JPWO2016125780A1 - 磁気計測装置、磁気計測ユニット、磁気計測システム、および磁気計測方法 - Google Patents

磁気計測装置、磁気計測ユニット、磁気計測システム、および磁気計測方法 Download PDF

Info

Publication number
JPWO2016125780A1
JPWO2016125780A1 JP2016573371A JP2016573371A JPWO2016125780A1 JP WO2016125780 A1 JPWO2016125780 A1 JP WO2016125780A1 JP 2016573371 A JP2016573371 A JP 2016573371A JP 2016573371 A JP2016573371 A JP 2016573371A JP WO2016125780 A1 JPWO2016125780 A1 JP WO2016125780A1
Authority
JP
Japan
Prior art keywords
magnetic
layer
sense current
wiring
magnetization free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016573371A
Other languages
English (en)
Inventor
昌弘 塩田
昌弘 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of JPWO2016125780A1 publication Critical patent/JPWO2016125780A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/025Compensating stray fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

センス電流により発生する磁場の影響を低減した磁気計測装置を提供する。磁気計測装置(10)は、磁気抵抗素子(1)と、磁化自由層(7)に対向する上部配線層(2)と、磁化固定層(6)に対向する下部配線層(3)とを備え、上部配線層(2)と磁化自由層(7)との間に上部層間配線(4)が垂設され、下部配線層(3)と磁化固定層(6)との間に下部層間配線(5)が垂設される。

Description

本発明は、磁気抵抗効果を利用して被測定対象の磁界を測定する、磁気計測装置、磁気計測ユニット、磁気計測システム、および磁気計測方法に関する。
現在、磁気を計測する素子として、半導体のホール効果を応用したホール素子、半導体や磁性体の磁気抵抗効果を応用した磁気抵抗素子、磁性体に導線をコイル状に巻きつけたフラックスゲート磁束計等が広く用いられている。また近年では、超伝導体の量子干渉効果を用いたSQUID(Superconducting Quantum Interference Device)が超高感度の磁束計として用いられている。
しかしながら、一般的な半導体ホール素子や磁気抵抗素子の磁界検出感度は、1×10−7〜1×10−8T(テスラ)程度である。そのため、近年注目されている人体の生活活動電流に伴う微小な磁界や、電子機器の残留磁力を計測するためには、更に高い磁界検出感度が必要となる。また、磁界検出感度が高いとされるフラックスゲート磁束計においても、磁界検出感度は、1×10−10T程度であり、さらなる感度向上が求められている。加えて、医療分野においては、磁界の強度の空間的な分布を測定することが重要であり、そのためには、磁界を検出する素子を格子状に配置する必要がある。しかしながら、フラックスゲート磁束計は、コイルを用いて磁界を測定するため、磁界を検出する素子を格子状に配置することは困難である。
また、超伝導体の量子干渉効果を用いて磁界を測定するSQUIDは、1×10−14T程度の非常に高い磁界検出感度を示すものの、厳密な素子構造と、FLL(Flux Locked Loop)回路とで構成される複雑で大規模な駆動回路が必要であり、また装置を液体ヘリウム等で低温に冷却する必要がある。そのため、装置そのものが大がかりなものとなり、一般的に使用することは困難である。
そのため、高い磁気検出感度を有し、小型で、簡便に測定を行うことができる磁気計測装置が求められている。
例えば特許文献1には、常温で使用可能な磁気センサを用いて、高精度に生体磁気を測定することができる生体磁気計測装置が開示されている。特許文献1に記載の生体磁気計測装置は、磁化の向きが固定された磁化固定層と、外部磁場の影響を受けて磁化の向きが変化する磁化自由層と、磁化自由層と磁化固定層との間に配置された絶縁層とを有する磁気抵抗素子を備える磁気センサを、生体に対して対向するように配置することで生体の磁気を測定している。当該磁気抵抗素子は、磁化固定層の磁化の向きと、磁化自由層の磁化の向きとの角度差に従って、トンネル効果により絶縁層の電気抵抗値が変化する。そのため、当該電気抵抗値の変化を測定することで、生体磁気の測定を行うことができる。
国際公開第2012/032962号
しかしながら、特許文献1に記載の生体磁気計測装置は、絶縁層の電気抵抗の変化により磁気を測定しているため、電気抵抗を測定するための電流を流す必要がある(この電流をセンス電流と呼ぶ)。そこで、本願発明者らは、センス電流によって発生する磁界が、計測対象の磁界に対してノイズとなってしまうことを見出した。特に、生体磁気といった微弱な磁界の測定を行う際には、センス電流によって発生する磁界のノイズの影響は大きくなるが、特許文献1に記載の生体磁気計測装置においては、センス電流によって発生する磁界の影響は考慮されておらず、対策も行われていない。
本発明は上記の問題に鑑みてなされたものであり、その目的は、磁気抵抗素子を用いた磁気計測装置において、センス電流によって発生する磁界の影響を低減することで、微弱な磁界を正確に測定することができる磁気計測装置を提供することにある。
上記の課題を解決するために、本発明の一態様に係る磁気計測装置は、外部磁場により磁化の向きが変化する磁化自由層、磁化の向きが固定された磁化固定層、および前記磁化自由層と前記磁化固定層との間に配置された絶縁層が積層された磁気抵抗素子と、前記磁化自由層に対して前記絶縁層側とは反対側で対向する第1配線層と、前記磁化固定層に対して前記絶縁層側とは反対側で対向する第2配線層とを備え、前記磁気抵抗素子に対して、前記第1配線層または前記第2配線層からセンス電流を流すことで磁気を計測する磁気計測装置であって、前記第1配線層と前記磁化自由層との間に第1層間配線が垂設されると共に、前記第2配線層と前記磁化固定層との間に第2層間配線が垂設されていることを特徴とする。
本発明の一態様によれば、第1配線層と磁化自由層との間に第1層間配線を、第2配線層と磁化固定層との間に第2層間配線をも設けることで、第1配線層および第2配線層から磁化自由層までの距離を遠くすることができる。これにより、センス電流により発生する磁界の影響を低減し、微弱な磁界であっても正確に測定することが可能となる。
(a)は、本発明の実施形態1に係る磁気計測装置を示す模式図であり、(b)は、(a)におけるセンス電流の流路、およびセンス電流により発生する磁界を示す図である。 本発明の実施形態2に係る磁気計測装置を示す模式図である。 (a)および(b)はそれぞれ、センス電流により発生する磁界を示す模式図である。 (a)は図3の(a)における磁界の分布を示す図であり、(b)は、図3の(b)における磁界の分布を示す図である。 本発明の実施形態3に係る磁気計測装置を示す模式図である。 センス電流により発生する磁界の分布を示す図である。 本発明の実施形態4に係る磁気計測装置を示す模式図である。 本発明の実施形態4の変形例に係る磁気計測装置を示す模式図である。 本発明の実施形態4の比較例に係る磁気計測装置を示す模式図である。 本発明の実施形態5に係る磁気計測装置を示す模式図である。 本発明の実施形態5の変形例に係る磁気計測装置を示す模式図である。 (a)および(b)はそれぞれ、本発明の実施形態5の変形例に係る磁気計測装置を示す模式図である。 (a)は、本発明の実施形態6に係る磁気計測ユニットを示す模式図であり、(b)は、磁気計測ユニットが備えるセルの部分拡大図である。 本発明の実施形態6に係る磁気計測システムの構成要素を示すブロック図である。 本発明の実施形態6に係る磁気計測システムを用いた磁気計測方法の流れを示すフローチャートである。 (a)は、従来用いられている磁気計測装置を示す模式図であり、(b)は、(a)に示す磁気計測装置を流れるセンス電流、およびセンス電流によって発生する磁界を示す図である。
以下、図面を参照し、本発明の実施の形態について詳細に説明する。
〔実施形態1〕
図1の(a)は、本実施形態に係る磁気計測装置10を示す模式図であり、図1の(b)は、図1の(a)に示す磁気計測装置10に流れるセンス電流Iの経路およびセンス電流によって発生する磁界Bを示している。
図1の(a)に示すように、本実施形態に係る磁気計測装置10は、磁気抵抗素子1、上部配線層(第1配線層)2、下部配線層(第2配線層)3、上部層間配線(第1層間配線)4、および下部層間配線(第2層間配線)5を備えている。なお、図1の(a)においては、磁気抵抗素子1が3つ直列に接続している例を示したが、磁気計測装置10が備えている磁気抵抗素子1の数はこれに限られるものでは無い。
磁気抵抗素子1は、磁化の向きが固定された磁化固定層6、外部磁場によって磁化の向きが変化する磁化自由層7、および磁化自由層7と磁化固定層6との間に配置された絶縁層8が積層された素子である。また、磁気抵抗素子1は、積層方向に直交する方向の断面が矩形である。
上部配線層2は、磁気抵抗素子1の積層方向に垂直な平面内に形成されており、磁気抵抗素子1の磁化自由層7に対して絶縁層8側とは反対側で対向している。下部配線層3は、磁気抵抗素子1の積層方向に垂直な平面内に形成されており、磁気抵抗素子1に磁化固定層6に対して絶縁層8側とは反対側で対向している。図1の(a)に示すように、上部配線層2および下部配線層3は、隣接する磁気抵抗素子1の間に互い違いとなるように形成されている。
上部層間配線4は、上部配線層2と磁化自由層7との間に垂設される。また、下部層間配線5は、下部配線層3と磁化固定層6との間に垂設される。
ここで、磁気抵抗素子1は、上述したように、磁化自由層7の磁化の向きが外部磁化によって変化し、磁化固定層6の磁化の向きと、磁化自由層7の磁化の向きとの角度差に従って、トンネル効果により絶縁層8の電気抵抗値が変化する。そのため、磁気抵抗素子1に電気抵抗を測定するための電流であるセンス電流Iを流し、磁気抵抗素子1の電気抵抗値を測定することで、磁気抵抗素子1の磁化自由層7に作用している磁界を計測することができる。
図1の(b)に、図1の(a)に示す磁気計測装置10に流れるセンス電流Iの経路およびセンス電流Iによって発生する磁界Bを示している。図1の(a)および(b)に示すように、下部配線層3から流れてきたセンス電流Iは、下部層間配線5を通り、磁気抵抗素子1へと流れる。そして、上部層間配線4、上部配線層2、上部層間配線4を通り次の磁気抵抗素子1へと流れる、その後、センス電流Iは、下部層間配線5、下部配線層3と流れる。以降同様にして、次の磁気抵抗素子1へとセンス電流Iが流れていく。
センス電流Iが流れると、磁界Bが発生する。センス電流Iによって発生する磁界Bは、被磁気計測対象の磁気に対してノイズとなる。特に、磁化自由層7に対して平行に設けられた上部配線層2および下部配線層3を流れるセンス電流Iのうち、磁化自由層7の直上および直下を流れるセンス電流Iによって発生する磁界Bによる影響は大きい。しかしながら、本実施形態に係る磁気計測装置10においては、上部配線層2と磁化自由層7との間には上部層間配線4が、下部配線層3と磁化固定層6との間には下部層間配線5が設けられている。そのため、上部配線層2および下部配線層3と磁化自由層7との間に一定の距離を有することになり、センス電流Iによって発生する磁界Bの影響を低減することができる。
(従来技術との対比)
ここで、図16を用いて、本発明の効果について説明する。
図16の(a)は、従来用いられている、磁気抵抗素子201を備えた磁気計測装置200の模式図であり、図16の(b)は、図16の(a)に示す磁気計測装置200を流れるセンス電流I、およびセンス電流Iによって発生する磁界Bを示す図である。
図16の(a)に示すように、磁気計測装置200は、磁気抵抗素子201、上部配線層202、および下部配線層203を備える。すなわち、上部層間配線4および下部層間配線5を備えていない点以外は、磁気計測装置10と同様の構成である。また、磁気抵抗素子201は、磁気抵抗素子1と同様に、磁化固定層206、磁化自由層207、および絶縁層208が積層された素子である。
磁気計測装置200においては、上部配線層202が、磁化自由層207に直接接続しており、下部配線層203が、磁化固定層206に直接接続されている。そのため、磁化自由層207は、磁化自由層207の直上および直下を流れるセンス電流Iによって発生する磁界Bの影響を受けやすい構造である。
例えば、上部配線層202の厚みを5nm、磁化自由層207の厚みを3nm、センス電流Iを1×10−11Aとし、センス電流Iが上部配線層202の最上面(磁化自由層207から一番遠い面)を流れると仮定しても、磁化自由層207の中心には、3×10−10Tの磁束密度の磁気が作用することとなる。ここで、生体磁気を測定対象とする磁気計測装置を考えた場合には、脳磁は1×10−15〜1×10−12T程度であり、心磁は1×10−14〜1×10−10T程度である。そのため、センス電流Iにより発生する磁界Bの影響を低減しなければ、生体磁気を正確に測定することは難しい。
これに対し本実施形態に係る磁気計測装置10は、上部配線層2および下部配線層3と磁化自由層7との間に一定の距離を有する。そのため、例えば磁化自由層7と上部配線層2との距離を3μm、センス電流Iを1×10−11Aとすると、磁化自由層7には、7×10−13Tの磁束密度の磁気が作用する。このように、センス電流Iによって発生する磁界Bの影響を低減することができ、生体磁気といった微弱な磁気でも正確に測定することが可能となる。
〔実施形態2〕
本発明の他の実施形態について、図2〜図4に基づいて説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
図2は、本実施形態に係る磁気計測装置20を示す模式図である。図2に示すように、本実施形態に係る磁気計測装置20は、磁気抵抗素子1、上部配線層2、下部配線層3、上部層間配線(第1層間配線)24、および下部層間配線(第2層間配線)25を備えている。すなわち、本実施形態に係る磁気計測装置20は、上部層間配線4の代わりに上部層間配線24を、下部層間配線5の代わりに下部層間配線25を備えていること以外は、第1の実施形態に係る磁気計測装置10と同様の構成である。
上部層間配線24は、上部配線層2と磁気抵抗素子1の磁化自由層7との間に垂設される。また、上部層間配線24は、上部層間配線24を流れるセンス電流Iの方向に垂直な面における重心を通る直線Lが、磁化自由層7の厚さ方向に垂直な面における重心を通るように形成されている。下部層間配線25は、下部配線層3と磁気抵抗素子1の磁化固定層6との間に垂設される。また、下部層間配線25は、下部層間配線25を流れるセンス電流Iの方向に垂直な面における重心を通る直線Lが、磁化自由層7の厚さ方向に垂直な面における重心を通るように形成されている。
すなわち、本実施形態に係る磁気計測装置20においては、上部層間配線24、磁化自由層7、および下部層間配線25の重心は、すべて同一直線(直線L)上にある。そのため、センス電流Iは、磁化自由層7の厚さ方向に垂直な面における重心を垂直に流れる。
図3は、センス電流Iによって発生する磁界Bを示す模式図であり、図3の(a)は、センス電流Iが、磁化自由層7の厚さ方向に垂直な面における重心を垂直に流れる場合を示しており、図3の(b)は、センス電流Iが、磁化自由層7の厚さ方向に垂直な面における重心から外れた位置を垂直に流れる場合を示している。なお、図3において、センス電流Iは、紙面手前から紙面奥に向かって流れている。
図3からわかるように、センス電流Iによって発生する磁界Bは、センス電流Iに対して垂直な面内に、すなわち、磁化自由層7に平行な面内に形成される。また、磁界Bは、センス電流Iを中心として同心円上に右回りに形成される。
ここで、図3の(a)のように、センス電流Iが磁化自由層7の重心を垂直に流れる場合には、磁化自由層7における磁界Bは対称的に分布する。これに対し、図3の(b)に示すように、センス電流Iが磁化自由層7の重心から外れた位置を流れる場合には、磁化自由層7における磁界Bは、偏った分布を示す。
図4は、センス電流Iによって発生する磁界Bの分布を示す図であり、図4の(a)は、図3の(a)のα−α線における磁界Bの分布を、図4の(b)は、図3の(b)のβ−β線における磁界Bの分布をそれぞれ矢印で示している。図4の(a)および(b)においては、センス電流Iを1.0×10−11Aとした場合の磁束密度を示しており、また、センス電流Iが流れる場所を0の位置としている。参考のため、図4の(a)および(b)に脳磁レベルの磁束密度である、5.0×10−13Tの磁束密度を白抜きの矢印で示す。
図4の(b)に示すように、センス電流Iが磁化自由層7の重心からはずれた位置を流れている場合には、センス電流Iが流れる場所の左右で磁界の方向は反転しているが、磁化自由層7における磁界の分布が左右で偏っていることがわかる。また、センス電流Iによって発生する磁界Bは、脳磁レベルの磁束密度よりも大きい磁束密度であることがわかる。
ここで、センス電流Iによって発生する磁界Bは、センス電流Iの大きさと、センス電流Iが流れている位置からの距離によって決まるため、被測定磁界が有る場合と、被測定磁界が無い場合との両方で、センス電流Iを流して電気抵抗値の測定を行い、その差分を取ることでセンス電流Iにより発生する磁界Bの影響を低減することができる。
しかしながら、センス電流Iがノイズ成分(例えば、ジョンソンノイズ、ショットノイズ)によって揺らぐ場合がある。当該ノイズ成分によって発生する磁界は、図4の(b)に示すように、センス電流Iが流れる位置の左右で磁界が偏っている場合には、上述した被測定磁界が有る場合と、被測定磁界が無い場合との差分を取ったとしても、影響を差し引くことはできない。
これに対して、本実施形態に係る磁気計測装置20は、センス電流Iが磁化自由層7の重心を流れている。そのため、図4の(a)に示すように、磁束密度が、センス電流Iが流れる場所(位置0)中心に、磁化自由層7内で左右に対称に打ち消し合うように分布しており、磁化自由層7内において、磁束密度の分布に偏りがない。これにより、センス電流Iが上述したノイズ成分によって揺らいだとしても、被測定磁界が有る場合と、被測定磁界が無い場合との差分を取ることで、ノイズ成分も含めて、センス電流Iによって発生する磁界Bの影響を低減することができる。
なお、本実施形態においては、上部層間配線24、磁化自由層7、および下部層間配線25の重心が、すべて同一直線上にある例を示したが、それぞれの重心と直線Lとは必ずしも一致している必要は無く、それぞれの重心が略同一直線上に形成されていれば、本実施形態に係る磁気計測装置20と同様の効果を得ることができる。
また、本実施形態においては、上部層間配線24、磁化自由層7、および下部層間配線25の重心が、すべて同一直線上にある例を示したが、これに限られるものでは無い。つまり、上記上部層間配線24(第1層間配線)は、当該上部層間配線24の重心を含む第1所定領域を通る直線(第1直線)が上記磁化自由層7の重心を含む第2所定領域を通るように配置され、上記下部層間配線25(第2層間配線)は、当該下部層間配線25の重心を含む第3所定領域を通る直線(第2直線)が上記磁化自由層7の重心を含む第2所定領域を通るように配置され、上記重心を含む第1所定領域〜第3所定領域はそれぞれ、上記磁化自由層7内において、磁束密度の分布に偏りが生じない範囲に設定されていればよい。例えば、上部層間配線24の重心を通る直線(第1直線)が、磁化自由層7の重心近傍を通るように配置され、かつ、下部層間配線25の重心を通る直線(第2直線)が、磁化自由層7の重心近傍を通る構成であってもよい。このような構成であっても、上部層間配線24および下部層間配線25を流れるセンス電流Iによって発生する磁界Bが磁化自由層7内で対称的に分布するため、センス電流Iによって発生する磁界Bの影響を低減することができる。
また、少なくとも、上記上部層間配線24(第1層間配線)が、当該上部層間配線24の重心を含む第1所定領域を通る直線(第1直線)が上記磁化自由層7の重心を含む第2所定領域を通るように配置されていればよい。すなわち、少なくとも上部層間配線24の重心を通る直線(第1直線)が、磁化自由層7の重心近傍を通っていればよい。これは、下部層間配線25と磁化自由層7との間には、絶縁層8(図示せず)および磁化固定層6があるため、下部層間配線25と磁化自由層7との間には一定の距離が設けられているからである。そのため、下部層間配線25を流れるセンス電流Iによって発生する磁界Bが磁化自由層7に及ぼす影響は軽微であり、少なくとも、上部層間配線24(第1層間配線)が、当該上部層間配線24の重心を含む第1所定領域を通る直線(第1直線)が磁化自由層7の重心を含む第2所定領域を通っていれば、センス電流Iによって発生する磁界Bの影響を十分に低減することができる。
〔実施形態3〕
本発明の他の実施形態について、図5〜図6に基づいて説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
図5は、本実施形態に係る磁気計測装置30を示す模式図である。図5に示すように、本実施形態に係る磁気計測装置30は、磁気抵抗素子31、上部配線層2、下部配線層3、上部層間配線24、および下部層間配線25を備えている。すなわち、本実施形態に係る磁気計測装置30は、磁気抵抗素子1の代わりに磁気抵抗素子31を備えていること以外は、実施形態2に係る磁気計測装置20と同様の構成である。
磁気抵抗素子31は、磁気抵抗素子1と同様に、磁化の向きが固定された磁化固定層36、外部磁場によって磁化の向きが変化する磁化自由層37、および磁化自由層37と磁化固定層36との間に配置された絶縁層38が積層された素子である。磁気抵抗素子31は、センス電流Iが流れる向きと直交する方向の断面(以下、単に断面と称する)が円形である。
図6は、センス電流Iによって発生する磁界Bの磁化自由層37における分布を示す図である。図6は、センス電流Iが流れる向きと直交する方向における磁化自由層37の断面図であり、センス電流Iは、紙面の手前から奥に向かって流れている。
図6に示すように、本実施形態に係る磁気計測装置30は、磁気抵抗素子31の断面が円形であるため、センス電流Iによって発生する磁界Bの分布が、磁化自由層37内で対称かつ連続となる。そのため、センス電流Iが上述したノイズ成分によって揺らいだとしても、ノイズ成分も含めて、センス電流Iによって発生する磁界Bの影響を緩和することができる。
なお、本実施形態においては、磁気抵抗素子31の磁化固定層36、磁化自由層37、および絶縁層38の全ての断面が円形の場合を示したが、これに限られるものでは無い。センス電流Iによって発生する磁界Bが被測定対象の磁界に与える影響を緩和するためには、少なくとも磁化自由層37の断面が円形であればよい。また、磁化自由層37の断面は、円形に限られるものでは無く、楕円形であってもよい。
〔実施形態4〕
本発明の他の実施形態について、図7〜図9に基づいて説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
図7は、本実施形態に係る磁気計測装置40を示す模式図である。図7に示すように、本実施形態に係る磁気計測装置40は、実施形態1に係る磁気計測装置10と同様に、磁気抵抗素子1、上部配線層2、下部配線層3、上部層間配線4、および下部層間配線5を備えている。また、磁気抵抗素子1は、磁化固定層6、磁化自由層7、および絶縁層8を備えている。なお、図7においては、磁気抵抗素子1以外の部材についてはセンス電流Iの流路で当該部材を示しており、後述する図8〜11についても同様である。
本実施形態に係る磁気計測装置40は、上部配線層2および下部配線層3が、磁化自由層7の断面に平行に形成されており、上部配線層2および下部配線層3を流れるセンス電流Iは、向きが同じでかつ平行である。そのため、図7に示すように、それぞれの磁化自由層7の直上および直下の上部配線層2および下部配線層3を流れるセンス電流Iによって発生する磁界Bは、磁化自由層7において、互いに逆向きとなり、磁界を弱め合う。これにより、センス電流Iによって発生する磁界Bが、被測定対象の磁界に及ぼす影響を低減することができる。
(変形例)
次に、本実施形態に係る磁気計測装置40の変形例について説明する。上述したように、センス電流Iによって発生する磁界Bが磁気抵抗素子1の磁化自由層7で互いに弱め合うためには、それぞれの磁化自由層7の直上および直下の上部配線層2および下部配線層3を流れるセンス電流Iが、向きが同じでかつ平行であればよい。
図8は、本実施形態の変形例に係る磁気計測装置50を示す模式図である。磁気計測装置50は、磁気計測装置40とは異なった上部配線層52および下部配線層53を備える。図8に示すように、磁気計測装置50の上部配線層52および下部配線層53は、磁化自由層7の断面に平行な面内に形成されており、略コの字形である。上部配線層52および下部配線層53は、隣接する磁気抵抗素子1に対して互い違いとなるように配置されている。また、上部配線層52および下部配線層53を流れるセンス電流Iが、それぞれの磁化自由層7の直上および直下で、向きが同じでかつ平行となるように、上部配線層52および下部配線層53は、磁気抵抗素子1の並設方向に対してそれぞれ異なる側に配置されている。すなわち、上部層間配線4または下部層間配線5から上部配線層52または下部配線層53へと流れるセンス電流Iは、略コの字形に形成された上部配線層52または下部配線層53を通ることで、流れる方向を180度転換し、次の上部配線層52または下部配線層53へと流れる。
このように、上部配線層52および下部配線層53を流れるセンス電流Iが、それぞれの磁気抵抗素子1の直上および直下で、向きが同じでかつ平行であれば、センス電流Iによって発生する磁界Bが磁化自由層7で打ち消し合う。そのため、上部配線層52または下部配線層53の形状は、それぞれの磁化自由層7の直上および直下の上部配線層52および下部配線層53を流れるセンス電流Iが、向きが同じでかつ平行であれば特に限定されるものでは無い。
(比較例)
これに対して、上部配線層および下部配線層を流れるセンス電流Iが、それぞれの磁化自由層7の直上および直下で、平行ではあるが、逆向きである場合について説明する。
図9は、本実施形態の比較例に係る磁気計測装置60を示す模式図である。磁気計測装置60は、磁気計測装置50と同様に、略コの字形に形成された、上部配線層62および下部配線層63を備える。磁気計測装置60においては、上部配線層62および下部配線層63を流れるセンス電流Iが、それぞれの磁化自由層7の直上および直下で、平行かつ逆向きとなるように、磁気抵抗素子1の並設方向に対して同じ側に配置されている。
図9に示すように、磁化自由層7の直上および直下の上部配線層62および下部配線層63を流れるセンス電流Iによって発生する磁界Bは、それぞれの磁化自由層7において互いに同じ向きとなる。そのため、磁化自由層7において、磁界Bは互いに強め合う事となり、被測定対象の磁界に対して影響を及ぼす。特に、生体磁気といった微弱な磁界を測定する場合には、センス電流Iによって発生する磁界Bの影響は大きい。
〔実施形態5〕
本発明の他の実施形態について、図10に基づいて説明すれる。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
図10は、本実施形態に係る磁気計測装置70を示す模式図である。図10に示すように、本実施形態に係る磁気計測装置70は、前記実施形態4に係る磁気計測装置40と同様に、磁気抵抗素子1、上部配線層2、下部配線層3、上部層間配線4、および下部層間配線5を備えている。ここで、磁化自由層7において、センス電流Iが磁化自由層7流れる方向(磁気抵抗素子1の積層方向)の中心を中心点Oとする。
図10に示すように、本実施形態に係る上部層間配線4および下部層間配線5は、中心点Oから、上部配線層2および下部配線層3におけるセンス電流Iの流路までの距離rが互いに等しくなるように形成されている。
このように、本実施形態に係る磁気計測装置70においては、磁化自由層7の直上および直下で、センス電流Iが、向きが同じでかつ平行に流れ、さらに、磁化自由層7の中心から、上部配線層2および下部配線層3のセンス電流Iの流路までの距離rが互いに等しい。そのため、センス電流Iにより発生する磁界Bは、磁化自由層7の中心において逆向きかつ同じ強度となり、互いに弱め合う。
なお、本実施形態においては、磁化自由層7の中心から、上部配線層2のセンス電流Iの流路までの距離と、磁化自由層7の中心から下部配線層3のセンス電流Iの流路までの距離とが等しい場合を示したが、磁化自由層7の直上および直下で、センス電流Iが、向きが同じでかつ平行に流れていれば、磁化自由層7の中心から、上部配線層2および下部配線層3のセンス電流Iの流路までの距離は略等しくなるように形成されていてもよい。つまり、磁化自由層7の中心から、上部配線層2のセンス電流Iの流路までの距離と、磁化自由層7の中心から下部配線層3のセンス電流Iの流路までの距離とは、センス電流Iにより発生する磁界Bが、磁化自由層7の中心において逆向きかつ同程度の強度となり、互いに弱め合うような距離に設定されていればよい。
(効果)
次に、本実施形態に係る磁気計測装置70の効果について説明する。
まず、図16を用いて、上部配線層202および下部配線層203を流れるセンス電流Iにより発生する磁界Bが磁化自由層207に及ぼす影響について説明する。
ここで、上部配線層202および下部配線層203の厚みを5nm、磁化自由層207の厚みを3nm、絶縁層208の厚みを2nm、磁化固定層206の厚みを26nm、センス電流Iを1×10−11Aとし、センス電流Iが上部配線層202の最上面、および下部配線層の最下面(磁化自由層207から一番遠い面)を流れると仮定する。すると、磁化自由層207の中心には、上部配線層202を流れるセンス電流Iにより、3×10−10Tの磁束密度の磁気が作用し、下部配線層203を流れるセンス電流Iにより0.6×10−10Tの磁束密度の磁気が作用する。
ここで、上部配線層202と下部配線層203を流れる電流は互いに平行であり、かつ同じ向きである。そのため、磁化自由層207の中心においてセンス電流Iにより発生する磁界Bは互いに打ち消し合い、2.4×10−10Tの磁界が残存することとなる。
これは、脳磁(1×10−15〜1×10−12T)や心磁(1×10−14〜1×10−10T)と比較すると、大きな磁界であることがわかる。一方、本実施形態に係る磁気計測装置70は、センス電流Iが流れる方向を平行かつ同じ向きにするだけでは無く、磁化自由層7の中心から、上部配線層2および下部配線層3のセンス電流Iのまでの距離rを互いに等しくすることにより、上部配線層2を流れるセンス電流Iによって発生する磁界Bと、下部配線層3を流れるセンス電流Iによって発生する磁界Bとが磁化自由層7内で、逆向きの方向で、かつ、同じ強度で分布するため、センス電流Iにより発生する磁界Bを磁化自由層7内で弱め合わせることができる。そのため、脳磁や心磁といった生体磁気を計測対象の磁界とする場合であっても、上部配線層2および下部配線層3を流れるセンス電流Iによって発生する磁界Bの影響を磁化自由層7内でキャンセルすることができ、生体磁気といった微弱な磁気であったとしても正確に測定を行うことが可能となる。
(変形例1)
次に、本実施形態に係る磁気計測装置70の変形例について説明する。図11は、本実施形態の変形例1に係る磁気計測装置80を示す模式図である。磁気計測装置80は、磁気抵抗素子1、上部配線層82、下部配線層83、上部層間配線84、および下部層間配線85を備えている。
磁気計測装置80の上部配線層82および下部配線層83は、前記実施形態4における図8に示した磁気計測装置50の上部配線層52および下部配線層53と略同一の形状を有している。上部層間配線84および下部層間配線85は、前記実施形態5における図10に示した磁気計測装置70の上部層間配線74および下部層間配線75と同様に、磁気抵抗素子1の磁化自由層7の中心点Oから上部配線層82および下部配線層83におけるセンス電流Iの流路までの距離rが互いに等しくなるように形成されている。
磁気計測装置80をこのような構成としても、前記実施形態5に係る磁気計測装置70と同様の効果を得ることができる。
(変形例2、3)
図12は、本実施形態に係る磁気計測装置70の変形例を示す模式図であり、図12の(a)は、変形例2に係る磁気計測装置90を、図12の(b)は、変形例3に係る磁気計測装置100を示している。
変形例2に係る磁気計測装置90は、前記実施形態2における図2に示した磁気計測装置20と、略同一の構成を有している。つまり、磁気計測装置90は、磁気計測装置20の上部層間配線24の代わりに上部層間配線94を、下部層間配線25の代わりに下部層間配線95を備えている以外は、当該磁気計測装置20と同一である。
上部層間配線94および下部層間配線95は、磁気計測装置70の上部層間配線74および下部層間配線75と同様に、磁気抵抗素子1の磁化自由層7の中心点Oから上部配線層22および下部配線層23におけるセンス電流Iの流路までの距離rが互いに等しくなるように形成されている。
磁気計測装置90をこのような構成としても、前記実施形態5に係る磁気計測装置70と同様の効果を得ることができる。
変形例3に係る磁気計測装置100は、前記実施形態3における図5に示した磁気計測装置30と、略同一の構成を有している。つまり、磁気計測装置100は、磁気計測装置30の上部層間配線34の代わりに上部層間配線104を、下部層間配線35の代わりに下部層間配線105を備えている以外は、当該磁気計測装置30と同一である。
上部層間配線104および下部層間配線105は、前記実施形態5に係る磁気計測装置70の上部層間配線74および下部層間配線75と同様に、磁気抵抗素子1の磁化自由層7の中心点Oから上部配線層32および下部配線層33におけるセンス電流Iの流路までの距離rが互いに等しくなるように形成されている。
磁気計測装置100をこのような構成としても、前記実施形態5に係る磁気計測装置70と同様の効果を得ることができる。
なお、前記変形例1〜3の磁気計測装置80〜100においても、磁化自由層7の中心から、上部配線層2のセンス電流Iの流路までの距離と、磁化自由層7の中心から下部配線層3のセンス電流Iの流路までの距離とは、必ずしも等しくなくてもよく、センス電流Iにより発生する磁界Bが、磁化自由層7の中心において逆向きかつ同程度の強度となり、互いに弱め合うような距離に設定されていればよい。
〔実施形態6〕
本発明の他の実施形態について、図13〜15に基づいて説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
(磁気計測ユニット)
図13の(a)は、本実施形態に係る磁気計測ユニット110を示す概略図であり、図13の(b)は、磁気計測ユニット110が備えるセル113の部分拡大図である。図13に示すように、磁気計測ユニット110は、行方向に伸びる複数の信号線111と列方向に伸びる複数の走査線112とが交差するように配置され、信号線111と走査線112とで囲まれる領域のそれぞれに複数個のセル113がアレイ状(格子状)に配置された略正方形のアクティブマトリクス基板で構成されている。
複数個のセル113のそれぞれは、複数個の磁気抵抗素子1が直列に接続された、磁気計測装置114と、基板の絶縁性表面上に形成された酸化物半導体からなるスイッチング素子115とを備える。
磁気計測装置114の一端は、スイッチング素子115を介して走査線112に、他端は、信号線111に接続している。ここで、磁気計測装置114は、上述した磁気計測装置10、20、30、40、50、70、80、90、100のうちの何れかとする。
本実施形態に係る磁気計測ユニット110は、ある走査線112からの入力信号を活線状態とし、ある信号線111にセンス電流Iを供給することで、1つのセル113が選択され、当該セル113における磁気抵抗を測定することができる。このようにして、活線状態とする走査線112およびセンス電流Iを入力する信号線111を順次切り替えることで、それぞれのセル113における磁気抵抗を測定することができる。また、セル113は、格子状に配置されているため、磁気抵抗の値を2次元的に得ることができ、これにより、被測定対象の磁界の2次元的な分布を得ることが可能となる。
また、スイッチング素子115として、オフリーク特性に優れた酸化物半導体を用いることで、アレイ中の他のセル113からのリーク電流の影響を低減することができる。そのため、例えば、センス電流Iを1×10−12A以下の低電流にした場合でも、各セル113の磁気抵抗を計測することが可能となる。
なお、上述の実施形態では、スイッチング素子115として、オフリーク特性に優れた酸化物半導体素子を用いたが、センス電流Iが被測定対象の磁界に及ぼす影響を考慮した上で適用可能であるならば、他の半導体素子をスイッチング素子115として用いてもよい。
(磁気計測システム、および磁気計測方法)
次に、図14および図15に基づいて前記磁気計測ユニット110を備える磁気計測システム120、および磁気計測システム120を用いた磁気計測方法について説明する。
図14は、本実施形態に係る磁気計測システム120の構成要素を示すブロック図である。図14に示すように、磁気計測システム120は、磁気計測ユニット110と、電源121と、差分検出装置122と、磁気算出装置123とを備える。
電源121は、磁気計測ユニット110に接続され、磁気計測ユニット110のセル113に所定の大きさのセンス電流Iを印加する。
差分検出装置122は、磁気計測ユニット110に接続されている。差分検出装置122は、被測定対象の磁界がない状態で磁気計測ユニット110にセンス電流Iが印加された場合の出力電圧である第1出力電圧と、被測定対象の磁界がある状態で磁気計測ユニット110にセンス電流Iが印加された場合の出力電圧である第2出力電圧とを計測し、第1出力電圧と、第2出力電圧との差分を検出する。
磁気算出装置123は、差分検出装置122に接続され、差分検出装置122が検出した、第1出力電圧と第2出力電圧との差分を用いて被測定対象の磁界を算出する。
図15は、磁気計測システム120を用いた磁気計測方法の流れを示すフローチャートである。まず、被測定対処の磁界が無い状態で、電源121によって、磁気計測ユニット110へ所定のセンス電流Iが印加される(S1)。差分検出装置122は、磁気計測ユニット110の出力電圧を測定し(S2)、第1出力電圧として記録する(S3)(第1ステップ)。次に、被測定対象の磁界が有る状態で、電源121によって、磁気計測ユニット110へ所定のセンス電流Iが印加され、(S4)、差分検出装置122は、磁気計測ユニット110の出力電圧を測定し(S5)、第2出力電圧として記録する(S6)(第2ステップ)。最後に、差分検出装置122が、第1出力電圧と第2出力電圧との差分を検出し、磁気算出装置123が当該差分を用いて被測定対象の磁界を算出する(S7)(第3ステップ)。
このように、本実施形態に係る磁気計測システム120、および磁気計測システム120を用いた磁気計測方法は、センス電流Iを所定値とすることで、センス電流Iによって発生する磁界Bを一定の値とすることができる。加えて、被測定対象の磁界が無く、センス電流Iにより発生する磁界Bが存在する場合の出力電圧を測定し、その後、被測定対象の磁界が有り、センス電流により発生する磁界Bも存在する場合の出力電圧を測定する。そのため、センス電流Iにより磁界Bの影響を加味することができ、被測定対象の磁界を正確に計測することが可能となる。
なお、上述したすべての実施形態において、磁化自由層が磁化固定層の上方に配置されている例を示したが、磁気抵抗素子において、磁化自由層は磁化固定層の下方に配置されていてもよい。さらに、被測定対象の磁界は、生体磁気に限られるものでは無く、上述した磁気計測装置、磁気計測ユニット、磁気計測システム、および磁気計測方法は、磁気計測に幅広く用いる事が可能である。
〔まとめ〕
本発明の態様1に係る磁気計測装置10は、外部磁場により磁化の向きが変化する磁化自由層7、磁化の向きが固定された磁化固定層6、および前記磁化自由層7と前記磁化固定層6との間に配置された絶縁層8が積層された磁気抵抗素子1と、前記磁化自由層7に対して前記絶縁層8側とは反対側で対向する第1配線層(上部配線層2)と、前記磁化固定層6に対して前記絶縁層8側とは反対側で対向する第2配線層(下部配線層3)とを備え、前記磁気抵抗素子1に対して、前記第1配線層(上部配線層2)または前記第2配線層(下部配線層3)からセンス電流Iを流すことで磁気を計測する磁気計測装置10であって、前記第1配線層(上部配線層2)と前記磁化自由層7との間に第1層間配線(上部層間配線4)が垂設されると共に、前記第2配線層(下部配線層3)と前記磁化固定層6との間に第2層間配線(下部層間配線5)が垂設されている。
上記の構成によれば、第1配線層(上部配線層2)と磁化自由層7との間に第1層間配線(上部層間配線4)を、第2配線層(下部配線層3)と磁化固定層6との間に第2層間配線(下部層間配線5)を設けることで、第1配線層(上部配線層2)および第2配線層(下部配線層3)から磁化自由層7までの距離を遠くすることができる。これにより、センス電流Iにより発生する磁界Bの影響を低減し、微弱な磁界であっても正確に測定することが可能となる。
本発明の態様2に係る磁気計測装置20は、上記態様1において、前記第1層間配線(上部層間配線24)が、当該第1層間配線(上部層間配線24)の重心を含む第1所定領域を通る第1直線が前記磁化自由層7の重心を含む第2所定領域を通るように配置され、前記重心を含む第1所定領域および第2所定領域はそれぞれ、前記磁化自由層7内において、磁束密度の分布に偏りが生じない範囲に設定されていてもよい。
上記の構成によれば、磁化自由層7に近い第1層間配線(上部層間配線24)を流れるセンス電流Iにより発生する磁界Bが、磁化自由層7内で対称的に分布する。そのため、第1層間配線(上部層間配線24)を流れるセンス電流Iにより発生する磁界Bの影響を低減することができる。
本発明の態様3に係る磁気計測装置20は、上記態様2において、前記第2層間配線(下部層間配線25)は、当該第2層間配線(下部層間配線25)の重心を含む第3所定領域を通る第2直線が前記磁化自由層7の重心を含む第2所定領域を通るように配置され、前記重心を含む第3所定領域は、前記磁化自由層7内において磁束密度の分布に偏りが生じない範囲に設定されていてもよい。
上記の構成によれば、第2層間配線(下部層間配線25)を流れるセンス電流Iにより発生する磁界Bが、磁化自由層7内で対称的に分布する。そのため、第2層間配線(下部層間配線25)を流れるセンス電流Iにより発生する磁界Bの影響を低減することができる。
本発明の態様4に係る磁気計測装置20は、上記態様3において、前記第1層間配線(上部層間配線24)および前記第2層間配線(下部層間配線25)は、前記第1直線と前記第2直線とが同一直線(直線L)上を通るように配置されていてもよい。
上記の構成によれば、第1層間配線(上部層間配線24)、磁化自由層7、第2層間配線(下部層間配線25)、および磁化固定層6の重心を同一直線(直線L)上に配置することで、センス電流Iによって発生する磁界Bが磁化自由層7内で打ち消し合うように分布するため、センス電流Iによって発生する磁界Bの影響を低減することができる。
本発明の態様5に係る磁気計測装置30は、上記態様2から4の何れかにおいて、少なくとも前記磁化自由層37が、前記センス電流Iが流れる向きと直交する方向の断面が円形または楕円形であってもよい。
上記の構成によれば、センス電流Iにより発生する磁界Bが、磁化自由層37内で対称かつ連続となる。そのため、センス電流Iがノイズ成分によって揺らいだとしても、ノイズ成分も含めて、センス電流Iによって発生する磁界Bの影響を緩和することができる。
本発明の態様6に係る磁気計測装置40は、上記態様1から5の何れかにおいて、前記第1配線層(上部配線層2)に流れる前記センス電流Iと、前記第2配線層(下部配線層3)に流れる前記センス電流Iとが、向きが同じでかつ平行であってもよい。
上記の構成によれば、第1配線層(上部配線層2)に流れるセンス電流Iにより発生する磁界Bと、第2配線層(下部配線層3)に流れるセンス電流Iにより発生する磁界Bが、磁化自由層7で打ち消し合うように分布する。これにより、センス電流Iにより発生する磁界Bの影響を低減することができる。
本発明の態様7に係る磁気計測装置70は、上記態様6において、前記磁化自由層7の積層方向の中心(中心点O)から前記第1配線層(上部配線層2)におけるセンス電流Iの流路までの距離rが、前記磁化自由層7の積層方向の中心(中心点O)から前記第2配線層(下部配線層3)におけるセンス電流Iの流路までの距離rに略等しくてもよい。
上記の構成によれば、第1配線層(上部配線層2)および第2配線層(下部配線層3)から磁化自由層7までの距離を略等しくすることで、磁化自由層7において、センス電流Iにより発生する磁界Bを互いに打ち消し合うように分布させることができる。
本発明の態様8に係る磁気計測ユニット110は、上記態様1から7の何れかの磁気計測装置114と、スイッチング素子115とが接続されたセル113を複数個備え、前記セル113がアレイ状に配置されている。
上記の構成によれば、磁気計測装置114を備えるセル113をアレイ状に配置することで、磁界の分布を2次元的に測定することができる。
本発明の態様9に係る磁気計測ユニットは、上記態様8において、前記スイッチング素子115が酸化物半導体素子であってもよい。
上記の構成によれば、スイッチング素子115として、オフリーク特性に優れた酸化物半導体からなる酸化物半導体素子を用いることで、センス電流Iを低電流とすることが可能となり、センス電流Iにより発生する磁界の影響を低減することができる。
本発明の態様10に係る磁気計測システム120は、上記態様8または9の磁気計測ユニット110と、前記磁気計測ユニット110内の複数のセル113それぞれにセンス電流Iを印加する電源121と、被磁気計測対象の磁界が無いときに、前記電源121により前記セル113それぞれにセンス電流Iを印加することで、各セル113から計測される第1出力電圧と、前記被磁気計測対象の磁界が有るときに、前記電源121により前記セル113それぞれにセンス電流Iを印加することで、各セル113から計測される第2出力電圧との差分を検出する差分検出装置122と、前記差分検出装置122によって検出された差分を用いて、前記被磁気計測対象の磁気を算出する磁気算出装置123とを備える。
上記の構成によれば、差分検出装置122が、被測定対象の磁界が無い状態で、センス電流Iを流して出力電圧の測定を行う。そのため、センス電流I発生する磁界Bの影響を加味した測定を行うことができ、被測定対象の磁界を正確に計測することが可能となる。
本発明の態様11に係る磁気計測方法は、上記態様8または9に係る磁気計測ユニット110にセンス電流Iを流すことで被磁気計測対象の磁気を計測する磁気計測方法であって、前記被磁気計測対象の磁気が無いときに前記センス電流Iを流すことで第1出力電圧を計測する第1ステップと、前記被磁気計測対象の磁気が有るときに前記センス電流Iを流すことで第2出力電圧を計測する第2ステップと、前記被磁気計測対象の磁気を、前記第1ステップにおいて計測した第1出力電圧と前記第2ステップにおいて計測した第2出力電圧との差分を用いて算出する第3ステップとを含む。
上記の方法によれば、上記磁気計測ユニット110と同様の効果を奏し、センス電流I発生する磁界Bの影響を加味した測定を行うことができ、被測定対象の磁界を正確に計測することが可能となる。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
本発明は、磁気を測定するための磁気計測装置に用いる事ができる。
1 磁気抵抗素子
2 上部配線層(第1配線層)
3 下部配線層(第2配線層)
4、24 上部層間配線(第1層間配線)
5、25 下部層間配線(第2層間配線)
6 磁化固定層
7、37 磁化自由層
8 絶縁層
10、20、30、40、70、114 磁気計測装置
110 磁気計測ユニット
113 セル
115 スイッチング素子
120 磁気計測システム
121 電源
122 差分検出装置
123 磁気算出装置
I センス電流
B 磁界
L 直線
r 距離
O 中心点

Claims (11)

  1. 外部磁場により磁化の向きが変化する磁化自由層、磁化の向きが固定された磁化固定層、および前記磁化自由層と前記磁化固定層との間に配置された絶縁層が積層された磁気抵抗素子と、
    前記磁化自由層に対して前記絶縁層側とは反対側で対向する第1配線層と、
    前記磁化固定層に対して前記絶縁層側とは反対側で対向する第2配線層とを備え、
    前記磁気抵抗素子に対して、前記第1配線層または前記第2配線層からセンス電流を流すことで磁気を計測する磁気計測装置であって、
    前記第1配線層と前記磁化自由層との間に第1層間配線が垂設されると共に、前記第2配線層と前記磁化固定層との間に第2層間配線が垂設されていることを特徴とする磁気計測装置。
  2. 前記第1層間配線は、当該第1層間配線の重心を含む第1所定領域を通る第1直線が前記磁化自由層の重心を含む第2所定領域を通るように配置され、
    前記重心を含む第1所定領域および第2所定領域はそれぞれ、
    前記磁化自由層内において、磁束密度の分布に偏りが生じない範囲に設定されていることを特徴とする請求項1に記載の磁気計測装置。
  3. 前記第2層間配線は、当該第2層間配線の重心を含む第3所定領域を通る第2直線が前記磁化自由層の重心を含む第2所定領域を通るように配置され、
    前記重心を含む第3所定領域は、前記磁化自由層内において磁束密度の分布に偏りが生じない範囲に設定されていることを特徴とする請求項2に記載の磁気計測装置。
  4. 前記第1層間配線および前記第2層間配線は、前記第1直線と前記第2直線とが同一直線上を通るように配置されていることを特徴とする請求項3に記載の磁気計測装置。
  5. 少なくとも前記磁化自由層は、前記センス電流が流れる向きと直交する方向の断面が円形または楕円形であることを特徴とする請求項2から4の何れか1項に記載の磁気計測装置。
  6. 前記第1配線層に流れる前記センス電流と、前記第2配線層に流れる前記センス電流とは、向きが同じでかつ平行であることを特徴とする請求項1から5の何れか1項に記載の磁気計測装置。
  7. 前記磁化自由層の積層方向の中心から前記第1配線層におけるセンス電流の流路までの距離は、前記磁化自由層の積層方向の中心から前記第2配線層におけるセンス電流の流路までの距離に略等しいことを特徴とする請求項6に記載の磁気計測装置。
  8. 請求項1から7の何れか1項に記載の磁気計測装置と、スイッチング素子とが接続されたセルを複数個備え、
    前記セルがアレイ状に配置されていることを特徴とする磁気計測ユニット。
  9. 前記スイッチング素子は、酸化物半導体素子であることを特徴とする請求項8に記載の磁気計測ユニット。
  10. 請求項8または9に記載の磁気計測ユニットと、
    前記磁気計測ユニット内の複数のセルそれぞれにセンス電流を印加する電源と、
    被磁気計測対象の磁界が無いときに、前記電源により前記セルそれぞれにセンス電流を印加することで、各セルから計測される第1出力電圧と、前記被磁気計測対象の磁界が有るときに、前記電源により前記セルそれぞれにセンス電流を印加することで、各セルから計測される第2出力電圧との差分を検出する差分検出装置と、
    前記差分検出装置によって検出された差分を用いて、前記被磁気計測対象の磁気を算出する磁気算出装置と、
    を備えたことを特徴とする磁気計測システム。
  11. 請求項8または9に記載の磁気計測ユニットにセンス電流を流すことで被磁気計測対象の磁気を計測する磁気計測方法であって、
    前記被磁気計測対象の磁気が無いときに前記センス電流を流すことで第1出力電圧を計測する第1ステップと、
    前記被磁気計測対象の磁気が有るときに前記センス電流を流すことで第2出力電圧を計測する第2ステップと、
    前記被磁気計測対象の磁気を、前記第1ステップにおいて計測した第1出力電圧と前記第2ステップにおいて計測した第2出力電圧との差分を用いて算出する第3ステップとを含むことを特徴とする磁気計測方法。
JP2016573371A 2015-02-06 2016-02-02 磁気計測装置、磁気計測ユニット、磁気計測システム、および磁気計測方法 Pending JPWO2016125780A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015022569 2015-02-06
JP2015022569 2015-02-06
PCT/JP2016/053033 WO2016125780A1 (ja) 2015-02-06 2016-02-02 磁気計測装置、磁気計測ユニット、磁気計測システム、および磁気計測方法

Publications (1)

Publication Number Publication Date
JPWO2016125780A1 true JPWO2016125780A1 (ja) 2017-08-31

Family

ID=56564121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016573371A Pending JPWO2016125780A1 (ja) 2015-02-06 2016-02-02 磁気計測装置、磁気計測ユニット、磁気計測システム、および磁気計測方法

Country Status (2)

Country Link
JP (1) JPWO2016125780A1 (ja)
WO (1) WO2016125780A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002109708A (ja) * 2000-09-29 2002-04-12 Toshiba Corp 磁気抵抗効果素子、磁気ヘッド及び磁気再生装置
JP2002270920A (ja) * 2001-03-07 2002-09-20 Fujitsu Ltd 磁気センサ、磁気ヘッド、及び、磁気記録装置
JP2002314168A (ja) * 2001-04-18 2002-10-25 Fujitsu Ltd Cpp構造電磁変換素子およびその製造方法
JP2003004828A (ja) * 2001-06-20 2003-01-08 Toyota Central Res & Dev Lab Inc 磁界分布センサ
WO2006109382A1 (ja) * 2005-03-14 2006-10-19 National University Corporation Okayama University 磁気的インピーダンス計測装置
JP2013004828A (ja) * 2011-06-20 2013-01-07 Panasonic Corp 電子部品実装用装置および電子部品実装用の作業実行方法
JP2015014520A (ja) * 2013-07-05 2015-01-22 Tdk株式会社 回転磁界センサ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002109708A (ja) * 2000-09-29 2002-04-12 Toshiba Corp 磁気抵抗効果素子、磁気ヘッド及び磁気再生装置
JP2002270920A (ja) * 2001-03-07 2002-09-20 Fujitsu Ltd 磁気センサ、磁気ヘッド、及び、磁気記録装置
JP2002314168A (ja) * 2001-04-18 2002-10-25 Fujitsu Ltd Cpp構造電磁変換素子およびその製造方法
JP2003004828A (ja) * 2001-06-20 2003-01-08 Toyota Central Res & Dev Lab Inc 磁界分布センサ
WO2006109382A1 (ja) * 2005-03-14 2006-10-19 National University Corporation Okayama University 磁気的インピーダンス計測装置
JP2013004828A (ja) * 2011-06-20 2013-01-07 Panasonic Corp 電子部品実装用装置および電子部品実装用の作業実行方法
JP2015014520A (ja) * 2013-07-05 2015-01-22 Tdk株式会社 回転磁界センサ

Also Published As

Publication number Publication date
WO2016125780A1 (ja) 2016-08-11

Similar Documents

Publication Publication Date Title
US11650270B2 (en) Magnetic sensor
US10734443B2 (en) Dual manetoresistance element with two directions of response to external magnetic fields
JP6984792B2 (ja) 磁気センサ、磁気センサアレイ、磁場分布測定装置、および位置特定装置
US9176203B2 (en) Apparatus and method for in situ current measurement in a conductor
US9116198B2 (en) Planar three-axis magnetometer
JP6965161B2 (ja) 較正および初期化コイルを備えた単一チップ高磁界x軸線形磁気抵抗センサ
JP2019120687A (ja) オフセットされた電流センサ構造体
JP6233722B2 (ja) 磁界発生体、磁気センサシステムおよび磁気センサ
JP2016176911A (ja) 磁気センサ
KR100438059B1 (ko) 면형 자기센서 및 다차원 자장해석용 면형 자기센서
JP2015135267A (ja) 電流センサ
CN210665858U (zh) 一种大动态范围磁传感器组件
JP2017103378A (ja) 磁気抵抗効果素子及び磁気センサ、並びに磁気抵抗効果素子の製造方法及び磁気センサの製造方法
US11009569B2 (en) Magnetic field sensing device
WO2016125780A1 (ja) 磁気計測装置、磁気計測ユニット、磁気計測システム、および磁気計測方法
JP2012063232A (ja) 磁界検出装置の製造方法および磁界検出装置
US20220187247A1 (en) Magnetic sensor and inspection device
US8476899B2 (en) Magnetic sensor and magnetic balance type current sensor including the same
JP2019086290A (ja) 磁気センサ
JP2018096895A (ja) 磁場検出装置
JP2016188774A (ja) 磁界検知装置
JP5432082B2 (ja) 電流検知器を備えた半導体装置
JP6350841B2 (ja) 磁界発生体および磁気センサ
JP2012159309A (ja) 磁気センサおよび磁気センサ装置
JP6040523B2 (ja) 電力検知センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191105