JPWO2017013918A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JPWO2017013918A1
JPWO2017013918A1 JP2017529477A JP2017529477A JPWO2017013918A1 JP WO2017013918 A1 JPWO2017013918 A1 JP WO2017013918A1 JP 2017529477 A JP2017529477 A JP 2017529477A JP 2017529477 A JP2017529477 A JP 2017529477A JP WO2017013918 A1 JPWO2017013918 A1 JP WO2017013918A1
Authority
JP
Japan
Prior art keywords
tube
core plate
heat exchanger
width direction
inclined portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017529477A
Other languages
Japanese (ja)
Inventor
拓也 三ツ橋
拓也 三ツ橋
孝博 宇野
孝博 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Publication of JPWO2017013918A1 publication Critical patent/JPWO2017013918A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • F28F1/045Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular with assemblies of stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • F28F9/0226Header boxes formed by sealing end plates into covers with resilient gaskets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/067Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2225/00Reinforcing means
    • F28F2225/08Reinforcing means for header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/26Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing

Abstract

熱交換器(1)のヘッダタンク(20、30)のコアプレート(21)は、複数のチューブ挿入穴(211a)が形成されたチューブ接合部(211)と、チューブ接合部(211)を囲むと共に、タンク本体部(22)におけるコアプレート(21)に近接する先端部(222)を収容する収容受部(212)と、収容受部(212)とチューブ接合部(211)とを接続すると共に、チューブ(21)の長手方向に対して傾斜する傾斜部(215)と、を有する。傾斜部(215)は、収容受部(212)からチューブ接合部(211)に向けて傾斜部(215)に沿って直線状に延びる第1仮想線(VL1)と、チューブ(11)の断面長径方向においてチューブ接合部(211)に沿って直線状に延びる第2仮想線(VL2)とが、チューブ(11)の幅方向においてチューブ(11)の外側で交差するように、コアプレート(21)に設けられている。The core plate (21) of the header tank (20, 30) of the heat exchanger (1) surrounds the tube joint (211) in which a plurality of tube insertion holes (211a) are formed and the tube joint (211). At the same time, the receiving part (212) for receiving the tip (222) close to the core plate (21) in the tank body part (22) is connected to the receiving part (212) and the tube joining part (211). And an inclined portion (215) inclined with respect to the longitudinal direction of the tube (21). The inclined portion (215) includes a first imaginary line (VL1) extending linearly along the inclined portion (215) from the receiving portion (212) toward the tube joint portion (211), and a cross section of the tube (11). The core plate (21) so that the second virtual line (VL2) extending linearly along the tube joint (211) in the major axis direction intersects the outside of the tube (11) in the width direction of the tube (11). ).

Description

関連出願への相互参照Cross-reference to related applications

本出願は、2015年7月17日に出願された日本出願番号2015−142835号に基づくものであって、ここにその記載内容を援用する。   This application is based on Japanese Patent Application No. 2015-142835 filed on July 17, 2015, the description of which is incorporated herein.

本開示は、熱交換器に関するもので、水冷式の内燃機関の冷却水を冷却するラジエータに好適である。   The present disclosure relates to a heat exchanger, and is suitable for a radiator that cools cooling water of a water-cooled internal combustion engine.

従来、熱交換器は、複数のチューブと複数のコルゲートフィンとを交互に積層して構成されるコア部、チューブにおける長手方向の端部に接合されてチューブに連通するヘッダタンク等を備えている。ヘッダタンクは、チューブが挿入接合されるコアプレート、およびコアプレートに対して先端部が固定され、コアプレートと共にヘッダタンクの内部空間を形成するタンク本体部を備えている。コアプレートは、ヘッダタンク内側に平坦面を有すると共に、複数のチューブが挿入されるチューブ挿入穴が設けられたチューブ接合部、チューブ接合部の外側に設けられてタンク本体部の端部を受け入れる溝部が設けられている。   Conventionally, a heat exchanger includes a core portion configured by alternately laminating a plurality of tubes and a plurality of corrugated fins, a header tank that is joined to an end portion in a longitudinal direction of the tube, and communicates with the tube. . The header tank includes a core plate into which a tube is inserted and joined, and a tank main body part that is fixed to the core plate and forms an internal space of the header tank together with the core plate. The core plate has a flat surface on the inner side of the header tank, a tube joint portion provided with a tube insertion hole into which a plurality of tubes are inserted, and a groove portion provided outside the tube joint portion to receive the end of the tank main body portion. Is provided.

この種の熱交換器では、隣り合うチューブの間に温度差が生じた際に、コアプレートのチューブ接合部が変形して、チューブの幅方向の端部に応力が集中してしまうといった課題がある。   In this type of heat exchanger, when a temperature difference occurs between adjacent tubes, the tube joint portion of the core plate is deformed and stress is concentrated on the end portion in the width direction of the tube. is there.

そこで、例えば、特許文献1では、チューブ挿入穴の周縁におけるチューブ幅方向の端部側の部位を上方側に向かって突出した形状としている。このような形状を採用することで、特許文献1では、チューブの幅方向の端部側における強度向上を図ろうとしている。   Therefore, for example, in Patent Document 1, a portion on the end side in the tube width direction at the periphery of the tube insertion hole is formed to protrude upward. By adopting such a shape, Patent Document 1 attempts to improve the strength on the end side in the width direction of the tube.

国際公開第2014/180865号International Publication No. 2014/180865

ところで、車両に搭載されるラジエータ等の熱交換器では、搭載上の制約から空気の流れ方向であるチューブの幅方向の厚みをできる限り薄くすることが望まれている。このような要望を実現するためには、熱交換器におけるコアプレートのチューブの幅方向の厚みを薄くする必要がある。   By the way, in heat exchangers, such as a radiator mounted in a vehicle, it is desired to make the thickness of the tube in the width direction, which is the air flow direction, as thin as possible because of restrictions on mounting. In order to realize such a demand, it is necessary to reduce the thickness in the width direction of the tube of the core plate in the heat exchanger.

ここで、図12は、本発明者らが第1に検討したコアプレートの模式的な断面を示している。また、図13、図14は、本発明者らが第2に検討したコアプレートの模式的な断面を示している。以下、図12に示す構成を検討例1とし、図13、図14に示す構成を検討例2とする。   Here, FIG. 12 shows a schematic cross-section of the core plate studied first by the present inventors. Moreover, FIG. 13, FIG. 14 has shown the typical cross section of the core plate which the present inventors examined 2nd. Hereinafter, the configuration illustrated in FIG. 12 is referred to as Study Example 1, and the configuration illustrated in FIGS. 13 and 14 is referred to as Study Example 2.

図12の検討例1に示すように、単にコアプレートCP1のチューブTBの幅方向WDの厚みを薄くすると(Lw1→Lw2)、チューブTBの幅方向において、コアプレートCP1およびチューブTBそれぞれの対向壁面同士が接近する。   As shown in Study Example 1 in FIG. 12, when the thickness in the width direction WD of the tube TB of the core plate CP1 is simply reduced (Lw1 → Lw2), the opposing wall surfaces of the core plate CP1 and the tube TB in the width direction of the tube TB. Each other approaches.

このため、チューブTBとコアプレートCP1とをろう付け接合する際、チューブ挿入穴TBhの周縁だけでなく、コアプレートCP1およびチューブTBそれぞれの対向壁面同士の間にもろう材が回り込み易くなってしまう。これにより、チューブTBとコアプレートCP1とが意図しない位置で接合されてしまう可能性がある。   For this reason, when the tube TB and the core plate CP1 are brazed and joined, the brazing material easily goes around not only between the periphery of the tube insertion hole TBh but also between the opposing wall surfaces of the core plate CP1 and the tube TB. . As a result, the tube TB and the core plate CP1 may be joined at an unintended position.

これに対して、本発明者らは、図13の検討例2に示すように、チューブ挿入穴TBhの周縁以外においてコアプレートCP2およびチューブTBそれぞれの対向壁面同士の間隔を広げる構成を検討している。すなわち、図14に示すように、コアプレートCP2におけるチューブTBの接合部Cjとタンク本体部を受け入れる部位Ctとの間に傾斜部Ciを設ける構成を検討している。これによれば、熱交換器におけるコアプレートCP2のチューブTBの幅方向WDの厚みを薄くしても、チューブTBとコアプレートCP2とが意図しない位置で接合されてしまうことを回避可能となる。   On the other hand, as shown in Study Example 2 in FIG. 13, the present inventors have studied a configuration in which the distance between the opposing wall surfaces of the core plate CP2 and the tube TB is increased except for the periphery of the tube insertion hole TBh. Yes. That is, as shown in FIG. 14, a configuration in which an inclined portion Ci is provided between the joint portion Cj of the tube TB in the core plate CP2 and the portion Ct that receives the tank main body portion is examined. According to this, even if the thickness of the tube TB in the width direction WD of the core plate CP2 in the heat exchanger is reduced, it is possible to avoid the tube TB and the core plate CP2 being joined at an unintended position.

ところが、図14に示す構成を実際に試作してみると、コアプレートCP2におけるチューブ挿入穴TBhの周縁部に窪み(すなわち、ヒケ)Csが形成されてしまうことが判った。このような意図しない窪みCsは、チューブTBとコアプレートCP2とをろう付け接合する際に、ろう材の回り込みが安定せず、チューブTBとコアプレートCP2との接合状態が不安定となることから、好ましくない。   However, when the prototype shown in FIG. 14 was actually prototyped, it was found that a depression (that is, sink) Cs was formed at the peripheral edge portion of the tube insertion hole TBh in the core plate CP2. Such an unintended depression Cs is caused by the brazing material being unstable when brazing and joining the tube TB and the core plate CP2, and the joining state between the tube TB and the core plate CP2 becoming unstable. Is not preferable.

そこで、本発明者らは、コアプレートCP2に窪みCsが形成される原因について調査した。この結果、検討例2に示す構成では、チューブ接合部Cjよりも厚みが大きいコアプレートCP2の傾斜部Ciの一部に、チューブ挿入穴TBhを形成しており、チューブ挿入穴TBhを形成する際の成形収縮により窪みCsが形成されることが判った。   Therefore, the present inventors investigated the cause of the formation of the depression Cs in the core plate CP2. As a result, in the configuration shown in Study Example 2, the tube insertion hole TBh is formed in a part of the inclined portion Ci of the core plate CP2 having a thickness larger than that of the tube joint portion Cj, and the tube insertion hole TBh is formed. It was found that the depression Cs was formed by the molding shrinkage.

本開示は、コアプレートにおけるチューブの幅方向の厚み薄くしても、コアプレートに意図しない窪みが生ずることを抑制可能な熱交換器を提供することを目的とする。   An object of this indication is to provide the heat exchanger which can suppress that the hollow which is not intended in a core plate arises even if thickness of the width direction of the tube in a core plate is made thin.

本開示の1つの観点によれば、熱交換器は、複数積層配置された扁平形状のチューブを有するコア部と、チューブの長手方向の端部に配置され、複数のチューブに連通するヘッダタンクと、を備える。   According to one aspect of the present disclosure, a heat exchanger includes a core portion having a plurality of flat tubes arranged in a stacked manner, a header tank disposed at an end portion in the longitudinal direction of the tubes and communicating with the plurality of tubes. .

熱交換器のヘッダタンクは、チューブにおける長手方向の端部が複数のチューブ挿入穴に挿入された状態で、複数のチューブがろう付け接合されたコアプレートと、コアプレートに固定され、コアプレートと共に複数のチューブに連通する空間を形成するタンク本体部と、を含んで構成されている。   The header tank of the heat exchanger is fixed to the core plate with a plurality of tubes brazed together with the longitudinal ends of the tubes inserted into the tube insertion holes, together with the core plate. A tank main body that forms a space communicating with the plurality of tubes.

コアプレートは、複数のチューブ挿入穴が形成されたチューブ接合部と、チューブ接合部を囲むと共に、タンク本体部におけるコアプレートに近接する先端部を収容する収容受部と、収容受部とチューブ接合部とを接続すると共に、チューブの長手方向に対して傾斜する傾斜部と、を有している。   The core plate includes a tube joint portion in which a plurality of tube insertion holes are formed, an accommodation receiving portion that surrounds the tube joint portion and accommodates a tip portion close to the core plate in the tank main body portion, and the accommodation receiving portion and the tube joint. And an inclined portion that is inclined with respect to the longitudinal direction of the tube.

そして、傾斜部は、収容受部からチューブ接合部に向けて傾斜部に沿って直線状に延びる第1仮想線と、チューブの断面長径方向においてチューブ接合部に沿って直線状に延びる第2仮想線とが、チューブの幅方向においてチューブの外側で交差するように、コアプレートに設けられている。   The inclined portion includes a first imaginary line that extends linearly along the inclined portion from the housing receiving portion toward the tube joint portion, and a second imaginary line that extends linearly along the tube joint portion in the cross-sectional major axis direction of the tube. The line is provided on the core plate so as to intersect the outside of the tube in the width direction of the tube.

このように、コアプレートの傾斜部に沿って延びる第1仮想線と、チューブ接合部に沿って延びる第2仮想線とがチューブの幅方向の外側で交差する構成とすれば、チューブの幅方向において、傾斜部がチューブ挿入穴から離れた位置に形成されることになる。このため、チューブ挿入穴を形成する際の成形収縮によってコアプレートにおけるチューブ挿入穴の周縁部に窪みが形成されることを抑えることができる。   Thus, if it is set as the structure which the 1st imaginary line extended along the inclination part of a core plate and the 2nd imaginary line extended along a tube junction part cross | intersect on the outer side of the width direction of a tube, the width direction of a tube In this case, the inclined portion is formed at a position away from the tube insertion hole. For this reason, it can suppress that a hollow is formed in the peripheral part of the tube insertion hole in a core plate by the shaping | molding shrinkage | contraction at the time of forming a tube insertion hole.

従って、本開示の熱交換器によれば、コアプレートにおけるチューブの幅方向の厚み薄くしても、コアプレートに意図しない窪みが生ずることを抑制可能となる。この結果、チューブとコアプレートとをろう付け接合する際、ろう材の回り込みが安定するので、チューブとコアプレートとの接合状態を安定させることが可能となる。   Therefore, according to the heat exchanger of this indication, even if thickness in the width direction of the tube in a core plate is made thin, it becomes possible to control that an unintended dent arises in a core plate. As a result, when the tube and the core plate are joined by brazing, the brazing material wraps around stably, so that the joining state between the tube and the core plate can be stabilized.

第1実施形態に係るラジエータの模式的な正面図である。It is a typical front view of the radiator concerning a 1st embodiment. 第1実施形態に係るラジエータのヘッダタンクを含む要部の斜視図である。It is a perspective view of the principal part containing the header tank of the radiator concerning a 1st embodiment. 第1実施形態に係るラジエータのコアプレート単体の正面図である。It is a front view of the core plate simple substance of the radiator concerning a 1st embodiment. 第1実施形態に係るラジエータのコアプレート単体の下面図である。It is a bottom view of the core plate simple substance of the radiator concerning a 1st embodiment. 図4のV−V断面図である。It is VV sectional drawing of FIG. 図5のVI−VI断面図である。It is VI-VI sectional drawing of FIG. 第1実施形態に係るラジエータのコアプレートの要部を示す断面図である。It is sectional drawing which shows the principal part of the core plate of the radiator which concerns on 1st Embodiment. 第1実施形態に係るラジエータのコアプレートの変形状態を示す説明図である。It is explanatory drawing which shows the deformation | transformation state of the core plate of the radiator which concerns on 1st Embodiment. 比較例に係るラジエータのコアプレートの変形状態を示す説明図である。It is explanatory drawing which shows the deformation | transformation state of the core plate of the radiator which concerns on a comparative example. チューブ交点間距離とチューブ根付部に発生する応力との関係を示す図である。It is a figure which shows the relationship between the distance between tube intersections, and the stress which generate | occur | produces in a tube root part. 第2実施形態に係るラジエータのコアプレートの要部を示す断面図である。It is sectional drawing which shows the principal part of the core plate of the radiator which concerns on 2nd Embodiment. 検討例1のコアプレートにおけるチューブを接合した状態を示す断面図である。It is sectional drawing which shows the state which joined the tube in the core plate of the examination example 1. FIG. 検討例2のコアプレートにおけるチューブを接合した状態を示す断面図である。It is sectional drawing which shows the state which joined the tube in the core plate of the examination example 2. FIG. 検討例2のコアプレート単体の断面図である。It is sectional drawing of the core plate single-piece | unit of examination example 2. FIG.

以下、本開示の実施形態について図面を参照して説明する。なお、以下の各実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。   Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Note that, in each of the following embodiments, parts that are the same as or equivalent to the matters described in the preceding embodiment are denoted by the same reference numerals, and the description thereof may be omitted.

また、各実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。   Moreover, in each embodiment, when only a part of the component is described, the component described in the preceding embodiment can be applied to the other part of the component.

以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。   The following embodiments can be partially combined with each other even if they are not particularly specified as long as they do not cause any trouble in the combination.

(第1実施形態)
本実施形態について図1〜図10を参照して説明する。本実施形態では、本開示に係る熱交換器を、車両に搭載された図示しない水冷式の内燃機関を冷却するラジエータ1に適用した例について説明する。
(First embodiment)
This embodiment will be described with reference to FIGS. This embodiment demonstrates the example which applied the heat exchanger which concerns on this indication to the radiator 1 which cools the water-cooling type internal combustion engine which is mounted in the vehicle which is not shown in figure.

まず、本実施形態のラジエータ1の基本構成について図1を参照して説明する。図1に示すように、ラジエータ1は、図示しない内燃機関の冷却水を外気と熱交換させる熱交換部であるコア部10を有する。コア部10は、チューブ11とフィン12とが上下方向に交互に複数積層配置された積層体で構成されている。以下、本実施形態では、各チューブ11および各フィン12の積層方向をチューブ積層方向YDと呼ぶ。   First, the basic configuration of the radiator 1 of the present embodiment will be described with reference to FIG. As shown in FIG. 1, the radiator 1 includes a core portion 10 that is a heat exchange portion that exchanges heat of cooling water of an internal combustion engine (not shown) with outside air. The core part 10 is configured by a laminated body in which a plurality of tubes 11 and fins 12 are alternately laminated in the vertical direction. Hereinafter, in the present embodiment, the stacking direction of the tubes 11 and the fins 12 is referred to as a tube stacking direction YD.

各チューブ11は、その内部に図示しない内燃機関の冷却水が流通する流路が形成されている。本実施形態の各チューブ11は、その長手方向が水平方向に沿って延びると共に、その断面における長径となる方向(すなわち、断面長径方向)が外気の流通方向に沿って延びるように扁平形状に構成されている。   Each tube 11 has a flow path through which cooling water of an internal combustion engine (not shown) flows. Each tube 11 of the present embodiment is configured in a flat shape so that the longitudinal direction thereof extends along the horizontal direction, and the direction in which the cross section has a long diameter (that is, the cross section long diameter direction) extends along the flow direction of the outside air. Has been.

ここで、偏平形状とは、曲率半径の大きい円弧部と曲率半径の小さい円弧部とを結合した曲線形状からなる楕円形状や、円弧部と平坦部とを結合した形状からなる長円形状等を包含するものである。なお、本実施形態では、説明の便宜上、チューブ11の長手方向をチューブ長手方向XDと呼び、チューブ長手方向XDおよびチューブ積層方向YDに直交する方向をチューブ幅方向ZDと呼ぶ。なお、本実施形態のチューブ幅方向ZDは、チューブ11の長径となる方向(すなわち、断面長径方向)と一致する方向となっている。   Here, the flat shape refers to an elliptical shape composed of a curved shape obtained by combining an arc portion having a large curvature radius and an arc portion having a small curvature radius, an oval shape comprising a shape obtained by combining an arc portion and a flat portion, and the like. It is included. In the present embodiment, for convenience of explanation, the longitudinal direction of the tube 11 is referred to as a tube longitudinal direction XD, and the direction orthogonal to the tube longitudinal direction XD and the tube stacking direction YD is referred to as a tube width direction ZD. Note that the tube width direction ZD of the present embodiment is a direction that coincides with the direction in which the tube 11 becomes the major axis (that is, the cross-sectional major axis direction).

フィン12は、外気との伝熱面積を増大させて、外気と冷却水との熱交換を促進する部材である。本実施形態のフィン12は、コルゲート状に成形されており、チューブ11の両側の平坦面に対して接合されている。なお、本実施形態にて使用される平坦面とは、実質的に平らな状態であることを意味する。すなわち、本実施形態にて使用される平坦面には、製造上形成される程度の微小な段差、凹凸等を含んだ状態も含まれる。このことは、後述するチューブ接合部211の平坦面、および傾斜部215の平坦面においても同様である。   The fins 12 are members that increase the heat transfer area with the outside air and promote heat exchange between the outside air and the cooling water. The fins 12 of the present embodiment are formed in a corrugated shape and are joined to the flat surfaces on both sides of the tube 11. Note that the flat surface used in the present embodiment means a substantially flat state. That is, the flat surface used in the present embodiment includes a state including minute steps, irregularities, and the like that are formed in manufacturing. The same applies to the flat surface of the tube joint portion 211 and the flat surface of the inclined portion 215 described later.

本実施形態の各チューブ11、およびフィン12それぞれは、熱伝導率、耐食性等に優れた金属(例えば、アルミニウム合金)で構成されている。本実施形態のラジエータ1は、各チューブ11、フィン12、後述するコアプレート21、後述するサイドプレート40が、各部材の所定箇所に被覆されたろう材により一体にろう付け接合されている。   Each tube 11 and each fin 12 of the present embodiment are made of a metal (for example, an aluminum alloy) excellent in thermal conductivity, corrosion resistance, and the like. In the radiator 1 of the present embodiment, each tube 11, fins 12, a core plate 21 to be described later, and a side plate 40 to be described later are integrally brazed and joined by a brazing material coated at a predetermined position of each member.

各チューブ11におけるチューブ長手方向XDの両端部には、チューブ積層方向YDに延びると共に、内部に空間が形成された一対のヘッダタンク20、30が配置されている。各ヘッダタンク20、30は、各チューブ11のチューブ長手方向XDの端部が、後述するコアプレート21のチューブ挿入穴211aに挿入された状態で接合されている。そして、各チューブ11における内部通路は、各ヘッダタンク20、30の内部に形成される空間に連通している。   A pair of header tanks 20 and 30 extending in the tube stacking direction YD and having a space formed therein are disposed at both ends of each tube 11 in the tube longitudinal direction XD. Each header tank 20 and 30 is joined in a state in which the end portion of each tube 11 in the tube longitudinal direction XD is inserted into a tube insertion hole 211a of the core plate 21 described later. The internal passage in each tube 11 communicates with a space formed inside each header tank 20, 30.

一対のヘッダタンク20、30のうち、一方のヘッダタンクは、図示しない内燃機関から流出した高温の冷却水を各チューブ11に分配供給する入口側タンク20を構成している。入口側タンク20には、図示しないホースを介して内燃機関の冷却水の出口側に接続される流入口パイプ20aが設けられている。   Of the pair of header tanks 20, 30, one header tank constitutes an inlet side tank 20 that distributes and supplies high-temperature cooling water flowing out from an internal combustion engine (not shown) to each tube 11. The inlet side tank 20 is provided with an inlet pipe 20a connected to the outlet side of the cooling water of the internal combustion engine via a hose (not shown).

一対のヘッダタンク20、30のうち、他方のヘッダタンクは、コア部10において外気との熱交換により冷却された冷却水を集合回収して排出する出口側タンク30を構成している。出口側タンク30には、図示しないホースを介して内燃機関の冷却水の入口側に接続される流出口パイプ30aが設けられている。   Of the pair of header tanks 20, 30, the other header tank constitutes an outlet side tank 30 that collects and collects cooling water cooled by heat exchange with the outside air in the core portion 10. The outlet side tank 30 is provided with an outlet pipe 30a connected to the cooling water inlet side of the internal combustion engine via a hose (not shown).

コア部10におけるチューブ積層方向YDの両端部には、コア部10を補強するサイドプレート40が配置されている。サイドプレート40は、チューブ長手方向XDに沿って延びており、その両端が各ヘッダタンク20、30に接続されている。本実施形態のサイドプレート40は、アルミニウム合金等の金属で構成されている。   Side plates 40 that reinforce the core portion 10 are disposed at both ends of the core portion 10 in the tube stacking direction YD. The side plate 40 extends along the tube longitudinal direction XD, and both ends thereof are connected to the header tanks 20 and 30. The side plate 40 of the present embodiment is made of a metal such as an aluminum alloy.

続いて、各ヘッダタンク20、30の詳細な構造について、図2〜図7を参照して説明する。図2に示すように、各ヘッダタンク20、30は、チューブ11が挿入された状態で接合されたコアプレート21、コアプレート21と共に各ヘッダタンク20、30の内部空間20bを形成するタンク本体部22、およびパッキン23を有している。   Next, the detailed structure of each header tank 20, 30 will be described with reference to FIGS. As shown in FIG. 2, each header tank 20, 30 has a core body 21 that forms an internal space 20 b of each header tank 20, 30 together with the core plate 21 and the core plate 21 that are joined together with the tube 11 inserted. 22 and packing 23.

本実施形態のコアプレート21は、熱伝導率、耐食性等に優れた金属(例えば、アルミニウム合金)で構成されている。また、本実施形態のタンク本体部22は、ガラス繊維で強化されたガラス強化ポリアミド等の樹脂で形成されている。さらに、パッキン23は、弾性変形可能なゴムで構成されている。なお、パッキン23は、例えば、シリコンゴムや、EPDM(すなわち、エチレン・プロピレン・ジエンゴム)で形成すればよい。   The core plate 21 of the present embodiment is made of a metal (for example, an aluminum alloy) excellent in thermal conductivity, corrosion resistance, and the like. In addition, the tank body 22 of the present embodiment is formed of a resin such as glass reinforced polyamide reinforced with glass fibers. Further, the packing 23 is made of elastically deformable rubber. The packing 23 may be formed of, for example, silicon rubber or EPDM (that is, ethylene / propylene / diene rubber).

本実施形態では、パッキン23をコアプレート21とタンク本体部22との間に挟んだ状態で、後述するコアプレート21の突出片213をタンク本体部22に押しつけるように塑性変形させることで、タンク本体部22をコアプレート21にカシメ固定している。   In this embodiment, in a state where the packing 23 is sandwiched between the core plate 21 and the tank main body 22, the tank plate 22 is plastically deformed so as to press a protruding piece 213 of the core plate 21 described later against the tank main body 22. The main body 22 is caulked and fixed to the core plate 21.

コアプレート21は、チューブ11を接合するチューブ接合部211、チューブ接合部211の周囲に、後述するタンク本体部22のフランジ部222およびパッキン23を収容する収容受部212を有している。   The core plate 21 has a tube joint portion 211 that joins the tube 11, and a housing receiving portion 212 that houses a flange portion 222 and a packing 23 of the tank body portion 22, which will be described later, around the tube joint portion 211.

収容受部212は、2つの壁面を有し、L字形状に構成されている。すなわち、収容受部212は、チューブ積層方向YDから見たときに、チューブ幅方向ZDに延びる底壁部212a、底壁部212aからL字状に折り曲げられてチューブ長手方向XDに延びる外側壁部212bを有している。また、収容受部212の外側壁部212bの端部には、図3に示すように、カシメ用の複数の突出片213が形成されている。   The housing receiving part 212 has two wall surfaces and is configured in an L shape. That is, the housing receiving portion 212 is a bottom wall portion 212a extending in the tube width direction ZD when viewed from the tube stacking direction YD, and an outer wall portion bent in an L shape from the bottom wall portion 212a and extending in the tube longitudinal direction XD. 212b. Further, as shown in FIG. 3, a plurality of protruding pieces 213 for caulking are formed at the end of the outer wall portion 212 b of the housing receiving portion 212.

チューブ接合部211には、図4に示すように、各チューブ11におけるチューブ長手方向XDの端部を挿入した状態でろう付け接合するための複数のチューブ挿入穴211aがチューブ積層方向YDに所定の間隔をあけて並ぶように形成されている。   As shown in FIG. 4, the tube joining portion 211 has a plurality of tube insertion holes 211a for brazing and joining in a state where the end portions in the tube longitudinal direction XD of each tube 11 are inserted in the tube stacking direction YD. It is formed to line up at intervals.

ここで、図5は、チューブ接合部211におけるチューブ挿入穴211aを含む部位をチューブ長手方向XDに切断した際のコアプレート21の断面形状を示す図である。また、図6は、チューブ接合部211における各チューブ挿入穴211aの間に位置する部位をチューブ長手方向XDに切断した際のコアプレート21の断面形状を示す図である。   Here, FIG. 5 is a diagram illustrating a cross-sectional shape of the core plate 21 when a portion including the tube insertion hole 211a in the tube joint portion 211 is cut in the tube longitudinal direction XD. FIG. 6 is a diagram showing a cross-sectional shape of the core plate 21 when a portion located between the tube insertion holes 211a in the tube joint portion 211 is cut in the tube longitudinal direction XD.

図5に示すように、チューブ挿入穴211aの周縁部のうち、チューブ幅方向ZDに延びる部位には、各ヘッダタンク20、30の内部空間側に向かって突出するバーリング部211bが形成されている。バーリング部211bは、コアプレート21におけるチューブ挿入穴211aの周縁部の剛性を高めるために設けられている。   As shown in FIG. 5, a burring portion 211 b that protrudes toward the inner space of each header tank 20, 30 is formed in a portion extending in the tube width direction ZD in the peripheral portion of the tube insertion hole 211 a. . The burring portion 211 b is provided to increase the rigidity of the peripheral edge portion of the tube insertion hole 211 a in the core plate 21.

また、図6に示すように、チューブ接合部211には、隣り合うチューブ挿入穴211aの間であって、各チューブ11のチューブ幅方向ZDの端部側の部位に、各チューブ11のチューブ長手方向XDの端部から離れるように窪んだリブ214が形成されている。   As shown in FIG. 6, the tube joining portion 211 is located between the adjacent tube insertion holes 211 a, and in the tube width direction ZD of each tube 11, the tube length of each tube 11. A rib 214 that is recessed away from the end in the direction XD is formed.

リブ214は、チューブ積層方向YD(すなわち、図5、図6の紙面垂直方向)から見たときに、チューブ長手方向XDにおいて、各チューブ11のチューブ幅方向ZDの端部と重なり合うように形成されている。   The ribs 214 are formed so as to overlap the ends of the tubes 11 in the tube width direction ZD in the tube longitudinal direction XD when viewed from the tube stacking direction YD (that is, the direction perpendicular to the paper surface of FIGS. 5 and 6). ing.

本実施形態のコアプレート21は、チューブ接合部211と収容受部212とが、チューブ長手方向XDに対して傾斜する傾斜部215を介して接続されている。これにより、コアプレート21は、チューブ接合部211と収容受部212の底壁部212aとの間の部位が段付き形状となっている。   In the core plate 21 of the present embodiment, the tube joint portion 211 and the housing receiving portion 212 are connected via an inclined portion 215 that is inclined with respect to the tube longitudinal direction XD. Thereby, as for the core plate 21, the site | part between the tube junction part 211 and the bottom wall part 212a of the accommodating receiving part 212 becomes a stepped shape.

本実施形態の傾斜部215は、チューブ幅方向ZDにおけるチューブ11との間隔が、収容受部212の底壁部212a側からチューブ接合部211側に向かって狭くなるように傾斜している。   The inclined portion 215 of the present embodiment is inclined so that the distance from the tube 11 in the tube width direction ZD becomes narrower from the bottom wall portion 212a side of the housing receiving portion 212 toward the tube joint portion 211 side.

ここで、本発明者らの知見によれば、チューブ挿入穴211aがチューブ長手方向XDにおいて傾斜部215の一部に重なり合っていると、チューブ接合部211におけるチューブ挿入穴211aの周縁部に、意図しない窪みが形成され易いことが判っている。   Here, according to the knowledge of the present inventors, if the tube insertion hole 211a overlaps with a part of the inclined portion 215 in the tube longitudinal direction XD, the tube insertion hole 211a has an intention to the peripheral portion of the tube insertion hole 211a. It has been found that dents that are not easily formed.

そこで、本実施形態では、傾斜部215の一部がチューブ長手方向XDにおいてチューブ挿入穴211aに重なり合わないように、傾斜部215の形状を設定している。   Therefore, in the present embodiment, the shape of the inclined portion 215 is set so that a part of the inclined portion 215 does not overlap the tube insertion hole 211a in the tube longitudinal direction XD.

具体的には、傾斜部215は、図7に示すように、傾斜部215に沿って直線状に延びる第1仮想線VL1と、チューブ接合部211に沿って直線状に延びる第2仮想線VL2とが、チューブ11のチューブ幅方向ZDの外側で交差するように形成されている。換言すれば、本実施形態の傾斜部215は、第1仮想線VL1と第2仮想線VL2との交点Aが、チューブ11のチューブ幅方向ZDの外側に位置するように、コアプレート21に形成されている。   Specifically, as shown in FIG. 7, the inclined portion 215 includes a first imaginary line VL <b> 1 that extends linearly along the inclined portion 215 and a second imaginary line VL <b> 2 that extends linearly along the tube joint portion 211. Are formed so as to intersect outside the tube width direction ZD of the tube 11. In other words, the inclined portion 215 of the present embodiment is formed on the core plate 21 so that the intersection A between the first virtual line VL1 and the second virtual line VL2 is located outside the tube width direction ZD of the tube 11. Has been.

ここで、第1仮想線VL1は、傾斜部215の平坦面に沿って延びる直線であり、図7における一点鎖線で示す直線である。具体的には、第1仮想線VL1は、収容受部212からチューブ接合部211に向けて傾斜部215に沿って直線状に延びる直線である。なお、前述したように、傾斜部215の平坦面は、実質的に平らな状態であることを意味しており、製造上形成される程度の微小な段差、凹凸等を含んだ状態であってもよい。   Here, the first virtual line VL1 is a straight line extending along the flat surface of the inclined portion 215, and is a straight line indicated by a one-dot chain line in FIG. Specifically, the first virtual line VL <b> 1 is a straight line extending linearly along the inclined portion 215 from the housing receiving portion 212 toward the tube joint portion 211. As described above, the flat surface of the inclined portion 215 means that it is in a substantially flat state, and includes a minute step, unevenness or the like that is formed in manufacturing. Also good.

また、第2仮想線VL2は、チューブ接合部211の平坦面に沿って延びる直線であり、図7における二点鎖線で示す直線である。具体的には、第2仮想線VL2は、チューブ11の断面における長径となる方向(すなわち、断面長径方向)においてチューブ接合部211に沿って直線状に延びる直線である。なお、前述したように、チューブ接合部211の平坦面は、実質的に平らな状態であることを意味しており、製造上形成される程度の微小な段差、凹凸等を含んだ状態であってもよい。   Moreover, the 2nd virtual line VL2 is a straight line extended along the flat surface of the tube junction part 211, and is a straight line shown with the dashed-two dotted line in FIG. Specifically, the second imaginary line VL <b> 2 is a straight line that extends linearly along the tube joint portion 211 in the direction of the long diameter in the cross section of the tube 11 (that is, the cross section long diameter direction). As described above, the flat surface of the tube joint portion 211 means a substantially flat state, and includes a minute step, unevenness, etc. that are formed in manufacturing. May be.

図2に戻り、本実施形態のタンク本体部22は、ラジエータ1のチューブ幅方向ZDにおける薄型化を図るために、チューブ幅方向ZDにおける長さが、チューブ11のチューブ幅方向における長さよりも短くなる部位を有する。そして、タンク本体部22におけるチューブ11に対向する部位には、チューブ幅方向ZDにおいてチューブ11から離れる方向に膨らんだ膨出部221が設けられている。これにより、タンク本体部22の内側が、チューブ11に対して接触しない構成となっている。   Returning to FIG. 2, the tank body 22 of the present embodiment has a length in the tube width direction ZD shorter than a length in the tube width direction of the tube 11 in order to reduce the thickness of the radiator 1 in the tube width direction ZD. It has the part which becomes. And the bulging part 221 which swelled in the direction away from the tube 11 in the tube width direction ZD is provided in the site | part which opposes the tube 11 in the tank main-body part 22. As shown in FIG. Thereby, the inside of the tank main body 22 is configured not to contact the tube 11.

また、本実施形態のタンク本体部22には、コアプレート21に近接する先端部に他の部位よりも厚みが大きいフランジ部222が設けられている。このフランジ部222は、コアプレート21の収容受部212にパッキン23を介して配置されている。   Further, the tank main body portion 22 of the present embodiment is provided with a flange portion 222 having a thickness larger than that of other portions at the tip portion close to the core plate 21. The flange portion 222 is disposed on the receiving portion 212 of the core plate 21 via the packing 23.

次に、上記構成を備えるラジエータ1の製造方法の概略について説明する。本実施形態のラジエータ1の製造方法には、用意工程、仮組工程、ろう付け接合工程が含まれる。まず、用意工程では、ラジエータ1を構成する各部品を用意する。この用意工程には、チューブ接合部211、収容受部212、突出片213、リブ214を有するコアプレート21を成形する工程が含まれる。なお、本実施形態では、板状の金属材を抜き打ち加工(例えば、パンチング加工)により、チューブ接合部211の平坦面にチューブ挿入穴211aを形成している。   Next, the outline of the manufacturing method of the radiator 1 provided with the said structure is demonstrated. The manufacturing method of the radiator 1 of the present embodiment includes a preparation process, a temporary assembly process, and a brazing joining process. First, in a preparation process, each component which comprises the radiator 1 is prepared. This preparation step includes a step of forming the core plate 21 having the tube joint portion 211, the receiving portion 212, the protruding piece 213, and the rib 214. In the present embodiment, the tube insertion hole 211a is formed on the flat surface of the tube joint portion 211 by punching a plate-shaped metal material (for example, punching).

続いて、仮組工程では、用意工程で用意したチューブ11、フィン12、サイドプレート40を作業台上で、チューブ積層方向YDに組み付けることにより、コア部10等を仮組みする。   Subsequently, in the temporary assembly process, the core portion 10 and the like are temporarily assembled by assembling the tube 11, the fins 12, and the side plate 40 prepared in the preparation process in the tube stacking direction YD on the work table.

そして、仮組工程では、チューブ挿入穴211aが形成されたコアプレート21をコア部10に組付けた後、ワイヤ等の治具により組付けた状態を保持する。続いて、ろう付け接合工程では、コアプレート21をコア部10に組付けた状態の組付体を、加熱された炉内に置くことで、コアプレート21、コア部10の各要素をろう付けにより接合する。   In the temporary assembly step, after the core plate 21 in which the tube insertion hole 211a is formed is assembled to the core portion 10, the state of being assembled by a jig such as a wire is held. Subsequently, in the brazing and joining step, the assembly of the state in which the core plate 21 is assembled to the core portion 10 is placed in a heated furnace, so that each element of the core plate 21 and the core portion 10 is brazed. To join.

ろう付け接合工程の終了後、コアプレート21の収容受部212にパッキン23を収容する。そして、パッキン23が収容されたコアプレート21の収容受部212にタンク本体部22のフランジ部222を収容した状態で、コアプレート21の各突出片213をプレス加工等により塑性変形させることで、コアプレート21に対してタンク本体部22をかしめ固定する。   After completion of the brazing and joining process, the packing 23 is accommodated in the accommodation receiving portion 212 of the core plate 21. Then, in a state in which the flange portion 222 of the tank main body portion 22 is accommodated in the accommodation receiving portion 212 of the core plate 21 in which the packing 23 is accommodated, the projecting pieces 213 of the core plate 21 are plastically deformed by pressing or the like, The tank body 22 is caulked and fixed to the core plate 21.

続いて、漏れ検査、および寸法検査等を行う検査工程を経て、ラジエータ1の製造が完了する。なお、漏れ検査等では、ラジエータ1の各部品の接合箇所にろう付け不良やかしめ不良等が生じていないかを確認する。   Subsequently, the manufacturing of the radiator 1 is completed through inspection processes for performing a leakage inspection, a dimension inspection, and the like. In the leakage inspection or the like, it is confirmed whether or not there is a brazing defect or a caulking defect at the joint portion of the radiator 1.

以上説明した本実施形態のラジエータ1は、上述の構成を備えることで、以下の効果を奏する。すなわち、本実施形態のラジエータ1は、コアプレート21のチューブ接合部211と収容受部212の底壁部212aとを、傾斜部215を介して接続する構成としている。これによれば、ラジエータ1におけるコアプレート21のチューブ幅方向ZDの厚みを薄くしても、チューブ11とコアプレート21とが意図しない位置で接合されてしまうことを回避可能となる。   The radiator 1 of the present embodiment described above has the following effects by having the above-described configuration. That is, the radiator 1 according to the present embodiment is configured to connect the tube joining portion 211 of the core plate 21 and the bottom wall portion 212a of the housing receiving portion 212 via the inclined portion 215. According to this, even if the thickness of the core plate 21 in the radiator 1 in the tube width direction ZD is reduced, the tube 11 and the core plate 21 can be prevented from being joined at an unintended position.

特に、本実施形態では、図7に示すように、傾斜部215に沿って延びる第1仮想線VL1と、チューブ接合部211に沿って延びる第2仮想線VL2とが、チューブ11のチューブ幅方向ZDの外側で交差するように傾斜部215を形成している。これによれば、チューブ幅方向ZDにおいて、傾斜部215がチューブ挿入穴211aから離れた位置に形成されることになる。このため、チューブ挿入穴211aを形成する際の成形収縮によってコアプレート21におけるチューブ挿入穴211aの周縁部に窪みが形成されることを抑えることができる。   In particular, in the present embodiment, as shown in FIG. 7, the first imaginary line VL <b> 1 extending along the inclined portion 215 and the second imaginary line VL <b> 2 extending along the tube joint portion 211 are in the tube width direction of the tube 11. The inclined portion 215 is formed so as to intersect outside the ZD. According to this, in the tube width direction ZD, the inclined portion 215 is formed at a position away from the tube insertion hole 211a. For this reason, it can suppress that a hollow is formed in the peripheral part of the tube insertion hole 211a in the core plate 21 by the shaping | molding shrinkage | contraction at the time of forming the tube insertion hole 211a.

従って、本実施形態のラジエータ1によれば、コアプレート21におけるチューブ幅方向ZDの厚み薄くしても、コアプレート21に意図しない窪みが生ずることを抑制可能となる。この結果、チューブ11とコアプレート21とをろう付け接合する際、ろう材の回り込みが安定するので、チューブ11とコアプレート21との接合状態を安定させることが可能となる。   Therefore, according to the radiator 1 of this embodiment, even if the thickness of the core plate 21 in the tube width direction ZD is reduced, it is possible to suppress an unintended depression in the core plate 21. As a result, when the tube 11 and the core plate 21 are brazed and joined, the brazing material wraps around stably, so that the joined state between the tube 11 and the core plate 21 can be stabilized.

ここで、隣り合うチューブ11間に温度差が発生した場合、図8に示すように、高温側のチューブ11がチューブ長手方向XDに延びることで、コアプレート21が弓なりに変形することがある。この場合、チューブ11のチューブ幅方向ZDの端部に応力が集中してしまう。   Here, when a temperature difference occurs between the adjacent tubes 11, as shown in FIG. 8, the core plate 21 may be deformed like a bow due to the tube 11 on the high temperature side extending in the tube longitudinal direction XD. In this case, stress concentrates on the end of the tube 11 in the tube width direction ZD.

そこで、本実施形態では、コアプレート21における隣り合うチューブ挿入穴211aの間であって、チューブ11の幅方向の端部側に位置する部位に、チューブ11におけるチューブ長手方向XDの端部から離れるように窪んだリブ214を形成している。   Therefore, in the present embodiment, the tube 11 is located between the adjacent tube insertion holes 211a in the core plate 21 and located on the end portion side in the width direction of the tube 11 from the end portion of the tube 11 in the tube longitudinal direction XD. A recessed rib 214 is formed.

このような構成とすれば、隣り合うチューブ11間に温度差が発生した場合、チューブ挿入穴211aにおけるチューブ幅方向ZDの端部の変形、すなわち熱歪みをリブ214によって抑えることができる。このため、チューブ11におけるチューブ幅方向ZDの端部に応力集中が生ずることを防止することができる。   With such a configuration, when a temperature difference occurs between the adjacent tubes 11, deformation of the end portion in the tube width direction ZD in the tube insertion hole 211 a, that is, thermal strain can be suppressed by the rib 214. For this reason, it is possible to prevent stress concentration from occurring at the end of the tube 11 in the tube width direction ZD.

ところで、チューブ11におけるチューブ幅方向ZDの端部に生ずる応力集中は、チューブ幅方向ZDの外側に位置する傾斜部215が交点Aを中心として変形することでも緩和される。すなわち、隣り合うチューブ11間に温度差が発生した際に、チューブ11におけるチューブ幅方向ZDの端部に生ずる応力は傾斜部215の変形により吸収される。   By the way, the stress concentration generated in the end portion of the tube 11 in the tube width direction ZD is alleviated even when the inclined portion 215 located outside the tube width direction ZD is deformed around the intersection A. That is, when a temperature difference occurs between the adjacent tubes 11, the stress generated at the end of the tube 11 in the tube width direction ZD is absorbed by the deformation of the inclined portion 215.

しかしながら、図9の比較例に示すように、傾斜部215の一部がチューブ長手方向XDにおいてチューブ挿入穴211aに重なり合っている構成では、傾斜部215における応力を吸収する部位の体積が減少する。この結果、傾斜部215の変形によるチューブ11におけるチューブ幅方向ZDの端部に生ずる応力の低減効果が充分に得られなくなってしまう。   However, as shown in the comparative example of FIG. 9, in the configuration in which a part of the inclined portion 215 overlaps the tube insertion hole 211a in the tube longitudinal direction XD, the volume of the portion that absorbs stress in the inclined portion 215 decreases. As a result, the effect of reducing the stress generated at the end portion of the tube 11 in the tube width direction ZD due to the deformation of the inclined portion 215 cannot be sufficiently obtained.

そこで、本発明者らは、チューブ幅方向ZDにおけるチューブ11と第1仮想線VL1と第2仮想線VL2との交点Aとの位置について、チューブ11におけるチューブ幅方向ZDの端部に作用する応力集中の低減に有効な範囲について検討した。   Therefore, the inventors of the present invention have the stress acting on the end of the tube 11 in the tube width direction ZD at the position of the tube 11 and the intersection A of the first imaginary line VL1 and VL2 in the tube width direction ZD. The effective range for reducing concentration was examined.

図10は、チューブ11のチューブ幅方向ZDの端部であるチューブ根付部Tbと交点Aとの距離Ltaについて、チューブ根付部Tbに作用する応力集中を低減に有効な範囲の検討結果を示す図である。   FIG. 10 is a diagram showing the examination results of the effective range for reducing the stress concentration acting on the tube root portion Tb with respect to the distance Lta between the tube root portion Tb that is the end portion of the tube 11 in the tube width direction ZD and the intersection A. It is.

ここで、図10の横軸は、チューブ根付部Tbと交点Aとの距離、すなわち、チューブ交点間距離Ltaを示している。一方、図10の縦軸は、チューブ交点間距離Ltaをゼロとしたときにチューブ根付部Tbに作用する応力を100%とする発生応力比である。   Here, the horizontal axis of FIG. 10 indicates the distance between the tube root portion Tb and the intersection A, that is, the tube intersection distance Lta. On the other hand, the vertical axis in FIG. 10 represents the ratio of the generated stress with the stress acting on the tube root portion Tb being 100% when the tube intersection distance Lta is zero.

そして、図10では、図中の三角プロットが傾斜部215の傾斜角度θを15°とした際のチューブ交点間距離Ltaと発生応力比との関係を示している。また、図中の四角プロットが傾斜部215の傾斜角度θを20°とした際のチューブ交点間距離Ltaと発生応力比との関係を示している。さらに、図中の菱形プロットが傾斜部215の傾斜角度θを40°とした際のチューブ交点間距離Ltaと発生応力比との関係を示している。なお、傾斜角度θは、図7に示すように、傾斜部215とチューブ長手方向XDとのなす角度である。   In FIG. 10, the triangular plot in the figure shows the relationship between the tube intersection point distance Lta and the generated stress ratio when the inclination angle θ of the inclined portion 215 is 15 °. Further, the square plot in the figure shows the relationship between the tube intersection distance Lta and the generated stress ratio when the inclination angle θ of the inclined portion 215 is 20 °. Further, the rhombus plot in the figure shows the relationship between the tube intersection point distance Lta and the generated stress ratio when the inclination angle θ of the inclined portion 215 is 40 °. Note that the inclination angle θ is an angle formed by the inclined portion 215 and the tube longitudinal direction XD as shown in FIG.

図10に示すように、チューブ交点間距離Ltaを0.0〜2.4[mm]の範囲内(すなわち、0.0≦Lta≦2.4)にした場合に、チューブ根付部Tbに作用する応力が低下することが判った。このような傾向は、傾斜部215の傾斜角度θを変更しても同様の傾向となることも判った。   As shown in FIG. 10, when the tube intersection distance Lta is within a range of 0.0 to 2.4 [mm] (that is, 0.0 ≦ Lta ≦ 2.4), the tube has an effect on the tube root portion Tb. It was found that the stress to be reduced. It has also been found that this tendency is the same even if the inclination angle θ of the inclined portion 215 is changed.

ここで、図9の比較例の如く、チューブ交点間距離Ltaがマイナスとなる構成は、傾斜部215の一部がチューブ長手方向XDにおいてチューブ挿入穴211aに重なり合うことになる。このため、傾斜部215の強度が増加することで、チューブ根付部Tbに作用する応力の低減効果が充分に得られなくなってしまうと考えられる。   Here, as in the comparative example of FIG. 9, in the configuration in which the distance Lta between the tube intersections is negative, a part of the inclined portion 215 overlaps the tube insertion hole 211a in the tube longitudinal direction XD. For this reason, it is thought that the effect of reducing the stress acting on the tube root portion Tb cannot be sufficiently obtained by increasing the strength of the inclined portion 215.

また、チューブ交点間距離Ltaが2.4[mm]を超える構成は、チューブ幅方向ZDにおける傾斜部215とチューブ11との間の厚みが大きくなってしまう。このため、傾斜部215の強度が増加することで、チューブ根付部Tbに作用する応力の低減効果が充分に得られなくなってしまうと考えられる。   Moreover, the structure where the distance Lta between tube intersections exceeds 2.4 [mm] will increase the thickness between the inclined part 215 and the tube 11 in the tube width direction ZD. For this reason, it is thought that the effect of reducing the stress acting on the tube root portion Tb cannot be sufficiently obtained by increasing the strength of the inclined portion 215.

このように、傾斜部215は、チューブ積層方向YDから見たときに、第1仮想線VL1と第2仮想線VL2との交点Aと、チューブ根付部Tbとの距離が、0.0〜2.4mmの範囲となるように、コアプレート21に設けることが望ましい。   Thus, when the inclined portion 215 is viewed from the tube stacking direction YD, the distance between the intersection A of the first virtual line VL1 and the second virtual line VL2 and the tube root portion Tb is 0.0-2. It is desirable to provide the core plate 21 so as to be in the range of 4 mm.

チューブ交点間距離Ltaを0.0〜2.4mmの範囲となるように構成すれば、隣り合うチューブ11間に温度差が発生したとしても、チューブ11のチューブ幅方向ZDの端部の変形を効果的に抑えることができる。   If the tube intersection distance Lta is configured to be in the range of 0.0 to 2.4 mm, the end portion of the tube 11 in the tube width direction ZD is deformed even if a temperature difference occurs between the adjacent tubes 11. It can be effectively suppressed.

ここで、チューブ交点間距離Ltaが0.0となる場合の発生応力比は、100%以下となるものの、100%に近い値となる。このため、傾斜部215は、チューブ交点間距離Ltaが0.0mmより大きく、2.4mm以下となるように、コアプレート21に設けることがより望ましい。   Here, when the tube intersection distance Lta is 0.0, the generated stress ratio is 100% or less, but is close to 100%. For this reason, the inclined portion 215 is more preferably provided on the core plate 21 so that the distance Lta between the tube intersections is greater than 0.0 mm and equal to or less than 2.4 mm.

また、チューブ交点間距離Ltaが、0.4〜1.9mmの範囲とした場合、発生応力比が80%を下回るので、チューブ11のチューブ幅方向ZDの端部の変形を確実に抑えることができる。   Further, when the tube intersection distance Lta is in the range of 0.4 to 1.9 mm, the generated stress ratio is less than 80%, so that the deformation of the end portion of the tube 11 in the tube width direction ZD can be reliably suppressed. it can.

さらに、チューブ交点間距離Ltaが、0.6〜1.3mmの範囲とした場合、発生応力比が60%を下回るので、チューブ11のチューブ幅方向ZDの端部の変形をより確実に抑えることができる。   Further, when the tube intersection distance Lta is in the range of 0.6 to 1.3 mm, the generated stress ratio is less than 60%, so that the deformation of the end portion of the tube 11 in the tube width direction ZD can be more reliably suppressed. Can do.

ここで、本実施形態では、タンク本体部22の先端部を構成するフランジ部222を、コアプレート21の突出片213でカシメ固定する構成としている。このような構成では、カシメ固定する際に、チューブ挿入穴211aにおけるチューブ幅方向ZDの端部側に応力が集中してしまうことが懸念される。   Here, in this embodiment, the flange part 222 which comprises the front-end | tip part of the tank main-body part 22 is set as the structure fixed by crimping with the protrusion piece 213 of the core plate 21. FIG. In such a configuration, there is a concern that stress is concentrated on the end side in the tube width direction ZD of the tube insertion hole 211a when the crimping is fixed.

このため、タンク本体部22の先端部を構成するフランジ部222を、コアプレート21の突出片213でカシメ固定する構成では、前述した本実施形態のコアプレート21を採用することが好適である。   For this reason, in the configuration in which the flange portion 222 constituting the tip portion of the tank main body portion 22 is caulked and fixed by the protruding piece 213 of the core plate 21, it is preferable to employ the core plate 21 of the present embodiment described above.

(第2実施形態)
次に、第2実施形態について、図11を参照して説明する。図11は、コアプレート21における要部を示す断面図である。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIG. FIG. 11 is a cross-sectional view showing the main part of the core plate 21.

図11に示すように、本実施形態では、傾斜部215とチューブ接合部211との間に段差が形成されるように、意図的に窪み216を設ける構成としている。この窪み216は、チューブ11とコアプレート21とをろう付け接合する際に、チューブ11と傾斜部215との間にろう材を溜めるろう溜まりを形成するために設けている。   As shown in FIG. 11, in the present embodiment, a depression 216 is intentionally provided so that a step is formed between the inclined portion 215 and the tube joint portion 211. The recess 216 is provided to form a brazing reservoir for accumulating brazing material between the tube 11 and the inclined portion 215 when the tube 11 and the core plate 21 are joined by brazing.

その他の構成は第1実施形態と同様である。本実施形態の構成によれば、第1実施形態で説明した効果に加えて次の効果を奏する。すなわち、本実施形態では、傾斜部215とチューブ接合部211との間に窪み216を形成しているので、チューブ11のチューブ幅方向ZDの端部とコアプレート21との接合強度を増加させることができる。従って、隣り合うチューブ11間に温度差が発生した場合におけるチューブ11のチューブ幅方向ZDの端部の変形をより確実に抑えることができる。   Other configurations are the same as those of the first embodiment. According to the structure of this embodiment, in addition to the effect demonstrated in 1st Embodiment, there exist the following effects. That is, in this embodiment, since the recess 216 is formed between the inclined portion 215 and the tube joint portion 211, the joint strength between the end portion of the tube 11 in the tube width direction ZD and the core plate 21 is increased. Can do. Therefore, it is possible to more reliably suppress the deformation of the end portion of the tube 11 in the tube width direction ZD when a temperature difference occurs between the adjacent tubes 11.

(他の実施形態)
以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されるものではなく、適宜変更が可能である。例えば、以下のように種々変形可能である。
(Other embodiments)
As mentioned above, although embodiment of this indication was described, this indication is not limited to the above-mentioned embodiment, and can change suitably. For example, various modifications are possible as follows.

(1)上述の各実施形態の如く、チューブ接合部211に対してバーリング部211bやリブ214を設けることが望ましいが、これに限定されず、バーリング部211bやリブ214を設けない構成としてもよい。   (1) Although it is desirable to provide the burring part 211b and the rib 214 with respect to the tube joining part 211 like each above-mentioned embodiment, it is not limited to this, It is good also as a structure which does not provide the burring part 211b and the rib 214. .

(2)上述の各実施形態では、タンク本体部22におけるチューブ11に対向する部位に、膨出部221を設ける例について説明したが、これに限定されず、膨出部221を設けない構成としてもよい。   (2) In each of the above-described embodiments, the example in which the bulging portion 221 is provided in the portion of the tank main body portion 22 that faces the tube 11 is described. However, the present invention is not limited to this, and the bulging portion 221 is not provided. Also good.

(3)上述の各実施形態では、ラジエータ1に本開示の熱交換器を適用する例について説明したが、これに限定されない。例えば、蒸気圧縮式の冷凍サイクルの冷媒蒸発器や冷媒放熱器、内燃機関の吸入空気を冷却するインタクーラ等に本開示の熱交換器を適用してもよい。   (3) In each of the above-described embodiments, the example in which the heat exchanger according to the present disclosure is applied to the radiator 1 has been described. However, the present invention is not limited to this. For example, the heat exchanger of the present disclosure may be applied to a refrigerant evaporator or refrigerant radiator of a vapor compression refrigeration cycle, an intercooler that cools intake air of an internal combustion engine, or the like.

(4)上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。   (4) In the above-described embodiment, the elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Needless to say.

(5)上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。   (5) In the above-described embodiment, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is clearly indicated that it is particularly essential and clearly specified in principle. It is not limited to the specific number except when limited.

(6)上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。   (6) In the above-described embodiment, when referring to the shape, positional relationship, etc. of the component, etc., the shape, unless otherwise specified and in principle limited to a specific shape, positional relationship, etc. The positional relationship is not limited.

Claims (5)

熱交換器であって、
複数積層配置された扁平形状のチューブ(11)を有するコア部(10)と、
前記チューブの長手方向(XD)の端部に配置され、複数の前記チューブに連通するヘッダタンク(20、30)と、を備え、
前記ヘッダタンクは、
前記チューブにおける長手方向の端部が複数のチューブ挿入穴(211a)に挿入された状態で、前記複数のチューブがろう付け接合されたコアプレート(21)と、
前記コアプレートに固定され、前記コアプレートと共に前記複数のチューブに連通する空間を形成するタンク本体部(22)と、を含んで構成されており、
前記コアプレートは、
前記複数のチューブ挿入穴が形成されたチューブ接合部(211)と、
前記チューブ接合部を囲むと共に、前記タンク本体部における前記コアプレートに近接する先端部(222)を収容する収容受部(212)と、
前記収容受部と前記チューブ接合部とを接続すると共に、前記チューブの長手方向に対して傾斜する傾斜部(215)と、を有しており、
前記傾斜部は、前記収容受部から前記チューブ接合部に向けて前記傾斜部に沿って直線状に延びる第1仮想線(VL1)と、前記チューブの断面長径方向において前記チューブ接合部に沿って直線状に延びる第2仮想線(VL2)とが、前記チューブの幅方向において前記チューブの外側で交差するように、前記コアプレートに設けられている熱交換器。
A heat exchanger,
A core portion (10) having a flat tube (11) arranged in a plurality of layers;
A header tank (20, 30) disposed at an end in the longitudinal direction (XD) of the tube and communicating with the plurality of tubes;
The header tank is
A core plate (21) in which the plurality of tubes are brazed and joined in a state where the longitudinal ends of the tubes are inserted into the plurality of tube insertion holes (211a);
A tank body (22) that is fixed to the core plate and forms a space that communicates with the plurality of tubes together with the core plate.
The core plate is
A tube joint portion (211) in which the plurality of tube insertion holes are formed;
An accommodation receiving portion (212) for enclosing the tube joint portion and accommodating a tip portion (222) in the tank main body portion adjacent to the core plate;
The housing receiving portion and the tube joint portion are connected, and an inclined portion (215) that is inclined with respect to the longitudinal direction of the tube,
The inclined portion includes a first imaginary line (VL1) extending linearly along the inclined portion from the housing receiving portion toward the tube joint portion, and along the tube joint portion in the cross-sectional major axis direction of the tube. The heat exchanger provided in the said core plate so that the 2nd virtual line (VL2) extended linearly may cross | intersect on the outer side of the said tube in the width direction of the said tube.
前記チューブ接合部には、前記複数のチューブ挿入穴が前記チューブの積層方向に所定の間隔をあけて並ぶように形成されると共に、隣り合う前記チューブ挿入穴の間であって、前記チューブの幅方向の端部側に位置する部位に、前記チューブの長手方向の端部から離れるように窪んだリブ(214)が形成されている請求項1に記載の熱交換器。   In the tube joint portion, the plurality of tube insertion holes are formed so as to be arranged at a predetermined interval in the stacking direction of the tubes, and between the adjacent tube insertion holes, the width of the tube The heat exchanger according to claim 1, wherein a rib (214) that is recessed away from an end portion in the longitudinal direction of the tube is formed at a portion that is located on an end portion side in the direction. 前記チューブの積層方向において、前記第1仮想線と前記第2仮想線との交点(A)と、前記チューブの幅方向の端部との距離をチューブ交点間距離(Lta)としたときに、
前記傾斜部は、前記チューブ交点間距離が、0.0〜2.4mmの範囲となるように、前記コアプレートに設けられている請求項1または2に記載の熱交換器。
In the tube stacking direction, when the distance between the intersection of the first imaginary line and the second imaginary line (A) and the end of the tube in the width direction is the distance between the tube intersections (Lta),
The heat exchanger according to claim 1 or 2, wherein the inclined portion is provided on the core plate so that a distance between the tube intersections is in a range of 0.0 to 2.4 mm.
前記チューブの積層方向において、前記第1仮想線と前記第2仮想線との交点(A)と、前記チューブの幅方向の端部との距離をチューブ交点間距離(Lta)としたときに、
前記傾斜部は、前記チューブ交点間距離が、0.0mmより大きく、2.4mm以下の範囲となるように、前記コアプレートに設けられている請求項1または2に記載の熱交換器。
In the tube stacking direction, when the distance between the intersection of the first imaginary line and the second imaginary line (A) and the end of the tube in the width direction is the distance between the tube intersections (Lta),
The heat exchanger according to claim 1 or 2, wherein the inclined portion is provided on the core plate so that a distance between the tube intersections is greater than 0.0 mm and not more than 2.4 mm.
前記タンク本体部の前記先端部は、前記収容受部に収容された状態で前記コアプレートにカシメ固定されている請求項1ないし4のいずれか1つに記載の熱交換器。   The heat exchanger according to any one of claims 1 to 4, wherein the front end portion of the tank main body portion is caulked and fixed to the core plate in a state of being accommodated in the accommodation receiving portion.
JP2017529477A 2015-07-17 2016-04-26 Heat exchanger Pending JPWO2017013918A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015142835 2015-07-17
JP2015142835 2015-07-17
PCT/JP2016/063011 WO2017013918A1 (en) 2015-07-17 2016-04-26 Heat exchanger

Publications (1)

Publication Number Publication Date
JPWO2017013918A1 true JPWO2017013918A1 (en) 2017-11-02

Family

ID=57834258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017529477A Pending JPWO2017013918A1 (en) 2015-07-17 2016-04-26 Heat exchanger

Country Status (5)

Country Link
US (1) US20180195805A1 (en)
JP (1) JPWO2017013918A1 (en)
CN (1) CN107636413A (en)
DE (1) DE112016003219T5 (en)
WO (1) WO2017013918A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6394202B2 (en) * 2013-11-27 2018-09-26 株式会社デンソー Heat exchanger
JP6547576B2 (en) 2015-10-15 2019-07-24 株式会社デンソー Heat exchanger
JP6919472B2 (en) * 2017-09-29 2021-08-18 株式会社デンソー Heat exchanger
KR20200099088A (en) * 2019-02-13 2020-08-21 한온시스템 주식회사 Heat exchanger
US20220282938A1 (en) * 2019-09-13 2022-09-08 T.Rad Co., Ltd. Tank structure of heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5664625A (en) * 1995-12-13 1997-09-09 Valeo Thermique Moteur Header plates for heat exchangers
JP2009216151A (en) * 2008-03-10 2009-09-24 Denso Corp Sealing structure and heat exchanger using the same
JP2009257657A (en) * 2008-04-15 2009-11-05 Denso Corp Heat exchanger and its manufacturing method
JP2014519005A (en) * 2011-05-20 2014-08-07 ベール ゲーエムベーハー ウント コー カーゲー Heat exchanger
JP2015127631A (en) * 2013-11-27 2015-07-09 株式会社デンソー Heat exchanger

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2538526B1 (en) * 1982-12-22 1986-12-19 Chausson Usines Sa COLLECTOR PLATE FOR TUBE AND WATER BOX HEAT EXCHANGER
JPH08327283A (en) * 1995-05-30 1996-12-13 Sanden Corp Heat exchange tube joint structure of heat enchanter
US6745827B2 (en) * 2001-09-29 2004-06-08 Halla Climate Control Corporation Heat exchanger
US20090255657A1 (en) * 2008-04-15 2009-10-15 Denso Corporation Heat exchanger and method of manufacturing the same
DE102013208424A1 (en) 2013-05-07 2014-11-13 Behr Gmbh & Co. Kg Floor for a heat exchanger, in particular for a motor vehicle and method for producing the floor
JP5979277B2 (en) 2015-05-13 2016-08-24 株式会社三洋物産 Game machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5664625A (en) * 1995-12-13 1997-09-09 Valeo Thermique Moteur Header plates for heat exchangers
JP2009216151A (en) * 2008-03-10 2009-09-24 Denso Corp Sealing structure and heat exchanger using the same
JP2009257657A (en) * 2008-04-15 2009-11-05 Denso Corp Heat exchanger and its manufacturing method
JP2014519005A (en) * 2011-05-20 2014-08-07 ベール ゲーエムベーハー ウント コー カーゲー Heat exchanger
JP2015127631A (en) * 2013-11-27 2015-07-09 株式会社デンソー Heat exchanger

Also Published As

Publication number Publication date
CN107636413A (en) 2018-01-26
US20180195805A1 (en) 2018-07-12
WO2017013918A1 (en) 2017-01-26
DE112016003219T5 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
CN108139183B (en) heat exchanger
US10101096B2 (en) Heat exchanger
US8074708B2 (en) Heat exchanger
WO2017013918A1 (en) Heat exchanger
US11162743B2 (en) Heat exchanger tank
US9726439B2 (en) Tube and heat exchanger provided with tube
JP5029166B2 (en) Heat exchanger
US7823630B2 (en) Tube for heat exchanger and method of manufacturing tube
JP2006284107A (en) Heat exchanger
WO2019189924A1 (en) Header-plateless heat exchanger
JP2016200312A (en) Heat exchanger and manufacturing method of heat exchanger
JP2019090573A (en) Heat exchanger and manufacturing method of the same
US20060048930A1 (en) Heat exchanger
JP6365781B2 (en) Heat exchanger
JP2015206507A (en) heat exchanger
JP5187047B2 (en) Tube for heat exchanger
JP5082387B2 (en) Heat exchanger
JP2007278557A (en) Heat exchanger
JP4239840B2 (en) Mouth expansion jig for heat exchanger tubes
JP6083272B2 (en) Heat exchanger
JP2003065694A (en) Heat exchanger
JP6992581B2 (en) Heat exchanger
JP2009008347A (en) Heat exchanger
EP1555502A2 (en) Tube insertion structure of a heat exchanger
JP2009150572A (en) Heat exchanger

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191105