JPWO2016114353A1 - 極数切替型回転電機および極数切替型回転電機の駆動方法 - Google Patents

極数切替型回転電機および極数切替型回転電機の駆動方法 Download PDF

Info

Publication number
JPWO2016114353A1
JPWO2016114353A1 JP2016569505A JP2016569505A JPWO2016114353A1 JP WO2016114353 A1 JPWO2016114353 A1 JP WO2016114353A1 JP 2016569505 A JP2016569505 A JP 2016569505A JP 2016569505 A JP2016569505 A JP 2016569505A JP WO2016114353 A1 JPWO2016114353 A1 JP WO2016114353A1
Authority
JP
Japan
Prior art keywords
pole
current
phase
stator
phases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016569505A
Other languages
English (en)
Other versions
JP6227171B2 (ja
Inventor
勇気 日高
勇気 日高
大河 小松
大河 小松
秀哲 有田
秀哲 有田
大穀 晃裕
晃裕 大穀
盛幸 枦山
盛幸 枦山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2016114353A1 publication Critical patent/JPWO2016114353A1/ja
Application granted granted Critical
Publication of JP6227171B2 publication Critical patent/JP6227171B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • H02P25/20Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays for pole-changing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/12Asynchronous induction motors for multi-phase current
    • H02K17/14Asynchronous induction motors for multi-phase current having windings arranged for permitting pole-changing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/02Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for suppression of electromagnetic interference
    • H02K11/028Suppressors associated with the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • H02K3/51Fastening of winding heads, equalising connectors, or connections thereto applicable to rotors only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Windings For Motors And Generators (AREA)
  • Induction Machinery (AREA)

Abstract

巻線切替機構を用いることなく、高極時においても優れたトルク対電流特性を有する極数切替型回転電機および極数切替型回転電機の駆動方法を得る。固定子スロットが機械角方向に等間隔に配置された固定子と、固定子スロットに格納された固定子コイルに流れる電流が発生する起磁力により回転する回転子とを備えて構成される回転電機と、固定子コイルにm相電流を供給するn群インバータと、n群インバータを制御する制御部と、を有し、高極駆動時と低極駆動時とで極数を切替える極数切替型回転電機であって、制御部は、n群インバータが制御可能な1極対当りの電流位相の数である電流位相自由度が、高極駆動時に群数n×相数m/2、低極駆動時に群数n×相数m、但し群数nは4の倍数、相数mは群数nと互いに素である3以上の自然数、となるように固定子コイルに流れる電流の電流位相を制御する。

Description

本発明は、広い回転域に渡って高トルク性、高出力性を確保するために極数を切替えて駆動する極数切替型回転電機および極数切替型回転電機の駆動方法に関するものである。
電気自動車、ハイブリッド車等に使用される回転電機として、広い回転域に渡って高トルク性、高出力性を確保するために極数を切替えて駆動する極数切替型回転電機が知られている。
このような従来の極数切替型回転電機として、3相コイルを2等分し、各コイルの結線部以外の端部に端子を設け、2等分したコイルを相毎に3相4極に形成したものがある(例えば、特許文献1参照)。特許文献1では、2極駆動の場合は各スロットの励磁コイルを直列に接続し、4極駆動の場合は2等分した励磁コイル内の外部コイルの接続を反転するとともに、2相の励磁コイルの電源接続を切り換えている。
また、別の従来の極数切替型回転電機として、6個のコイルを60°毎に配設するとともに、相互に向かい合うコイル同士を、極性が同一となるように接続して1相分の巻線として構成したものがある(例えば、特許文献2参照)。特許文献2では、このように構成した3組の三相巻線に印加する電源電圧の相順を切替えることで、回転電機の極数変換を行っている。
特開平10−98859号公報 特開平11−18382号公報
しかしながら、従来技術には、以下のような課題がある。
特許文献1の極数切替型回転電機では、極数切替用の巻線切替機構が必要なので、部品点数が増加して極数切替型回転電機が高コスト化してしまう。
また、特許文献2では、1極対当りの固定子スロットに用いられる電流位相の数である電流位相自由度が高極時には3となるため、巻線係数が減少して高極時におけるトルク対電流特性が低下してしまう。
この発明は、上記のような課題を解決するためになされたものであり、巻線切替機構を用いることなく、高極時においても優れたトルク対電流特性を有する極数切替型回転電機および極数切替型回転電機の駆動方法を得ることを目的とする。
本発明に係る極数切替型回転電機は、固定子スロットが機械角方向に等間隔に配置された固定子と、固定子スロットに格納された固定子コイルに流れる電流が発生する起磁力により回転する回転子とを備えて構成される回転電機と、固定子コイルにm相電流を供給するn群インバータと、n群インバータを制御する制御部と、を有し、固定子スロット当りの起磁力のそれぞれは等間隔に配置され、高極駆動時と低極駆動時とで極数を切替える極数切替型回転電機であって、制御部は、n群インバータが制御可能な1極対当りの電流位相の数である電流位相自由度が、高極駆動時に群数n×相数m/2、低極駆動時に群数n×相数m、但し群数nは4の倍数、相数mは群数nと互いに素である3以上の自然数、となるように固定子コイルに流れる電流の電流位相を制御するものである。
また、本発明に係る極数切替型回転電機の駆動方法は、固定子スロットが機械角方向に等間隔に配置された固定子と、固定子スロットに格納された固定子コイルに流れる電流が発生する起磁力により回転する回転子とを備えて構成される回転電機と、固定子コイルにm相電流を供給するn群インバータと、n群インバータを制御する制御部と、を有し、固定子スロット当りの起磁力のそれぞれは等間隔に配置され、高極駆動時と低極駆動時とで極数を切替える極数切替型回転電機の駆動方法であって、制御部は、n群インバータによりm相電流を固定子コイルに供給する電流供給ステップを有し、電流供給ステップは、低極駆動時において、n群インバータが制御可能な1極対当りの電流位相の数である電流位相自由度が、群数n×相数m、但し群数nは4の倍数、相数mは群数nと互いに素である3以上の自然数、となるように固定子コイルに流れる電流の電流位相を制御し、高極駆動時において、電流位相自由度が、群数n×相数m/2となるように固定子コイルに流す電流の電流位相を切替えるものである。
本発明では、n群インバータが制御可能な1極対当りの電流位相の数である電流位相自由度が、高極時に群数n×相数m/2、低極時に群数n×相数m、但し群数nは4の倍数、相数mは群数nと互いに素である3以上の自然数、となるように固定子コイルに流れる電流位相を切替え制御している。この結果、巻線切替機構を用いることなく、高極時においても優れたトルク対電流特性を有する極数切替型回転電機および極数切替型回転電機の駆動方法を得ることができる。
本発明の実施の形態1に係る回転電機の断面図である。 本発明の実施の形態1に係る極数切替型回転電機における回転電機とインバータとの接続を示す概要図である。 本発明の実施の形態1に係る極数切替型回転電機における固定子コイルの電流位相配置を示す模式図である。 本発明の実施の形態1に係る極数切替型回転電機における起磁力波形を示す模式図である。 本発明の実施の形態2に係る極数切替型回転電機における回転電機とインバータとの接続を示す概要図である。 本発明の実施の形態2に係る極数切替型回転電機における固定子コイルの電流位相配置を示す模式図である。 本発明の実施の形態2に係る極数切替型回転電機における起磁力波形を示す模式図である。 本発明の実施の形態3に係る極数切替型回転電機における固定子コイルの電流位相配置を示す模式図である。 本発明の実施の形態3に係る極数切替型回転電機における起磁力波形を示す模式図である。 本発明の実施の形態4に係る極数切替型回転電機における回転電機とインバータとの接続を示す概要図である。 本発明の実施の形態4に係る極数切替型回転電機における固定子コイルの電流位相配置を示す模式図である。 本発明の実施の形態4に係る極数切替型回転電機における起磁力波形を示す模式図である。
以下、この発明における極数切替型回転電機および極数切替型回転電機の駆動方法の好適な実施の形態について図面を用いて説明する。なお、各図において同一、または相当する部分については、同一符号を付して説明する。
実施の形態1.
まず、本実施の形態1における極数切替型回転電機の構成について説明する。図1は、本発明の実施の形態1に係る回転電機1の断面図である。回転電機1は、固定子6および回転子10を備えて構成される。なお、図1には、回転電機1が誘導機である例を示しているが、回転電機1は誘導機に限定されるものではない。例えば、永久磁石型同期回転機または界磁巻線型同期回転機であってもよい。
図1に示す回転電機1の固定子6は円筒形をしており、固定子6の内周には、スロット番号#1〜#48で識別される48の固定子スロット8が機械角方向に等間隔に配置されている。また、固定子スロット8には固定子コイル9が格納されている。隣り合う固定子スロット8間には、固定子ティース7が形成されている。
図1に示す回転電機1の回転子10は円柱形をしており、回転子鉄心11を備えて構成される。回転子10は、固定子6の内側において、シャフト穴14を通るシャフトを回転軸として、固定子コイル9に流れる電流が発生する起磁力により回転する。回転子10の外周には、回転子スロット12が機械角方向に等間隔に配置されるとともに、回転子スロット12には二次導体13が格納される。固定子6と回転子10の間には回転空隙15が存在する。
回転電機1は、図示しないn群で構成されるm相インバータにより駆動される。
図2は、本発明の実施の形態1に係る極数切替型回転電機における回転電機1とインバータ21〜24との接続を示す概要図である。本実施の形態1の極数切替型回転電機は、回転電機1、インバータ21〜24、およびインバータ21〜24の制御部3を備えて構成される。4つの群からなる3相インバータ21〜24は、回転電機1の対応する固定子コイル9に対して電流を供給する。また、インバータ21〜24は制御部3により制御される。
本実施の形態1の回転電機1の固定子コイル9は、図2に示すように4群×3相=12の引出口を有しており、4群3相のインバータ21〜24から、それぞれ対応する群および相(以下、「電流位相」とよぶ)の電流が供給される。
すなわち、固定子コイル9の第1群(a1,b1,c1)はインバータ21に接続され、第2群(a2,b2,c2)はインバータ22に接続され、第3群(a3,b3,c3)はインバータ23に接続され、第4群(a4,b4,c4)はインバータ24に接続されている。ここで、a1、b1、c1、a2、b2、c2、a3、b3、c3、a4、b4、c4は、インバータからモータへの出力線の種類を表す出力線符号である。
また、第1群(a1,b1,c1)の隣り合う電流位相は互いに360°/3=120°の位相差を有している。第2群(a2,b2,c2)、第3群(a3,b3,c3)、第4群(a4,b4,c4)についても同様である。
制御部3は、ハードウェアとして、プログラムが保存された記憶装置4と、記憶装置4に記憶されたプログラムを実行するプロセッサ5とを備えている。制御部3は、例えば、システムLSI等の処理回路として実現される。
記憶装置4は、ランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリまたはハードディスク等の不揮発性の補助記憶装置とを具備する。
プロセッサ5は、記憶装置4に保存されたプログラムを実行する。記憶装置4が揮発性記憶装置と補助記憶装置とを具備するため、プロセッサ5は、補助記憶装置から揮発性記憶装置を介してプログラムを入力する。
なお、プロセッサ5は、演算結果等のデータを記憶装置4の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。
また、制御部3は、複数のプロセッサ5および複数の記憶装置4が連携して上記機能を実行してもよいし、複数の処理回路が連携して上記機能を実行してもよい。また、複数のプロセッサ5および複数の記憶装置4と、複数の処理回路との組み合わせにより連携して上記機能を実行してもよい。
図3は、本発明の実施の形態1に係る極数切替型回転電機における固定子コイル9の電流位相配置を示す模式図である。図3(a)は、高極(8極)時における2極対分の電流位相配置を示しており、図3(b)は、低極(4極)時における1極対分の電流位相配置を示している。
固定子6には、固定子スロット数=48の固定子スロット8が機械角方向に等間隔に配置され、固定子スロット8には固定子コイル9が格納されている。また、隣り合う固定子スロット8間には、固定子ティース7が形成されている。なお、図3には、固定子スロット8の#25〜#48のうち、#1〜#24の電流位相配置のみを示している。
固定子スロット8は、実際には、固定子6の外径側と内径側に分割されて、固定子6の外径側と内径側とには互いに異なる電流位相を持つ固定子コイル9が格納されることが多いが、図3には外径側の固定子コイル9の電流位相のみを示している。
インバータ21〜24の制御部3は、固定子コイル9に流れる電流の電流位相配置が、高極時、低極時に、それぞれ図3(a)、図3(b)に示す電流位相配置となるように、固定子コイル9に流す電流位相を制御する。なお、図3において下線が記された電流位相は、下線が記されていない電流位相に対して固定子コイル9の巻線方向が反転していることを意味している。
具体的には、制御部3は、図3では、高極駆動時の極数が、低極駆動時の極数の2倍となり、1極対当りの固定子スロット8に用いられる異なる電流位相の数が、高極駆動時と低極駆動時とで等しく、群数n×相数m/2=6となるように、固定子コイル9に流れる電流の電流位相を制御している。
なお、図3には、高極時において極ピッチおよびコイルピッチがともに6スロットピッチの全節巻きとなるように格納された固定子6を示しているが、本実施の形態1の固定子6は必ずしもこのような構成に限定されるものではない。本実施の形態1では、1極対当りの固定子スロットに用いられる電流位相の数である電流位相自由度が、高極時において群数n×相数m/2=6となっており、低極時において群数n×相数m=12となってさえいればよい。
この結果として、図3では、2つの固定子スロット8毎に1電流位相分の固定子コイル9が格納されていることから、高極時には12の固定子スロット8により1極対が形成され、低極時には、24の固定子スロット8により1極対が形成される。
次に、本実施の形態1における極数切替型回転電機の動作について説明する。表1は、本発明の実施の形態1に係る極数切替型回転電機において、インバータ21〜24が回転電機1に供給する電流の電流位相順を示す表である。インバータ21〜24の制御部3は、表1に従って、回転電機1の固定子コイル9に流す電流の電流位相を切替え制御する。
Figure 2016114353
これにより、高極時には図3(a)に示す電流位相配置となり、低極時には図3(b)に示す電流位相配置となるような固定子コイル9の電流位相配置の切替え制御を、巻線切替機構を用いることなく実現することができる。
図4は、本発明の実施の形態1に係る極数切替型回転電機における起磁力波形を示す模式図である。図4(a)は、図3(a)に示す高極時の電流位相配置における起磁力波形を示しており、図4(b)は、図3(b)に示す低極時の電流位相配置における起磁力波形を示している。
図4の横軸は、上部に示す固定子スロット8のスロット番号を示している。また、図4の縦軸は、固定子スロット8の各スロット番号に相当する位置における起磁力を、その最大値が1となるように規格化した起磁力を示している。本発明では、固定子スロット8当りの起磁力のそれぞれは等間隔に配置される。
なお、図4に示す起磁力波形は、固定子スロット8内の固定子コイル9のコイル巻き数が全て等しく、U相、V相、W相にそれぞれ、I、−I/2、−I/2の電流が流れている状態のものである。すなわち、固定子コイル9が発生する固定子スロット8当りの起磁力の絶対値がいずれも等しくなっている。
スロット半周期分(#1−#24)の空間次数をk(kは自然数)とした場合、図4(a)に示す高極時における起磁力波形は、主に2kの空間次数を含む波形となっているのに対し、図4(b)に示す低極時における起磁力波形は、主にkの空間次数を含む波形となっていることが分かる。
すなわち、インバータ21〜24の制御部3が、表1に従って、回転電機1の固定子コイル9に流す電流の電流位相を切替え制御することにより、固定子コイル9の電流位相配置の高極(8極)と低極(4極)との切替え制御が実現されることが分かる。
なお、固定子コイル9が発生する固定子スロット8当りの起磁力の絶対値は、必ずしも全て等しくなっている必要はない。高極時における2kの空間次数を含む波形に対し、低極時における起磁力波形が、主にkの空間次数を含む波形となってさえいればよい。
次に、本実施の形態1における極数切替型回転電機の効果について説明する。図3に示す本実施の形態1の回転電機1は、毎極毎相当りの固定子スロット数が2である。すなわち、連続した2スロット毎に1電流位相分の固定子コイル9が格納されている。また、相数mは3である。
これにより、本実施の形態1では、n群インバータが制御可能な1極対当たりの電流位相の数である電流位相自由度が高極駆動時に6となるため、従来の極数切替型回転電機(例えば、特許文献2では電流位相自由度=3)と比較して、電流位相自由度を向上させることができる。この結果、互いに隣り合う異なる電流位相間の位相差を360°/6=60°とすることができるので、回転電機1の巻線係数を向上させることができる。
具体的な巻線係数は、分布巻係数と短節巻係数の積にて算出されるが、本実施の形態1では短節巻係数=1であるため、分布巻係数は巻線係数と同値となる。ここで、分布巻係数kwdは、毎極毎相当りの固定子スロット数qを用いて、下式(1)で表わされる。
wd = sin(π/6)/(q×sin(π/6q)) (1)
図3に示す極数切替型回転電機では、毎極毎相当りの固定子スロット数として2を想定しているので、分布巻係数kwdとして0.966という高い値を得ることができる。更に、固定子スロット数=24とすることで、q=1とすることも可能であり、この場合には、分布巻係数kwdは、最大値の1となる。一方で、特許文献2では、前述のように、高極時には電流位相自由度が3となるので、本実施の形態1と同様の条件で巻線係数を算出すると巻線係数は、2極3スロット系列の巻線係数と同じ0.866と低い値となってしまう。
このように、本実施の形態1では、高極時における電流位相自由度および巻線係数を向上させることができるので、高極時においても優れたトルク対電流特性を得ることができる。
また、インバータ21〜24の制御部3が、表1に従って、回転電機1の固定子コイル9に流す電流位相を切替え制御するだけで、巻線切替機構を追加することなく、極数切替型回転電機を実現できるので、部品点数およびコストの増加を抑制することができる。
特に、モータによってエンジンの駆動力をアシストすることで車両を推進させるハイブリッド車等においては、車両の推進力が一定である場合には、モータによるアシスト量の多い方が、より少ないエンジン駆動力で済むため燃費性能を向上できる。
例えば、車両が、停止状態または低速走行状態から一定の推進力で加速する際には、エンジン回転数が低い低速走行時だけでなく、加速後のエンジン回転数が高い高速走行時においても、電流位相を高極に切替えることにより優れたトルク対電流特性を得ることができるので、燃費性能を向上できる。
以上のように、実施の形態1によれば、インバータ21〜24が制御可能な1極対当たりの電流位相の数である電流位相自由度が、高極時に群数n×相数m/2=6、低極時に群数n×相数m=12、となるように固定子コイルに流す電流位相を切替え制御している。この結果、巻線切替機構を用いることなく、高極時においても優れたトルク対電流特性を有する極数切替型回転電機および極数切替型回転電機の駆動方法を得ることができる。
実施の形態2.
図5は、本発明の実施の形態2に係る極数切替型回転電機における回転電機1とインバータ21〜24との接続を示す概要図である。本実施の形態2の極数切替型回転電機は、図2に示す先の実施の形態1の極数切替型回転電機と比較して、インバータ21〜24が、3相電流の替わりに5相電流を供給する点が主に異なっている。制御部3の構成は、先の実施の形態1と同じである。
まず、本実施の形態2における極数切替型回転電機の構成について説明する。本実施の形態2の回転電機1の固定子コイル9は、図5に示すように4群×5相=20の引出口を有しており、4群5相のインバータ21〜24から、それぞれ対応する電流位相を有する電流が供給される。
すなわち、固定子コイル9の第1群(a1,b1,c1,d1,e1)はインバータ21に接続され、第2群(a2,b2,c2,d2,e2)はインバータ22に接続され、第3群(a3,b3,c3,d3,e3)はインバータ23に接続され、第4群(a4,b4,c4,d4,e4)はインバータ24に接続されている。ここで、実施の形態1と同様に、d1、e1、d2、e2、d3、e3、d4、e4は、インバータからモータへの出力線の種類を表す出力線符号である。
また、第1群(a1,b1,c1,d1,e1)の隣り合う電流位相は互いに360°/5=72°の位相差を有している。第2群(a2,b2,c2,d2,e2)、第3群(a3,b3,c3,d3,e3)、第4群(a4,b4,c4,d4,e4)についても同様である。
図6は、本発明の実施の形態2に係る極数切替型回転電機における固定子コイル9の電流位相配置を示す模式図である。図6(a)は、高極(4極)時における2極対分の電流位相配置を示しており、図6(b)は、低極(2極)時における1極対分の電流位相配置を示している。
固定子6には、固定子スロット数=20の固定子スロット8が機械角方向に等間隔に配置され、固定子スロット8には固定子コイル9が格納されている。
インバータ21〜24の制御部3は、固定子コイル9に流れる電流の電流位相配置が、高極時、低極時に、それぞれ図6(a)、図6(b)に示す電流位相配置となるように、固定子コイル9に流す電流位相を制御する。
具体的には、制御部3は、図6では、高極駆動時の極数が、低極駆動時の極数の2倍となり、1極対当りの固定子スロット8に用いられる異なる電流位相の数が、高極駆動時と低極駆動時とで等しく、群数n×相数m/2=10となるように、固定子コイル9に流れる電流の電流位相を制御している。
なお、図6には、高極時において極ピッチおよびコイルピッチがともに5スロットピッチの全節巻きとなるように格納された固定子6を示しているが、本実施の形態2の固定子6は必ずしもこのような構成に限定されるものではない。本実施の形態2では、電流位相自由度が、高極時において群数n×相数m/2=10となっており、低極時において群数n×相数m=20となってさえいればよい。
次に、本実施の形態2における極数切替型回転電機の動作について説明する。表2は、本発明の実施の形態2に係る極数切替型回転電機において、インバータ21〜24が回転電機1に供給する電流の電流位相順を示す表である。インバータ21〜24の制御部3は、表2に従って、回転電機1の固定子コイル9に流す電流の電流位相を切替え制御する。
Figure 2016114353
これにより、高極時には図6(a)に示す電流位相配置となり、低極時には図6(b)に示す電流位相配置となるような固定子コイル9の電流位相配置の切替え制御を、巻線切替機構を用いることなく実現することができる。
図7は、本発明の実施の形態2に係る極数切替型回転電機における起磁力波形を示す模式図である。図7(a)は、図6(a)に示す高極時の電流位相配置における起磁力波形を示しており、図7(b)は、図6(b)に示す低極時の電流位相配置における起磁力波形を示している。
なお、図7に示す起磁力波形は、固定子スロット8内の固定子コイル9のコイル巻き数が全て等しく、A相,B相,C相,D相,E相にそれぞれ、I×cos(0°),I×cos(72°),I×cos(144°),I×cos(216°),I×cos(288°)の電流が流れている状態のものである。すなわち、固定子コイル9が発生する固定子スロット8当りの起磁力の絶対値がいずれも等しくなっている。
スロット1周期分(#1−#20)の空間次数をk(kは自然数)とした場合、図7(a)に示す高極時における起磁力波形は、主に2kの空間次数を含む波形となっているのに対し、図7(b)に示す低極時における起磁力波形は、主にkの空間次数を含む波形となっていることが分かる。
すなわち、インバータ21〜24の制御部3が、表2に従って、回転電機1の固定子コイル9に流す電流の電流位相を切替え制御することにより、固定子コイル9の電流位相配置の高極(4極)と低極(2極)との切替え制御が実現されることが分かる。
次に、本実施の形態2における極数切替型回転電機の効果について説明する。図6に示す本実施の形態2の回転電機1は、毎極毎相当りの固定子スロット数が1である。また、相数mは5である。
これにより、本実施の形態2では、n群インバータが制御可能な1極対当たりの電流位相の数である電流位相自由度が高極駆動時に10となるため、従来の極数切替型回転電機(例えば、特許文献2では電流位相自由度=5)と比較して、電流位相自由度を向上させることができる。この結果、互いに隣り合う異なる電流位相間の位相差を360°/10=36°とすることができるので、回転電機1の巻線係数を向上させることができる。
図6に示す極数切替型回転電機では、毎極毎相当りの固定子スロット数として1を想定しているので、分布巻係数kwdとしての最大値1を得ることができる。一方で、特許文献2では、高極時には電流位相自由度が5となるので、本実施の形態2と同様の条件で巻線係数を算出すると巻線係数は、0.588と低い値となってしまう。
以上のように、実施の形態2によれば、インバータ21〜24が制御可能な1極対当たりの電流位相の数である電流位相自由度が、高極時に群数n×相数m/2=10、低極時に群数n×相数m=20、となるように固定子コイルに流す電流位相を切替え制御している。この結果、巻線切替機構を用いることなく、高極時においても優れたトルク対電流特性を有する極数切替型回転電機および極数切替型回転電機の駆動方法を得ることができる。
実施の形態3.
本実施の形態3の回転電機1の固定子コイル9は、図2に示すように4群×3相=12の引出口を有しており、4群3相のインバータ21〜24から、それぞれ対応する群および相の電流が供給される。
まず、本実施の形態3における極数切替型回転電機の構成について説明する。本実施の形態3の回転電機1の固定子コイル9は、図2に示すように4群×3相=12の引出口を有しており、4群3相のインバータ21〜24から、それぞれ対応する電流位相を有する電流が供給される。
すなわち、固定子コイル9の第1群(a1,b1,c1)はインバータ21に接続され、第2群(a2,b2,c2)はインバータ22に接続され、第3群(a3,b3,c3)はインバータ23に接続され、第4群(a4,b4,c4)はインバータ24に接続されている。
また、第1群(a1,b1,c1)の隣り合う電流位相は互いに360°/3=120°の位相差を有している。第2群(a2,b2,c2)、第3群(a3,b3,c3)、第4群(a4,b4,c4)についても同様である。
図8は、本発明の実施の形態3に係る極数切替型回転電機における固定子コイル9の電流位相配置を示す模式図である。図8(a)は、高極(4極)時における2極対分の電流位相配置を示しており、図8(b)は、低極(2極)時における1極対分の電流位相配置を示している。
固定子6には、固定子スロット数=12の固定子スロット8が機械角方向に等間隔に配置され、固定子スロット8には固定子コイル9が格納されている。
インバータ21〜24の制御部3は、固定子コイル9に流れる電流の電流位相配置が、高極時、低極時に、それぞれ図8(a)、図8(b)に示す電流位相配置となるように、固定子コイル9に流す電流位相を制御する。
具体的には、制御部3は、図8では、高極駆動時の極数が、低極駆動時の極数の2倍となり、1極対当りの固定子スロット8に用いられる異なる電流位相の数が、高極駆動時に群数n×相数m/2=6となり、低極駆動時に群数n×相数m=12となるように、固定子コイル9に流れる電流の電流位相を制御している。
次に、本実施の形態3における極数切替型回転電機の動作について説明する。表3は、本発明の実施の形態3に係る極数切替型回転電機において、インバータ21〜24が回転電機1に供給する電流の電流位相順を示す表である。インバータ21〜24の制御部3は、表3に従って、回転電機1の固定子コイル9に流す電流の電流位相を切替え制御する。
Figure 2016114353
これにより、高極時には図8(a)に示す電流位相配置となり、低極時には図8(b)に示す電流位相配置となるような固定子コイル9の電流位相配置の切替え制御を、巻線切替機構を用いることなく実現することができる。
図9は、本発明の実施の形態3に係る極数切替型回転電機における起磁力波形を示す模式図である。図9(a)は、図8(a)に示す高極時の電流位相配置における起磁力波形を示しており、図9(b)は、図8(b)に示す低極時の電流位相配置における起磁力波形を示している。
なお、図9に示す起磁力波形は、固定子スロット8内の固定子コイル9のコイル巻き数が全て等しく、A相,B相,C相,D相,E相,F相,G相,H相,I相,J相,K相,L相にそれぞれ、I×cos(0°),I×cos(−120°),I×cos(−240°),I×cos(−30°),I×cos(−150°),I×cos(−270°),I×cos(−60°),I×cos(−180°),I×cos(−300°),I×cos(−90°),I×cos(−210°),I×cos(−330°)の電流が流れている状態のものである。すなわち、固定子コイル9が発生する固定子スロット8当りの起磁力の絶対値がいずれも等しくなっている。
スロット1周期分(#1−#12)の空間次数をk(kは自然数)とした場合、図9(a)に示す高極時における起磁力波形は、主に2kの空間次数を含む波形となっているのに対し、図9(b)に示す低極時における起磁力波形は、主にkの空間次数を含む波形となっていることが分かる。
すなわち、インバータ21〜24の制御部3が、表3に従って、回転電機1の固定子コイル9に流す電流の電流位相を切替え制御することにより、固定子コイル9の電流位相配置の高極(4極)と低極(2極)との切替え制御が実現されることが分かる。
次に、本実施の形態3における極数切替型回転電機の効果について説明する。図8に示す本実施の形態3の回転電機1は、毎極毎相当りの固定子スロット数が1である。また、相数mは3である。
これにより、本実施の形態3では、n群インバータが制御可能な1極対当たりの電流位相の数である電流位相自由度が高極駆動時に6となるため、従来の極数切替型回転電機(例えば、特許文献2では電流位相自由度=3)と比較して、電流位相自由度を向上させることができる。この結果、互いに隣り合う異なる電流位相間の位相差を360°/6=60°とすることができるので、回転電機1の巻線係数を向上させることができる。
図8に示す極数切替型回転電機では、毎極毎相当りの固定子スロット数として1を想定しているので、分布巻係数kwdとしての最大値1を得ることができる。一方で、特許文献2では、高極時には電流位相自由度が3となるので、本実施の形態3と同様の条件で巻線係数を算出すると巻線係数は、0.866と低い値となってしまう。
以上のように、実施の形態3によれば、インバータ21〜24が制御可能な1極対当たりの電流位相の数である電流位相自由度が、高極時に群数n×相数m/2=6、低極時に群数n×相数m=12、となるように固定子コイルに流す電流位相を切替え制御している。この結果、巻線切替機構を用いることなく、高極時においても優れたトルク対電流特性を有する極数切替型回転電機および極数切替型回転電機の駆動方法を得ることができる。
実施の形態4.
本実施の形態4の回転電機1の固定子コイル9は、図10に示すように8群×3相=24の引出口を有しており、8群3相のインバータ21〜28から、それぞれ対応する群および相の電流が供給される。
まず、本実施の形態4における極数切替型回転電機の構成について説明する。本実施の形態4の回転電機1の固定子コイル9は、図10に示すように8群×3相=24の引出口を有しており、8群3相のインバータ21〜28から、それぞれ対応する電流位相を有する電流が供給される。
すなわち、固定子コイル9の第1群(a1,b1,c1)はインバータ21に接続され、第2群(a2,b2,c2)はインバータ22に接続され、第3群(a3,b3,c3)はインバータ23に接続され、第4群(a4,b4,c4)はインバータ24に接続され、第5群(a5,b5,c5)はインバータ25に接続され、第6群(a6,b6,c6)はインバータ26に接続され、第7群(a7,b7,c7)はインバータ27に接続され、第8群(a8,b8,c8)はインバータ28に接続されている。
また、第1群(a1,b1,c1)の隣り合う電流位相は互いに360°/3=120°の位相差を有している。第2群(a2,b2,c2)、第3群(a3,b3,c3)、第4群(a4,b4,c4)、第5群(a5,b5,c5)、第6群(a6,b6,c6)、第7群(a7,b7,c7)、第8群(a8,b8,c8)についても同様である。
図11は、本発明の実施の形態4に係る極数切替型回転電機における固定子コイル9の電流位相配置を示す模式図である。図11(a)は、高極(4極)時における2極対分の電流位相配置を示しており、図11(b)は、低極(2極)時における1極対分の電流位相配置を示している。
固定子6には、固定子スロット数=24の固定子スロット8が機械角方向に等間隔に配置され、固定子スロット8には固定子コイル9が格納されている。
インバータ21〜28の制御部3は、固定子コイル9に流れる電流の電流位相配置が、高極時、低極時に、それぞれ図11(a)、図11(b)に示す電流位相配置となるように、固定子コイル9に流す電流位相を制御する。
具体的には、制御部3は、図11では、高極駆動時の極数が、低極駆動時の極数の2倍となり、1極対当りの固定子スロット8に用いられる異なる電流位相の数が、高極駆動時に群数n×相数m/2=12、低極駆動時に群数n×相数m=24となるように、固定子コイル9に流れる電流の電流位相を制御している。
次に、本実施の形態4における極数切替型回転電機の動作について説明する。表4は、本発明の実施の形態4に係る極数切替型回転電機において、インバータ21〜28が回転電機1に供給する電流の電流位相順を示す表である。インバータ21〜28の制御部3は、表4に従って、回転電機1の固定子コイル9に流す電流の電流位相を切替え制御する。
Figure 2016114353
これにより、高極時には図11(a)に示す電流位相配置となり、低極時には図11(b)に示す電流位相配置となるような固定子コイル9の電流位相配置の切替え制御を、巻線切替機構を用いることなく実現することができる。
図12は、本発明の実施の形態4に係る極数切替型回転電機における起磁力波形を示す模式図である。図12(a)は、図11(a)に示す高極時の電流位相配置における起磁力波形を示しており、図12(b)は、図11(b)に示す低極時の電流位相配置における起磁力波形を示している。
なお、図12に示す起磁力波形は、固定子スロット8内の固定子コイル9のコイル巻き数が全て等しく、A相,B相,C相,D相,E相,F相,G相,H相,I相,J相,K相,L相,M相,N相,O相,P相,Q相,R相,S相,T相,U相,V相,W相,X相にそれぞれ、I×cos(0°),I×cos(−120°),I×cos(−240°),I×cos(−15°),I×cos(−135°),I×cos(−255°),I×cos(−30°),I×cos(−150°),I×cos(−270°),I×cos(−45°),I×cos(−165°),I×cos(−285°),I×cos(−60°),I×cos(−180°),I×cos(−300°),I×cos(−75°),I×cos(−195°),I×cos(−315°),I×cos(−90°),I×cos(−210°),I×cos(−330°),I×cos(−105°),I×cos(−225°),I×cos(−345°)の電流が流れている状態のものである。すなわち、固定子コイル9が発生する固定子スロット8当りの起磁力の絶対値がいずれも等しくなっている。
スロット1周期分(#1−#24)の空間次数をk(kは自然数)とした場合、図12(a)に示す高極時における起磁力波形は、主に2kの空間次数を含む波形となっているのに対し、図12(b)に示す低極時における起磁力波形は、主にkの空間次数を含む波形となっていることが分かる。
すなわち、インバータ21〜28の制御部3が、表3に従って、回転電機1の固定子コイル9に流す電流の電流位相を切替え制御することにより、固定子コイル9の電流位相配置の高極(4極)と低極(2極)との切替え制御が実現されることが分かる。
次に、本実施の形態4における極数切替型回転電機の効果について説明する。図11に示す本実施の形態4の回転電機1は、毎極毎相当りの固定子スロット数が1である。また、相数mは3である。
これにより、本実施の形態4では、n群インバータが制御可能な1極対当たりの電流位相の数である電流位相自由度が高極駆動時に12となるため、従来の極数切替型回転電機(例えば、特許文献2では電流位相自由度=3)と比較して、電流位相自由度を向上させることができる。この結果、互いに隣り合う異なる電流位相間の位相差を360°/12=30°とすることができるので、回転電機1の巻線係数を向上させることができる。
図11に示す極数切替型回転電機では、毎極毎相当りの固定子スロット数として1を想定しているので、分布巻係数kwdとしての最大値1を得ることができる。一方で、特許文献2では、高極時には電流位相自由度が3となるので、本実施の形態4と同様の条件で巻線係数を算出すると巻線係数は、0.866と低い値となってしまう。
以上のように、実施の形態4によれば、インバータ21〜28が制御可能な1極対当たりの電流位相の数である電流位相自由度が、高極時に群数n×相数m/2=12、低極時に群数n×相数m=24、となるように固定子コイルに流す電流位相を切替え制御している。この結果、巻線切替機構を用いることなく、高極時においても優れたトルク対電流特性を有する極数切替型回転電機および極数切替型回転電機の駆動方法を得ることができる。
また、固定子スロット8の数をnsとして、ns/(群数n×相数m)が自然数となるように固定子スロット8を構成することにより、毎極毎相当りの固定子スロット数を自然数とすることができるので、スロット内における異なる電流位相間の干渉を抑制することができる。
また、図3および図6では、1スロット内に格納される固定子コイル9が2種類であるとしたが、必ずしもこの限りではなく、高極時の起磁力波形の空間次数が、低極時の起磁力波形の空間次数に対して2倍となるようなコイル配置となっていればよい。例えば、1スロット内に格納される固定子コイル9が1種類であってもよい。
また、先の実施の形態1では、固定子スロット数が48で、高極時の毎極毎相当りの固定子スロット数が2であるとしたが、必ずしもこの限りではなく、高極時の分布巻係数が上式(1)で表現されるものであればよい。例えば、固定子スロット数が12で、高極時の毎極毎相当りの固定子スロット数を1とし、各極対毎に配線先のインバータ21〜24を切替えて結線し、2極および4極の極数切替を実現してもよい。
また、回転子10の回転子スロット数および2次導体の数に制限はなく、図1に示すような数に制限されるものではない。また、回転子10は、図1に示すようなかご型回転子に制限されるものではない。回転電機1が誘導機の場合は、回転子10がそれ自体で磁極を持つことはないが、本発明においては、回転子内部に永久磁石等を持ち、それ自体で磁極を持つものに対しても適用可能である。

Claims (9)

  1. 固定子スロットが機械角方向に等間隔に配置された固定子と、前記固定子スロットに格納された固定子コイルに流れる電流が発生する起磁力により回転する回転子とを備えて構成される回転電機と、
    前記固定子コイルにm相電流を供給するn群インバータと、
    前記n群インバータを制御する制御部と、
    を有し、前記固定子スロット当りの前記起磁力のそれぞれは等間隔に配置され、高極駆動時と低極駆動時とで極数を切替える極数切替型回転電機であって、
    前記制御部は、
    前記n群インバータが制御可能な1極対当りの電流位相の数である電流位相自由度が、前記高極駆動時に群数n×相数m/2、前記低極駆動時に群数n×相数m、但し群数nは4の倍数、相数mは群数nと互いに素である3以上の自然数、となるように前記固定子コイルに流れる電流の電流位相を制御する
    極数切替型回転電機。
  2. 前記制御部は、
    前記高極駆動時の極数が、前記低極駆動時の極数の2倍となり、
    1極対当りの前記固定子スロットに用いられる異なる電流位相の数が、前記高極駆動時に群数n×相数m/2となり、前記低極駆動時に群数n×相数mとなるように前記固定子コイルに流れる電流の電流位相を制御する
    請求項1に記載の極数切替型回転電機。
  3. 前記制御部は、
    前記高極駆動時の極数が、前記低極駆動時の極数の2倍となり、
    1極対当りの前記固定子スロットに用いられる異なる電流位相の数が、前記高極駆動時と前記低極駆動時とで等しく、群数n×相数m/2となるように前記固定子コイルに流れる電流の電流位相を制御する
    請求項1に記載の極数切替型回転電機。
  4. 前記固定子スロットの固定子スロット数をnsとするとき、ns/(群数n×相数m)が自然数である
    請求項1から3のいずれか1項に記載の極数切替型回転電機。
  5. 前記群数n=4であり、前記相数m=3である
    請求項4に記載の極数切替型回転電機。
  6. 前記群数n=4であり、前記相数m=5である
    請求項4に記載の極数切替型回転電機。
  7. 前記群数n=8であり、前記相数m=3である
    請求項4に記載の極数切替型回転電機。
  8. 前記回転電機は、誘導機である
    請求項1から7のいずれか1項に記載の極数切替型回転電機。
  9. 固定子スロットが機械角方向に等間隔に配置された固定子と、前記固定子スロットに格納された固定子コイルに流れる電流が発生する起磁力により回転する回転子とを備えて構成される回転電機と、
    前記固定子コイルにm相電流を供給するn群インバータと、
    前記n群インバータを制御する制御部と、
    を有し、前記固定子スロット当りの前記起磁力のそれぞれは等間隔に配置され、高極駆動時と低極駆動時とで極数を切替える極数切替型回転電機の駆動方法であって、
    前記制御部は、前記n群インバータによりm相電流を前記固定子コイルに供給する電流供給ステップを有し、前記電流供給ステップは、
    前記低極駆動時において、
    前記n群インバータが制御可能な1極対当りの電流位相の数である電流位相自由度が、群数n×相数m、但し群数nは4の倍数、相数mは群数nと互いに素である3以上の自然数、となるように前記固定子コイルに流れる電流の電流位相を制御し、
    前記高極駆動時において、前記電流位相自由度が、群数n×相数m/2となるように前記固定子コイルに流す電流の電流位相を切替える
    極数切替型回転電機の駆動方法。
JP2016569505A 2015-01-16 2016-01-14 極数切替型回転電機および極数切替型回転電機の駆動方法 Active JP6227171B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015006929 2015-01-16
JP2015006929 2015-01-16
PCT/JP2016/050993 WO2016114353A1 (ja) 2015-01-16 2016-01-14 極数切替型回転電機および極数切替型回転電機の駆動方法

Publications (2)

Publication Number Publication Date
JPWO2016114353A1 true JPWO2016114353A1 (ja) 2017-04-27
JP6227171B2 JP6227171B2 (ja) 2017-11-08

Family

ID=56405893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016569505A Active JP6227171B2 (ja) 2015-01-16 2016-01-14 極数切替型回転電機および極数切替型回転電機の駆動方法

Country Status (5)

Country Link
US (1) US10312846B2 (ja)
JP (1) JP6227171B2 (ja)
CN (1) CN107112940B (ja)
DE (1) DE112016000359T5 (ja)
WO (1) WO2016114353A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016007043B4 (de) * 2016-07-04 2022-03-10 Mitsubishi Electric Corporation Polzahl-verändernde rotierende elektrische maschine und antriebsverfahren für polzahl-verändernde rotierende elektrische maschine
CN106549621B (zh) * 2017-01-13 2024-01-26 深圳市云林电气技术有限公司 一种电子变极的感应电机控制系统及其控制方法
JP6822430B2 (ja) * 2018-02-19 2021-01-27 株式会社デンソー 極数切替電動機の制御装置
JP6870651B2 (ja) * 2018-04-27 2021-05-12 株式会社デンソー 電動機制御装置
CN111106732B (zh) * 2018-10-25 2022-03-08 中车株洲电力机车研究所有限公司 直线电机的初级绕组及直线电机
WO2021086374A1 (en) 2019-10-31 2021-05-06 Cummins Inc. Method and system for controlling a pole switch in an electric motor
WO2021201983A1 (en) 2020-04-03 2021-10-07 Cummins Inc. Pole switching in multi-phase machines

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189194A (ja) * 1985-02-14 1986-08-22 Mitsubishi Electric Corp 交流エレベ−タの速度制御装置
JPH07322413A (ja) * 1994-05-24 1995-12-08 Hitachi Ltd 回転電機制御装置および電気自動車
JPH07336971A (ja) * 1994-06-14 1995-12-22 Meidensha Corp 誘導電動機及びその運転制御装置
JP2010028957A (ja) * 2008-07-17 2010-02-04 Toyota Central R&D Labs Inc 誘導機及び誘導機極数切換システム
JP2011030406A (ja) * 2009-06-24 2011-02-10 Denso Corp モータ
JP2014168331A (ja) * 2013-02-28 2014-09-11 Toyo Univ 永久磁石式回転電機及び永久磁石式回転電機ドライブシステム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161849A (ja) 1986-12-22 1988-07-05 Toshiba Corp 極数切換形回転電機
JP3399134B2 (ja) * 1994-12-12 2003-04-21 株式会社明電舎 極数切替電動機の運転制御装置
JPH1098859A (ja) 1996-09-20 1998-04-14 Shinko Electric Co Ltd 2極4極切換機能を備えたファンモータとこのファンモータの速度切換方法
JPH1118382A (ja) 1997-06-24 1999-01-22 Meidensha Corp 極数切換回転電機システム
US6727632B2 (en) * 2001-11-27 2004-04-27 Denso Corporation Flat rotary electric machine
KR20040105698A (ko) * 2002-05-29 2004-12-16 마츠시타 덴끼 산교 가부시키가이샤 전동발전기
JP4124425B2 (ja) 2002-07-29 2008-07-23 三菱電機株式会社 電動機およびその駆動装置
DE112006001327B8 (de) * 2005-05-24 2016-09-01 Denso Corporation Mehrphasiger Elektromotor
ATE421490T1 (de) * 2006-07-24 2009-02-15 Akzo Nobel Nv Verwendung von polymerpulver in pflasterfugenmörteln
CN101714848A (zh) * 2009-12-07 2010-05-26 浙江大学 多相感应电机电子变极传动装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189194A (ja) * 1985-02-14 1986-08-22 Mitsubishi Electric Corp 交流エレベ−タの速度制御装置
JPH07322413A (ja) * 1994-05-24 1995-12-08 Hitachi Ltd 回転電機制御装置および電気自動車
JPH07336971A (ja) * 1994-06-14 1995-12-22 Meidensha Corp 誘導電動機及びその運転制御装置
JP2010028957A (ja) * 2008-07-17 2010-02-04 Toyota Central R&D Labs Inc 誘導機及び誘導機極数切換システム
JP2011030406A (ja) * 2009-06-24 2011-02-10 Denso Corp モータ
JP2014168331A (ja) * 2013-02-28 2014-09-11 Toyo Univ 永久磁石式回転電機及び永久磁石式回転電機ドライブシステム

Also Published As

Publication number Publication date
CN107112940B (zh) 2019-07-30
CN107112940A (zh) 2017-08-29
US20170366129A1 (en) 2017-12-21
US10312846B2 (en) 2019-06-04
JP6227171B2 (ja) 2017-11-08
WO2016114353A1 (ja) 2016-07-21
DE112016000359T5 (de) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6227171B2 (ja) 極数切替型回転電機および極数切替型回転電機の駆動方法
WO2018190114A1 (ja) 回転電機及び回転電機システム
US11114912B2 (en) Rotating electric machine
JP2007507192A (ja) 誘導回転子を有する回転電機
JP6877544B2 (ja) 回転電機および直動電動機
JP6180669B1 (ja) 極数切替型回転電機および極数切替型回転電機の駆動方法
JP5301905B2 (ja) 複数相回転電機駆動装置、複数相発電機用コンバータ、複数相回転電機、及び回転電機駆動システム
JP2010088271A (ja) 永久磁石式同期電動機
JP5044315B2 (ja) 電動モータ用アーマチュア、および電動モータ
JP2001169517A (ja) コンデンサ電動機
JP2011041389A (ja) 3相直流モータ
JP2008306913A (ja) 電動モータ用アーマチュア、および電動モータ
JP6579967B2 (ja) モータ
JP5491588B2 (ja) ブラシ付モータ
JP2010004597A (ja) ブラシ付モータ
JP5300339B2 (ja) ブラシ付モータ
JP5602889B2 (ja) 巻線構造、及び回転電機
WO2018003424A1 (ja) 電動機の固定子およびその製造方法
JP2006262596A (ja) 3相交流回転機
JP2020178497A (ja) 回転電機
WO2019049607A1 (ja) モータ
JP2016208685A (ja) 回転電機および回転電機の固定子の製造方法
WO2019003678A1 (ja) モータ
JP2019106879A (ja) ブラシレスdc電気モータ及び関連車両
WO2019049582A1 (ja) モータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171010

R150 Certificate of patent or registration of utility model

Ref document number: 6227171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250