチルフラン-2-イル)エチニル]-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン等のトリアジン構造を有する化合物などが挙げられる。 Examples of the halogen-containing compound include haloalkyl group-containing hydrocarbon compounds and haloalkyl group-containing heterocyclic compounds. Specifically, 1,10-dibromo-n-decane, 1,1-bis (4-chlorophenyl) -2,2,2-trichloroethane, and phenyl-bis (trichloromethyl) -1,3,5- Triazine, 4-methoxyphenyl-bis (trichloromethyl) -1,3,5-triazine, styryl-bis (trichloromethyl) -1,3,5-triazine, naphthyl-bis (trichloromethyl) -1,3,5 -Triazine, 2,4-trichloromethyl (piperonyl) -1,3,5-triazine, 2,4-trichloromethyl- (4-methoxystyryl) -1,3,5-triazine, 2- (1,3- Benzodioxol-5-yl) -4,6-bis (trichloromethyl) -1,3,5-triazine and 2- [2- (5-methylfuran-2-yl) ethini ] -4,6-bis compounds having a (trichloromethyl) triazine structure such as 1,3,5-triazine, and the like.
 上記酸発生剤(B)は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、上記酸発生剤(B)の配合量は、ネガ型レジストの感度、解像度、パターン形状などを確保する観点から、上記重合体(A)100質量部に対して、好ましくは0.1~30質量部であり、より好ましくは0.1~20質量部であり、さらに好ましくは0.1~15質量部である。配合量が前記範囲内にあると、感度および解像性に優れ、組成物が十分に硬化して硬化膜の耐熱性が向上するとともに、放射線に対して良好な透明性を有し、パターン形状の劣化が起こりにくくなる。 The acid generator (B) may be used alone or in combination of two or more. The blending amount of the acid generator (B) is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of the polymer (A) from the viewpoint of ensuring the sensitivity, resolution, pattern shape, etc. of the negative resist. 30 parts by mass, more preferably 0.1 to 20 parts by mass, and still more preferably 0.1 to 15 parts by mass. When the blending amount is within the above range, the sensitivity and resolution are excellent, the composition is sufficiently cured to improve the heat resistance of the cured film, and has good transparency to radiation, and has a pattern shape. Degradation is less likely to occur.
 <架橋剤(C)>
 上記架橋剤(C)は、放射線の作用により上記酸発生剤(B)より発生する酸の存在下で、架橋構造を形成し得る化合物である。このような架橋剤(C)としては、前記作用を示す化合物であれば特に限定されないが、金属膜形成時におけるレジストパターンへの負荷に対抗できるパターンを形成できることから、メチロール基またはアルコキシメチロール基を有する化合物が好ましい。
<Crosslinking agent (C)>
The crosslinking agent (C) is a compound that can form a crosslinked structure in the presence of an acid generated from the acid generator (B) by the action of radiation. Such a cross-linking agent (C) is not particularly limited as long as it is a compound exhibiting the above-mentioned action. However, since it can form a pattern that can resist the load on the resist pattern during the formation of the metal film, a methylol group or an alkoxymethylol group can be formed. The compound which has is preferable.
 上記メチロール基またはアルコキシメチロール基を有する化合物としては、たとえば、メチロール基またはアルコキシメチロール基を有する、メラミン系化合物、尿素系化合物、ベンゾグアナミン系化合物およびグリコールウリル系化合物などが挙げられる。これらの中では、メチロール基またはアルコキシメチロール基を有する、メラミン化合物、ベンゾグアナミン系化合物およびグリコールウリル系化合物が好ましく、特に、金属膜形成時にかかる熱履歴に対抗できる耐熱性に優れたパターンを形成できることから、メチロール基またはアルコキシメチロール基を有するメラミン化合物が好ましい。 Examples of the compound having a methylol group or an alkoxymethylol group include melamine compounds, urea compounds, benzoguanamine compounds and glycoluril compounds having a methylol group or an alkoxymethylol group. Among these, melamine compounds, benzoguanamine compounds, and glycoluril compounds having a methylol group or an alkoxymethylol group are preferred, and in particular, because a pattern with excellent heat resistance that can counter the thermal history applied during metal film formation can be formed. A melamine compound having a methylol group or an alkoxymethylol group is preferred.
 上記メチロール基またはアルコキシメチロール基を有するメラミン化合物としては、例えば、メトキシメチル化メラミン、エトキシメチル化メラミン、n-プロポキシメチル化メラミン、n-ブトキシメチル化メラミン等が挙げられ、さらに具体的には、ヘキサメトキシメチルメラミン、ヘキサブトキシメチルメラミンなどが挙げられる。 Examples of the melamine compound having a methylol group or an alkoxymethylol group include methoxymethylated melamine, ethoxymethylated melamine, n-propoxymethylated melamine, n-butoxymethylated melamine, and more specifically, Examples include hexamethoxymethyl melamine and hexabutoxymethyl melamine.
 上記メチロール基またはアルコキシメチロール基を有するベンゾグアナミン系化合物としては、例えば、テトラメチロールベンゾグアナミン、アルキル化メチロールベンゾグアナミン(アルキル化の数は1~4個である。またアルキルとは炭素数1~6のアルキル基のことである。)などが挙げられる。 Examples of the benzoguanamine compounds having a methylol group or an alkoxymethylol group include, for example, tetramethylol benzoguanamine, alkylated methylol benzoguanamine (the number of alkylation is 1 to 4. Alkyl is an alkyl group having 1 to 6 carbon atoms. Etc.).
 上記メチロール基またはアルコキシメチロール基を有するグリコールウリル系化合物としては、例えば、メトキシメチル化グリコールウリル、エトキシメチル化グリコールウリル、n-プロポキシメチル化グリコールウリル、n-ブトキシメチル化グリコールウリル等が挙げられ、さらに具体的には、テトラメトキシメチルグリコールウリル、テトラブトキシメチルグリコールウリルなどが挙げられる。 Examples of the glycoluril-based compound having a methylol group or an alkoxymethylol group include methoxymethylated glycoluril, ethoxymethylated glycoluril, n-propoxymethylated glycoluril, n-butoxymethylated glycoluril, and the like. More specifically, tetramethoxymethyl glycoluril, tetrabutoxymethyl glycoluril and the like can be mentioned.
 上記架橋剤(C)は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、上記架橋剤(C)の配合量は、上記重合体(A)100質量部に対して、好ましくは3~60質量部、より好ましくは3~40質量部、さらに好ましくは5~30質量部である。この場合、架橋剤の配合量が少なすぎると、架橋反応を十分進行させることが困難となり、レジストとして、残膜率が低下したり、パターンの膨潤や蛇行等を来たしやすくなり、また架橋剤の配合量が多すぎると、レジストとしての解像度が低下する傾向がある。 The crosslinking agent (C) may be used alone or in combination of two or more. The amount of the crosslinking agent (C) is preferably 3 to 60 parts by weight, more preferably 3 to 40 parts by weight, and still more preferably 5 to 30 parts by weight with respect to 100 parts by weight of the polymer (A). Part. In this case, if the amount of the crosslinking agent is too small, it is difficult to sufficiently advance the crosslinking reaction, and as a resist, the residual film ratio is decreased, pattern swelling, meandering, etc. are likely to occur. When the amount is too large, the resolution as a resist tends to be lowered.
 <光吸収化合物(D)>
 上記光吸収化合物(D)は、上記リソグラフィー法に用いる露光光の波長を光吸収する化合物であり、上記ネガ型レジストが該光吸収化合物(D)を含有することにより、光がn型半導体基板まで透過できなくなるため、より大きな逆テーパー形状のレジストパターンを形成することができる。
<Light Absorbing Compound (D)>
The light-absorbing compound (D) is a compound that absorbs the wavelength of exposure light used in the lithography method, and the negative resist contains the light-absorbing compound (D), so that the light is n-type semiconductor substrate. Therefore, a larger resist pattern having a reverse taper shape can be formed.
 上記光吸収化合物(D)としては、例えば、クルクミン、3-メチル-5-ヒドロキシ-1-(フェニル)-4-(トリルアゾ)-ピラゾールなどが挙げられる。 Examples of the light absorbing compound (D) include curcumin and 3-methyl-5-hydroxy-1- (phenyl) -4- (tolylazo) -pyrazole.
 上記光吸収化合物(D)は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、上記光吸収化合物(D)の配合量は、上記重合体(A)100質量部に対して、好ましくは0.01~20質量部、より好ましくは0.05~10質量部、さらに好ましくは0.1~5質量部である。配合量が前記範囲内にあると、レジストパターンの逆テーパー形状が良好に形成でき、かつ、感度を落とさずにレジストパターンを形成することができる。 The light absorbing compound (D) may be used alone or in combination of two or more. The amount of the light absorbing compound (D) is preferably 0.01 to 20 parts by weight, more preferably 0.05 to 10 parts by weight, and still more preferably 100 parts by weight of the polymer (A). Is 0.1 to 5 parts by mass. When the blending amount is within the above range, the reverse taper shape of the resist pattern can be formed satisfactorily, and the resist pattern can be formed without reducing the sensitivity.
 <他の成分>
 上記他の成分としては、例えば、溶剤、界面活性剤、溶解性補助剤、架橋ポリマー粒子、密着助剤、レベリング剤、消泡剤、架橋促進剤、酸拡散制御剤、増感剤、増感助剤などが挙げられる。
<Other ingredients>
Examples of the other components include solvents, surfactants, solubility aids, crosslinked polymer particles, adhesion aids, leveling agents, antifoaming agents, crosslinking accelerators, acid diffusion control agents, sensitizers, and sensitizers. An auxiliary agent etc. are mentioned.
 上記溶剤は、レジスト組成物の取り扱い性を向上させたり、粘度や保存安定性を調節するために添加される。このような溶剤としては、特に限定されないが、例えば、
 エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;
 プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等のプロピレングリコールモノアルキルエーテル類;
 プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジプロピルエーテル、プロピレングリコールジブチルエーテル等のプロピレングリコールジアルキルエーテル類;
 プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;
 エチルセロソルブ、ブチルセロソルブ等のセロソルブ類、ブチルカルビトール等のカルビトール類;
 乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸イソプロピル等の乳酸エステル類;
 酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸n-アミル、酢酸イソアミル、プロピオン酸イソプロピル、プロピオン酸n-ブチル、プロピオン酸イソブチル等の脂肪族カルボン酸エステル類;
 3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、ピルビン酸メチル、ピルビン酸エチル等の他のエステル類;
 トルエン、キシレン等の芳香族炭化水素類;
 2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロヘキサノン等のケトン類;
 N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;
 γ-ブチロラクトン等のラクトン類
などの有機溶媒が挙げられる。
The solvent is added to improve the handleability of the resist composition and to adjust the viscosity and storage stability. Such a solvent is not particularly limited.
Ethylene glycol monoalkyl ether acetates such as ethylene glycol monomethyl ether acetate and ethylene glycol monoethyl ether acetate;
Propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether;
Propylene glycol dialkyl ethers such as propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dipropyl ether, propylene glycol dibutyl ether;
Propylene glycol monoalkyl ether acetates such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate;
Cellosolves such as ethyl cellosolve and butylcellosolve, and carbitols such as butylcarbitol;
Lactate esters such as methyl lactate, ethyl lactate, n-propyl lactate and isopropyl lactate;
Aliphatic carboxylic acid esters such as ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, n-amyl acetate, isoamyl acetate, isopropyl propionate, n-butyl propionate, isobutyl propionate;
Other esters such as methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl pyruvate, ethyl pyruvate;
Aromatic hydrocarbons such as toluene and xylene;
Ketones such as 2-heptanone, 3-heptanone, 4-heptanone, cyclohexanone;
Amides such as N-dimethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpyrrolidone;
Examples thereof include organic solvents such as lactones such as γ-butyrolactone.
 上記溶剤は1種単独で用いてもよく、2種以上を混合して用いてもよい。また、溶剤の配合量は、組成物を均一な状態にすることができれば特に制限されないが、上記重合体100質量部に対して、好ましくは10~500質量部、より好ましくは100~300質量部、さらに好ましくは150~250質量部である。 The above solvents may be used alone or in combination of two or more. The amount of the solvent is not particularly limited as long as the composition can be made uniform, but is preferably 10 to 500 parts by weight, more preferably 100 to 300 parts by weight with respect to 100 parts by weight of the polymer. More preferably, it is 150 to 250 parts by mass.
 上記界面活性剤は、塗膜平坦化、基板外周平坦化、ストリエーションなどを改善するために添加される。このような界面活性剤としては、シリコン系界面活性剤、フッ素系界面活性剤、アクリル系界面活性剤などが挙げられる。より具体的には、エフトップEF301、EF303、EF352(トーケムプロダクツ社製)、メガファックF171、F172、F173(大日本インキ化学工業社製)、フロラードFC430、FC431(住友スリーエム社製)、サーフロンS-381、S-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)、フタージェント250、251、222F、FTX-218(ネオス社製)等のフッ素系界面活性剤などが挙げられる。 The above surfactant is added to improve the flattening of the coating film, the flattening of the outer periphery of the substrate, the striation, and the like. Examples of such surfactants include silicon surfactants, fluorine surfactants, and acrylic surfactants. More specifically, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F172, F173 (manufactured by Dainippon Ink and Chemicals), Florard FC430, FC431 (manufactured by Sumitomo 3M), Surflon Fluorosurfactants such as S-381, S-382, SC101, SC102, SC103, SC104, SC105, SC106 (made by Asahi Glass Co., Ltd.), Footgent 250, 251, 222F, FTX-218 (made by Neos), etc. Can be mentioned.
 上記界面活性剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、上記界面活性剤は、上記重合体(A)100質量部に対して、好ましくは0.01~1質量部、より好ましくは0.01~0.5質量部である。 The above surfactants may be used alone or in combination of two or more. The surfactant is preferably 0.01 to 1 part by mass, more preferably 0.01 to 0.5 part by mass with respect to 100 parts by mass of the polymer (A).
 上記溶解性補助剤としては、例えば、4,4’-ジヒドロキシジフェニルメタン、4,4’-ジヒドロキシジフェニルエーテル、トリス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、トリス(4-ヒドロキシフェニル)エタン、1,3-ビス[1-(4-ヒドロキシフェニル)-1-メチルエチル]ベンゼン、1,4-ビス[1-(4-ヒドロキシフェニル)-1-メチルエチル]ベンゼン、4,6-ビス[1-(4-ヒドロキシフェニル)-1-メチルエチル]-1,3-ジヒドロキシベンゼン、1,1-ビス(4-ヒドロキシフェニル)-1-[4-{1-(4-ヒドロキシフェニル)-1-メチルエチル}フェニル]エタン、1,1,2,2-テトラ(4-ヒドロキシフェニル)エタン、4,4’-〔1-{4-[2-(4-ヒドロキシフェニル)-2-プロピル]フェニル}エチリデン〕ビスフェノール、4,4’-〔1-{4-[1-(4-ヒドロキシフェニル)-1-メチルエチル]フェニル}エチリデン〕ビスフェノールなどが挙げられる。 Examples of the solubility aid include 4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenyl ether, tris (4-hydroxyphenyl) methane, and 1,1-bis (4-hydroxyphenyl) -1-phenyl. Ethane, tris (4-hydroxyphenyl) ethane, 1,3-bis [1- (4-hydroxyphenyl) -1-methylethyl] benzene, 1,4-bis [1- (4-hydroxyphenyl) -1- Methylethyl] benzene, 4,6-bis [1- (4-hydroxyphenyl) -1-methylethyl] -1,3-dihydroxybenzene, 1,1-bis (4-hydroxyphenyl) -1- [4- {1- (4-hydroxyphenyl) -1-methylethyl} phenyl] ethane, 1,1,2,2-tetra (4-hydroxyphenyl) ethane, 4 , 4 '-[1- {4- [2- (4-hydroxyphenyl) -2-propyl] phenyl} ethylidene] bisphenol, 4,4'-[1- {4- [1- (4-hydroxyphenyl)] -1-methylethyl] phenyl} ethylidene] bisphenol and the like.
 上記溶解性補助剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、上記溶解性補助剤の配合量は、上記重合体(A)100質量部に対して、好ましくは1~50質量部、より好ましくは2~30質量部、さらに好ましくは3~20質量部である。 The above-mentioned solubility aids may be used alone or in combination of two or more. Further, the blending amount of the solubility aid is preferably 1 to 50 parts by mass, more preferably 2 to 30 parts by mass, and further preferably 3 to 20 parts by mass with respect to 100 parts by mass of the polymer (A). It is.
 上記酸拡散制御剤としては、特開2008-192774号公報に記載の酸拡散制御剤、例えば、
 n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、n-ノニルアミン、n-デシルアミン、シクロヘキシルアミン等のモノ(シクロ)アルキルアミン類;
 ジ-n-ブチルアミン、ジ-n-ペンチルアミン、ジ-n-ヘキシルアミン、ジ-n-ヘプチルアミン、ジ-n-オクチルアミン、ジ-n-ノニルアミン、ジ-n-デシルアミン、シクロヘキシルメチルアミン、ジシクロヘキシルアミン等のジ(シクロ)アルキルアミン類;
 トリエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、トリ-n-ペンチルアミン、トリ-n-ヘキシルアミン、トリ-n-ヘプチルアミン、トリ-n-オクチルアミン、トリ-n-ノニルアミン、トリ-n-デシルアミン、シクロヘキシルジメチルアミン、メチルジシクロヘキシルアミン、トリシクロヘキシルアミン等のトリ(シクロ)アルキルアミン類;
 尿素、メチルウレア、1,1-ジメチルウレア、1,3-ジメチルウレア、1,1,3,3-テトラメチルウレア、1,3-ジフェニルウレア、トリ-n-ブチルチオウレア等のウレア化合物;
 イミダゾール、4-メチルイミダゾール、4-メチル-2-フェニルイミダゾール、ベンズイミダゾール、2-フェニルベンズイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-メチル-1H-イミダゾール等のイミダゾール類;
 ピリジン、2-メチルピリジン、4-メチルピリジン、2-エチルピリジン、4-エチルピリジン、2-フェニルピリジン、4-フェニルピリジン、2-メチル-4-フェニルピリジン、ニコチン、ニコチン酸、ニコチン酸アミド、キノリン、4-ヒドロキシキノリン、8-オキシキノリン、アクリジン、2,2’:6’,2’’-ターピリジン等のピリジン類;
 ピペラジン、1-(2-ヒドロキシエチル)ピペラジン等のピペラジン類;
 N,N-ジシクロヘキシルカルバミン酸-1,1-ジメチルエチルエステル、N-t-ブトキシカルボニル-1-アダマンチルアミン、N-t-ブトキシカルボニル-2-アダマンチルアミン、(S)-(-)-1-(t-ブトキシカルボニル)-2-ピロリジンメタノール、(R)-(+)-1-(t-ブトキシカルボニル)-2-ピロリジンメタノール、N-t-ブトキシカルボニルピロリジン、N-t-ブトキシカルボニル-4-ヒドロキシピペリジン、N-t-ブトキシカルボニル-2-フェニルベンズイミダゾール、N-t-アミロキシカルボニルジシクロヘキシルアミン、N-t-アミロキシカルボニル-1-アダマンチルアミン、N-t-アミロキシカルボニル-2-アダマンチルアミン、(S)-(-)-1-(t-アミロキシカルボニル)-2-ピロリジンメタノール、(R)-(+)-1-(t-アミロキシカルボニル)-2-ピロリジンメタノール、N-t-アミロキシカルボニルピロリジン、N-t-アミロキシカルボニル-4-ヒドロキシピペリジン、N-t-アミロキシカルボニル-2-フェニルベンズイミダゾール等のカルバミン酸エステル構造を有するアミン;
 ピラジン、ピラゾール、ピリダジン、キノザリン、プリン、ピロリジン、ピペリジン、ピペリジンエタノール、3-ピペリジノ-1,2-プロパンジオール、モルホリン、4-メチルモルホリン、1-(4-モルホリニル)エタノール、4-アセチルモルホリン、3-(N-モルホリノ)-1,2-プロパンジオール、1,4-ジメチルピペラジン、1,4-ジアザビシクロ[2.2.2]オクタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルアミン、2,2-ビス(4-アミノフェニル)プロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)プロパン、2-(4-アミノフェニル)-2-(3-ヒドロキシフェニル)プロパン、2-(4-アミノフェニル)-2-(4-ヒドロキシフェニル)プロパン、1,4-ビス〔1-(4-アミノフェニル)-1-メチルエチル〕ベンゼン、1,3-ビス〔1-(4-アミノフェニル)-1-メチルエチル〕ベンゼン、ビス(2-ジメチルアミノエチル)エーテル、ビス(2-ジエチルアミノエチル)エーテル、1-(2-ヒドロキシエチル)-2-イミダゾリジノン、2-キノキサリノール、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン、N,N,N’,N’’,N’’-ペンタメチルジエチレントリアミン等のその他アミン類などが挙げられる。
Examples of the acid diffusion control agent include acid diffusion control agents described in JP-A-2008-192774, for example,
mono (cyclo) alkylamines such as n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine, cyclohexylamine;
Di-n-butylamine, di-n-pentylamine, di-n-hexylamine, di-n-heptylamine, di-n-octylamine, di-n-nonylamine, di-n-decylamine, cyclohexylmethylamine, Di (cyclo) alkylamines such as dicyclohexylamine;
Triethylamine, tri-n-propylamine, tri-n-butylamine, tri-n-pentylamine, tri-n-hexylamine, tri-n-heptylamine, tri-n-octylamine, tri-n-nonylamine, tri -Tri (cyclo) alkylamines such as n-decylamine, cyclohexyldimethylamine, methyldicyclohexylamine, tricyclohexylamine;
Urea compounds such as urea, methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, 1,3-diphenylurea, tri-n-butylthiourea;
Imidazoles such as imidazole, 4-methylimidazole, 4-methyl-2-phenylimidazole, benzimidazole, 2-phenylbenzimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-methyl-1H-imidazole;
Pyridine, 2-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4-phenylpyridine, 2-methyl-4-phenylpyridine, nicotine, nicotinic acid, nicotinamide, Pyridines such as quinoline, 4-hydroxyquinoline, 8-oxyquinoline, acridine, 2,2 ′: 6 ′, 2 ″ -terpyridine;
Piperazines such as piperazine and 1- (2-hydroxyethyl) piperazine;
N, N-dicyclohexylcarbamic acid-1,1-dimethylethyl ester, Nt-butoxycarbonyl-1-adamantylamine, Nt-butoxycarbonyl-2-adamantylamine, (S)-(−)-1- (T-butoxycarbonyl) -2-pyrrolidinemethanol, (R)-(+)-1- (t-butoxycarbonyl) -2-pyrrolidinemethanol, Nt-butoxycarbonylpyrrolidine, Nt-butoxycarbonyl-4 -Hydroxypiperidine, Nt-butoxycarbonyl-2-phenylbenzimidazole, Nt-amyloxycarbonyldicyclohexylamine, Nt-amyloxycarbonyl-1-adamantylamine, Nt-amyloxycarbonyl-2- Adamantylamine, (S)-(−)-1- (t-amylo Sicarbonyl) -2-pyrrolidinemethanol, (R)-(+)-1- (t-amyloxycarbonyl) -2-pyrrolidinemethanol, Nt-amyloxycarbonylpyrrolidine, Nt-amyloxycarbonyl-4 An amine having a carbamate structure such as hydroxypiperidine, Nt-amyloxycarbonyl-2-phenylbenzimidazole;
Pyrazine, pyrazole, pyridazine, quinosaline, purine, pyrrolidine, piperidine, piperidine ethanol, 3-piperidino-1,2-propanediol, morpholine, 4-methylmorpholine, 1- (4-morpholinyl) ethanol, 4-acetylmorpholine, 3 -(N-morpholino) -1,2-propanediol, 1,4-dimethylpiperazine, 1,4-diazabicyclo [2.2.2] octane, 4,4'-diaminodiphenyl ether, 4,4'-diaminobenzophenone 4,4'-diaminodiphenylamine, 2,2-bis (4-aminophenyl) propane, 2- (3-aminophenyl) -2- (4-aminophenyl) propane, 2- (4-aminophenyl)- 2- (3-hydroxyphenyl) propane, 2- (4-aminophenyl) 2- (4-hydroxyphenyl) propane, 1,4-bis [1- (4-aminophenyl) -1-methylethyl] benzene, 1,3-bis [1- (4-aminophenyl) -1-methyl Ethyl] benzene, bis (2-dimethylaminoethyl) ether, bis (2-diethylaminoethyl) ether, 1- (2-hydroxyethyl) -2-imidazolidinone, 2-quinoxalinol, N, N, N ′ , N′-tetrakis (2-hydroxypropyl) ethylenediamine, other amines such as N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine and the like.
 これら酸拡散制御剤の中でも、良好な逆テーパー形状が得やすいことから、カルバミン酸エステル構造を有するアミンが好ましい。 Among these acid diffusion control agents, an amine having a carbamate structure is preferable because a good reverse taper shape can be easily obtained.
 上記酸拡散制御剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、上記酸拡散制御剤の配合量は、上記重合体(A)100質量部に対して、好ましくは0.001~10質量部、より好ましくは0.005~5質量部、さらに好ましくは0.01~1質量部である。 The above acid diffusion controller may be used alone or in combination of two or more. The amount of the acid diffusion control agent is preferably 0.001 to 10 parts by mass, more preferably 0.005 to 5 parts by mass, and still more preferably 0 to 100 parts by mass of the polymer (A). 0.01 to 1 part by mass.
 [工程(2)]
 本発明の工程(2)では、図3(c)に示すように、上記工程(1)で形成されたレジストパターン13間に金属膜14を形成する。このようにしてレジストパターン間に形成された金属膜が電極となる。金属膜の形成方法としては、例えば、真空蒸着法、スパッタリング法などが挙げられる。電極を構成する金属材料は特に限定されないが、例えば、金、銀、銅、白金、パラジウム、ニッケル、アルミニウムや、これらの2種以上の合金が挙げられる。
[Step (2)]
In the step (2) of the present invention, as shown in FIG. 3C, a metal film 14 is formed between the resist patterns 13 formed in the step (1). The metal film formed between the resist patterns in this way becomes an electrode. Examples of the method for forming the metal film include a vacuum deposition method and a sputtering method. Although the metal material which comprises an electrode is not specifically limited, For example, gold | metal | money, silver, copper, platinum, palladium, nickel, aluminum, and these 2 or more types of alloys are mentioned.
 [工程(3)]
 本発明の工程(3)では、図3(d)に示すように、上記工程(2)における金属膜14の形成後、レジストパターン13を剥離することにより、前記n型半導体層1上に形成された前記金属膜からなる電極14を得る。レジストパターンの剥離方法としては、特に限定されないが、例えば、20~80℃程度の剥離液に基板を1~30分間程度浸漬する方法などが挙げられる。前記剥離液としては、例えば、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N-メチルピロリドン、γ-ブチロラクトン、メタノールアミン、エタノールアミン、プロパノールアミン、ブタノールアミンおよびそれらの混合溶剤などが挙げられる。本発明では、逆テーパー形状のレジストパターンを形成しているため、電極の形状を損なうことなく、レジストパターンを良好に剥離することができる。
[Step (3)]
In step (3) of the present invention, as shown in FIG. 3 (d), after forming the metal film 14 in the step (2), the resist pattern 13 is peeled off to form on the n-type semiconductor layer 1. The electrode 14 made of the metal film is obtained. The resist pattern peeling method is not particularly limited, and examples thereof include a method of immersing the substrate in a peeling solution at about 20 to 80 ° C. for about 1 to 30 minutes. Examples of the stripper include dimethyl sulfoxide, N, N-dimethylformamide, N-methylpyrrolidone, γ-butyrolactone, methanolamine, ethanolamine, propanolamine, butanolamine, and mixed solvents thereof. In the present invention, since the reverse taper-shaped resist pattern is formed, the resist pattern can be favorably peeled without impairing the electrode shape.
 上述した本発明のn型半導体層上の電極の形成方法により、n型半導体基板上に良好な形状の電極を形成することができる。 The electrode having a good shape can be formed on the n-type semiconductor substrate by the above-described method for forming an electrode on the n-type semiconductor layer of the present invention.
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples.
 [実施例1~19、比較例1~2]
 〔1〕レジスト組成物の調製
 下記表1に示す量で各成分を配合して溶解することにより、レジスト組成物を調製した。なお、表1における成分量の単位は質量部である。
[Examples 1 to 19, Comparative Examples 1 and 2]
[1] Preparation of resist composition A resist composition was prepared by blending and dissolving each component in the amounts shown in Table 1 below. In addition, the unit of the component amount in Table 1 is part by mass.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記表1中の各成分は以下のとおりである。なお、下記における重量平均分子量は、GPCにより下記条件で測定した標準ポリスチレン換算の重量平均分子量である。
装置:東ソー(株)製「HLC-8120C」
カラム:東ソー(株)製「TSK-gel MultiporeHXL-M」
溶離液:テトラヒドロフラン、流量0.5mL/min、負荷量5.0%、100μL
カラム温度:40℃。
Each component in Table 1 is as follows. In addition, the weight average molecular weight in the following is a weight average molecular weight in terms of standard polystyrene measured by GPC under the following conditions.
Equipment: “HLC-8120C” manufactured by Tosoh Corporation
Column: “TSK-gel Multipore HXL-M” manufactured by Tosoh Corporation
Eluent: Tetrahydrofuran, flow rate 0.5 mL / min, load 5.0%, 100 μL
Column temperature: 40 ° C.
 <A成分;樹脂成分>
A1成分:p-ヒドロキシスチレンからなる単位80モル%およびスチレンからなる単位20モル%を含む共重合体(重量平均分子量:10,000)。
A2成分:m-クレゾール:3,5-キシレノール=70:30(モル比)の混合フェノール類をホルマリンと重縮合して得られたノボラック樹脂(重量平均分子量:8,000)。
A3成分:m-クレゾール:p-クレゾール=50:50(モル比)の混合フェノール類をホルマリンと重縮合して得られたノボラック樹脂(重量平均分子量:7,000)。
A4成分:p-ヒドロキシスチレンからなる単位80モル%、スチレンからなる単位10モル%およびヒドロキシブチルアクリレートからなる単位10モル%を含む共重合体(重量平均分子量:10,000)。
RA1成分:1-エチルシクロヘキシルメタクリレート構成単位50質量%および2-エトキシエチルアクリレート構成単位50質量%を含む共重合体(重量平均分子量:350,000)。
<A component; resin component>
Component A1: A copolymer containing 80 mol% of p-hydroxystyrene units and 20 mol% of styrene units (weight average molecular weight: 10,000).
A novolak resin (weight average molecular weight: 8,000) obtained by polycondensation of mixed phenols of component A2: m-cresol: 3,5-xylenol = 70: 30 (molar ratio) with formalin.
A novolak resin (weight average molecular weight: 7,000) obtained by polycondensation of mixed phenols of component A3: m-cresol: p-cresol = 50: 50 (molar ratio) with formalin.
Component A4: A copolymer (weight average molecular weight: 10,000) containing 80 mol% of units composed of p-hydroxystyrene, 10 mol% of units of styrene, and 10 mol% of units composed of hydroxybutyl acrylate.
RA1 component: a copolymer containing 50% by mass of 1-ethylcyclohexyl methacrylate structural unit and 50% by mass of 2-ethoxyethyl acrylate structural unit (weight average molecular weight: 350,000).
 <B成分;酸発生剤>
B1成分:2-[2-(5-メチルフラン-2-イル)エテニル]-4,6-ビス-(トリクロロメチル)-1,3,5-トリアジン。
B2成分:2,4-トリクロロメチル(ピペロニル)-1,3,5-トリアジン。
B3成分:2,4-トリクロロメチル-(4-メトキシスチリル)-1,3,5-トリアジン。
B4成分:1-(4,7-ジブトキシ-1-ナフタレニル)テトラヒドロチオフェニウムトリフルオロメタンスルホナート。
B5成分:下記式で表される化合物。
<B component; acid generator>
Component B1: 2- [2- (5-methylfuran-2-yl) ethenyl] -4,6-bis- (trichloromethyl) -1,3,5-triazine.
B2 component: 2,4-trichloromethyl (piperonyl) -1,3,5-triazine.
B3 component: 2,4-trichloromethyl- (4-methoxystyryl) -1,3,5-triazine.
B4 component: 1- (4,7-dibutoxy-1-naphthalenyl) tetrahydrothiophenium trifluoromethanesulfonate.
B5 component: a compound represented by the following formula.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
B6成分:4,4’-[1-[4-[1-[4-ヒドロキシフェニル]-1-メチルエチル]フェニル]エチリデン]ビスフェノール(1.0モル)と1,2-ナフトキノンジアジド-5-スルホン酸クロリド(2.0モル)の縮合物。 Component B6: 4,4 ′-[1- [4- [1- [4-hydroxyphenyl] -1-methylethyl] phenyl] ethylidene] bisphenol (1.0 mol) and 1,2-naphthoquinonediazide-5 A condensate of sulfonic acid chloride (2.0 mol).
 <C成分;架橋剤>
C1成分:ヘキサメトキシメチルメラミン。
C2成分:テトラメトキシメチルグリコールウリル。
C3成分:テトラメチロールベンゾグアナミン。
<C component; cross-linking agent>
C1 component: hexamethoxymethyl melamine.
Component C2: tetramethoxymethyl glycoluril.
C3 component: Tetramethylol benzoguanamine.
 <D成分;光吸収化合物>
D1成分:クルクミン。
D2成分:3-メチル-5-ヒドロキシ-1-(フェニル)-4-(トリルアゾ)-ピラゾール。
<D component; light absorbing compound>
D1 component: curcumin.
Component D2: 3-methyl-5-hydroxy-1- (phenyl) -4- (tolylazo) -pyrazole.
 <E成分;界面活性剤>
E1成分:フッ素系界面活性剤(商品名「フタージェント251」、ネオス社製)。
<E component; surfactant>
E1 component: Fluorosurfactant (trade name “Factent 251”, manufactured by Neos).
 <F成分;溶解性補助剤>
F1成分:4,4’-〔1-{4[1-(4-ヒドロキシフェニル)-1-メチルエチル]フェニル}エチリデン〕ビスフェノール。
<F component; solubility aid>
F1 component: 4,4 ′-[1- {4 [1- (4-hydroxyphenyl) -1-methylethyl] phenyl} ethylidene] bisphenol.
 <G成分;溶剤>
G1成分:3-メトキシプロピオン酸メチル。
G2成分:プロピレングリコールモノメチルエーテルアセテート。
<G component; solvent>
G1 component: methyl 3-methoxypropionate.
G2 component: propylene glycol monomethyl ether acetate.
 <H成分;酸拡散抑制剤>
H1成分:N,N-ジシクロヘキシルカルバミン酸-1,1-ジメチルエチルエステル。
H2成分:N-t一ブトキシカルボニルピロリジン。
H3成分:N-t一ブトキシカルボニルー2一フェニルベンズイミダゾール。
<H component; acid diffusion inhibitor>
H1 component: N, N-dicyclohexylcarbamic acid-1,1-dimethylethyl ester.
H2 component: Nt-butoxycarbonylpyrrolidine.
H3 component: Nt monobutoxycarbonyl-2 monophenylbenzimidazole.
 〔2〕評価
 〔2-1〕パターン形状
 n型GaN基板上もしくはITO基板上に、〔1〕で調製した各レジスト組成物をスピンコートし、その後、ホットプレートを用いて95℃で90秒間加熱し、厚さ5μmの塗膜を作製した。次いで、アライナー(Karl Suss社製、型式「MA-200e」)を使用し、高圧水銀灯から照射される紫外線(波長365nm)を、ホールパターンマスクを介して塗膜に露光した。その後、露光処理した基板を、ホットプレートを用いて95℃で2分間加熱(PEB)した後、2.38質量%濃度のテトラメチルアンモニウムハイドロキサイド水溶液中に、23℃で60秒間浸漬処理することにより現像した。得られたパターンを電子顕微鏡にて観察し、下記基準にて評価した。評価結果を表2に示す。
[2] Evaluation [2-1] Pattern shape Each n-type GaN substrate or ITO substrate was spin-coated with each resist composition prepared in [1], and then heated at 95 ° C. for 90 seconds using a hot plate. Then, a coating film having a thickness of 5 μm was produced. Next, using an aligner (model “MA-200e”, manufactured by Karl Suss), the coating film was exposed to ultraviolet rays (wavelength 365 nm) irradiated from a high-pressure mercury lamp through a hole pattern mask. Thereafter, the exposed substrate is heated (PEB) at 95 ° C. for 2 minutes using a hot plate, and then immersed in a 2.38 mass% aqueous tetramethylammonium hydroxide solution at 23 ° C. for 60 seconds. Developed. The obtained pattern was observed with an electron microscope and evaluated according to the following criteria. The evaluation results are shown in Table 2.
 <評価基準>
良好:得られたパターンが、フッティングがない、良好な逆テーパー形状である。
不良:得られたパターンが、フッティング及び順テーパー形状の少なくとも1つ以上の形状である。
<Evaluation criteria>
Good: The obtained pattern has a good reverse taper shape with no footing.
Defect: The obtained pattern has at least one shape of footing and forward taper shape.
 なお、各基板の表面状態は以下のとおりである。
n型GaN基板:高さ1.2μm~0.4μmの突起を有する表面状態。n型GaN基板の場合の塗膜の膜厚は、高さ1.2μmの突起からの厚さを示す。
ITO基板:表面にスズドープ酸化インジウム膜を有する略平坦な表面状態である。
The surface state of each substrate is as follows.
n-type GaN substrate: surface state having protrusions with a height of 1.2 μm to 0.4 μm. The film thickness of the coating film in the case of an n-type GaN substrate indicates the thickness from a protrusion having a height of 1.2 μm.
ITO substrate: a substantially flat surface state having a tin-doped indium oxide film on the surface.
 〔2-2〕耐熱性
 前記〔2-1〕で得られたパターンを、ホットプレートを用いて100℃10分間加熱し、加熱後のパターンを電子顕微鏡にて観察し、下記基準にて評価した。評価結果を表2に示す。
[2-2] Heat resistance The pattern obtained in [2-1] was heated at 100 ° C. for 10 minutes using a hot plate, and the heated pattern was observed with an electron microscope and evaluated according to the following criteria. . The evaluation results are shown in Table 2.
 <評価基準>
良好:加熱前後でパターン形状はほとんど変化なし。
不良:加熱前後でパターン形状が変化し、パターンが埋まるなど、良好な逆テーパーパターンとならない。
<Evaluation criteria>
Good: Pattern shape hardly changes before and after heating.
Defect: The pattern shape changes before and after heating, and the pattern is buried, so that a good reverse taper pattern is not obtained.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 〔3〕n型半導体層上の電極の形成
 実施例1で作製した、レジストパターンが形成された基板上に、スパッタ装置(サンユー電子社製「クイックオートコーターSC-704AT」)を用いて、金からなる金属膜を形成した。次いで、N-メチルピロリドンを用いて23℃でレジストパターンを剥離することにより、基板上に良好な形状の電極を形成することができた。
[3] Formation of electrode on n-type semiconductor layer Using a sputtering apparatus (“Quick Auto Coater SC-704AT” manufactured by Sanyu Electronics Co., Ltd.) on the substrate on which the resist pattern formed in Example 1 was formed, gold The metal film which consists of was formed. Next, the resist pattern was peeled off at 23 ° C. using N-methylpyrrolidone, whereby an electrode having a good shape could be formed on the substrate.
  1 n型半導体層
  2 ポジ型レジストパターン
  3 ネガ型レジストパターン
 11 n型半導体層
 12 レジスト膜
 13 レジストパターン
 14 金属膜(電極)
100 サファイヤ基板
101 バッファ層
110 半導体層
111 n型クラッド層
112 活性層
113 p型クラッド層
120 電流拡散層
131 上部電極
132 下部電極
140 電流阻止層
1 n-type semiconductor layer 2 positive resist pattern 3 negative resist pattern 11 n-type semiconductor layer 12 resist film 13 resist pattern 14 metal film (electrode)
100 Sapphire substrate 101 Buffer layer 110 Semiconductor layer 111 n-type cladding layer 112 active layer 113 p-type cladding layer 120 current diffusion layer 131 upper electrode 132 lower electrode 140 current blocking layer

Claims (10)

  1.  化学増幅型ネガ型レジストを用いたリソグラフィー法によりn型半導体層上にレジストパターンを形成する工程と、
     前記レジストパターン間に金属膜を形成する工程と、
     前記レジストパターンを剥離し、前記n型半導体層上に形成された前記金属膜からなる電極を得る工程と
    を含むことを特徴とするn型半導体層上の電極の形成方法。
    Forming a resist pattern on the n-type semiconductor layer by a lithography method using a chemically amplified negative resist;
    Forming a metal film between the resist patterns;
    Removing the resist pattern, and obtaining an electrode made of the metal film formed on the n-type semiconductor layer.
  2.  前記n型半導体層が、半導体発光素子におけるn型半導体層であることを特徴とする請求項1に記載のn型半導体層上の電極の形成方法。 The method for forming an electrode on an n-type semiconductor layer according to claim 1, wherein the n-type semiconductor layer is an n-type semiconductor layer in a semiconductor light emitting device.
  3.  前記化学増幅型ネガ型レジストが、前記リソグラフィー法に用いる露光光の波長を光吸収する化合物を含有することを特徴とする請求項1または2に記載のn型半導体層上の電極の形成方法。 3. The method for forming an electrode on an n-type semiconductor layer according to claim 1 or 2, wherein the chemically amplified negative resist contains a compound that absorbs the wavelength of exposure light used in the lithography method.
  4.  前記化学増幅型ネガ型レジストが、酸の作用により架橋反応を起こす架橋剤として、メチロール基又はアルコキシメチロール基を有する化合物を含有することを特徴とする請求項1~3のいずれかに記載のn型半導体層上の電極の形成方法。 4. The n according to claim 1, wherein the chemically amplified negative resist contains a compound having a methylol group or an alkoxymethylol group as a crosslinking agent that causes a crosslinking reaction by the action of an acid. For forming an electrode on a type semiconductor layer.
  5.  前記メチロール基またはアルコキシメチロール基を有する化合物がメラミン化合物であることを特徴とする請求項4に記載のn型半導体層上の電極の形成方法。 The method for forming an electrode on an n-type semiconductor layer according to claim 4, wherein the compound having a methylol group or an alkoxymethylol group is a melamine compound.
  6.  前記n型半導体層がn型窒化物半導体からなることを特徴とする請求項1~5のいずれかに記載のn型半導体層上の電極の形成方法。 6. The method for forming an electrode on an n-type semiconductor layer according to claim 1, wherein the n-type semiconductor layer is made of an n-type nitride semiconductor.
  7.  請求項1~6のいずれかに記載のn型半導体層上の電極の形成方法により得られたことを特徴とするn型半導体層上の電極。 An electrode on an n-type semiconductor layer obtained by the method for forming an electrode on an n-type semiconductor layer according to any one of claims 1 to 6.
  8.  請求項1~6のいずれかに記載のn型半導体層上の電極の形成方法に用いられる化学増幅型ネガ型レジスト。 A chemically amplified negative resist used in the method for forming an electrode on an n-type semiconductor layer according to any one of claims 1 to 6.
  9.  アルカリ可溶性重合体(A)、感放射線性酸発生剤(B)および酸の作用により架橋反応を起こす架橋剤(C)を含有することを特徴とする請求項8に記載の化学増幅型ネガ型レジスト。 The chemically amplified negative type according to claim 8, comprising an alkali-soluble polymer (A), a radiation-sensitive acid generator (B), and a crosslinking agent (C) that causes a crosslinking reaction by the action of an acid. Resist.
  10.  前記n型半導体層上の電極の形成方法におけるリソグラフィー法に用いる露光光の波長を光吸収する化合物(D)をさらに含有することを特徴とする請求項9に記載の化学増幅型ネガ型レジスト。 10. The chemically amplified negative resist according to claim 9, further comprising a compound (D) that absorbs a wavelength of exposure light used in a lithography method in the method for forming an electrode on the n-type semiconductor layer.
PCT/JP2010/073768 2010-02-19 2010-12-28 METHOD FOR FORMATION OF ELECTRODE ON n-TYPE SEMICONDUCTOR LAYER WO2011102064A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012500477A JPWO2011102064A1 (en) 2010-02-19 2010-12-28 Method for forming electrode on n-type semiconductor layer
KR1020127010194A KR20120127386A (en) 2010-02-19 2010-12-28 METHOD FOR FORMATION OF ELECTRODE ON n-TYPE SEMICONDUCTOR LAYER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-034545 2010-02-19
JP2010034545 2010-02-19

Publications (1)

Publication Number Publication Date
WO2011102064A1 true WO2011102064A1 (en) 2011-08-25

Family

ID=44482673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073768 WO2011102064A1 (en) 2010-02-19 2010-12-28 METHOD FOR FORMATION OF ELECTRODE ON n-TYPE SEMICONDUCTOR LAYER

Country Status (4)

Country Link
JP (1) JPWO2011102064A1 (en)
KR (1) KR20120127386A (en)
TW (1) TW201130020A (en)
WO (1) WO2011102064A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017998A (en) * 2014-07-04 2016-02-01 豊田合成株式会社 Method for manufacturing semiconductor device and method for forming resist pattern
JP2017106955A (en) * 2015-12-07 2017-06-15 豊田合成株式会社 Method of manufacturing semiconductor device
WO2017169866A1 (en) * 2016-03-31 2017-10-05 日本ゼオン株式会社 Radiation-sensitive resin composition and resist
WO2017169807A1 (en) * 2016-03-31 2017-10-05 日本ゼオン株式会社 Resist pattern formation method and resist
JP2018087877A (en) * 2016-11-28 2018-06-07 日立化成デュポンマイクロシステムズ株式会社 Negative photosensitive resin composition, method for producing curing pattern, cured product, and electronic device
JP2018173472A (en) * 2017-03-31 2018-11-08 住友ベークライト株式会社 Photosensitive resin composition, cured film of photosensitive resin composition, electric/electronic device provided with said cured film, and method for manufacturing electric/electronic device
WO2020193686A1 (en) 2019-03-28 2020-10-01 Merck Patent Gmbh Positive type resist composition and method for manufacturing resist pattern using the same
US20220328312A1 (en) * 2021-04-09 2022-10-13 Kingray technology Co., Ltd. Method for manufacturing semiconductor elements by metal lift-off process and semiconductor element manufactured thereby
WO2023140224A1 (en) * 2022-01-24 2023-07-27 ヌヴォトンテクノロジージャパン株式会社 Semiconductor laser device and method for manufacturing semiconductor laser element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186660A (en) * 1996-12-26 1998-07-14 Tokyo Ohka Kogyo Co Ltd Chemically sensitizable negative resist composition
WO2001061410A1 (en) * 2000-02-21 2001-08-23 Zeon Corporation Resist composition
JP2009170655A (en) * 2008-01-16 2009-07-30 Sharp Corp Nitride semiconductor light emitting element and production of nitride semiconductor light emitting element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186660A (en) * 1996-12-26 1998-07-14 Tokyo Ohka Kogyo Co Ltd Chemically sensitizable negative resist composition
WO2001061410A1 (en) * 2000-02-21 2001-08-23 Zeon Corporation Resist composition
JP2009170655A (en) * 2008-01-16 2009-07-30 Sharp Corp Nitride semiconductor light emitting element and production of nitride semiconductor light emitting element

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017998A (en) * 2014-07-04 2016-02-01 豊田合成株式会社 Method for manufacturing semiconductor device and method for forming resist pattern
JP2017106955A (en) * 2015-12-07 2017-06-15 豊田合成株式会社 Method of manufacturing semiconductor device
JP7028160B2 (en) 2016-03-31 2022-03-02 日本ゼオン株式会社 Radiation-sensitive resin composition and resist
KR102417026B1 (en) * 2016-03-31 2022-07-05 니폰 제온 가부시키가이샤 Resist pattern formation method and resist
WO2017169807A1 (en) * 2016-03-31 2017-10-05 日本ゼオン株式会社 Resist pattern formation method and resist
KR102417024B1 (en) 2016-03-31 2022-07-04 니폰 제온 가부시키가이샤 Radiation-sensitive resin composition and resist
KR20180123017A (en) * 2016-03-31 2018-11-14 니폰 제온 가부시키가이샤 Sensitive radiation-sensitive resin composition and resist
KR20180132042A (en) * 2016-03-31 2018-12-11 니폰 제온 가부시키가이샤 A resist pattern forming method and a resist
JPWO2017169807A1 (en) * 2016-03-31 2019-02-14 日本ゼオン株式会社 Resist pattern forming method and resist
JPWO2017169866A1 (en) * 2016-03-31 2019-02-14 日本ゼオン株式会社 Radiation sensitive resin composition and resist
JP7044058B2 (en) 2016-03-31 2022-03-30 日本ゼオン株式会社 Resist pattern formation method and resist
WO2017169866A1 (en) * 2016-03-31 2017-10-05 日本ゼオン株式会社 Radiation-sensitive resin composition and resist
JP2018087877A (en) * 2016-11-28 2018-06-07 日立化成デュポンマイクロシステムズ株式会社 Negative photosensitive resin composition, method for producing curing pattern, cured product, and electronic device
JP7000696B2 (en) 2017-03-31 2022-01-19 住友ベークライト株式会社 A photosensitive resin composition, a cured film of the photosensitive resin composition, an electric / electronic device provided with the cured film, and a method for manufacturing the electric / electronic device.
JP2018173472A (en) * 2017-03-31 2018-11-08 住友ベークライト株式会社 Photosensitive resin composition, cured film of photosensitive resin composition, electric/electronic device provided with said cured film, and method for manufacturing electric/electronic device
WO2020193686A1 (en) 2019-03-28 2020-10-01 Merck Patent Gmbh Positive type resist composition and method for manufacturing resist pattern using the same
US20220328312A1 (en) * 2021-04-09 2022-10-13 Kingray technology Co., Ltd. Method for manufacturing semiconductor elements by metal lift-off process and semiconductor element manufactured thereby
JP2022161792A (en) * 2021-04-09 2022-10-21 キングレイ テクノロジー カンパニー リミテッド Method for manufacturing semiconductor elements using metal lift-off process, and semiconductor element manufactured by that method
WO2023140224A1 (en) * 2022-01-24 2023-07-27 ヌヴォトンテクノロジージャパン株式会社 Semiconductor laser device and method for manufacturing semiconductor laser element

Also Published As

Publication number Publication date
JPWO2011102064A1 (en) 2013-06-17
KR20120127386A (en) 2012-11-21
TW201130020A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
WO2011102064A1 (en) METHOD FOR FORMATION OF ELECTRODE ON n-TYPE SEMICONDUCTOR LAYER
US8309295B2 (en) Photosensitive insulating resin composition, hardening product thereof, and circuit board equipped therewith
US8715918B2 (en) Thick film resists
JP5077023B2 (en) Adhesion method, positive photosensitive adhesive composition used therefor, and electronic component
US7714033B2 (en) Photosensitive insulating resin composition, cured product thereof and electronic component comprising the same
JP5035240B2 (en) Radiation-sensitive insulating resin composition
TWI505026B (en) Photosensitive composition, resin composition, cured film and producing method thereof, method for producing patterning cured film and electronic component
US20220365432A1 (en) Chemically amplified photoresist
JP3909552B2 (en) Radiation-sensitive resin composition and insulating film for organic EL device
JP2006145853A (en) Radiation-sensitive resin composition and manufacturing method of product formed by plating
JPH10133368A (en) Positive photoresist composition and multilayer resist material using the same
JP5381517B2 (en) Radiation sensitive resin composition and cured product thereof
JP4440600B2 (en) Chemically amplified photosensitive resin composition for thick and ultra-thick films
JP5498874B2 (en) Positive photosensitive resin composition
KR102585279B1 (en) Positive photosensitive resin composition, method for producing patterned cured film, cured product, interlayer insulating film, cover coat layer, surface protective film and electronic component
JP2009198767A (en) Negative photosensitive resin composition for silica glass optical waveguide formation
JP3852460B2 (en) Chemically amplified radiation sensitive resin composition
JP2000194143A (en) Pattern forming method of light emitter vapor deposited film
US12124166B2 (en) Negative resist formulation for producing undercut pattern profiles
JPH06138660A (en) Negative radiation sensitive resin composition
TWI761433B (en) Photosensitive resin composition, cured film, method for producing the same, and electronic component
US20200319555A1 (en) Negative resist formulation for producing undercut pattern profiles
JPH0695389A (en) Positive radiation-sensitive resin composition
JPH09325492A (en) Negative radiation-sensitive resin composition
JP2024085295A (en) Laminate film, method for manufacturing laminate film, and method for manufacturing substrate with pattern resist film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846195

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127010194

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012500477

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846195

Country of ref document: EP

Kind code of ref document: A1