JPWO2017073427A1 - 漏洩ガス検出装置および漏洩ガス検出方法 - Google Patents

漏洩ガス検出装置および漏洩ガス検出方法 Download PDF

Info

Publication number
JPWO2017073427A1
JPWO2017073427A1 JP2017547752A JP2017547752A JPWO2017073427A1 JP WO2017073427 A1 JPWO2017073427 A1 JP WO2017073427A1 JP 2017547752 A JP2017547752 A JP 2017547752A JP 2017547752 A JP2017547752 A JP 2017547752A JP WO2017073427 A1 JPWO2017073427 A1 JP WO2017073427A1
Authority
JP
Japan
Prior art keywords
gas
reliability
concentration
gas cloud
processing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017547752A
Other languages
English (en)
Other versions
JP6773043B2 (ja
Inventor
土屋 信介
信介 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2017073427A1 publication Critical patent/JPWO2017073427A1/ja
Application granted granted Critical
Publication of JP6773043B2 publication Critical patent/JP6773043B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/38Investigating fluid-tightness of structures by using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • G01N21/3518Devices using gas filter correlation techniques; Devices using gas pressure modulation techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0059Avoiding interference of a gas with the gas to be measured
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/194Segmentation; Edge detection involving foreground-background segmentation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • G01N2021/3531Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis without instrumental source, i.e. radiometric
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • G01N2021/3545Disposition for compensating effect of interfering gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N2021/8578Gaseous flow
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30232Surveillance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

本発明にかかる漏洩ガス検出装置および漏洩ガス検出方法は、対象領域の赤外線画像に基づいて、漏洩ガスで形成されたガス雲のガス雲画像領域を抽出し、前記ガス雲のガス温度を取得し、前記ガス雲の濃度厚み積を求め、前記ガス雲画像領域における背景温度と前記ガス雲のガス温度とに基づいて、前記求めた前記ガス雲の濃度厚み積に対する、信頼性の度合いを表す指標である信頼度を求める。

Description

本発明は、空間に漏洩した所定のガスを検出する漏洩ガス検出装置および漏洩ガス検出方法に関し、特に、求めた漏洩ガスの濃度厚み積に対する信頼性の度合いをユーザが判断できる漏洩ガス検出装置および漏洩ガス検出方法に関する。
例えば、可燃性ガス、毒性ガスおよび有機溶剤の蒸気等のガスが配管やタンク等から漏洩した場合、早期に対処する必要がある。また、その危険性を判断するために、空間に漏洩した漏洩ガスの濃度厚み積、好ましくは濃度を知る必要がある。このため、漏洩ガス等のガスを測定する装置が要望されている。このような装置として、例えば、特許文献1に、濃度厚み積を求める技術が開示され、特許文献2に、所定の平均温度と背景温度との差に基づいて濃度厚み積を補正する技術が開示されている。
ここで、前記特許文献1に開示された技術は、赤外線カメラによって漏洩ガスを介した背景温度の異なる2箇所A、Bに対して赤外線量を求め、次式1で濃度厚み積ctの値を振り、次式1の両辺が最も等しくなる濃度厚み積ctを前記漏洩ガスの濃度厚み積ctとして求めている(Second Sight 方式)。
−P=ε∫exp(α(λ)ct)S(λ)[B(Tback_B,λ)−B(Tback_A,λ)]dλ ・・・(1)
ここで、Pは、箇所Aにおける赤外線カメラによって観測された赤外線量であり、B(Tback_A,λ)は、箇所Aにおける背景輻射赤外線量であり(Tback_Aは箇所Aにおける背景温度であり、λは波長である)、Pは、箇所Bにおける赤外線カメラによって観測された赤外線量であり、B(Tback_B,λ)は、箇所Bにおける背景輻射赤外線量であり(Tback_Bは箇所Bにおける背景温度である)、S(λ)は、光学系の透過率であり、ctは、ガスの濃度厚み積であり(cは濃度であり、tは厚みである)、εは、背景放射率であり、α(λ)は、ガス吸収率である。積分∫は、観測した赤外線の波長範囲に亘って実行される。
ところで、前記特許文献1に開示された技術では、背景温度(背景輻射赤外線量)と漏洩ガス温度との差が小さいと、赤外線カメラによって得られる、背景温度(背景輻射赤外線量)に関する信号が小さくなってSN比(Signal−to−noise ratio)が低下しまい、この結果、濃度厚み積に大きな誤差が含まれてしまう。このため、前記特許文献2に開示された技術で濃度厚み積を補正すれば良いが、前記特許文献2では複雑な補正演算を実行しているため、前記補正演算の情報処理に時間を要し、赤外線カメラによる観測タイミングと濃度厚み積の演算出力タイミングとの間に大きな差が生じ、リアルタイム性が失われてしまう。特に、漏洩ガスでは、可及的速やかな対処が求められるため、前記対処の要否を判断するための指標となる濃度厚み積の演算算出には、リアルタイム性が重要である。
米国特許第5306913号明細書 国際公開第WO2003/044499号パンフレット
本発明は、上述の事情に鑑みて為された発明であり、その目的は、リアルタイム性を優先しつつ、濃度厚み積の信頼性の度合いをユーザが判断できる漏洩ガス検出装置および漏洩ガス検出方法を提供することである。
本発明にかかる漏洩ガス検出装置および漏洩ガス検出方法は、対象領域の赤外線画像に基づいて、漏洩ガスで形成されたガス雲のガス雲画像領域を抽出し、前記ガス雲のガス温度を取得し、前記ガス雲の濃度厚み積を求め、前記ガス雲画像領域における背景温度と前記ガス雲のガス温度とに基づいて、前記求めた前記ガス雲の濃度厚み積に対する、信頼性の度合いを表す指標である信頼度を求める。したがって、本発明にかかる漏洩ガス検出装置および漏洩ガス検出方法は、リアルタイム性を優先しつつ、濃度厚み積の信頼性の度合いをユーザが判断できる。
上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。
実施形態における漏洩ガス検出装置の構成を示すブロック図である。 前記漏洩ガス検出装置の使用状況を説明するための模式図である。 一例として、メタンガスにおける波長に対する透過率の特性曲線を示す図である。 一例として、メタンガスにおける波長に対する分光放射輝度の特性曲線を示す図である。 求めた濃度厚み積に含まれる誤差を説明するための図である。 前記漏洩ガス検出装置の動作を示すフローチャートである。 前記漏洩ガス検出装置の表示画面を説明するための模式図である。 変形形態における漏洩ガス検出装置の表示画面を説明するための模式図である。
以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。
図1は、実施形態における漏洩ガス検出装置の構成を示すブロック図である。図2は、実施形態における漏洩ガス検出装置の使用状況を説明するための模式図である。図3は、一例として、メタンガスにおける波長に対する透過率の特性曲線を示す図である。図3の横軸は、nm単位で表す波長λであり、その縦軸は、透過率τである。図4は、一例として、メタンガスにおける波長に対する分光放射輝度の特性曲線を示す図である。図4の横軸は、nm単位で表す波長λであり、その縦軸は、W/m/Sr/nm単位で表す分光放射輝度である。図5は、求めた濃度厚み積に含まれる誤差を説明するための図である。
実施形態における漏洩ガス検出装置は、例えばガス管(配管)やガスタンク等のガスを収容するガス収容部を含む所定の対象領域の赤外線画像から、前記ガス収容部から漏洩している前記ガスの漏洩ガスで形成されたガス雲のガス雲画像領域を抽出し、この抽出したガス雲画像領域のガス雲における濃度厚み積を求める装置である。そして、本実施形態における漏洩ガス検出装置は、この求めた前記濃度厚み積に対する、信頼性の度合いを表す指標である信頼度を求める装置である。より詳しくは、実施形態における漏洩ガス検出装置は、対象領域の赤外線画像を取得する赤外線画像取得部と、前記赤外線画像取得部で取得した前記対象領域の赤外線画像に基づいて、漏洩ガスで形成されたガス雲のガス雲画像領域を抽出するガス雲処理部と、前記ガス雲のガス温度を取得するガス雲温度取得部と、前記ガス雲の濃度厚み積を求める濃度厚み積処理部と、前記ガス雲処理部で抽出したガス雲画像領域における背景温度と前記ガス雲温度取得部で取得したガス温度とに基づいて、前記濃度厚み積処理部で求めた前記ガス雲の濃度厚み積に対する、信頼性の度合いを表す指標である信頼度を求める信頼度処理部とを備える。このような本実施形態における漏洩ガス検出装置Dは、例えば、図1に示すように、制御処理部4と、インターフェース部(IF部)7と、記憶部8とを備え、図1に示す例では、さらに、赤外線撮像部1と、可視撮像部2と、ガス雲温度検出部3と、入力部5と、表示部6とを備える。
赤外線撮像部1は、制御処理部4に接続され、制御処理部4の制御に従って、対象領域を赤外で撮像し、前記対象領域の赤外線画像を生成する装置である。赤外線撮像部1は、例えば、対象領域の赤外線光学像(赤外の光学像)を所定の結像面上に結像する結像光学系、前記結像面に受光面を一致させて配置され、前記対象領域の赤外線光学像を電気的な信号に変換する赤外線イメージセンサ、および、前記赤外線イメージセンサの出力を画像処理することで赤外線画像のデータを生成する赤外線画像処理部等を備える赤外カメラ等である。赤外線撮像部1は、対象領域の赤外線画像(赤外線画像のデータ)を制御処理部4へ出力する。
可視撮像部2は、制御処理部4に接続され、制御処理部4の制御に従って、対象領域を可視で撮像し、前記対象領域の可視画像を生成する装置である。可視撮像部2は、例えば、対象領域の光学像(可視光の光学像)を所定の結像面上に結像する結像光学系、前記結像面に受光面を一致させて配置され、前記対象領域の光学像を電気的な信号に変換するイメージセンサ、および、前記イメージセンサの出力を画像処理することで可視画像のデータを生成する可視画像処理部等を備える可視カメラ等である。可視撮像部2は、対象領域の可視画像(可視画像のデータ)を制御処理部4へ出力する。
ガス雲温度検出部3は、制御処理部4に接続され、制御処理部4の制御に従って、漏洩ガスで形成されたガス雲のガス温度を検出する装置である。本実施形態では、比較的簡便にガス温度を検出するために、ガス雲温度検出部3は、例えば、大気の温度(大気温度)を検出する温度センサを備えて構成される。本実施形態では、ガス温度は、大気温度とみなされる。温度センサは、例えばサーミスタおよびその周辺回路を備えて構成される。ガス雲温度検出部3は、検出したガス温度(本実施形態では大気温度)を制御処理部4へ出力する。
入力部5は、制御処理部4に接続され、例えば、漏洩ガスを検出する検出動作の開始を指示するコマンド等の各種コマンド、および、例えば対象領域の識別子の入力等の漏洩ガスの検出を実行する上で必要な各種データを漏洩ガス検出装置Dに入力する機器であり、例えば、所定の機能を割り付けられた複数の入力スイッチ、キーボードおよびマウス等である。表示部6は、制御処理部4に接続され、制御処理部4の制御に従って、入力部5から入力されたコマンドおよびデータ、ならびに、漏洩ガス検出装置Dによって検出された漏洩ガスのガス雲、濃度厚み積、信頼度および後述の危険度等を出力する機器であり、例えばCRT(Cathode Ray Tube)ディスプレイ、液晶ディスプレイおよび有機EL(Electroluminescence)ディスプレイ等の表示装置である。
なお、入力部5および表示部6からタッチパネルが構成されてもよい。このタッチパネルを構成する場合において、入力部5は、例えば抵抗膜方式や静電容量方式等の操作位置を検出して入力する位置入力装置である。このタッチパネルでは、表示装置の表示面上に位置入力装置が設けられ、表示装置に入力可能な1または複数の入力内容の候補が表示され、ユーザが、入力したい入力内容を表示した表示位置を触れると、位置入力装置によってその位置が検出され、検出された位置に表示された表示内容がユーザの操作入力内容として漏洩ガス検出装置Dに入力される。このようなタッチパネルでは、ユーザは、入力操作を直感的に理解し易いので、ユーザにとって取り扱い易い漏洩ガス検出装置Dが提供される。
IF部7は、制御処理部4に接続され、制御処理部4の制御に従って、外部機器との間でデータの入出力を行う回路であり、例えば、シリアル通信方式であるRS−232Cのインターフェース回路、Bluetooth(登録商標)規格を用いたインターフェース回路、IrDA(Infrared Data Asscoiation)規格等の赤外線通信を行うインターフェース回路、および、USB(Universal Serial Bus)規格を用いたインターフェース回路等である。また、IF部7は、有線または無線によって通信する通信カード等であり、例えばイーサネット環境等の通信ネットワークを介して例えばサーバ装置等の外部装置との間で通信しても良い(イーサネットは登録商標である)。
記憶部8は、制御処理部4に接続され、制御処理部4の制御に従って、各種の所定のプログラムおよび各種の所定のデータを記憶する回路である。前記各種の所定のプログラムには、例えば、漏洩ガス検出装置Dの各部を当該各部の機能に応じてそれぞれ制御する制御プログラムや、赤外線撮像部1で生成された対象領域の赤外線画像に基づいて、漏洩ガスで形成されたガス雲のガス雲画像領域を抽出するガス雲処理プログラムや、前記ガス雲の濃度厚み積を求める濃度厚み積処理プログラムや、前記ガス雲処理プログラムで抽出したガス雲画像領域における背景温度とガス雲温度検出部3で検出したガス温度とに基づいて、前記濃度厚み積処理プログラムで求めた前記ガス雲の濃度厚み積に対する、信頼性の度合いを表す指標である信頼度を求める信頼度処理プログラムや、前記濃度厚み積処理プログラムで求めた前記ガス雲の濃度厚み積に基づいて、前記ガス雲の濃度厚み積に対する、例えば毒性や爆発性等における危険性の度合いを表す指標である危険度を求める危険度処理プログラムや、可視撮像部2で生成された対象領域の可視画像、前記ガス雲処理プログラムで抽出されたガス雲画像領域、前記濃度厚み積処理プログラムで求めた前記ガス雲の濃度厚み積、前記信頼度処理プログラムで求めた前記信頼度、および、前記危険処理プログラムで求めた前記危険度を表示部6に表示する表示処理プログラム等の制御処理プログラムが含まれる。前記各種の所定のデータには、各プログラムを実行する上で必要なデータ等が含まれる。記憶部8は、例えば不揮発性の記憶素子であるROM(Read Only Memory)や書き換え可能な不揮発性の記憶素子であるEEPROM(Electrically Erasable Programmable Read Only Memory)等を備える。記憶部8は、前記所定のプログラムの実行中に生じるデータ等を記憶するいわゆる制御処理部4のワーキングメモリとなるRAM(Random Access Memory)等を含む。なお、記憶部8は、比較的大容量の記憶容量を持つハードディスクを備えても良い。
制御処理部4は、漏洩ガス検出装置Dの各部を当該各部の機能に応じてそれぞれ制御し、漏洩ガスで形成されたガス雲における濃度厚み積、信頼度および危険度を求め、表示するための回路である。制御処理部4は、例えば、CPU(Central Processing Unit)およびその周辺回路を備えて構成される。制御処理部4には、制御処理プログラムが実行されることによって、制御部41、ガス雲処理部42、濃度厚み積処理部43、信頼度処理部44、危険度処理部45および表示処理部46が機能的に構成される。
制御部41は、漏洩ガス検出装置Dの各部を当該各部の機能に応じてそれぞれ制御するためのものである。
ガス雲処理部42は、赤外線撮像部1で生成された対象領域の赤外線画像に基づいて、漏洩ガスで形成されたガス雲のガス雲画像領域を抽出するものである。
ここで、例えば、図2に示すように、本実施形態における漏洩ガス検出装置Dは、対象領域における赤外線画像および可視画像それぞれを赤外線撮像部1および可視撮像部2それぞれで撮像することができるように、赤外線撮像部1の撮影方向および可視撮像部2の撮影方向それぞれを前記対象領域に向けて固定的に配設される。このように配設された赤外線撮像部1は、対象領域内に存在する個々の物体(背景物)OBが輻射(放射)した赤外線(背景輻射赤外線、背景放射赤外線)を撮像する。そして、図2に示すように、例えば配管等のガス収容部PYからガスが漏洩し、赤外線撮像部1と前記背景物との間に、前記漏洩したガスのガス雲GSが存在すると、背景輻射赤外線は、ガス雲GSを介して赤外線撮像部1に到達する。ガス雲GSは、そのガス固有の吸収線の波長で前記背景輻射赤外線の一部を吸収し、またガス雲GS自体の温度に応じた赤外線を輻射する。背景輻射赤外線に対するその吸収量は、ガス雲GSの濃度に従い、そして、ガス雲GSの厚みに従うので、結局、ガス雲GSの濃度厚み積に従う。このため、赤外線撮像部1によって撮像され生成された対象領域の赤外線画像では、ガス雲GSを介した部分画像の輝度値は、前記ガス雲GSを介しなかった部分画像の輝度値と相違する。したがって、ガス雲処理部42は、例えば、前記対象領域の赤外線画像から、予め設定された所定の判定閾値Dth以下の単位時間当たりの輝度値の変化量を持つ画素の領域を抽出することによって、ガス雲GSのガス雲画像領域を抽出できる。
濃度厚み積処理部43は、ガス雲の濃度厚み積を求めるものである。本実施形態では、濃度厚み積処理部43は、例えば上述の特許文献1に開示された技術を用いることによって、ガス雲処理部42で抽出したガス雲画像領域の赤外線画像に基づいてガス雲の濃度厚み積を求める。
また、上述したように、ガス雲GSは、そのガス固有の吸収線の波長で前記背景輻射赤外線の一部を吸収し、ガス雲GS自体の温度に応じた赤外線を輻射するので、赤外線撮像部1で観測される赤外線量Pは、次式2で表され、次式3のように書き換えられる。
P=∫[τ(λ、ct)B(Tback,λ)+(1−τ(λ、ct))B(T,λ)]dλ ・・・(2)
P=∫[B(T,λ)+τ(λ、ct){B(Tback,λ)−B(T、λ)}]dλ ・・・(3)
ここで、τ(λ、ct)は、ガスの吸収率であり、波長λおよび濃度厚み積ctの関数であり、したがって、(1−τ(λ、ct))は、前記ガスの放射率である。B(Tback,λ)は、背景が輻射(放射)した赤外線の量(背景輻射赤外線量)であり、背景温度Tbackおよび波長λの関数であり、B(T,λ)は、ガス雲GSのガスが輻射(放射)した赤外線の量(ガス輻射赤外線量)であり、ガス温度Tおよび波長λの関数である。これらτ(λ、ct)、B(Tback,λ)およびB(T,λ)の各関数における関数形(関数のグラフの形)は、予め既知である。一例では、メタンガスにおける波長λに対する透過率τは、図3に示す特性曲線であり、メタンガスにおける波長λに対する分光放射輝度は、温度27℃において、図4に示す特性曲線である。前記分光放射輝度に基づいて前記ガス輻射赤外線量が求められる。また、前記背景輻射赤外線量は、背景物を黒体とみなし黒体放射に基づいて求められる。式2および式3それぞれの積分∫は、観測した赤外線の波長範囲に亘って実行される。
漏洩ガス検出装置Dは、赤外線量P、背景温度Tbackおよびガス温度Tそれぞれを求め、濃度厚み積処理部43は、式2で濃度厚み積ctの値を振り、式2の両辺が最も等しくなる濃度厚み積ctをガス雲GSの濃度厚み積ctとして求めて良く、あるいは、濃度厚み積処理部43は、式3で濃度厚み積ctの値を振り、式3の両辺が最も等しくなる濃度厚み積ctをガス雲GSの濃度厚み積ctとして求めて良い。
なお、背景温度Tbackは、対象領域におけるガス雲画像領域近傍であってガス雲画像領域外の画像の輝度値(領域外輝度値)に基づいて求めて良く、あるいは、吸収線の波長を含まない赤外線波長範囲を透過波長帯域とするバンドパスフィルタを赤外線撮像部1に装着し、このバンドパスフィルタを介して赤外線撮像部1によって得られた対象領域の赤外線画像における前記ガス雲画像領域に当たる領域の輝度値(領域輝度値)に基づいて求めて良い。より具体的には、赤外線画像の前記領域外輝度値と温度(背景温度Tback)との対応関係(第1変換温度対応関係)が前記各種の所定のデータの1つとして記憶部8に予め記憶され、漏洩ガス検出装置Dは、制御処理部4によって、前記ガス雲画像領域外の画像の前記領域外輝度値に対応する背景温度Tbackを前記第1変換温度対応関係から求める。あるいは、赤外線画像の前記領域輝度値と温度(背景温度Tback)との対応関係(第2変換温度対応関係)が前記各種の所定のデータの1つとして記憶部8に予め記憶され、漏洩ガス検出装置Dは、制御処理部4によって、前記ガス雲画像領域に当たる領域の前記領域輝度値に対応する背景温度Tbackを前記第2変換温度対応関係から求める。
そして、濃度厚み積処理部43は、本実施形態では、ガス雲における複数の箇所それぞれについて前記ガス雲の濃度厚み積をそれぞれ求めている。
信頼度処理部44は、ガス雲処理部42で抽出したガス雲画像領域における背景温度とガス雲温度検出部3で検出したガス温度とに基づいて、濃度厚み積処理部43で求めた前記ガス雲の濃度厚み積に対する、信頼性の度合いを表す指標である信頼度を求めるものである。
ここで、濃度厚み積処理部43によって求めた濃度厚み積に含まれる誤差は、図5から分かるように、背景温度とガス温度との差に依存し、背景温度とガス温度との差が小さいほど大きい。図5は、シミュレーション(数値演算実験)による、測定されたガス温度に含まれる誤差(ガス温度誤差)が濃度厚み積に与える誤差(濃度厚み積誤差)を示している。図5の横軸は、℃単位で表すガス温度誤差であり、その縦軸は、%単位で表す濃度厚み積の誤差率である。実線α1は、背景温度とガス温度との差が2℃である場合における濃度厚み積の誤差率を示し、一点鎖線α2は、背景温度とガス温度との差が5℃である場合における濃度厚み積の誤差率を示し、そして、破線α3は、背景温度とガス温度との差が10℃である場合における濃度厚み積の誤差率を示す。ガス温度誤差がいずれの場合でも(横軸上のどこであっても)、濃度厚み積の誤差率は、その絶対値で、背景温度とガス温度との差が10℃である場合よりも前記差が5℃である場合の方がより大きく、前記差が5℃である場合よりも前記差が2℃である場合の方がより大きくなっている。したがって、上述のように、濃度厚み積処理部43によって求めた濃度厚み積に含まれる誤差は、背景温度とガス温度との差に依存し、背景温度とガス温度との差が小さいほど大きい。
より具体的には、図5に示す結果の下に、背景温度およびガス温度間の差と信頼度との対応関係(信頼度対応関係)が前記各種の所定のデータの1つとして記憶部8に予め記憶され、信頼度処理部44は、上述の手法により、ガス雲処理部42で抽出したガス雲画像領域における背景温度Tbackとガス雲温度検出部3で検出したガス温度Tとの差Subを求め、この求めた前記差Subに対する信頼度を前記信頼度対応関係から求める。例えば信頼度対応関係は、予め設定された第1信頼度判定閾値Tth1以下の前記差Subには、信頼性の低い“信頼度小”や“50%以下”が対応付けられ、前記第1信頼度判定閾値Tth1を越え予め設定された第2信頼度判定閾値Tth2以下の前記差Subには、中程度の信頼性である“信頼度中”や“50%〜80%”が対応付けられ、前記第2信頼度判定閾値Tth2を越えた前記差Subには、信頼性の高い“信頼度大”や“80%以上”が対応付けられる。
そして、信頼度処理部44は、濃度厚み積処理部43の処理に対応して、前記ガス雲における前記複数の箇所それぞれで求めた複数の濃度厚み積それぞれに対する信頼度をそれぞれ求めている。
危険度処理部45は、濃度厚み積処理部43で求めたガス雲の濃度厚み積に対する、危険性の度合いを表す指標である危険度を求めるものである。より具体的には、ガス雲の濃度厚み積と危険度との対応関係(危険度対応関係)が前記各種の所定のデータの1つとして記憶部8に予め記憶され、危険度処理部45は、濃度厚み積処理部43で求めたガス雲の濃度厚み積ctに対する危険度を前記危険度対応関係から求める。例えば危険度対応関係は、予め設定された第1危険度判定閾値Gth1以下の濃度厚み積ctには、危険性の少ない“危険度小”が対応付けられ、前記第1危険度判定閾値Gth1を越え予め設定された第2危険度判定閾値Gth2以下の濃度厚み積ctには、中程度の危険性である“危険度中”が対応付けられ、前記第2危険度判定閾値Gth2を越えた濃度厚み積ctには、危険性の高い“危険度大”が対応付けられる。
そして、危険度処理部45は、濃度厚み積処理部43の処理に対応して、前記ガス雲における前記複数の箇所それぞれで求めた複数の濃度厚み積それぞれに対する危険度をそれぞれ求めている。
表示処理部46は、可視撮像部2で生成された対象領域の可視画像、ガス雲処理部42で抽出されたガス雲画像領域、濃度厚み積処理部43で求めた前記ガス雲の濃度厚み積、信頼度処理部44で求めた前記信頼度、および、危険度処理部45で求めた前記危険度を表示部6に表示するものである。より具体的には、表示処理部46は、可視撮像部2で生成された対象領域の可視画像に、ガス雲処理部42で抽出されたガス雲画像領域を重畳して表示部6に表示し、前記ガス雲画像領域に対応付けて前記濃度厚み積、前記信頼度および前記危険度を表示部6に表示する。そして、本実施形態では、表示処理部46は、前記ガス雲における前記複数の箇所それぞれについて、当該箇所に対応する前記信頼度が所定の第1閾値Th1以下である場合には、当該箇所に対応する領域を所定の色で塗りつぶして表示部6に表示し、当該箇所に対応する前記ガス雲の濃度厚み積、信頼度および危険度を表示部6に表示しない。
なお、上述において、漏洩ガス検出装置Dは、これら赤外線撮像部1、可視撮像部2、ガス雲温度検出部3、制御処理部4、入力部5、表示部6、IF部7および記憶部8を1つに纏めて構成されて良い。この場合、赤外線撮像部1は、対象領域の赤外線画像を取得する赤外線画像取得部の一例に相当し、ガス雲温度検出部3は、前記ガス雲のガス温度を取得するガス雲温度取得部の一例に相当する。あるいは、漏洩ガス検出装置Dは、これら赤外線撮像部1、可視撮像部2およびガス雲温度検出部3を1つに纏めて構成したセンサ部と、これら制御処理部4、入力部5、表示部6、IF部7および記憶部8を1つに纏めて構成し、前記センサ部と有線または無線によって通信可能に接続した本体部とを備えて構成されて良い。この場合、IF部7は、対象領域の赤外線画像を取得する赤外線画像取得部の他の一例に相当し、さらに、前記ガス雲のガス温度を取得するガス雲温度取得部の他の一例に相当する。そして、これらの場合において、遠隔地で監視可能となるように、表示部6は、さらに、有線または無線によって通信可能に接続される状態で分離され、遠隔地に配置されても良い。
次に、本実施形態の動作について説明する。図6は、実施形態における漏洩ガス検出装置の動作を示すフローチャートである。図7は、実施形態における漏洩ガス検出装置の表示画面を説明するための模式図である。
このような漏洩ガス検出装置Dは、赤外線撮像部1の撮影方向および可視撮像部2の撮影方向それぞれを対象領域に向けて配設され、ユーザ(オペレータ)によって図略の電源スイッチがオンされると、制御処理部4は、必要な各部の初期化を実行し、制御処理プログラムの実行によって、制御処理部4には、制御部41、ガス雲処理部42、濃度厚み積処理部43、信頼度処理部44、危険度処理部45および表示処理部46が機能的に構成される。そして、ユーザによって入力部5から検出動作の開始が入力され指示されると、対象領域に対し漏洩ガスの検出動作を開始する。
より具体的には、図6において、まず、漏洩ガス検出装置Dは、赤外線撮像部1によって、前記対象領域を赤外で撮像し、前記対象領域の赤外線画像を生成して取得する。この前記対象領域の赤外線画像(赤外線画像の画像データ)は、赤外線撮像部1から制御処理部4へ出力される(S1)。
次に、漏洩ガス検出装置Dは、可視撮像部2によって、前記対象領域を可視で撮像し、前記対象領域の可視画像を生成して取得する。この前記対象領域の可視画像(可視画像の画像データ)は、可視撮像部2から制御処理部4へ出力される(S2)。
次に、漏洩ガス検出装置Dは、制御処理部4によって、ガス漏れが発生したか否かを判定する(S3)。すなわち、漏洩ガス検出装置Dは、制御処理部4によって、漏洩ガスのガス雲GSの存否を判定することで、ガス漏れが発生したか否かを判定する。より具体的には、制御処理部4は、ガス雲処理部42によって、赤外線撮像部1で生成された対象領域の赤外線画像に基づいて、漏洩ガスで形成されたガス雲GSのガス雲画像領域を抽出する。この結果、ガス雲画像領域が抽出されなかった場合(No)には、制御処理部4は、漏洩ガスのガス雲GSの不発生、すなわち、ガス漏れが発生していないと判定し、後述の処理S10を実行する。一方、ガス雲画像領域が抽出された場合(Yes)には、制御処理部4は、漏洩ガスのガス雲GSの発生、すなわち、ガス漏れが発生していると判定し、次の処理S4を実行する。
処理S4では、漏洩ガス検出装置Dは、ガス雲温度検出部3によって、ガス雲GSのガス温度(本実施形態では大気温度)Tを検出して取得する。このガス温度(大気温度)Tは、ガス雲温度検出部3から制御処理部4へ出力される。
次に、漏洩ガス検出装置Dは、制御処理部4によって、赤外線撮像部1で生成された前記対象領域の赤外線画像に基づいて背景温度Tbackを求める(S5)。より具体的には、制御処理部4は、例えば、ガス雲画像領域近傍であってガス雲画像領域外の画像の領域外輝度値を求め、この領域外輝度値に対応する背景温度Tbackを記憶部8に予め記憶した前記第1変換温度対応関係から求める。また例えば、制御処理部4は、吸収線の波長を含まない赤外線波長範囲を透過波長帯域とするバンドパスフィルタを介して赤外線撮像部1によって得られた対象領域の赤外線画像における前記ガス雲画像領域に当たる領域の領域輝度値を求め、この領域輝度値に対応する背景温度Tbackを記憶部8に予め記憶した前記第2変換温度対応関係から求める。
なお、これら上述の処理S4および処理S5は、相互に処理の順番を入れ換えて実行されて良く、また、同時並行的に(並列処理で)実行されて良い。
次に、漏洩ガス検出装置Dは、濃度厚み積処理部43によって、ガス雲処理部42で抽出したガス雲画像領域の赤外線画像に基づいてガス雲GSの濃度厚み積ctを求める(S6)。本実施形態では、濃度厚み積処理部43は、ガス雲GSにおける複数の箇所それぞれについてガス雲GSの濃度厚み積ctをそれぞれ求める。このため、上述の処理S5では、制御処理部4は、この濃度厚み積処理部43の処理に対応して、前記ガス雲GSにおける前記複数の箇所それぞれついて、各背景温度Tbackを求めて良い。あるいは、前記ガス雲における前記複数の箇所それぞれにおける各背景温度Tbackは、上述の処理S5で求めた1つの背景温度Tbackで代表しても良い。
次に、漏洩ガス検出装置Dは、信頼度処理部44によって、ガス雲処理部42で抽出したガス雲画像領域における背景温度Tbackとガス雲温度検出部3で検出したガス温度Tとに基づいて、濃度厚み積処理部43で求めたガス雲GSの濃度厚み積に対する信頼度を求める(S7)。より具体的には、本実施形態では、信頼度処理部44は、ガス雲処理部42で抽出したガス雲画像領域における背景温度Tbackとガス雲温度検出部3で検出したガス温度Tとの差Subを求め、この求めた前記差Subに対する信頼度を前記信頼度対応関係から求める。そして、本実施形態では、信頼度処理部44は、濃度厚み積処理部43の処理S6に対応して、前記ガス雲GSにおける前記複数の箇所それぞれで求めた複数の濃度厚み積ctそれぞれに対する信頼度をそれぞれ求めている。
次に、漏洩ガス検出装置Dは、危険度処理部45によって、濃度厚み積処理部43で求めたガス雲GSの濃度厚み積ctに対する、危険度を求める(S8)。より具体的には、本実施形態では、危険度処理部45は、濃度厚み積処理部43で求めたガス雲GSの濃度厚み積ctに対する危険度を前記危険度対応関係から求める。そして、本実施形態では、危険度処理部45は、濃度厚み積処理部43の処理S6に対応して、前記ガス雲GSにおける前記複数の箇所それぞれで求めた複数の濃度厚み積ctそれぞれに対する危険度をそれぞれ求めている。
次に、漏洩ガス検出装置Dは、これら上述の各処理によって求められた、可視撮像部2で生成された対象領域の可視画像、ガス雲処理部42で抽出されたガス雲画像領域、濃度厚み積処理部43で求めた前記ガス雲GSの濃度厚み積ct、信頼度処理部44で求めた前記信頼度、および、危険度処理部45で求めた前記危険度を表示処理部46によって表示部6に表示する。より具体的には、表示処理部46は、可視撮像部2で生成された対象領域の可視画像に、ガス雲処理部42で抽出されたガス雲画像領域をその位置合わせを行って重畳して表示部6に表示し、前記ガス雲画像領域に対応付けて前記濃度厚み積ct、前記信頼度および前記危険度を表示部6に表示する。そして、本実施形態では、表示処理部46は、前記ガス雲GSにおける前記複数の箇所それぞれについて、当該箇所に対応する前記信頼度が所定の第1閾値Th1以下である場合には、当該箇所に対応する領域を所定の色で塗りつぶして表示部6に表示し、当該箇所に対応する前記ガス雲の濃度厚み積ct、信頼度および危険度を表示部6に表示しない。
一例では、例えば、図7に示すように、これら各情報が表示部6に表示される。より詳しくは、前記ガス雲GSにおける前記複数の箇所として、上述の処理S1ないし処理S3の各処理において抽出されたガス雲画像領域が複数の領域に分けられる。例えば、図7に示すように、ガス雲画像領域を含む矩形領域、好ましくはガス雲画像領域を内接する矩形領域が設定され、この設定された矩形領域が等サイズの複数の分割領域で2次元マトリクス状に分けられる。図7に示す例では、ガス雲画像領域を内接する矩形領域は、4行4列の2次元マトリクス状に配列された16個の分割領域SP11〜SP44(SP11〜SP14、SP21〜SP24、SP31〜SP34、SP41〜SP44)に分けられている。なお、分割領域の個数は、他の任意の個数であって良い。これら16個の分割領域SP11〜SP44それぞれについて、当該分割領域SPの濃度厚み積ct、信頼度および危険度が処理S4ないし処理S8の各処理によって求められる。なお、当該分割領域SPの輝度値は、例えば、当該分割領域SPに含まれる各画素の各輝度値の平均値であって良く、また例えば、当該分割領域SPに含まれる各画素の各輝度値の中央値であって良く、また例えば、当該分割領域SPの中央位置の画素の輝度値であって良い。前記平均値は、単純平均であって良く、また加重平均であって良い。加重平均の場合、重みは、画素位置の関数であり、当該分割領域の周辺からその中央位置に近づくに従って徐々に大きな値となる。処理S9では、表示処理部46は、図7に示すように、可視撮像部2で生成された対象領域の可視画像に、ガス雲処理部42で抽出されたガス雲GSのガス雲画像領域をその位置合わせを行って重畳して表示部6に表示する。そして、表示処理部46は、図7に示すように、前記矩形領域およびその分割領域SP11〜SP44を、それらの境界線で破線によって表示部6に表示し、各分割領域SP11〜SP44それぞれにおける、各濃度厚み積X11〜X44(X11〜X14、X21〜X24、X31〜X34、X41〜X44)、各信頼度Y11〜Y44(Y11〜Y14、Y21〜Y24、Y31〜Y34、Y41〜Y44)および各危険度Z11〜Z44(Z11〜Z14、Z21〜Z24、Z31〜Z34、Z41〜Z44)それぞれを、当該分割領域内に表示する。これによって分割領域ごとにその濃度厚み積X、信頼度Yおよび危険度Zが表示部6に表示される。なお、図7では、図面が煩雑となって見難くなるため、1行1列の分割領域および4行4列の分割領域には、その濃度厚み積X、信頼度Yおよび危険度Zの表示が図示されているが、他の分割領域では、その濃度厚み積X、信頼度Yおよび危険度Zの表示の図示が省略されている。そして、図7に示す例では、2行3列の分割領域では、その信頼度が所定の第1閾値Th1以下であるので、この2行3列の分割領域は、所定の色(例えば黄色や橙色や紫色等)で塗りつぶされて表示されており、2行3列の分割領域には、その濃度厚み積X、信頼度Yおよび危険度Zは、表示されていない。
図6に戻って、そして、処理S10では、漏洩ガス検出装置Dは、制御処理部4によって、ユーザによる検出動作の終了を入力部5で受け付けているか否かを判断し、検出動作の終了を入力部5で受け付けている場合(Yes)には、処理を終了し、検出動作の終了を入力部5で受け付けていない場合(No)には、処理を処理S1に戻す。
以上説明したように、本実施形態における漏洩ガス検出装置Dおよびこれに実装された漏洩ガス検出方法は、補正演算することなく濃度厚み積を求めつつ、前述の新たに見出した知見から、背景温度と相関する、赤外線画像におけるガス雲画像領域の背景温度と、ガス温度とに基づいて、前記求めた前記ガス雲の濃度厚み積に対する、信頼度を求めている。したがって、上記漏洩ガス検出装置Dおよび漏洩ガス検出方法は、リアルタイム性を優先しつつ、前記信頼度を参照することで濃度厚み積の信頼性の度合いをユーザが判断できる。このため、例えば対処の必要な濃度厚み積である場合、ユーザは、信頼度が信頼に足るほど高い値である場合、直ちに対処すべきと判断でき、一方、信頼度が信頼に足りない低い値である場合、再検出や濃度厚み積を求める位置をずらして検出するなどの、より信頼度の高い濃度厚み積を得るための対応を実施できる。
上記漏洩ガス検出装置Dおよび漏洩ガス検出方法は、前記複数の箇所それぞれについて、当該箇所に対応する濃度厚み積およびその信頼度を求め、当該箇所に対応する前記信頼度が所定の第1閾値Th1以下である場合には、当該箇所に対応する領域を所定の色で塗りつぶして表示部6に表示し、当該箇所に対応する前記濃度厚み積およびその信頼度を表示部6に表示しない。したがって、ユーザは、前記第1閾値Th1以下で信頼度の低い濃度厚み積を参照することなく、信頼度の低い濃度厚み積を参照することによってユーザに生じる漏洩ガスの濃度厚み積の誤認を低減できる。
上記漏洩ガス検出装置Dおよび漏洩ガス検出方法は、大気の温度を検出する温度センサを用いてガス雲温度検出部3を構成するので、より簡易にガス温度を検出できる。
なお、上述の実施形態において、漏洩ガス検出装置Dは、図1に破線で示すように、前記ガス雲における前記複数の箇所それぞれについて、当該箇所に対応する前記信頼度が所定の第2閾値Th2以下である場合には、当該箇所の周囲の箇所で最も信頼度が高い箇所を判定する周囲信頼度判定処理部47をさらに備えても良い。前記第2閾値Th2は、前記第1閾値Th1と同値であって良く、また、前記第1閾値Th1と異値であって良い。
図8は、変形形態における漏洩ガス検出装置の表示画面を説明するための模式図である。例えば、上述の図7に示す例において、2行3列の分割領域SP23の信頼度が所定の第2閾値Th2以下である場合に、周囲信頼度判定処理部47は、2行3列の分割領域の周囲、すなわち、8個の分割領域SP12〜SP14、SP22、SP24、SP32〜SP34で最も信頼度が高い分割領域SPを求め、この求めた最も信頼度が高い分割領域SPを2行3列の分割領域SP23に対応付けて表示部6に表示する。例えば、前記求めた最も信頼度が高い分割領域SPが3行3列の分割領域SP33であった場合に、図8に示すように、塗りつぶした2行3列の分割領域SP23内に、この3行3列の分割領域SP33を表すその名称“SP33”が表示される。なお、前記最も信頼度が高い分割領域SPが複数存在する場合には、それらが全て併記される。
このような漏洩ガス検出装置Dは、前記複数の箇所それぞれについて、当該箇所に対応する濃度厚み積およびその信頼度を求め、当該箇所に対応する前記信頼度が所定の第2閾値Th2以下である場合には、当該箇所の周囲の箇所で最も信頼度が高い箇所を判定する。したがって、ユーザは、前記第2閾値Th2以下で信頼度の低い濃度厚み積に代え、その周囲の箇所で最も信頼度の高い箇所の濃度厚み積を参照できる。
また、上述の実施形態では、信頼度は、濃度厚み積とは別に表示部6に表示されたが、表示処理部46は、前記信頼度を前記濃度厚み積の表示色で表示しても良い。例えば、前記信頼度が50%以下である場合には、濃度厚み積を赤色で表示し、前記信頼度が50%〜80%である場合には、濃度厚み積を黄色で表示し、そして、前記信頼度が80%以上である場合には、濃度厚み積を緑色で表示する。このような漏洩ガス検出装置Dは、前記信頼度を前記濃度厚み積の表示色で表示するので、数値表示に較べて直感的に前記信頼度を視認できる。
また、上述の実施形態において、濃度厚み積処理部43は、信頼度処理部44で求めた信頼度が所定の第3閾値Th3以下である場合、所定の時間の経過後(例えば30秒後や1分後や3分後や5分後や10分後等)に、前記ガス雲の濃度厚み積を再度求め、表示処理部46は、この再度求めた前記ガス雲の濃度厚み積を表示部6に表示しても良い。前記第3閾値Th3は、前記第1閾値Th1と同値であって良く、また、前記第1閾値Th1と異値であって良い。前記第3閾値Th3は、前記第2閾値Th2と同値であって良く、また、前記第2閾値Th2と異値であって良い。このような漏洩ガス検出装置Dは、濃度厚み積を再度求めるので、ユーザが前記第3閾値Th3よりも高い信頼度の濃度厚み積を参照することを可能とする。
本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
一態様にかかる漏洩ガス検出装置は、対象領域の赤外線画像を取得する赤外線画像取得部と、前記赤外線画像取得部で取得した前記対象領域の赤外線画像に基づいて、漏洩ガスで形成されたガス雲のガス雲画像領域を抽出するガス雲処理部と、前記ガス雲のガス温度を取得するガス雲温度取得部と、前記ガス雲の濃度厚み積を求める濃度厚み積処理部と、前記ガス雲処理部で抽出したガス雲画像領域における背景温度と前記ガス雲温度取得部で取得したガス温度とに基づいて、前記濃度厚み積処理部で求めた前記ガス雲の濃度厚み積に対する、信頼性の度合いを表す指標である信頼度を求める信頼度処理部とを備える。好ましくは、上述の漏洩ガス検出装置において、前記赤外線画像取得部は、外部機器からデータの入力を受けるインターフェース部であり、前記インターフェース部は、前記外部機器として、対象領域を赤外で撮像し前記対象領域の赤外線画像を生成する赤外線撮像部から、前記対象領域の赤外線画像の入力を受ける。好ましくは、上述の漏洩ガス検出装置において、前記赤外線画像取得部は、対象領域を赤外で撮像し、前記対象領域の赤外線画像を生成する赤外線撮像部である。好ましくは、上述の漏洩ガス検出装置において、前記ガス雲温度取得部は、外部機器からデータの入力を受けるインターフェース部であり、前記インターフェース部は、前記ガス雲のガス温度を検出するガス雲温度検出部から、前記ガス雲のガス温度の入力を受ける。好ましくは、上述の漏洩ガス検出装置において、前記ガス雲温度取得部は、前記ガス雲のガス温度を検出するガス雲温度検出部である。
上述したように、求めた濃度厚み積に含まれる誤差は、背景温度とガス温度との差に依存し、背景温度とガス温度との差が小さいほど大きい。上記漏洩ガス検出装置は、補正演算することなく濃度厚み積を求めつつ、前述の新たに見出した知見から、背景温度とガス温度とに基づいて、前記求めた前記ガス雲の濃度厚み積に対する、信頼度を求めている。したがって、上記漏洩ガス検出装置は、リアルタイム性を優先しつつ、前記信頼度を参照することで濃度厚み積の信頼性の度合いをユーザが判断できる。
他の一態様では、上述の漏洩ガス検出装置において、前記ガス雲処理部で抽出されたガス雲画像領域、前記濃度厚み積処理部で求めた前記漏洩ガスの濃度厚み積、および、前記信頼度処理部で求めた前記信頼度を表示部に対して表示可能とする表示処理部とをさらに備え、前記濃度厚み積処理部は、前記赤外線画像取得部で取得した前記対象領域の赤外線画像に基づいて、前記ガス雲における複数の箇所それぞれについて前記ガス雲の濃度厚み積をそれぞれ求め、前記信頼度処理部は、前記ガス雲における前記複数の箇所それぞれで求めた複数の前記ガス雲の濃度厚み積それぞれに対する前記信頼度をそれぞれ求め、前記表示処理部は、前記ガス雲における前記複数の箇所それぞれについて、当該箇所に対応する前記信頼度が所定の第1閾値以下である場合には、当該箇所に対応する領域を所定の色で塗りつぶして前記表示部に表示し、当該箇所に対応する前記ガス雲の濃度厚み積および信頼度を前記表示部に表示しない。
このような漏洩ガス検出装置は、前記複数の箇所それぞれについて、当該箇所に対応する濃度厚み積およびその信頼度を求め、当該箇所に対応する前記信頼度が所定の第1閾値以下である場合には、当該箇所に対応する領域を所定の色で塗りつぶして前記表示部に表示し、当該箇所に対応する前記濃度厚み積およびその信頼度を前記表示部に表示しない。したがって、ユーザは、前記第1閾値以下で信頼度の低い濃度厚み積を参照することなく、信頼度の低い濃度厚み積を参照することによってユーザに生じる漏洩ガスの濃度厚み積の誤認を低減できる。
他の一態様では、上述の漏洩ガス検出装置において、前記濃度厚み積処理部は、前記赤外線画像取得部で取得した前記対象領域の赤外線画像に基づいて、前記ガス雲における複数の箇所それぞれについて前記ガス雲の濃度厚み積をそれぞれ求め、前記信頼度処理部は、前記ガス雲における前記複数の箇所それぞれで求めた複数の前記ガス雲の濃度厚み積それぞれに対する前記信頼度をそれぞれ求め、前記ガス雲における前記複数の箇所それぞれについて、当該箇所に対応する前記信頼度が所定の第2閾値以下である場合には、当該箇所の周囲の箇所で最も信頼度が高い箇所を判定する周囲信頼度判定処理部をさらに備える。前記第2閾値は、前記第1閾値と同値であって良く、また、前記第1閾値と異値であって良い。
このような漏洩ガス検出装置は、前記複数の箇所それぞれについて、当該箇所に対応する濃度厚み積およびその信頼度を求め、当該箇所に対応する前記信頼度が所定の第2閾値以下である場合には、当該箇所の周囲の箇所で最も信頼度が高い箇所を判定する。したがって、ユーザは、前記第2閾値以下で信頼度の低い濃度厚み積に代え、その周囲の箇所で最も信頼度の高い箇所の濃度厚み積を参照できる。
他の一態様では、上述の漏洩ガス検出装置において、前記ガス雲処理部で抽出されたガス雲画像領域、前記濃度厚み積処理部で求めた前記漏洩ガスの濃度厚み積、および、前記信頼度処理部で求めた前記信頼度を表示部に対して表示可能とする表示処理部をさらに備え、前記表示処理部は、前記信頼度を前記濃度厚み積の表示色で表示する。
このような漏洩ガス検出装置は、前記信頼度を前記濃度厚み積の表示色で表示するので、数値表示に較べて直感的に前記信頼度を視認できる。
他の一態様では、これら上述の漏洩ガス検出装置において、前記濃度厚み積処理部は、前記信頼度処理部で求めた前記信頼度が所定の第3閾値以下である場合、所定の時間の経過後に、前記ガス雲の濃度厚み積を再度求める。前記第3閾値は、前記第1閾値と同値であって良く、また、前記第1閾値と異値であって良い。前記第3閾値は、前記第2閾値と同値であって良く、また、前記第2閾値と異値であって良い。
このような漏洩ガス検出装置は、濃度厚み積を再度求めるので、ユーザが前記第3閾値よりも高い信頼度の濃度厚み積を参照することを可能とする。
他の一態様では、これら上述の漏洩ガス検出装置において、前記ガス雲温度取得部は、大気の温度を検出する温度センサである。
このような漏洩ガス検出装置は、大気の温度を検出する温度センサを用いて前記ガス雲温度取得部を構成するので、より簡易にガス温度を検出できる。
他の一態様にかかる漏洩ガス検出方法は、対象領域の赤外線画像を取得する赤外線画像取得工程と、前記赤外線画像取得工程で取得した前記対象領域の赤外線画像に基づいて、漏洩ガスで形成されたガス雲のガス雲画像領域を抽出するガス雲処理工程と、前記ガス雲のガス温度を取得するガス雲温度取得工程と、前記ガス雲の濃度厚み積を求める濃度厚み積処理工程と、前記ガス雲処理工程で抽出したガス雲画像領域における背景温度と前記ガス雲温度取得工程で取得したガス温度とに基づいて、前記濃度厚み積処理工程で求めた前記ガス雲の濃度厚み積に対する、信頼性の度合いを表す指標である信頼度を求める信頼度処理工程とを備える。
このような漏洩ガス検出方法は、補正演算することなく濃度厚み積を求めつつ、前述の新たに見出した知見から、背景温度と相関する、赤外線画像におけるガス雲画像領域の輝度値と、ガス温度とに基づいて、前記求めた前記ガス雲の濃度厚み積に対する、信頼度を求めている。したがって、上記漏洩ガス検出方法は、リアルタイム性を優先しつつ、前記信頼度を参照することで濃度厚み積の信頼性の度合いをユーザが判断できる。
この出願は、2015年10月29日に出願された日本国特許出願特願2015−212507を基礎とするものであり、その内容は、本願に含まれるものである。
本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
本発明によれば、漏洩ガス検出装置および漏洩ガス検出方法がを提供できる。

Claims (7)

  1. 対象領域の赤外線画像を取得する赤外線画像取得部と、
    前記赤外線画像取得部で取得した前記対象領域の赤外線画像に基づいて、漏洩ガスで形成されたガス雲のガス雲画像領域を抽出するガス雲処理部と、
    前記ガス雲のガス温度を取得するガス雲温度取得部と、
    前記ガス雲の濃度厚み積を求める濃度厚み積処理部と、
    前記ガス雲処理部で抽出したガス雲画像領域における背景温度と前記ガス雲温度取得部で取得したガス温度とに基づいて、前記濃度厚み積処理部で求めた前記ガス雲の濃度厚み積に対する、信頼性の度合いを表す指標である信頼度を求める信頼度処理部とを備える、
    漏洩ガス検出装置。
  2. 前記ガス雲処理部で抽出されたガス雲画像領域、前記濃度厚み積処理部で求めた前記漏洩ガスの濃度厚み積、および、前記信頼度処理部で求めた前記信頼度を表示部に対して表示可能とする表示処理部とをさらに備え、
    前記濃度厚み積処理部は、前記赤外線画像取得部で取得した前記対象領域の赤外線画像に基づいて、前記ガス雲における複数の箇所それぞれについて前記ガス雲の濃度厚み積をそれぞれ求め、
    前記信頼度処理部は、前記ガス雲における前記複数の箇所それぞれで求めた複数の前記ガス雲の濃度厚み積それぞれに対する前記信頼度をそれぞれ求め、
    前記表示処理部は、前記ガス雲における前記複数の箇所それぞれについて、当該箇所に対応する前記信頼度が所定の第1閾値以下である場合には、当該箇所に対応する領域を所定の色で塗りつぶして前記表示部に表示し、当該箇所に対応する前記ガス雲の濃度厚み積および信頼度を前記表示部に表示しない、
    請求項1に記載の漏洩ガス検出装置。
  3. 前記濃度厚み積処理部は、前記赤外線画像取得部で取得した前記対象領域の赤外線画像に基づいて、前記ガス雲における複数の箇所それぞれについて前記ガス雲の濃度厚み積をそれぞれ求め、
    前記信頼度処理部は、前記ガス雲における前記複数の箇所それぞれで求めた複数の前記ガス雲の濃度厚み積それぞれに対する前記信頼度をそれぞれ求め、
    前記ガス雲における前記複数の箇所それぞれについて、当該箇所に対応する前記信頼度が所定の第2閾値以下である場合には、当該箇所の周囲の箇所で最も信頼度が高い箇所を判定する周囲信頼度判定処理部をさらに備える、
    請求項1に記載の漏洩ガス検出装置。
  4. 前記ガス雲処理部で抽出されたガス雲画像領域、前記濃度厚み積処理部で求めた前記漏洩ガスの濃度厚み積、および、前記信頼度処理部で求めた前記信頼度を表示部に対して表示可能とする表示処理部をさらに備え、
    前記表示処理部は、前記信頼度を前記濃度厚み積の表示色で表示する、
    請求項1に記載の漏洩ガス検出装置。
  5. 前記濃度厚み積処理部は、前記信頼度処理部で求めた前記信頼度が所定の第3閾値以下である場合、所定の時間の経過後に、前記ガス雲の濃度厚み積を再度求める、
    請求項1ないし請求項4のいずれか1項に記載の漏洩ガス検出装置。
  6. 前記ガス雲温度取得部は、大気の温度を検出する温度センサである、
    請求項1ないし請求項5のいずれか1項に記載の漏洩ガス検出装置。
  7. 対象領域の赤外線画像を取得する赤外線画像取得工程と、
    前記赤外線画像取得工程で取得した前記対象領域の赤外線画像に基づいて、漏洩ガスで形成されたガス雲のガス雲画像領域を抽出するガス雲処理工程と、
    前記ガス雲のガス温度を取得するガス雲温度取得工程と、
    前記ガス雲の濃度厚み積を求める濃度厚み積処理工程と、
    前記ガス雲処理工程で抽出したガス雲画像領域における背景温度と前記ガス雲温度取得工程で取得したガス温度とに基づいて、前記濃度厚み積処理工程で求めた前記ガス雲の濃度厚み積に対する、信頼性の度合いを表す指標である信頼度を求める信頼度処理工程とを備える、
    漏洩ガス検出方法。
JP2017547752A 2015-10-29 2016-10-19 漏洩ガス検出装置および漏洩ガス検出方法 Active JP6773043B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015212507 2015-10-29
JP2015212507 2015-10-29
PCT/JP2016/080956 WO2017073427A1 (ja) 2015-10-29 2016-10-19 漏洩ガス検出装置および漏洩ガス検出方法

Publications (2)

Publication Number Publication Date
JPWO2017073427A1 true JPWO2017073427A1 (ja) 2018-08-16
JP6773043B2 JP6773043B2 (ja) 2020-10-21

Family

ID=58630187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017547752A Active JP6773043B2 (ja) 2015-10-29 2016-10-19 漏洩ガス検出装置および漏洩ガス検出方法

Country Status (3)

Country Link
US (1) US10190975B2 (ja)
JP (1) JP6773043B2 (ja)
WO (1) WO2017073427A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10739226B2 (en) * 2016-03-03 2020-08-11 Konica Minolta Opto, Inc. Gas leak position estimation device, gas leak position estimation method and gas leak position estimation program
JP6508439B2 (ja) * 2016-12-27 2019-05-08 コニカミノルタ株式会社 ガス検知用画像処理装置、ガス検知用画像処理方法及びガス検知用画像処理プログラム
US11598716B2 (en) 2017-09-27 2023-03-07 Konica Minolta, Inc. Gas image device and image acquisition method
US10234380B1 (en) * 2017-09-29 2019-03-19 Konica Minolta Laboratory U.S.A., Inc. Background radiance estimation and gas concentration-length quantification method for optical gas imaging camera
US10684216B2 (en) * 2018-03-30 2020-06-16 Konica Minolta Laboratory U.S.A., Inc. Multi-spectral gas quantification and differentiation method for optical gas imaging camera
US11108995B2 (en) * 2018-09-11 2021-08-31 Draeger Medical Systems, Inc. System and method for gas detection
CN114112214B (zh) * 2021-12-13 2022-08-05 广州市腾嘉自动化仪表有限公司 一种用于检测气体泄漏的红外成像系统
CN116823839B (zh) * 2023-08-31 2023-12-01 梁山中维热力有限公司 基于热红外图像的管道泄漏检测方法
CN117516812A (zh) * 2023-10-09 2024-02-06 南京智谱科技有限公司 一种气体泄漏监测系统、方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493745A (ja) * 1990-08-09 1992-03-26 Japan Sensor Kk ガス漏れ検出装置
US20100231722A1 (en) * 2009-03-16 2010-09-16 Southwest Research Institute Compact handheld detector for greenhouse gasses
JP2015099168A (ja) * 2015-03-03 2015-05-28 三菱電機株式会社 気体検出装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69125011T2 (de) 1991-12-04 1997-09-25 Bertin & Cie Verfahren und Vorrichtung zur optischen Ferndetektion eines sich in einem beobachteten Raumgebiet befindenden Gases
FR2832799B1 (fr) 2001-11-23 2006-11-03 Bertin Technologies Sa Procedure de detection optique de gaz a distance
JP2016206139A (ja) * 2015-04-28 2016-12-08 コニカミノルタ株式会社 ガス検出装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493745A (ja) * 1990-08-09 1992-03-26 Japan Sensor Kk ガス漏れ検出装置
US20100231722A1 (en) * 2009-03-16 2010-09-16 Southwest Research Institute Compact handheld detector for greenhouse gasses
JP2015099168A (ja) * 2015-03-03 2015-05-28 三菱電機株式会社 気体検出装置

Also Published As

Publication number Publication date
WO2017073427A1 (ja) 2017-05-04
US10190975B2 (en) 2019-01-29
US20180321141A1 (en) 2018-11-08
JP6773043B2 (ja) 2020-10-21

Similar Documents

Publication Publication Date Title
WO2017073427A1 (ja) 漏洩ガス検出装置および漏洩ガス検出方法
US20180292291A1 (en) Leaked gas detection device and leaked gas detection method
JP6492612B2 (ja) 漏洩ガス検出装置および漏洩ガス検出方法
US10416076B2 (en) Quantifying gas in passive optical gas imaging
CN107532999B (zh) 基于波长带的无源红外气体成像
EP3392635A1 (en) Image processing device for gas detection, image processing method for gas detection, image processing program for gas detection, computer-readable recording medium having image processing program for gas detection recorded thereon, and gas detection system
JP6468439B2 (ja) ガス検知用画像処理装置、ガス検知用画像処理方法及びガス検知用画像処理プログラム
US11598716B2 (en) Gas image device and image acquisition method
US11079365B2 (en) Spectrum simulation apparatus and method for contaminated atmosphere
JP2016006611A5 (ja)
US10732123B2 (en) Inspection routing systems and methods
CN107251118A (zh) 以多光谱成像设备为特征的检测系统和方法
KR101503213B1 (ko) 영상 이미지의 지리정보 및 패턴인식 기술을 이용한 시정거리 측정 장치 및 그 측정 방법
JP2011164742A5 (ja)
JP2017504017A5 (ja) 計測機器、及びシステム
JP2017035055A (ja) 植物生育指標測定装置、該方法および該プログラム
US20190004601A1 (en) Experimental Chamber with Computer-Controlled Display Wall
WO2017073429A1 (ja) ガス測定装置およびガス測定方法
JP2015032205A (ja) 画像処理装置及び画像処理方法
EP2505975A1 (en) Device and method for sequentially positioning markers on an image
JP2017097608A5 (ja)
JP5921311B2 (ja) 画像処理装置及び画像処理方法
JPWO2018190004A1 (ja) 疑似漏洩ガス画像生成装置および該方法ならびにガス検知装置
CN107407968A (zh) 信息处理装置、信息处理方法和程序
JPWO2020136969A1 (ja) 測定システム、測定装置、測定方法、及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6773043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150