JPWO2016076094A1 - Joining member joining method, metal composition - Google Patents

Joining member joining method, metal composition Download PDF

Info

Publication number
JPWO2016076094A1
JPWO2016076094A1 JP2016558953A JP2016558953A JPWO2016076094A1 JP WO2016076094 A1 JPWO2016076094 A1 JP WO2016076094A1 JP 2016558953 A JP2016558953 A JP 2016558953A JP 2016558953 A JP2016558953 A JP 2016558953A JP WO2016076094 A1 JPWO2016076094 A1 JP WO2016076094A1
Authority
JP
Japan
Prior art keywords
powder
metal composition
joining
alloy powder
joining member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016558953A
Other languages
Japanese (ja)
Inventor
真純 野口
真純 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2016076094A1 publication Critical patent/JPWO2016076094A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Abstract

第1接合部材と第2接合部材との間に、ペースト状の金属組成物を設ける(設置工程)。次に、常温の金属組成物を厚み方向から圧縮しながら、温度プロファイルに従って、例えばリフロー装置を用いて加熱する(加熱工程)。この加熱工程は、加熱温度がSn粉末の融点以上に上がってからSn粉末の融点未満に下がるまでの時間t2−t1(s)に、Sn粉末の融点以上の温度範囲から金属組成物に付与される熱量をS(kK・s)とし、金属組成物に加える圧力をP(N/m2)としたとき、金属組成物に対して、S・P≧15(kK・s・N/m2)を満たす熱処理を施す。A paste-like metal composition is provided between the first joining member and the second joining member (installation step). Next, while compressing the metal composition at normal temperature from the thickness direction, the metal composition is heated using a reflow apparatus, for example, according to the temperature profile (heating process). This heating step is applied to the metal composition from a temperature range equal to or higher than the melting point of the Sn powder at a time t2 to t1 (s) from when the heating temperature rises above the melting point of the Sn powder until it decreases below the melting point of the Sn powder. S · P ≧ 15 (kK · s · N / m2) with respect to the metal composition, where S (kK · s) is the amount of heat generated and P (N / m2) is the pressure applied to the metal composition. Apply heat treatment to fill.

Description

本発明は、2つの接合部材を接合する接合部材の接合方法及びこの接合方法で用いられる金属組成物に関するものである。  The present invention relates to a joining member joining method for joining two joining members and a metal composition used in the joining method.

従来、電子部品等を接合するために、高温鉛はんだが広く用いられてきた。しかし、高温鉛はんだは、人体に有害とされる鉛を含む。  Conventionally, high-temperature lead solder has been widely used to join electronic components and the like. However, high temperature lead solder contains lead which is harmful to the human body.

そこで、鉛フリー化を達成するため、高温鉛はんだに替わる材料の開発が進められてきた。例えば、特許文献1ではソルダペーストが開示されている。このソルダペーストは、Sn粉末と、CuNi合金粉末と、Sn粉末およびCuNi合金粉末のそれぞれを被覆する酸化被膜を還元するフラックスと、を含む。  Therefore, in order to achieve lead-free, development of materials that replace high-temperature lead solder has been advanced. For example, Patent Document 1 discloses a solder paste. This solder paste contains Sn powder, CuNi alloy powder, and a flux that reduces the oxide film covering each of the Sn powder and CuNi alloy powder.

そして、特許文献1の接合方法は、ソルダペーストを、プリント配線基板上に設けられたランド上に設ける。そして、積層セラミックコンデンサを、ソルダペーストを介してランド上にマウントした後、リフロー装置を用いて加熱している。  And the joining method of patent document 1 provides solder paste on the land provided on the printed wiring board. And after mounting a multilayer ceramic capacitor on a land via a solder paste, it heats using a reflow apparatus.

ソルダペーストに含まれるSn粉末と合金粉末とは、加熱されると反応し、金属間化合物を生成する。これにより、金属間化合物を含む金属部材が、プリント配線基板上に設けられたランドと、積層セラミックコンデンサに設けられた外部電極とを接合する。  The Sn powder and alloy powder contained in the solder paste react when heated to produce an intermetallic compound. Thereby, the metal member containing an intermetallic compound joins the land provided on the printed wiring board and the external electrode provided on the multilayer ceramic capacitor.

国際公開第2011/027659号パンフレットInternational Publication No. 2011/027659 Pamphlet

しかしながら、特許文献1のソルダペーストを加熱すると、ソルダペースト中のフラックスの酸化還元反応によってHOガスが発生したりフラックスが揮発したりし、大量のガスが発生する。その結果、金属間化合物を主相とする金属間化合物部材中に大量のボイド(気泡)が発生する。よって、特許文献1の接合方法には、大量のボイドによって接合強度が低下するという問題がある。However, when the solder paste of Patent Document 1 is heated, H 2 O gas is generated or flux is volatilized due to the oxidation-reduction reaction of the flux in the solder paste, and a large amount of gas is generated. As a result, a large amount of voids (bubbles) are generated in the intermetallic compound member having the intermetallic compound as the main phase. Therefore, the bonding method of Patent Document 1 has a problem that the bonding strength is reduced by a large amount of voids.

本発明の目的は、接合強度を向上できる接合部材の接合方法及び金属組成物を提供することにある。  The objective of this invention is providing the joining method and metal composition of a joining member which can improve joining strength.

本発明の接合部材の接合方法は、設置工程と、加熱工程と、を有する。  The joining method of the joining member of this invention has an installation process and a heating process.

設置工程は、CuNi合金粉末またはCuMn合金粉末とSn粉末とを含む金属組成物を2つの接合部材間に設ける。  In the installation step, a metal composition containing CuNi alloy powder or CuMn alloy powder and Sn powder is provided between the two joining members.

加熱工程は、加熱温度がSn粉末の融点以上に上がってからSn粉末の融点未満に下がるまでの時間に、Sn粉末の融点以上の温度範囲から金属組成物に付与される熱量をSとし、金属組成物に加える圧力をPとしたとき、金属組成物に対して、S・P≧15(kK・s・N/m)を満たす熱処理を施す。In the heating step, S is defined as the amount of heat applied to the metal composition from the temperature range above the melting point of the Sn powder until the heating temperature rises above the melting point of the Sn powder and then falls below the melting point of the Sn powder. When the pressure applied to the composition is P, the metal composition is subjected to heat treatment satisfying S · P ≧ 15 (kK · s · N / m 2 ).

加熱工程は、金属組成物に対する熱処理において、CuNi合金粉末またはCuMn合金粉末とSn粉末との反応により、Sn、CuおよびNiからなる群より選ばれる少なくとも2種を含んだ金属間化合物またはSn、CuおよびMnからなる群より選ばれる少なくとも2種を含んだ金属間化合物を主相とする金属間化合物相を形成する。  In the heat treatment for the metal composition, an intermetallic compound containing at least two selected from the group consisting of Sn, Cu and Ni, or Sn, Cu by a reaction of CuNi alloy powder or CuMn alloy powder and Sn powder in the heat treatment for the metal composition And an intermetallic compound phase having as its main phase an intermetallic compound containing at least two selected from the group consisting of Mn.

S・P<15(kK・s・N/m)を満たす熱処理を施した金属組成物では、接合強度が低いが、S・P≧15(kK・s・N/m)を満たす熱処理を施した金属組成物では、接合強度が急激に高まる。A metal composition subjected to heat treatment satisfying S · P <15 (kK · s · N / m 2 ) has a low bonding strength but satisfies S · P ≧ 15 (kK · s · N / m 2 ). In the metal composition subjected to the above, the bonding strength increases rapidly.

この理由は、S・P≧15(kK・s・N/m)を満たす熱処理が、金属間化合物相中にボイド(気泡)が発生することを抑制できるためであると考えられる。The reason for this is considered that heat treatment satisfying S · P ≧ 15 (kK · s · N / m 2 ) can suppress the generation of voids (bubbles) in the intermetallic compound phase.

したがって、本発明の接合方法によれば、ボイドの発生を抑制し、接合強度を向上できる。  Therefore, according to the bonding method of the present invention, the generation of voids can be suppressed and the bonding strength can be improved.

なお、圧力Pは、1MPa以上30MPa以下の範囲内であることが好ましい。  The pressure P is preferably in the range of 1 MPa to 30 MPa.

また、本発明の接合方法において、金属組成物は、Sn粉末、CuNi合金粉末またはCuMn合金粉末、及び接合部材のそれぞれを被覆する酸化被膜を還元するフラックスを含まなくても構わない。本発明の接合方法によれば、フラックスを含まなくても、金属組成物が2つの接合部材を接合できる。  In the bonding method of the present invention, the metal composition may not include a flux that reduces the oxide film covering each of the Sn powder, the CuNi alloy powder or the CuMn alloy powder, and the bonding member. According to the joining method of the present invention, the metal composition can join two joining members without including a flux.

また、本発明の接合方法において、金属組成物は、Sn粉末、CuNi合金粉末またはCuMn合金粉末、及び接合部材のそれぞれを被覆する酸化被膜を還元するフラックスを含まないことが好ましい。本発明の接合方法によれば、フラックスを含む場合の接合強度よりフラックスを含まない場合の接合強度の方が高い。  In the joining method of the present invention, it is preferable that the metal composition does not contain a flux that reduces the Sn powder, the CuNi alloy powder or the CuMn alloy powder, and the oxide film covering each of the joining members. According to the bonding method of the present invention, the bonding strength when the flux is not included is higher than the bonding strength when the flux is included.

また、本発明の接合方法において、金属組成物はペースト状に成形されていることが好ましい。  In the bonding method of the present invention, the metal composition is preferably formed into a paste.

この接合方法では、金属成分の流動性が高まり、溶融したSnとCuNi合金粉末またはCuMn合金粉末とが接触し易くなる。すなわち、溶融したSnとCuNi合金粉末またはCuMn合金粉末とが反応し易くなる。  In this joining method, the fluidity of the metal component is increased, and the molten Sn and the CuNi alloy powder or CuMn alloy powder are easily brought into contact with each other. That is, it becomes easy for the molten Sn and CuNi alloy powder or CuMn alloy powder to react.

また、本発明の接合方法において、接合部材の少なくとも表面は、Cu又はNiで構成されていることが好ましい。  Moreover, in the joining method of this invention, it is preferable that at least the surface of a joining member is comprised with Cu or Ni.

この接合方法では、金属組成物が加熱されると、同時に、接合部材の表面を構成するCu又はNiと溶融したSnとの反応によって、接合部材と金属組成物との間に合金層が生成される。そのため、接合部材と金属組成物との間は強固に接合される。  In this joining method, when the metal composition is heated, at the same time, an alloy layer is formed between the joining member and the metal composition by a reaction between Cu or Ni constituting the surface of the joining member and molten Sn. The Therefore, the joining member and the metal composition are firmly joined.

また、本発明の接合方法において、接合部材は電極端子であり、金属組成物は導電性を有することが好ましい。  Moreover, in the joining method of this invention, it is preferable that a joining member is an electrode terminal and a metal composition has electroconductivity.

この接合方法では、電極端子どうしの接合に金属組成物を用いることができる。  In this joining method, a metal composition can be used for joining electrode terminals.

また、本発明の金属組成物は、CuNi合金粉末またはCuMn合金粉末とSn粉末とを含み、
加熱温度がSn粉末の融点以上に上がってからSn粉末の融点未満に下がるまでの時間に、Sn粉末の融点以上の温度範囲から金属組成物に付与される熱量をSとし、金属組成物に加える圧力をPとしたとき、
S・P≧15(kK・s・N/m)を満たす熱処理によりCuNi合金粉末またはCuMn合金粉末とSn粉末とが反応し、Sn、CuおよびNiからなる群より選ばれる少なくとも2種を含んだ金属間化合物またはSn、CuおよびMnからなる群より選ばれる少なくとも2種を含んだ金属間化合物を主相とする金属間化合物相を形成する。
Moreover, the metal composition of the present invention includes CuNi alloy powder or CuMn alloy powder and Sn powder,
The amount of heat applied to the metal composition from the temperature range above the melting point of the Sn powder is added to the metal composition during the time from when the heating temperature rises above the melting point of the Sn powder to below the melting point of the Sn powder. When the pressure is P,
CuNi alloy powder or CuMn alloy powder reacts with Sn powder by heat treatment satisfying S · P ≧ 15 (kK · s · N / m 2 ), and contains at least two selected from the group consisting of Sn, Cu and Ni An intermetallic compound phase having an intermetallic compound or an intermetallic compound containing at least two selected from the group consisting of Sn, Cu and Mn as a main phase is formed.

この構成において本発明の金属組成物は、本発明の接合部材の接合方法で用いられる。そのため、本発明の金属組成物は、本発明の接合部材の接合方法と同様の効果を奏する。  In this configuration, the metal composition of the present invention is used in the bonding method of the bonding member of the present invention. Therefore, the metal composition of this invention has the same effect as the joining method of the joining member of this invention.

本発明によれば、ボイドの発生を抑制し、接合強度を向上できる。  According to the present invention, it is possible to suppress the generation of voids and improve the bonding strength.

本発明の第1実施形態に係る接合部材の接合方法で行われる設置工程を模式的に示す断面図である。It is sectional drawing which shows typically the installation process performed with the joining method of the joining member which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る接合部材の接合方法で行われる加熱工程を模式的に示す断面図である。It is sectional drawing which shows typically the heating process performed with the joining method of the joining member which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る接合部材の接合方法で得られた接合構造100を模式的に示す断面図である。It is sectional drawing which shows typically the joining structure 100 obtained with the joining method of the joining member which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る接合部材の接合方法で行われる加熱工程の温度プロファイルを示す図である。It is a figure which shows the temperature profile of the heating process performed with the joining method of the joining member which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る接合部材の接合方法で行われる設置工程を模式的に示す断面図である。It is sectional drawing which shows typically the installation process performed with the joining method of the joining member which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る接合部材の接合方法で行われる加熱工程を模式的に示す断面図である。It is sectional drawing which shows typically the heating process performed with the joining method of the joining member which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る接合部材の接合方法で得られた接合構造200を模式的に示す断面図である。It is sectional drawing which shows typically the joining structure 200 obtained with the joining method of the joining member which concerns on 2nd Embodiment of this invention.

以下、本発明の第1実施形態に係る接合部材の接合方法について説明する。  Hereinafter, the joining method of the joining member which concerns on 1st Embodiment of this invention is demonstrated.

図1は、本発明の第1実施形態に係る接合部材の接合方法で行われる設置工程を模式的に示す断面図である。図2は、本発明の第1実施形態に係る接合部材の接合方法で行われる加熱工程を模式的に示す断面図である。図3は、本発明の第1実施形態に係る接合部材の接合方法で得られた接合構造100を模式的に示す断面図である。図4は、本発明の第1実施形態に係る接合部材の接合方法で行われる加熱工程の温度プロファイルを示す図である。  FIG. 1 is a cross-sectional view schematically showing an installation process performed by the joining method for joining members according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view schematically showing a heating step performed by the joining member joining method according to the first embodiment of the present invention. FIG. 3 is a cross-sectional view schematically showing a joining structure 100 obtained by the joining method for joining members according to the first embodiment of the present invention. FIG. 4 is a view showing a temperature profile of a heating process performed by the joining member joining method according to the first embodiment of the present invention.

まず、金属組成物105と第1接合部材101と第2接合部材102とを用意する。金属組成物105は、ペースト状に成形されている。金属組成物105は、図1に示すように、例えば、第1接合部材101と第2接合部材102とを接合するために用いられる。  First, the metal composition 105, the first joining member 101, and the second joining member 102 are prepared. The metal composition 105 is formed into a paste. As shown in FIG. 1, the metal composition 105 is used, for example, to join the first joining member 101 and the second joining member 102.

第1接合部材101は、例えば、バスバーのような単独で構成される電極部材であってもよいし、積層セラミックコンデンサ等の電子部品の表面電極のような素体の表面に形成された電極部材であってもよい。  The first bonding member 101 may be, for example, a single electrode member such as a bus bar, or an electrode member formed on the surface of an element body such as a surface electrode of an electronic component such as a multilayer ceramic capacitor. It may be.

第2接合部材102は、例えば、バスバーのような単独で構成される電極部材であってもよいし、第1接合部材が電子部品の表面電極であれば、この電子部品を実装するプリント配線基板の表面に設けられた電極部材である。  The second joining member 102 may be, for example, a single electrode member such as a bus bar. If the first joining member is a surface electrode of an electronic component, the printed wiring board on which the electronic component is mounted. It is an electrode member provided on the surface.

バスバーは、大電流が流れる電極端子である。金属組成物105は、バスバーどうしの接合に用いることができる。また、第1接合部材101及び第2接合部材102の少なくとも表面は、めっき処理が施され、Cu膜で覆われている。  The bus bar is an electrode terminal through which a large current flows. The metal composition 105 can be used for joining bus bars. In addition, at least surfaces of the first bonding member 101 and the second bonding member 102 are plated and covered with a Cu film.

金属組成物105は、金属成分110と有機成分108とを含む。金属成分110は、Sn粉末106と、CuNi合金粉末107と、からなる。本実施形態では、金属組成物105において、金属成分110の含有量は、100/110重量部であり、有機成分108の含有量は、10/110重量部である。また、金属成分110においてSn粉末106の含有量は、65重量部であり、CuNi合金粉末107の含有量は、35重量部である。  The metal composition 105 includes a metal component 110 and an organic component 108. The metal component 110 is composed of Sn powder 106 and CuNi alloy powder 107. In the present embodiment, in the metal composition 105, the content of the metal component 110 is 100/110 parts by weight, and the content of the organic component 108 is 10/110 parts by weight. Further, in the metal component 110, the content of the Sn powder 106 is 65 parts by weight, and the content of the CuNi alloy powder 107 is 35 parts by weight.

CuNi合金粉末107は、金属組成物105の加熱によって溶融するSn粉末106と反応し、金属間化合物を生成し得る。本実施形態において、金属間化合物の詳細については後述する。  The CuNi alloy powder 107 can react with the Sn powder 106 that is melted by heating the metal composition 105 to generate an intermetallic compound. In the present embodiment, details of the intermetallic compound will be described later.

なお、Sn粉末106とCuNi合金粉末107との配合比は、重量比で、Sn粉末:CuNi合金粉末=5:95〜50:50の範囲内であることが好ましい。Sn粉末106の配合量が多すぎると、反応後に未反応のSn成分が過剰に残存するおそれがある。一方、CuNi合金粉末107の配合量が多すぎると、反応後に未反応のCuNi合金成分が過剰に残存するおそれがある。  In addition, it is preferable that the compounding ratio of Sn powder 106 and CuNi alloy powder 107 exists in the range of Sn powder: CuNi alloy powder = 5: 95-50: 50 by weight ratio. If the blending amount of the Sn powder 106 is too large, an unreacted Sn component may remain excessively after the reaction. On the other hand, if the amount of the CuNi alloy powder 107 is too large, an unreacted CuNi alloy component may remain excessively after the reaction.

また、Sn粉末106の平均粒径(D50)は、5〜50μmの範囲内であることが好ましい。さらに、CuNi合金粉末107の平均粒径(D50)は、0.1〜80μmの範囲内であることが好ましい。本実施形態では、平均粒径20μmのSn粉末、及び平均粒径5μmのCuNi合金粉末を用いた。Sn粉末106は例えば、SFR−Sn−10(日本アトマイズ製)を用いる。  Moreover, it is preferable that the average particle diameter (D50) of Sn powder 106 exists in the range of 5-50 micrometers. Furthermore, the average particle diameter (D50) of the CuNi alloy powder 107 is preferably in the range of 0.1 to 80 μm. In this embodiment, Sn powder having an average particle diameter of 20 μm and CuNi alloy powder having an average particle diameter of 5 μm were used. For example, SFR-Sn-10 (manufactured by Nippon Atomize) is used as the Sn powder 106.

Sn粉末106の平均粒径が5μmよりも小さいと、Sn粉末106が溶融しないことがある。一方、Sn粉末106の平均粒径が50μmよりも大きいと、反応物内での組成バラツキが大きくなってしまうことがある。  If the average particle diameter of the Sn powder 106 is smaller than 5 μm, the Sn powder 106 may not melt. On the other hand, when the average particle size of the Sn powder 106 is larger than 50 μm, the composition variation in the reaction product may increase.

また、CuNi合金粉末107の平均粒径が0.1μmよりも小さいと、CuNi合金粉末107とSn粉末106の濡れ性が悪くなって分離してしまうことがある。一方、CuNi合金粉末107の平均粒径が80μmよりも大きいと、反応後に未反応のCuNi合金粉末107が過剰に残存するおそれがある。  Further, if the average particle size of the CuNi alloy powder 107 is smaller than 0.1 μm, the wettability of the CuNi alloy powder 107 and the Sn powder 106 may be deteriorated and separated. On the other hand, if the average particle size of the CuNi alloy powder 107 is larger than 80 μm, the unreacted CuNi alloy powder 107 may remain excessively after the reaction.

次に、有機成分108は、フラックス、溶剤、チキソ剤などを含む。フラックスは、ロジンと活性剤を含む。フラックスは、第1接合部材101、第2接合部材102、Sn粉末106、及びCuNi合金粉末107のそれぞれの表面の酸化被膜を除去する機能を果たす。  Next, the organic component 108 includes a flux, a solvent, a thixotropic agent, and the like. The flux contains rosin and an activator. The flux functions to remove oxide films on the surfaces of the first bonding member 101, the second bonding member 102, the Sn powder 106, and the CuNi alloy powder 107.

ロジンは例えば、ロジンを変性した変性ロジン及びロジンなどの誘導体からなるロジン系樹脂、その誘導体からなる合成樹脂、またはこれらの混合体などである。ロジンは例えば、重合ロジンR−95(荒川化学製)を用いる。  The rosin is, for example, a modified rosin modified with rosin and a rosin resin composed of a derivative such as rosin, a synthetic resin composed of the derivative, or a mixture thereof. For example, polymerized rosin R-95 (manufactured by Arakawa Chemical) is used as the rosin.

また、活性剤は例えば、アミンのハロゲン化水素酸塩、有機ハロゲン化合物、有機酸、有機アミン、多価アルコールなどである。活性剤は例えば、アジピン酸(和光純薬製)を用いる。その他、活性剤はセバシン酸(和光純薬製)を用いても良い。  Examples of the activator include amine hydrohalides, organic halogen compounds, organic acids, organic amines, and polyhydric alcohols. For example, adipic acid (manufactured by Wako Pure Chemical Industries) is used as the activator. In addition, sebacic acid (manufactured by Wako Pure Chemical Industries) may be used as the active agent.

溶剤は、金属組成物105の粘度を調整する。溶剤は例えば、アルコール、ケトン、エステル、エーテル、芳香族系、炭化水素類などである。溶剤は例えば、ヘキシルジグリコール(HeDG)(東邦化学製)を用いる。  The solvent adjusts the viscosity of the metal composition 105. Examples of the solvent include alcohols, ketones, esters, ethers, aromatics, and hydrocarbons. For example, hexyl diglycol (HeDG) (manufactured by Toho Chemical) is used as the solvent.

チキソ剤は、金属成分110と有機成分108を均一に混和させた後、これらが分離しないようにバインダーとして維持する。チキソ剤は例えば、硬化ヒマシ油、カルナバワックス、アミド類、ヒドロキシ脂肪酸類、ジベンジリデンソルビトール、ビス(p−メチルベンジリデン)ソルビトール類、蜜蝋、ステアリン酸アミド、ヒドロキシステアリン酸エチレンビスアミドなどである。  The thixotropic agent is maintained as a binder so that the metal component 110 and the organic component 108 are uniformly mixed and then they are not separated. Examples of the thixotropic agent include hydrogenated castor oil, carnauba wax, amides, hydroxy fatty acids, dibenzylidene sorbitol, bis (p-methylbenzylidene) sorbitol, beeswax, stearamide, hydroxystearic acid ethylenebisamide, and the like.

次に、図3に示す接合構造100を得るため、図1に示すように、第1接合部材101と第2接合部材102との間に、ペースト状の金属組成物105を設ける(設置工程)。  Next, in order to obtain the joining structure 100 shown in FIG. 3, as shown in FIG. 1, a paste-like metal composition 105 is provided between the first joining member 101 and the second joining member 102 (installation step). .

次に、図1に示した常温の金属組成物105を厚み方向から圧縮しながら、図4に示す温度プロファイルに従って、例えばリフロー装置を用いて加熱する(加熱工程)。  Next, while compressing the metal composition 105 at room temperature shown in FIG. 1 from the thickness direction, the metal composition 105 is heated using, for example, a reflow apparatus according to the temperature profile shown in FIG. 4 (heating process).

加熱により金属組成物105がSnの融点T以上に達すると、Sn粉末106が、図2に示すように溶融する。Snの融点Tは、231.9℃である。When the metal composition 105 by heating reaches above the melting point T m of a Sn, Sn powder 106 melts as shown in FIG. Melting point T m of a Sn is 231.9 ° C..

なお、有機成分108に含まれる溶剤は、加熱を開始してから、時間tが経過するまでの間に、燃焼または分解する。Note that the solvent contained in the organic component 108 is combusted or decomposed between the start of heating and the elapse of time t 1 .

溶融したSnと、CuNi合金粉末107との反応によって金属間化合物が生成される。この反応は、例えば、液相拡散接合(「TLP接合:TransientLiquid
Phase DiffusionBonding」)に伴う反応である。生成される金属間化合物は、Cu、NiおよびSnからなる群より選ばれる少なくとも2種を含んだ合金である。具体的には、金属間化合物は、例えばCuSn、NiSn、CuNiSn等である。
An intermetallic compound is produced by a reaction between the molten Sn and the CuNi alloy powder 107. This reaction can be performed, for example, by liquid phase diffusion bonding (“TLP bonding: Transient Liquid”).
Phase Diffusion Bonding ”). The produced intermetallic compound is an alloy containing at least two selected from the group consisting of Cu, Ni and Sn. Specifically, intermetallic compounds are, for example, Cu 6 Sn 5, Ni 3 Sn 4, Cu 2 NiSn like.

次に、図4に示すように、時間tが経過した後、リフロー装置は加熱を停止する。これにより、溶融したSnとCuNi合金粉末107との反応は完了し、金属組成物105は、金属ペーストから、図3に示すようにCuNi合金粉末107を含む金属間化合物相109へ変化する。Next, as shown in FIG. 4, after the time t 2, the reflow apparatus stops heating. Thereby, the reaction between the molten Sn and the CuNi alloy powder 107 is completed, and the metal composition 105 changes from the metal paste to the intermetallic compound phase 109 containing the CuNi alloy powder 107 as shown in FIG.

また、金属組成物105が加熱されると、同時に、第1接合部材101及び第2接合部材102の表面を覆うCu膜と溶融したSnとの化学反応によって、図3に示すようにCuSn合金層25が生成される。CuSn合金層25は、例えばCuSn、CuSn からなる。  Further, when the metal composition 105 is heated, simultaneously, a CuSn alloy layer as shown in FIG. 3 is caused by a chemical reaction between the Cu film covering the surfaces of the first bonding member 101 and the second bonding member 102 and molten Sn. 25 is generated. The CuSn alloy layer 25 is, for example, Cu3Sn, Cu6Sn 5Consists of.

なお、時間tの後、金属組成物105は常温まで自然冷却していく。Incidentally, after the time t 2, the metal composition 105 continue to cool to room temperature.

ここで、以上の加熱工程は、加熱温度がSn粉末の融点T(K)以上に上がってからSn粉末の融点未満に下がるまでの時間(t−t)(s)に、Sn粉末の融点T以上の温度範囲から金属組成物105に付与される熱量をS(kK・s)とし、金属組成物105に加える圧力をP(N/m)としたとき、金属組成物105に対して、S・P≧15(kK・s・N/m)を満たす熱処理を施す。Here, the above heating step is performed by adding Sn powder to the time (t 2 -t 1 ) (s) from when the heating temperature rises to the melting point T m (K) or higher of the Sn powder and then falls below the melting point of the Sn powder. When the amount of heat applied to the metal composition 105 from the temperature range of the melting point Tm or higher is S (kK · s) and the pressure applied to the metal composition 105 is P (N / m 2 ), the metal composition 105 In contrast, heat treatment satisfying S · P ≧ 15 (kK · s · N / m 2 ) is performed.

熱処理におけるピーク温度は、第1金属Snの融点(231.9℃)以上の温度であり、例えば250℃〜300℃である。また、加熱時間(t−t)(s)は、例えば30秒〜180秒である。The peak temperature in the heat treatment is a temperature equal to or higher than the melting point (231.9 ° C.) of the first metal Sn, and is, for example, 250 ° C. to 300 ° C. The heating time (t 2 -t 1) (s ) is, for example, 30 to 180 seconds.

図4に示すように、Sn粉末の融点T以上の温度範囲から金属組成物105に付与される熱量S(kK・s)は、以下の数式で示される。f(t)は、所定の時間tにおける接合部(金属組成物105)の温度を示す温度関数である。熱量Sの単位kKは、kilo kelvinの略である。As shown in FIG. 4, the amount of heat S (kK · s) imparted to the metal composition 105 from the temperature range of the Sn powder melting point Tm or higher is expressed by the following mathematical formula. f T (t) is a temperature function indicating the temperature of the joint (metal composition 105) at a predetermined time t. The unit kK of the heat quantity S is an abbreviation for “kilo kelvin”.

Figure 2016076094
Figure 2016076094

なお、1MPa未満では金属組成物105を減圧することとなり、30MPaより高い場合は第1接合部材101及び第2接合部材102が破損するおそれがあるため、圧力Pは、1MPa以上30MPa以下の範囲内であることが好ましい。圧力Pは、後述の加圧冶具により設定する。  If the pressure is less than 1 MPa, the metal composition 105 is depressurized. If the pressure is higher than 30 MPa, the first bonding member 101 and the second bonding member 102 may be damaged. Therefore, the pressure P is in the range of 1 MPa to 30 MPa. It is preferable that The pressure P is set by a pressure jig described later.

以上の接合方法により、第1接合部材101と第2接合部材102とを接合する接合構造100が得られる。Cu、NiおよびSnからなる群より選ばれる少なくとも2種を含んだ金属間化合物は、高い融点(例えば400℃以上)を有する。そのため、この金属間化合物で構成される金属組成物105(図3参照)は、高い耐熱性を有する。  The joining structure 100 which joins the 1st joining member 101 and the 2nd joining member 102 by the above joining method is obtained. The intermetallic compound containing at least two selected from the group consisting of Cu, Ni and Sn has a high melting point (for example, 400 ° C. or higher). Therefore, the metal composition 105 (refer FIG. 3) comprised with this intermetallic compound has high heat resistance.

また、図3に示すようにCuSn合金層25が生成される。そのため、第1接合部材101と第2接合部材102と金属組成物105との間は強固に接合される。  Further, as shown in FIG. 3, a CuSn alloy layer 25 is generated. Therefore, the first bonding member 101, the second bonding member 102, and the metal composition 105 are firmly bonded.

また、金属組成物105がペースト状に成形されているため、金属成分110の流動性が高まり、溶融したSnとCuNi合金粉末107とが接触し易くなる。すなわち、溶融したSnとCuNi合金粉末107とが反応し易くなる。  Further, since the metal composition 105 is formed in a paste shape, the fluidity of the metal component 110 is increased, and the molten Sn and the CuNi alloy powder 107 are easily brought into contact with each other. That is, the molten Sn and the CuNi alloy powder 107 are likely to react.

以下、本発明の第1実施形態の比較例に係る接合部材の接合方法について説明する。  Hereinafter, the joining method of the joining member which concerns on the comparative example of 1st Embodiment of this invention is demonstrated.

第1実施形態の比較例に係る接合部材の接合方法が、第1実施形態に係る接合部材の接合方法と相違する点は、金属組成物105に対して、S・P<15(kK・s・N/m)を満たす熱処理を施す点である。その他の点に関しては同じであるため、説明を省略する。The joining member joining method according to the comparative example of the first embodiment differs from the joining member joining method according to the first embodiment in that S · P <15 (kK · s) with respect to the metal composition 105. -It is the point which performs the heat processing which satisfy | fills N / m < 2 >). Since the other points are the same, the description is omitted.

以下、前述の熱量Sと圧力Pを変えて、第1実施形態の接合方法及びその比較例の接合方法で複数の試料を作製し、各試料の接合強度を評価した実験例について詳述する。評価は接着材の引張りせん断接着強さ試験方法(JISK6850)を参考に行った。  Hereinafter, experimental examples in which a plurality of samples are produced by the joining method of the first embodiment and the joining method of the comparative example while changing the amount of heat S and the pressure P described above and the joining strength of each sample are evaluated will be described in detail. The evaluation was performed with reference to the tensile shear bond strength test method (JIS K6850) of the adhesive.

詳述すると、まず、第1接合部材101及び第2接合部材102として、一対の無酸素銅板を準備した。各無酸素銅板の寸法は、幅10mm、厚み2mm、長さ20mmである。各無酸素銅板の端部より5mmの範囲に2.5mgのペースト(金属組成物105)を塗布して各無酸素銅板を重ね合わせ、加圧冶具により1MPa〜15MPaの圧力を2枚の無酸素銅板の接合部に加えた。230℃〜400℃に熱したオーブンに2枚の無酸素銅板(試料)を入れ、加圧冶具ごと接合部を加熱した。所定の時間加圧・加熱した後、試料を加圧冶具から取り除き、接合された銅板(接合構造100)を得た。図4に示すように、加熱している間の接合部の温度を測定し、SおよびPを求めた。  More specifically, first, a pair of oxygen-free copper plates was prepared as the first bonding member 101 and the second bonding member 102. Each oxygen-free copper plate has a width of 10 mm, a thickness of 2 mm, and a length of 20 mm. Apply 2.5 mg of paste (metal composition 105) within a range of 5 mm from the end of each oxygen-free copper plate, stack each oxygen-free copper plate, and apply two pressure-sensitive oxygen pressures of 1 MPa to 15 MPa with a pressure jig. Added to the copper plate joint. Two oxygen-free copper plates (samples) were placed in an oven heated to 230 ° C. to 400 ° C., and the joint was heated together with the pressure jig. After pressing and heating for a predetermined time, the sample was removed from the pressing jig to obtain a bonded copper plate (bonding structure 100). As shown in FIG. 4, the temperature of the joint during heating was measured, and S and P were obtained.

この実験例では、各試料の接合強度を、引張りせん断強度(MPa)で評価した。引張りせん断強度(MPa)は、図3の矢印に示すように、第1接合部材101の端と第2接合部材102の端とを反対方向へ引っ張って測定した。  In this experimental example, the bonding strength of each sample was evaluated by tensile shear strength (MPa). The tensile shear strength (MPa) was measured by pulling the end of the first joining member 101 and the end of the second joining member 102 in opposite directions as indicated by the arrows in FIG.

前述の熱量Sと圧力Pを変えて作製した48個の試料のS・P値を表1に示す。そして、48個の試料のそれぞれの引張りせん断強度(MPa)を表2に示す。  Table 1 shows S · P values of 48 samples prepared by changing the heat quantity S and the pressure P described above. Table 2 shows the tensile shear strength (MPa) of each of the 48 samples.

Figure 2016076094
Figure 2016076094

Figure 2016076094
Figure 2016076094

なお、表2における「−」は、引張りせん断強度が極めて弱く、引張りせん断強度を測定できなかったことを示している。  In addition, “-” in Table 2 indicates that the tensile shear strength was extremely weak and the tensile shear strength could not be measured.

実験より、S・P<15(kK・s・N/m)を満たす熱処理を施した比較例の試料では、引張りせん断強度が9MPa未満であることが明らかとなった。From the experiment, it was revealed that the tensile shear strength was less than 9 MPa in the sample of the comparative example subjected to the heat treatment satisfying S · P <15 (kK · s · N / m 2 ).

一方、S・P≧15(kK・s・N/m)を満たす熱処理を施した試料では、引張りせん断強度が10MPa以上と急激に高まることが明らかとなった。On the other hand, in the sample subjected to the heat treatment satisfying S · P ≧ 15 (kK · s · N / m 2 ), it was revealed that the tensile shear strength rapidly increased to 10 MPa or more.

以上のような結果となった理由は、S・P≧15(kK・s・N/m)を満たす熱処理が、金属間化合物相109中にボイド(気泡)が発生することを抑制できたためであると考えられる。すなわち、S・P≧15(kK・s・N/m)を満たす熱処理によって生成された金属組成物105は、ボイドの少ない緻密な構造を有すると考えられる。The reason for the above results is that the heat treatment satisfying S · P ≧ 15 (kK · s · N / m 2 ) can suppress the generation of voids (bubbles) in the intermetallic compound phase 109. It is thought that. That is, it is considered that the metal composition 105 generated by the heat treatment satisfying S · P ≧ 15 (kK · s · N / m 2 ) has a dense structure with few voids.

したがって、本実施形態の接合方法によれば、S・P≧15(kK・s・N/m)を満たす熱処理を行うことにより、ボイドの発生を抑制し、接合強度を向上できる。Therefore, according to the bonding method of the present embodiment, by performing heat treatment satisfying S · P ≧ 15 (kK · s · N / m 2 ), generation of voids can be suppressed and bonding strength can be improved.

ただし、反応前のペースト状の金属組成物105の有機成分108がフラックスを含むため、図3に示すように、金属組成物105中に極僅かなボイド99が残留する。  However, since the organic component 108 of the paste-like metal composition 105 before the reaction contains a flux, an extremely slight void 99 remains in the metal composition 105 as shown in FIG.

以下、本発明の第2実施形態に係る接合部材の接合方法について説明する。  Hereinafter, the joining method of the joining member which concerns on 2nd Embodiment of this invention is demonstrated.

図5は、本発明の第2実施形態に係る接合部材の接合方法で行われる設置工程を模式的に示す断面図である。図6は、本発明の第2実施形態に係る接合部材の接合方法で行われる加熱工程を模式的に示す断面図である。図7は、本発明の第2実施形態に係る接合部材の接合方法で得られた接合構造200を模式的に示す断面図である。  FIG. 5: is sectional drawing which shows typically the installation process performed with the joining method of the joining member which concerns on 2nd Embodiment of this invention. FIG. 6: is sectional drawing which shows typically the heating process performed with the joining method of the joining member which concerns on 2nd Embodiment of this invention. FIG. 7 is a cross-sectional view schematically showing a joint structure 200 obtained by the joint member joining method according to the second embodiment of the present invention.

第2実施形態に係る接合部材の接合方法が、第1実施形態に係る接合部材の接合方法と相違する点は、反応前のペースト状の金属組成物205の有機成分208がフラックスを含まない点である。本実施形態では、金属組成物205において、金属成分110の含有量は、100/110重量部であり、有機成分208の含有量は、10/110重量部である。その他の点に関しては同じであるため、説明を省略する。  The difference between the bonding method of the bonding member according to the second embodiment and the bonding method of the bonding member according to the first embodiment is that the organic component 208 of the paste-like metal composition 205 before the reaction does not contain a flux. It is. In the present embodiment, in the metal composition 205, the content of the metal component 110 is 100/110 parts by weight, and the content of the organic component 208 is 10/110 parts by weight. Since the other points are the same, the description is omitted.

そのため、第2実施形態の接合方法においても、図5に示した常温の金属組成物205を厚み方向から圧縮しながら、図4に示す温度プロファイルに従って、例えばリフロー装置を用いて加熱する。そして、金属組成物205に対して、S・P≧15(kK・s・N/m)を満たす熱処理を施す。圧力Pは、1MPa以上30MPa以下の範囲内であることが好ましい。Therefore, also in the bonding method of the second embodiment, the metal composition 205 at room temperature shown in FIG. 5 is heated from the thickness direction using a reflow apparatus, for example, according to the temperature profile shown in FIG. Then, heat treatment satisfying S · P ≧ 15 (kK · s · N / m 2 ) is performed on the metal composition 205. The pressure P is preferably in the range of 1 MPa to 30 MPa.

なお、反応前のペースト状の金属組成物205の有機成分208がフラックスを含まないため、反応後の金属間化合物相209中にはフラックスが完全に存在しない。  In addition, since the organic component 208 of the paste-like metal composition 205 before the reaction does not contain a flux, the flux is not completely present in the intermetallic compound phase 209 after the reaction.

以下、本発明の第2実施形態の比較例に係る接合部材の接合方法について説明する。  Hereinafter, the joining method of the joining member which concerns on the comparative example of 2nd Embodiment of this invention is demonstrated.

第2実施形態の比較例に係る接合部材の接合方法が、第2実施形態に係る接合部材の接合方法と相違する点は、金属組成物205に対して、S・P<15(kK・s・N/m)を満たす熱処理を施す点である。その他の点に関しては同じであるため、説明を省略する。The joining member joining method according to the comparative example of the second embodiment is different from the joining member joining method according to the second embodiment in that S · P <15 (kK · s) with respect to the metal composition 205. -It is the point which performs the heat processing which satisfy | fills N / m < 2 >). Since the other points are the same, the description is omitted.

以下、前述の熱量Sと圧力Pを変えて第2実施形態の接合方法及びその比較例の接合方法で複数の試料を作製し、各試料の接合強度を評価した実験例について詳述する。評価は接着材の引張りせん断接着強さ試験方法(JISK6850)を参考に行った。  Hereinafter, an experimental example in which a plurality of samples are produced by the joining method of the second embodiment and the joining method of the comparative example by changing the heat quantity S and the pressure P described above, and the joining strength of each sample is evaluated will be described in detail. The evaluation was performed with reference to the tensile shear bond strength test method (JIS K6850) of the adhesive.

詳述すると、まず、第1接合部材101及び第2接合部材102として、一対の無酸素銅板を準備した。各無酸素銅板の寸法は、幅10mm、厚み2mm、長さ20mmである。各無酸素銅板の端部より5mmの範囲に2.5mgのペースト(金属組成物105)を塗布して各無酸素銅板を重ね合わせ、加圧冶具により1MPa〜15MPaの圧力を2枚の無酸素銅板の接合部に加えた。230℃〜400℃に熱したオーブンに2枚の無酸素銅板(試料)を入れ、加圧冶具ごと接合部を加熱した。所定の時間加圧・加熱した後、試料を加圧冶具から取り除き、接合された銅板(接合構造200)を得た。図4に示すように、加熱している間の接合部の温度を測定し、SおよびPを求めた。  More specifically, first, a pair of oxygen-free copper plates was prepared as the first bonding member 101 and the second bonding member 102. Each oxygen-free copper plate has a width of 10 mm, a thickness of 2 mm, and a length of 20 mm. Apply 2.5 mg of paste (metal composition 105) within a range of 5 mm from the end of each oxygen-free copper plate, stack each oxygen-free copper plate, and apply two pressure-sensitive oxygen pressures of 1 MPa to 15 MPa with a pressure jig. Added to the copper plate joint. Two oxygen-free copper plates (samples) were placed in an oven heated to 230 ° C. to 400 ° C., and the joint was heated together with the pressure jig. After pressing and heating for a predetermined time, the sample was removed from the pressing jig to obtain a bonded copper plate (bonding structure 200). As shown in FIG. 4, the temperature of the joint during heating was measured, and S and P were obtained.

この実験例では、各試料の接合強度を、引張りせん断強度(MPa)で評価した。引張りせん断強度(MPa)は、図7の矢印に示すように、第1接合部材101の端と第2接合部材102の端とを反対方向へ引っ張って測定した。  In this experimental example, the bonding strength of each sample was evaluated by tensile shear strength (MPa). The tensile shear strength (MPa) was measured by pulling the end of the first joining member 101 and the end of the second joining member 102 in opposite directions as indicated by the arrows in FIG.

前述の熱量Sと圧力Pを変えて作製した48個の試料のS・P値を表3に示す。表3の内容は、表1の内容と同じである。そして、48個の試料のそれぞれの引張りせん断強度(MPa)を表4に示す。  Table 3 shows S · P values of 48 samples prepared by changing the heat quantity S and the pressure P described above. The contents of Table 3 are the same as the contents of Table 1. Table 4 shows the tensile shear strength (MPa) of each of the 48 samples.

Figure 2016076094
Figure 2016076094

Figure 2016076094
Figure 2016076094

なお、表4における「−」は、引張りせん断強度が極めて弱く、引張りせん断強度を測定できなかったことを示している。  Note that “−” in Table 4 indicates that the tensile shear strength was extremely weak and the tensile shear strength could not be measured.

実験より、S・P<15(kK・s・N/m)を満たす熱処理を施した比較例の試料では、引張りせん断強度が極めて弱く、引張りせん断強度を測定できなかったことが明らかとなった。From the experiment, it was clarified that the sample of the comparative example subjected to the heat treatment satisfying S · P <15 (kK · s · N / m 2 ) had an extremely weak tensile shear strength and could not measure the tensile shear strength. It was.

一方、S・P≧15(kK・s・N/m)を満たす熱処理を施した試料では、引張りせん断強度が4MPa以上と急激に高まることが明らかとなった。すなわち、S・P≧15(kK・s・N/m)を満たす熱処理を行うことにより、フラックスを含まなくても、金属組成物205が第1接合部材101及び第2接合部材102を接合できることが明らかとなった。また表4に示すフラックスを含まない場合の接合強度は、表2に示すフラックスを含む場合の接合強度よりも高いことも明らかとなった。On the other hand, in the sample subjected to the heat treatment satisfying S · P ≧ 15 (kK · s · N / m 2 ), it was revealed that the tensile shear strength rapidly increases to 4 MPa or more. That is, by performing heat treatment satisfying S · P ≧ 15 (kK · s · N / m 2 ), the metal composition 205 joins the first joining member 101 and the second joining member 102 without including flux. It became clear that we could do it. Moreover, it became clear that the joining strength when the flux shown in Table 4 is not included is higher than the joining strength when the flux shown in Table 2 is included.

以上のような結果となった理由は、S・P≧15(kK・s・N/m)を満たす熱処理が、金属間化合物相209中にボイド(気泡)が発生することを抑制できたためであると考えられる。すなわち、S・P≧15(kK・s・N/m)を満たす熱処理によって生成された金属組成物205は、ボイドの少ない緻密な構造を有すると考えられる。The reason for the above results is that the heat treatment satisfying S · P ≧ 15 (kK · s · N / m 2 ) can suppress the generation of voids (bubbles) in the intermetallic compound phase 209. It is thought that. That is, it is considered that the metal composition 205 produced by the heat treatment satisfying S · P ≧ 15 (kK · s · N / m 2 ) has a dense structure with few voids.

したがって、本実施形態の接合方法によれば、ボイドの発生を抑制し、接合強度を向上できる。  Therefore, according to the joining method of this embodiment, generation | occurrence | production of a void can be suppressed and joining strength can be improved.

《他の実施形態》
なお、本実施形態において金属組成物105は、ペーストの形態であるが、これに限るものではない。実施の際、金属組成物は、たとえばシート状の固体やパテ状の形態であってもよい。
<< Other embodiments >>
In the present embodiment, the metal composition 105 is in the form of a paste, but is not limited thereto. In implementation, the metal composition may be, for example, a sheet-like solid or putty-like form.

また、本実施形態においてSn粉末106の材料は、Sn単体であるが、これに限るものではない。実施の際は、Sn粉末106の材料は、Snを含む合金(具体的にはCu、Ni、Ag、Au、Sb、Zn、Bi、In、Ge、Al、Co、Mn、Fe、Cr、Mg、Pd、Si、Sr、TeおよびPからなる群より選ばれる少なくとも1種とSnとを含む合金)であってもよい。  In the present embodiment, the material of the Sn powder 106 is Sn alone, but is not limited thereto. In implementation, the material of the Sn powder 106 is an alloy containing Sn (specifically, Cu, Ni, Ag, Au, Sb, Zn, Bi, In, Ge, Al, Co, Mn, Fe, Cr, Mg). , Pd, Si, Sr, Te, and an alloy containing Sn and at least one selected from the group consisting of P may be used.

また、本実施形態においてCuNi合金粉末107の材料は、CuNi合金であるが、これに限るものではない。実施の際は、CuNi合金粉末107に代えて、例えばCuMn合金粉末を用いてもよい。この場合、溶融したSnとCuMn合金粉末との反応により、Cu、MnおよびSnからなる群より選ばれる少なくとも2種を含んだ金属間化合物が生成される。  In this embodiment, the material of the CuNi alloy powder 107 is a CuNi alloy, but is not limited thereto. In implementation, instead of the CuNi alloy powder 107, for example, a CuMn alloy powder may be used. In this case, an intermetallic compound containing at least two selected from the group consisting of Cu, Mn, and Sn is generated by the reaction between the molten Sn and the CuMn alloy powder.

また、第1接合部材101及び第2接合部材102の少なくとも表面は、めっき処理によってCu膜で覆われているが、これに限るものではない。実施の際は、例えば第1接合部材101及び第2接合部材102の少なくとも表面は、めっき処理によってNi膜で覆われていてもよい。この場合、CuSn合金層25の代わりにNiSn合金層が形成される。NiSn合金層は、例えばNiSn、NiSn、NiSnからなる。Moreover, although at least the surface of the 1st joining member 101 and the 2nd joining member 102 is covered with Cu film | membrane by the plating process, it does not restrict to this. In implementation, for example, at least the surfaces of the first bonding member 101 and the second bonding member 102 may be covered with a Ni film by plating. In this case, a NiSn alloy layer is formed instead of the CuSn alloy layer 25. The NiSn alloy layer is made of, for example, Ni 3 Sn 4 , Ni 3 Sn 2 , or Ni 3 Sn.

また、以上に示した実施形態の加熱工程において、熱風加熱以外に遠赤外線加熱や高周波誘導加熱、ホットプレート等を用いてもよい。  In the heating process of the embodiment described above, far infrared heating, high frequency induction heating, a hot plate, or the like may be used in addition to hot air heating.

最後に、前記実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。  Finally, the description of the embodiment should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above embodiments but by the claims. Furthermore, the scope of the present invention is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.

25…CuSn合金層
99…ボイド(気泡)
100…接合構造
101…第1接合部材
102…第2接合部材
105…金属組成物
106…Sn粉末
107…CuNi合金粉末
108…有機成分
109…金属間化合物相
110…金属成分
200…接合構造
205…金属組成物
208…有機成分
209…金属間化合物相
25 ... CuSn alloy layer 99 ... Void (bubble)
DESCRIPTION OF SYMBOLS 100 ... Joining structure 101 ... 1st joining member 102 ... 2nd joining member 105 ... Metal composition 106 ... Sn powder 107 ... CuNi alloy powder 108 ... Organic component 109 ... Intermetallic compound phase 110 ... Metal component 200 ... Joining structure 205 ... Metal composition 208 ... Organic component 209 ... Intermetallic phase

Claims (8)

CuNi合金粉末またはCuMn合金粉末とSn粉末とを含む金属組成物を2つの接合部材間に設ける設置工程と、
加熱温度が前記Sn粉末の融点以上に上がってから前記Sn粉末の融点未満に下がるまでの時間に、前記Sn粉末の融点以上の温度範囲から前記金属組成物に付与される熱量をSとし、前記金属組成物に加える圧力をPとしたとき、前記金属組成物に対して、S・P≧15(kK・s・N/m)を満たす熱処理を施す加熱工程と、を含み、
前記加熱工程は、前記金属組成物に対する前記熱処理において、前記CuNi合金粉末または前記CuMn合金粉末と前記Sn粉末との反応により、Sn、CuおよびNiからなる群より選ばれる少なくとも2種を含んだ金属間化合物またはSn、CuおよびMnからなる群より選ばれる少なくとも2種を含んだ金属間化合物を主相とする金属間化合物相を形成する、接合部材の接合方法。
An installation step of providing a metal composition containing CuNi alloy powder or CuMn alloy powder and Sn powder between two joining members;
The amount of heat applied to the metal composition from the temperature range above the melting point of the Sn powder in the time from when the heating temperature rises above the melting point of the Sn powder to below the melting point of the Sn powder is S, A heating step of applying heat treatment satisfying S · P ≧ 15 (kK · s · N / m 2 ) to the metal composition, where P is a pressure applied to the metal composition,
The heating step includes a metal including at least two selected from the group consisting of Sn, Cu, and Ni by a reaction between the CuNi alloy powder or the CuMn alloy powder and the Sn powder in the heat treatment of the metal composition. A joining method for a joining member, wherein an intermetallic compound phase having an intermetallic compound or an intermetallic compound containing at least two selected from the group consisting of Sn, Cu and Mn as a main phase is formed.
前記圧力Pは、1MPa以上30MPa以下の範囲内である、請求項1に記載の接合部材の接合方法。  The said pressure P is a joining method of the joining member of Claim 1 which exists in the range of 1 Mpa or more and 30 Mpa or less. 前記金属組成物は、前記Sn粉末、前記CuNi合金粉末または前記CuMn合金粉末、及び前記接合部材のそれぞれを被覆する酸化被膜を還元するフラックスを含まない、請求項2に記載の接合部材の接合方法。  The method according to claim 2, wherein the metal composition does not include a flux that reduces the Sn powder, the CuNi alloy powder or the CuMn alloy powder, and an oxide film covering each of the bonding members. . 前記金属組成物は、前記Sn粉末、前記CuNi合金粉末または前記CuMn合金粉末、及び前記接合部材のそれぞれを被覆する酸化被膜を還元するフラックスを含む、請求項1又は2に記載の接合部材の接合方法。  The joining of the joining member according to claim 1 or 2, wherein the metal composition includes a flux that reduces the Sn powder, the CuNi alloy powder or the CuMn alloy powder, and an oxide film covering each of the joining members. Method. 前記金属組成物はペースト状に成形されている、請求項1から4のいずれか1項に記載の接合部材の接合方法。  The said metal composition is the joining method of the joining member of any one of Claim 1 to 4 shape | molded by the paste form. 前記接合部材の少なくとも表面は、Cu又はNiで構成されている、請求項1から5のいずれか1項に記載の接合部材の接合方法。  The joining member joining method according to any one of claims 1 to 5, wherein at least a surface of the joining member is made of Cu or Ni. 前記接合部材は電極端子であり、
前記金属組成物は導電性を有する、請求項1から6のいずれか1項に記載の接合部材の接合方法。
The joining member is an electrode terminal;
The joining method of the joining member according to claim 1, wherein the metal composition has conductivity.
CuNi合金粉末またはCuMn合金粉末とSn粉末とを含む金属組成物であって、
加熱温度が前記Sn粉末の融点以上に上がってから前記Sn粉末の融点未満に下がるまでの時間に、前記Sn粉末の融点以上の温度範囲から前記金属組成物に付与される熱量をSとし、前記金属組成物に加える圧力をPとしたとき、
S・P≧15(kK・s・N/m)を満たす熱処理により前記CuNi合金粉末または前記CuMn合金粉末と前記Sn粉末とが反応し、Sn、CuおよびNiからなる群より選ばれる少なくとも2種を含んだ金属間化合物またはSn、CuおよびMnからなる群より選ばれる少なくとも2種を含んだ金属間化合物を主相とする金属間化合物相を形成する、ことを特徴とする金属組成物。
A metal composition comprising CuNi alloy powder or CuMn alloy powder and Sn powder,
The amount of heat applied to the metal composition from the temperature range above the melting point of the Sn powder in the time from when the heating temperature rises above the melting point of the Sn powder to below the melting point of the Sn powder is S, When the pressure applied to the metal composition is P,
The CuNi alloy powder or the CuMn alloy powder reacts with the Sn powder by heat treatment satisfying S · P ≧ 15 (kK · s · N / m 2 ), and at least 2 selected from the group consisting of Sn, Cu and Ni An intermetallic compound phase comprising a main phase of an intermetallic compound containing a seed or an intermetallic compound containing at least two selected from the group consisting of Sn, Cu and Mn is formed.
JP2016558953A 2014-11-14 2015-10-22 Joining member joining method, metal composition Pending JPWO2016076094A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014231697 2014-11-14
JP2014231697 2014-11-14
PCT/JP2015/079770 WO2016076094A1 (en) 2014-11-14 2015-10-22 Joining member joining method and metal composition

Publications (1)

Publication Number Publication Date
JPWO2016076094A1 true JPWO2016076094A1 (en) 2017-07-06

Family

ID=55954186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016558953A Pending JPWO2016076094A1 (en) 2014-11-14 2015-10-22 Joining member joining method, metal composition

Country Status (2)

Country Link
JP (1) JPWO2016076094A1 (en)
WO (1) WO2016076094A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182293A (en) * 2011-03-01 2012-09-20 Murata Mfg Co Ltd Electronic component mounting substrate and method for manufacturing the same
WO2014002893A1 (en) * 2012-06-25 2014-01-03 株式会社村田製作所 Anisotropic conductive sheet and electrode bonding method using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182293A (en) * 2011-03-01 2012-09-20 Murata Mfg Co Ltd Electronic component mounting substrate and method for manufacturing the same
WO2014002893A1 (en) * 2012-06-25 2014-01-03 株式会社村田製作所 Anisotropic conductive sheet and electrode bonding method using same

Also Published As

Publication number Publication date
WO2016076094A1 (en) 2016-05-19

Similar Documents

Publication Publication Date Title
TWI505899B (en) A bonding method, a bonding structure, and a method for manufacturing the same
JP5907215B2 (en) Junction structure and electronic device
JP6226424B2 (en) Bonding material and method for manufacturing electronic component
JP2014223678A5 (en)
TWI505898B (en) A bonding method, a bonding structure, and a method for manufacturing the same
US11821058B2 (en) Method for producing intermetallic compound
US10625377B2 (en) Bonding member and method for manufacturing bonding member
EP3078446B1 (en) Method of manufacturing a solder material and joining structure
JPWO2013132953A1 (en) Bonding method, electronic device manufacturing method, and electronic component
JP2011147982A (en) Solder, electronic component, and method for manufacturing the electronic component
JP6089243B2 (en) Manufacturing method of bonded structure
JP6239173B1 (en) Metal member joining sheet, metal member joining method, and metal member joined body
WO2016076094A1 (en) Joining member joining method and metal composition
JP2011251330A (en) High-temperature lead-free solder paste
WO2016194435A1 (en) Bonding method for heat-radiating member and heat-generating element equipped with heat-radiating member
Bukat et al. SAC solder paste with carbon nanotubes. Part II: carbon nanotubes’ effect on solder joints’ mechanical properties and microstructure
JP2007260695A (en) Joining material, joining method, and joined body
TWI772254B (en) Electrical connection tape
CN105189003A (en) Solder alloy and joint thereof
WO2019146587A1 (en) Joining layer of semiconductor module, semiconductor module, and method for manufacturing same
JP2017148862A (en) Solder Paste
WO2016157971A1 (en) Solder paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180703