JP2007260695A - Joining material, joining method, and joined body - Google Patents

Joining material, joining method, and joined body Download PDF

Info

Publication number
JP2007260695A
JP2007260695A JP2006085911A JP2006085911A JP2007260695A JP 2007260695 A JP2007260695 A JP 2007260695A JP 2006085911 A JP2006085911 A JP 2006085911A JP 2006085911 A JP2006085911 A JP 2006085911A JP 2007260695 A JP2007260695 A JP 2007260695A
Authority
JP
Japan
Prior art keywords
metal
bonding
silver
tin
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006085911A
Other languages
Japanese (ja)
Inventor
Toshihide Takahashi
利英 高橋
Kimihiro Tadauchi
仁弘 忠内
Kazutaka Matsumoto
一高 松本
Izuru Komatsu
出 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006085911A priority Critical patent/JP2007260695A/en
Publication of JP2007260695A publication Critical patent/JP2007260695A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Die Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joined body which can maintain satisfactory mechanical strength even under high temperature conditions by using a joining material substantially not containing lead. <P>SOLUTION: The joining material is obtained by focusing on silver which is a metallic material excellent in heat conduction/electric resistance/malleability and further in corrosion resistance as joining material to replace a metallic alloy having the melting temperature of the metallic material of ≥260°C, and composed of lead and gold as principal components, combining the same with tin which is the metallic material promising for high temperature system solder in terms of the melting point/oxidation resistance/workability, and increasing the amount of the silver, and further, adding copper thereto. Namely, the joining material is the one composed of ≥15 to ≤40 mass% silver, ≥15 to ≤15 mass% copper, and the balance tin. The metallic composition is made applicable under industrial practical conditions by employing a metallic film forming process like a vapor deposition process. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、特に電子機器の部品の接合に好適に用いられ、金属材料同士、表面に金属がメタライズされた非金属材料と金属材料、表面に金属がメタライズされた非金属材料同士を接合するための接合材料、接合方法及びその接合材料を用いた接合体に係わるものである。
The present invention is particularly suitable for joining electronic device parts, for joining metal materials, non-metal materials and metal materials whose surfaces are metallized, and non-metal materials whose surfaces are metallized. The present invention relates to a bonding material, a bonding method, and a bonded body using the bonding material.

ある物体とその物体よりも融点が低い物質を用いた接合技術であるはんだ接合技術は、古くから一般に使用されており、電子機器の接合においても、マイクロプロセッサ、メモリ、抵抗、及びコンデンサなどの半導体素子や電子部品と実装基板との接合をはじめとして幅広く用いられている。はんだ接合は、部品を基板に機械的に固定するだけでなく、導電性を有する金属をはんだに含有させることにより電気的にも接合する特長を有する。   Solder bonding technology, which is a bonding technology using a certain object and a material having a lower melting point than that object, has been used for a long time, and semiconductors such as microprocessors, memories, resistors, and capacitors have also been used for bonding electronic devices. Widely used for joining devices and electronic components to mounting boards. Solder bonding not only mechanically fixes a component to a substrate, but also has an advantage of being electrically bonded by including a conductive metal in the solder.

今日、パーソナルコンピュータ、携帯電話などに代表されるパーソナル機器の普及が急速に進むにつれ、電子部品の実装技術における接合材や接合方法の選択はますますその重要性が増大している。   Today, as personal devices such as personal computers and mobile phones are rapidly spreading, the selection of bonding materials and bonding methods in electronic component mounting technology is becoming increasingly important.

従来から、実用に極めて適しているところから、錫−鉛系共晶はんだが多用されてきた。しかし、錫−鉛系共晶はんだに含まれる鉛は、人体に対し有害であることから、鉛を含まない、いわゆる非鉛系はんだの開発が急務とされている。   Conventionally, tin-lead eutectic solder has been frequently used because it is extremely suitable for practical use. However, since the lead contained in the tin-lead eutectic solder is harmful to the human body, there is an urgent need to develop a so-called lead-free solder that does not contain lead.

一方、現在半導体デバイスの中で例えばパワーデバイスの接合材としては、主に融点が約183℃以下の低温系はんだ(錫−鉛共晶はんだ)と、融点が約300℃程度の高温系はんだ(鉛−5錫はんだ)が多用されており、それぞれ工程に応じて使い分けられている。   On the other hand, as bonding materials for power devices, for example, among current semiconductor devices, a low-temperature solder (tin-lead eutectic solder) mainly having a melting point of about 183 ° C. or lower and a high-temperature solder having a melting point of about 300 ° C. ( Lead-5 tin solder) is frequently used, and is used depending on the process.

このうち、低温系はんだについては、錫−銀−銅系合金を中心としたものが実用化の段階に到達しており、今後数年で多くのセットメーカーで非鉛系共晶はんだの代替は完了することが予定されている。   Among these, for low-temperature solders, those centered on tin-silver-copper alloys have reached the stage of practical application, and in the next few years, many set manufacturers will replace lead-free eutectic solders. It is scheduled to be completed.

しかしながら、高温系はんだ、すなわち例えば260℃の高温条件下においても良好な機械的強度を保持する接合部を形成する接合材については、高鉛含有材料以外は金を主成分とした金基合金が挙げられるが、貴金属の金を使用するため、大幅な材料価格が上昇するため汎用的に使用するには、難しい材料である。また、鉛及び金以外の金属材料を主成分とした金属合金も、高温系はんだとして未だに実用化には至ってはいない。   However, for a high-temperature solder, that is, a bonding material that forms a bonding portion that maintains good mechanical strength even at a high temperature condition of 260 ° C., for example, a gold-based alloy containing gold as a main component other than a high-lead-containing material is used. Although it is mentioned, it is a difficult material to use for general purposes because it uses a precious metal gold, and the material price increases significantly. Further, metal alloys mainly composed of metal materials other than lead and gold have not yet been put into practical use as high-temperature solders.

これまでに、鉛及び金以外の金属材料を主成分とした融点300℃付近の金属合金として、融点232℃の錫を主成分とした錫基合金、融点420℃の亜鉛を主成分とした亜鉛基合金、融点271℃のビスマスを主成分としたビスマス基合金などが有力候補となっている。特に、錫基合金は、従来から接合材料として利用されてきた実績を持ち、価格・接合性・加工性・接合信頼性の面で、優れた特徴を有していることが報告されている(非特許文献1参照)。   Up to now, as a metal alloy having a melting point of around 300 ° C. mainly composed of a metal material other than lead and gold, a tin-based alloy mainly composed of tin having a melting point of 232 ° C., and zinc mainly composed of zinc having a melting point of 420 ° C. Base alloys and bismuth-based alloys mainly composed of bismuth having a melting point of 271 ° C. are promising candidates. In particular, it has been reported that tin-based alloys have been used as bonding materials in the past and have excellent characteristics in terms of price, bondability, workability, and bonding reliability ( Non-patent document 1).

しかしながら、錫基合金は、高温系はんだとしては低融点元素の錫を主成分としていることから耐熱性の点で課題を抱えており、鉛含有高温系はんだの代替可能な材料として未だに実用化に至っていない(非特許文献2参照)。   However, tin-based alloys have a problem in terms of heat resistance because they are mainly composed of tin, which is a low melting point element, as a high-temperature solder, and are still in practical use as a substitute material for lead-containing high-temperature solder. It has not reached (see Non-Patent Document 2).

まてりあ, 38(1999), 919.Materia, 38 (1999), 919. 第17回エレクトロニクス実装学術講演大会講演論文集, 2003, 147.Proc. Of the 17th Electronics Packaging Conference, 2003, 147.

本発明は、実質的に鉛および金を含有しない接合材を用い、高温条件においてもなお良好な機械的強度を保持可能な接合部を短時間で形成可能な接合体、及び接合方法、及び実質的に鉛を含有しない接合材を用い、高温条件にあっても半導体素子とリードフレームとの接合部が良好な機械的強度を保持することが可能な接合材料、その接合方法、及びその接合体、またその接合材料を含む半導体装置を提供することを目的とするものである。
The present invention uses a bonding material that does not substantially contain lead and gold, and a bonded body that can form a bonded portion capable of maintaining good mechanical strength even under high temperature conditions in a short time, a bonding method, and a substantial Joint material that does not contain lead, and can maintain good mechanical strength at the joint between the semiconductor element and the lead frame even under high temperature conditions, its joining method, and its joined body Another object of the present invention is to provide a semiconductor device including the bonding material.

本発明は、金属材料の溶融温度が260℃以上であり、鉛及び金を主成分とした金属合金を代替する接合材料として、熱伝導・電気抵抗・展延性さらには耐蝕性にも優れた金属材料である銀に着目し、融点・耐酸化性・加工性の点から高温系はんだに有望な金属材料である錫と組み合わせた材料を実現すべく開発したものであり、銀を従来以上に添加することにより、係る材料を実現できることに着目してなされたものである。   The present invention has a metal material having a melting temperature of 260 ° C. or higher, and is a metal having excellent thermal conductivity, electrical resistance, ductility and corrosion resistance as a joining material that substitutes for a metal alloy mainly composed of lead and gold. Focusing on the material silver, it was developed to realize a material combined with tin, which is a promising metal material for high-temperature solders in terms of melting point, oxidation resistance, and workability. By doing so, it has been made paying attention to the fact that such a material can be realized.

第1の本発明の接合材料は、銀を含む金属材料であり、質量構成比で銀が15%以上40%以下、銅が4%以上15%以下、残部が錫からなることを特徴とする。   The bonding material according to the first aspect of the present invention is a metal material containing silver, wherein silver is 15% or more and 40% or less, copper is 4% or more and 15% or less, and the balance is tin. .

第2の本発明の接合方法は、前記第1の発明の接合材料を用い、第1の被接合体表面に前記接合材料層を形成する工程と、次いで、前記第1の工程の接合の温度以上の温度で、前記接合材料表面と第2の被接合体とを接合する工程を有するものである。   The bonding method of the second aspect of the present invention is the step of forming the bonding material layer on the surface of the first bonded body using the bonding material of the first aspect of the invention, and then the bonding temperature of the first step. It has the process of joining the said bonding material surface and a 2nd to-be-joined body at the above temperature.

第3の本発明の接合体は、前記銀を含む金属材料であり、質量構成比で銀が15%以上40%以下、銅が4%以上15%以下、残部が錫からなる接合材料を用いて接合した接合体である。   The joined body according to the third aspect of the present invention is a metallic material containing silver, and uses a joining material in which silver is 15% or more and 40% or less, copper is 4% or more and 15% or less, and the balance is tin. It is a joined body joined together.

本発明において、錫−銀合金を主成分とし、銅を添加した接合材料は、実質的に鉛や金を使用しなくとも、高温系はんだに要求される耐熱特性を満たすことができる。
In the present invention, a bonding material containing a tin-silver alloy as a main component and added with copper can satisfy heat resistance characteristics required for high-temperature solder without using lead or gold substantially.

本発明の接合体は、有害な鉛及び高価な金を実質的に使用せずとも十分な接合強度を有し、かつ高温条件においても機械的強度が維持可能である。
The joined body of the present invention has sufficient joint strength without substantially using harmful lead and expensive gold, and can maintain mechanical strength even under high temperature conditions.

[第1の実施の形態:接合材料]
以下本実施の形態の接合材料について説明する。
本実施の形態の接合材料は、銀を含む金属材料であり、質量構成比で銀を15%以上40%以下、銅を4%以上15%以下、残部が錫からなる合金である。なお、本合金材料には、不可避的に混入する金、ニッケル、コバルト、ビスマス、白金パラジウム、アルミニウムなどの成分を排除するものではない。
具体的な合金材料としては、錫−10銀−10銅、錫−15銀−10銅、錫−20銀−10銅などの組成ものが本願発明の接合材料として適している。
この合金において、銀および銅成分の量が上記範囲を下回った場合、高融点である金属間化合物の形成量が減少し、接合部の耐熱性が低下するなどの問題が有り、一方、銀および銅成分の量が上記範囲を上回った場合、液相線温度が上昇し、実用的な接合温度での接合性が困難になるなどの問題がある。
[First Embodiment: Bonding Material]
Hereinafter, the bonding material of the present embodiment will be described.
The bonding material of the present embodiment is a metal material containing silver, and is an alloy having a mass composition ratio of 15% to 40% silver, 4% to 15% copper, and the balance being tin. The alloy material does not exclude components such as gold, nickel, cobalt, bismuth, platinum palladium, and aluminum that are inevitably mixed.
Specific alloy materials such as tin-10 silver-10 copper, tin-15 silver-10 copper, and tin-20 silver-10 copper are suitable as the bonding material of the present invention.
In this alloy, when the amount of the silver and copper components is less than the above range, there is a problem that the amount of intermetallic compound having a high melting point is reduced and the heat resistance of the joint is lowered, while silver and copper When the amount of the copper component exceeds the above range, there is a problem that the liquidus temperature rises and it becomes difficult to bond at a practical bonding temperature.

この接合材料は、シート状、ワイヤー状、ハンダペースト状などの状態とすることができる。ハンダペースト状として用いる場合には、合金材料としては、平均粒径1〜10μmの粒子を一般的に用いられているハンダペースト材料構成成分に混合して作製することができる。
また、ハンダ被接合部材表面に薄層として形成して接合に用いることもできる。この薄層として用いる場合には、接合材料をメッキまたは蒸着やスパッタリング等の物理蒸着法などの手段で薄層として形成することにより接合に用いることができる。薄層の膜厚としては、特に制限すべき制約はないが、薄層接合材は、接合時間を著しく長くしないために厚さ1μm以上、500μm以下、より好ましくは310μm以上、300μm以下とすることが望ましい。薄層接合材の厚さが厚すぎると、接合時間において被接合材が充分に接合材に拡散せず耐熱性の向上が実現されない恐れがあり、薄すぎると接合材のぬれ性が低下し、接合強度が確保できない恐れがある。
This bonding material can be in a sheet form, a wire form, a solder paste form, or the like. When used as a solder paste, the alloy material can be prepared by mixing particles having an average particle diameter of 1 to 10 μm with commonly used solder paste material constituent components.
It can also be used for bonding by forming a thin layer on the surface of the solder-bonded member. When used as this thin layer, the bonding material can be used for bonding by forming it as a thin layer by means of plating or physical vapor deposition such as vapor deposition or sputtering. The thickness of the thin layer is not particularly limited, but the thickness of the thin layer bonding material should be not less than 1 μm and not more than 500 μm, more preferably not less than 310 μm and not more than 300 μm in order not to significantly increase the bonding time. Is desirable. If the thickness of the thin-layer bonding material is too thick, the material to be bonded will not sufficiently diffuse into the bonding material during the bonding time, and heat resistance may not be improved. There is a possibility that the bonding strength cannot be secured.

[第2の実施の形態:接合方法]
以下、本実施の形態の接合方法について説明する。
[Second Embodiment: Joining Method]
Hereinafter, the bonding method of the present embodiment will be described.

図1は、本実施の形態の接合方法を示す断面図である。
図1(a)に示すように、まず、第1金属被接合材1と、接合材5と、第2金属被接合材2とを積層して積層体4を形成する。このとき加圧を行ってもよい。
FIG. 1 is a cross-sectional view showing the bonding method of the present embodiment.
As shown to Fig.1 (a), the laminated body 4 is formed by laminating | stacking the 1st metal to-be-joined material 1, the joining material 5, and the 2nd metal to-be-joined material 2 first. At this time, pressurization may be performed.

次に、この積層体4を加熱することによって、図1(b)に示すように第1金属被接合材1及び第2金属被接合材2が接合層3を介して接合された接合体6が得られる。   Next, the laminated body 4 is heated so that the first metal bonded material 1 and the second metal bonded material 2 are bonded via the bonding layer 3 as shown in FIG. Is obtained.

なお、積層体4を得る際に、図2に示すように、予め第2金属被接合材2表面に薄層接合材5をメタライズし、第2金属被接合材2表面に薄層接合材5が被着した状態のものに第1金属被接合材1を積層して積層体4を形成してもよい。また、逆に、予め第1金属被接合材の表面をメタライズし、第1金属被接合材表面に薄層接合材を被着したものと第2金属被接合材を積層して積層体を形成してもよい。   When obtaining the laminated body 4, as shown in FIG. 2, the thin layer bonding material 5 is metallized in advance on the surface of the second metal bonded material 2, and the thin layer bonding material 5 is formed on the surface of the second metal bonded material 2. The laminated body 4 may be formed by laminating the first metal-bonded material 1 on a state in which is deposited. Conversely, the surface of the first metal bonded material is metallized in advance, and a laminated body is formed by laminating the first metal bonded material surface with a thin layer bonded material and the second metal bonded material. May be.

なお、第1金属被接合材又は第2金属被接合材は、金属、セラミックス、半導体等からなる他の部材表面にメタライズされて、当該部材を他の部材と接合させるための部材として用いられる場合も本発明の範疇に含まれる。   The first metal bonded material or the second metal bonded material is metallized on the surface of another member made of metal, ceramics, semiconductor, etc., and used as a member for bonding the member to another member. Are also included in the scope of the present invention.

図3は、接合方法の、さらに他の実施形態を示す断面図である。
この実施形態では、母材7表面に第1金属被接合材1が、母材8表面に第2金属被接合材2がメタライズされている。各メタライズ層の間には薄層接合材5を配置し積層体9を構成する。この後積層体9を加熱することにより接合を行う。なお、母材7、メタライズ層1、または母材8、メタライズ層2が共に金、ニッケル、銀、銅、パラジウム、白金及びアルミニウム、またはこれらの金属材料を用いた金属合金からなる群より選択される材料である場合、母材7とメタライズ層1の積層体が第1金属被接合材、または母材8とメタライズ層2の積層体が第2金属被接合材となる。
FIG. 3 is a cross-sectional view showing still another embodiment of the bonding method.
In this embodiment, the first metal bonded material 1 is metallized on the surface of the base material 7, and the second metal bonded material 2 is metalized on the surface of the base material 8. A thin layer bonding material 5 is disposed between the metallized layers to form a laminate 9. Thereafter, bonding is performed by heating the laminated body 9. The base material 7, the metallized layer 1, or the base material 8, and the metallized layer 2 are all selected from the group consisting of gold, nickel, silver, copper, palladium, platinum and aluminum, or a metal alloy using these metal materials. In this case, the laminate of the base material 7 and the metallized layer 1 is the first metal-bonded material, or the laminate of the base material 8 and the metallized layer 2 is the second metal-bonded material.

図3には第1被接合材及び第2被接合材が共に他の母材表面にメタライジングされた例を示したが、第1金属被接合材のみを他の母材表面にメタライジングし、第2金属被接合材は他の母材にメタライジングされていない場合も本発明の範疇に含まれる。これとは逆に第2金属被接合材のみを他の母材表面にメタライジングし、第1金属被接合材は他の母材にメタライジングされていない場合も本発明の範疇に含まれる。   FIG. 3 shows an example in which the first material to be bonded and the second material to be bonded are both metallized on the surface of the other base material, but only the first metal material to be bonded is metalized on the surface of the other base material. The second metal bonded material is also included in the scope of the present invention even when it is not metallized on another base material. On the contrary, the case where only the second metal bonded material is metallized on the surface of another base material and the first metal bonded material is not metallized on the other base material is also included in the scope of the present invention.

第1及び第2金属被接合材を他の部材表面にメタライズする手段としては、蒸着、めっき処理や電子ビーム処理等が挙げられる。   Examples of means for metallizing the first and second metal bonded materials on the surface of another member include vapor deposition, plating treatment, and electron beam treatment.

以下、上記接合方法に用いられる部材について更に説明する。
第1金属被接合材1、及び第2金属被接合材は、通常、金属材料が使用される。金属材料は用途に応じて選択可能であり特に限定されないが、高温条件下において溶融した錫−銀合金に溶解・拡散した場合、錫−銀合金中に固溶し、形成される金属合金の固相線温度が著しく低下しない材料であることが望ましい。具体的には、望ましくは金、ニッケル、銀、銅、パラジウム、白金及びアルミニウム、またはこれらの金属材料を用いた金属合金からなる群より選択される材料であると耐熱性に優れた接合部が形成できる。また、上記以外の金属、例えば、ゲルマニウム、ベリリウム、ニオブ、マンガンなどの金属も好適している。
Hereinafter, the member used for the said joining method is further demonstrated.
As the first metal bonded material 1 and the second metal bonded material, a metal material is usually used. The metal material can be selected depending on the application and is not particularly limited. However, when dissolved and diffused in a molten tin-silver alloy under high temperature conditions, the metal material dissolves in the tin-silver alloy, and the metal alloy formed is solidified. It is desirable that the material does not significantly decrease the phase line temperature. Specifically, a joint having excellent heat resistance is preferably a material selected from the group consisting of gold, nickel, silver, copper, palladium, platinum and aluminum, or a metal alloy using these metal materials. Can be formed. Further, metals other than those described above, for example, metals such as germanium, beryllium, niobium and manganese are also suitable.

第1金属被接合材及び第2金属被接合材の厚さ(平均厚さ)は、0.1μm以上、500μm以下の範囲であることが望ましい。   The thickness (average thickness) of the first metal bonded material and the second metal bonded material is desirably in the range of 0.1 μm to 500 μm.

なお、例えば、図3のように母材8にメタライズ層2が形成されている場合は、母材8とメタライズ層2の積層体を第2金属被接合材2とみなし、メタライズ層2と母材8と厚さの総計が0.1μm以上、500μm以下の範囲であればよい。   For example, when the metallized layer 2 is formed on the base material 8 as shown in FIG. 3, the laminate of the base material 8 and the metallized layer 2 is regarded as the second metal bonded material 2, and the metallized layer 2 and the base metal The total of the material 8 and thickness should just be the range of 0.1 micrometer or more and 500 micrometers or less.

また、薄層接合材は、接合時間を著しく長くしないために厚さ1μm以上、500μm以下、より好ましくは30μm以上、300μm以下とすることが望ましい。薄層接合材の厚さが厚すぎると、接合時間において被接合材が充分に接合材に拡散せず耐熱性の向上が実現されない恐れがあり、薄すぎると接合材のぬれ性が低下し、接合強度が確保できない恐れがある。   The thin-layer bonding material is desirably 1 μm or more and 500 μm or less, more preferably 30 μm or more and 300 μm or less in order not to significantly increase the bonding time. If the thickness of the thin-layer bonding material is too thick, the material to be bonded will not sufficiently diffuse into the bonding material during the bonding time, and heat resistance may not be improved, and if it is too thin, the wettability of the bonding material will decrease. There is a possibility that the bonding strength cannot be secured.

薄層という形態の供給手段としては、めっき処理、はんだペースト、シートはんだ、ワイヤーはんだ、又はスーパージャフィット法−スーパーソルダー法等によるはんだプリコート、真空蒸着やイオンプレーティング等の物理蒸着法等が挙げられる。   Examples of the supply means in the form of a thin layer include plating treatment, solder paste, sheet solder, wire solder, or solder pre-coating by a super-jafit method-super solder method, physical vapor deposition methods such as vacuum deposition and ion plating, and the like. It is done.

はんだペーストを使用する場合には、はんだペースト厚は、はんだペースト厚を極端に大きくした場合には、数秒の接合時間において被接合材が充分に錫主成分層部に拡散せず高融点化が実現されないということが考えられる。そのため、短時間での高融点化の実現の両面を適正に満たすために、可能な限りはんだペースト厚を小さくするため50〜100μm、好ましくは50〜80μmの範囲内にすることが望ましい。   When solder paste is used, the solder paste thickness will increase to a high melting point if the solder paste thickness is extremely large, and the material to be joined will not sufficiently diffuse into the main tin layer layer during the joining time of several seconds. It is thought that it is not realized. Therefore, in order to appropriately satisfy both sides of realizing a high melting point in a short time, in order to make the solder paste thickness as small as possible, it is desirable to set it within the range of 50 to 100 μm, preferably 50 to 80 μm.

シートはんだ材を使用する場合は、シート厚を極端に大きくした場合には、数秒の接合時間において被接合材が充分に錫主成分層部に拡散せず高融点化が実現されないということが考えられる。そのため、短時間での高融点化の実現の両面を適正に満たすために、可能な限りシート厚を小さくするため30〜50μmの範囲内にすることが望ましい。   When using a sheet solder material, if the sheet thickness is made extremely large, the material to be bonded will not sufficiently diffuse into the tin main component layer part in a bonding time of several seconds, and a high melting point will not be realized. It is done. Therefore, in order to appropriately satisfy both sides of realizing a high melting point in a short time, it is desirable to make the sheet thickness as small as possible within the range of 30 to 50 μm.

本発明の接合方法について更に説明する。
積層体を加熱する際の加熱温度は265℃以上、450℃以下の範囲内である。この範囲であると錫−銀合金を主成分とした薄層接合材は溶融し、接合可能となる。加熱温度は好ましくは300℃以上である。
The joining method of the present invention will be further described.
The heating temperature at the time of heating the laminate is in the range of 265 ° C. or more and 450 ° C. or less. Within this range, the thin-layer bonding material mainly composed of a tin-silver alloy melts and can be bonded. The heating temperature is preferably 300 ° C. or higher.

加熱時間は0.1秒以上が望ましく、特にピーク温度での加熱時間が0.5秒以上となるように加熱すればより好ましい。また、加熱時間は長くとも30秒以下でよく、ピーク温度での加熱時間が10秒以下となるように加熱すればよい。   The heating time is desirably 0.1 seconds or more, and it is more preferable to perform heating so that the heating time at the peak temperature is 0.5 seconds or more. The heating time may be 30 seconds or less at the longest, and the heating may be performed so that the heating time at the peak temperature is 10 seconds or less.

本発明の接合方法によれば、錫−銀合金の固相線温度以上の融点を有する接合層が形成されるため、高温系マウント材として求められる260℃保証として、260℃の高温条件下においても接合層の耐熱性を維持することができる。また薄層接合材においては、第1金属被接合材、または第2金属被接合材の拡散により、形成される接合層には、第1金属被接合材、または第2金属被接合材構成元素が錫−銀合金に固溶した相の他に、錫−銀合金と少なくとも第2金属被接合材構成元素で構成される金属間化合物相等が生成してもよい。結果として、高温条件下においても機械的強度の良好な接合体が短時間で得ることができる。   According to the bonding method of the present invention, since a bonding layer having a melting point equal to or higher than the solidus temperature of the tin-silver alloy is formed, as a 260 ° C guarantee required as a high temperature system mounting material, Also, the heat resistance of the bonding layer can be maintained. In the thin layer bonding material, the first metal bonded material or the second metal bonded material constituting element is formed in the bonding layer formed by diffusion of the first metal bonded material or the second metal bonded material. In addition to the phase in which tin is dissolved in the tin-silver alloy, an intermetallic compound phase composed of a tin-silver alloy and at least a constituent element of the second metal bonded material may be formed. As a result, a bonded body having good mechanical strength can be obtained in a short time even under high temperature conditions.

本発明に係る接合体、接合方法は、どのような分野で用いられてもよいが、特に製造プロセス、あるいは製品使用時に高温条件下に置かれる電子機器部品、半導体デバイス特にパワー系半導体デバイスにおける部品の接合に好適に用いられる。特に半導体素子とリードフレームとの接合に際しては特に好適に用いられる。   The joined body and joining method according to the present invention may be used in any field, but in particular, components in electronic devices, semiconductor devices, particularly power semiconductor devices, which are placed under high temperature conditions during the manufacturing process or product use. It is used suitably for joining. In particular, it is particularly preferably used for joining a semiconductor element and a lead frame.

[第3の実施の形態:接合体]
図1(b)は、第1金属被接合材1が、第2金属被接合材2に接合材料3を介して接合された本発明の接合体の一実施形態を拡大して示す断面図である。
[Third embodiment: joined body]
FIG. 1B is an enlarged cross-sectional view showing an embodiment of the joined body of the present invention in which the first metal workpiece 1 is joined to the second metal workpiece 2 via the bonding material 3. is there.

この実施形態では、第1金属被接合材1、及び第2金属被接合材2として金属材料が使用されている。
使用する被接合材料である金属材料は用途に応じて選択可能で特に限定されないが、高温条件下において溶融した接合材料3に溶解−拡散した場合、接合材料3中に固溶して形成される合金の固相線温度が著しく低下しない材料であることが望ましい。
具体的には、望ましくは、後述する第2金属被接合材と同様に金、ニッケル、銀、銅、パラジウム、白金及びアルミニウム、またはこれらの金属材料を用いた金属合金からなる群より選択される材料である。これらの金属を用いた場合には、耐熱性に優れた接合部を形成することができる。なお、これらの金属意外でもゲルマニウム、ベリリウム、ニオブ、マンガンなどは、好ましい材料である。
In this embodiment, a metal material is used as the first metal bonded material 1 and the second metal bonded material 2.
The metal material that is the material to be joined can be selected depending on the application and is not particularly limited. However, when the material is dissolved and diffused in the molten joining material 3 under high temperature conditions, it is formed as a solid solution in the joining material 3. It is desirable that the material does not significantly reduce the solidus temperature of the alloy.
Specifically, it is preferably selected from the group consisting of gold, nickel, silver, copper, palladium, platinum and aluminum, or a metal alloy using these metal materials, similarly to the second metal bonded material described later. Material. When these metals are used, a joint having excellent heat resistance can be formed. In addition to these metals, germanium, beryllium, niobium, manganese and the like are preferable materials.

接合層3は融点232℃の錫と、熱伝導・電気抵抗・展延性さらには耐蝕性にも優れた金属材料である銀を使用した錫−銀合金を主成分とし、銅を含むことにより、260℃以上の耐熱性を有することを特徴とする接合材料である。   The bonding layer 3 is mainly composed of tin having a melting point of 232 ° C., and a tin-silver alloy using silver, which is a metal material excellent in heat conduction, electrical resistance, spreadability, and corrosion resistance, and contains copper. It is a bonding material characterized by having heat resistance of 260 ° C. or higher.

なお、接合層3中には、第1被接合体1または第2被接合体の構成金属元素が溶解・拡散することにより形成した金属間化合物が存在していても良い。   In the bonding layer 3, an intermetallic compound formed by dissolving and diffusing the constituent metal elements of the first bonded body 1 or the second bonded body may exist.

上記接合体の好ましい例としては、半導体装置が挙げられる。
本実施の形態の半導体装置は、少なくとも一面が金属薄膜でメタライズされた半導体素子と、少なくとも前記半導体素子を載置する金属リードフレームと、前記半導体素子の金属薄膜がメタライズされた面及び前記金属リードフレーム間に存在して前記半導体素子と前記金属リードフレームとを接合し、前記接合材料からなる接合層と、前記半導体素子及びリードフレームを封止する封止樹脂とを備えることを特徴とする半導体装置である。
A preferred example of the joined body is a semiconductor device.
The semiconductor device according to the present embodiment includes a semiconductor element having at least one surface metalized with a metal thin film, a metal lead frame on which at least the semiconductor element is mounted, a surface of the semiconductor element on which the metal thin film is metalized, and the metal lead. A semiconductor comprising: a bonding layer formed between the frames, bonding the semiconductor element and the metal lead frame, and made of the bonding material; and a sealing resin for sealing the semiconductor element and the lead frame. Device.

前記半導体装置において、前記金属フレームは、金、ニッケル、銀、銅、パラジウム、白金及びアルミニウム、またはこれらの金属材料を用いた金属合金からなる群より選択される材料を用いることが望ましい。   In the semiconductor device, the metal frame is preferably made of a material selected from the group consisting of gold, nickel, silver, copper, palladium, platinum, and aluminum, or a metal alloy using these metal materials.

前記半導体装置において、前記金属薄膜は、金、ニッケル、銀、銅、パラジウム、白金及びアルミニウム、またはこれらの金属材料を用いた金属合金からなる群より選択される材料を用いることが望ましい。
In the semiconductor device, the metal thin film is preferably made of a material selected from the group consisting of gold, nickel, silver, copper, palladium, platinum, and aluminum, or a metal alloy using these metal materials.

以下、実施例により本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail by way of examples.

(実施例1)
パワー系半導体装置における半導体素子とリードフレームとの接合を行った。図4は半導体素子とリードフレームとの接合形態を示す断面図である。このパワー系半導体モジュールでは、10mm角のシリコン半導体素子17に、第1金属被接合材として、金を蒸着することによりメタライズが施され0.05μm厚の金よりなる金薄層18が形成されている。また、銅よりなるリードフレーム19に、第2金属被接合材として、0.5μm厚でニッケル薄層20をスパッタリング処理により施し、更にその上に、薄層接合材として5μm厚で錫−20質量%銀−10質量%銅合金薄層21を無電解めっきにより施した。この金属層18が被着したシリコン半導体素子17と、ニッケル薄めっき層20上に錫−銀−銅合金薄層21が被着したリードフレーム19とを金属層18と錫−銀−銅合金薄層21が接するように積層し、その後加熱して接合を行った。加熱は、100ppm以下の酸素濃度にしたフォーミングガス(窒素+水素)雰囲気中で、熱板上で加熱した。加熱条件は、350℃、5秒とした。
Example 1
The semiconductor element and the lead frame in the power semiconductor device were joined. FIG. 4 is a cross-sectional view showing a bonding configuration between the semiconductor element and the lead frame. In this power semiconductor module, a 10 mm square silicon semiconductor element 17 is metallized by vapor deposition of gold as a first metal bonded material to form a thin gold layer 18 made of 0.05 μm thick gold. Yes. Further, a nickel thin layer 20 having a thickness of 0.5 μm is applied to the lead frame 19 made of copper as a second metal bonded material by a sputtering process, and further, a thin layer bonding material having a thickness of 5 μm and tin-20 mass. % Silver-10 mass% copper alloy thin layer 21 was applied by electroless plating. The silicon semiconductor element 17 having the metal layer 18 deposited thereon and the lead frame 19 having the tin-silver-copper alloy thin layer 21 deposited on the nickel thin plating layer 20 are combined with the metal layer 18 and the tin-silver-copper alloy thin film. Lamination was performed so that the layer 21 was in contact, and then heating was performed for bonding. The heating was performed on a hot plate in a forming gas (nitrogen + hydrogen) atmosphere having an oxygen concentration of 100 ppm or less. The heating conditions were 350 ° C. and 5 seconds.

接合後の接合界面の断面をSEM観察から、際立ったボイドの発生は認められず、良好な接合性を示した。   From the SEM observation of the cross section of the bonded interface after bonding, no significant voids were observed, indicating good bonding properties.

最後に接合したリードフレームと半導体素子とを樹脂封止し、260℃の耐熱性を有したパワー系半導体装置を得た。   Finally, the joined lead frame and the semiconductor element were sealed with a resin to obtain a power semiconductor device having heat resistance of 260 ° C.

(実施例2)
本実施例ではリードフレーム19に、無電解めっきによりニッケル薄層20を施し、その上に、はんだペースト印刷により薄層接合材21を形成した以外は実施例1と同様にパワー系半導体装置を得た。
(Example 2)
In this embodiment, a power semiconductor device is obtained in the same manner as in Embodiment 1 except that a thin nickel layer 20 is applied to the lead frame 19 by electroless plating and a thin layer bonding material 21 is formed thereon by solder paste printing. It was.

銀が20質量%、銅が10質量%、残部錫からなる錫−銀−銅系合金を用いて、約5μmのはんだ粉末を作成した。このはんだ粉末材とフラックスの成分を重量比で全体の約10%で完全に混合させ、はんだペーストを作成した。フラックス成分は、溶剤、ロジン、活性剤、有機ハロゲン、粘稠剤等である。はんだペーストは印刷に適した粘度である約50万cpsとなるまで約20分間攪拌した。このはんだペーストを無電解めっきによるニッケル薄層19上に約80μmの厚さとなるよう印刷し、その上に蒸着により形成した金からなる金属層17を施した半導体素子21を搭載して、100ppmの酸素濃度にしたフォーミングガス(窒素+水素)雰囲気中で熱板上で加熱した。加熱条件は、350℃、5秒とした。   Using a tin-silver-copper alloy composed of 20% by mass of silver, 10% by mass of copper, and the balance tin, an approximately 5 μm solder powder was prepared. The solder powder material and the components of the flux were thoroughly mixed at a weight ratio of about 10% of the whole to prepare a solder paste. The flux component is a solvent, a rosin, an activator, an organic halogen, a thickener, and the like. The solder paste was stirred for about 20 minutes until reaching a viscosity suitable for printing of about 500,000 cps. This solder paste is printed on the nickel thin layer 19 by electroless plating so as to have a thickness of about 80 μm, and the semiconductor element 21 to which the metal layer 17 made of gold formed by vapor deposition is applied is mounted on the solder paste. Heating was performed on a hot plate in a forming gas (nitrogen + hydrogen) atmosphere having an oxygen concentration. The heating conditions were 350 ° C. and 5 seconds.

接合後の接合界面の断面をSEM観察から、際立ったボイドは発生せず良好な接合性を示した。   From the SEM observation of the cross section of the bonded interface after bonding, no conspicuous voids were generated and good bonding properties were shown.

最後に接合したリードフレームと半導体素子とを樹脂封止し、260℃の耐熱性を有したパワー系半導体装置を得た。   Finally, the joined lead frame and the semiconductor element were sealed with a resin to obtain a power semiconductor device having heat resistance of 260 ° C.

(実施例3)
本実施例では、無電解めっきによりニッケル薄層19を施したリードフレーム18に、シートはんだ材を供給することにより薄層接合材20を形成した以外は実施例1と同様にパワー系半導体装置を得た。シートはんだ材は、銀が20質量%、銅が10質量%、残りが錫からなる錫−銀−銅系合金を用いた、約50μm厚のシートである。このシートはんだ材を銅からなるリードフレーム18上に配置し、その上に金蒸着を施したシリコン半導体素子を搭載して、100ppmの酸素濃度にしたフォーミングガス(窒素+水素)雰囲気中で熱板上で加熱した。加熱条件は、350℃、5秒とした。
(Example 3)
In this embodiment, the power semiconductor device is formed in the same manner as in Embodiment 1 except that the thin layer bonding material 20 is formed by supplying a sheet solder material to the lead frame 18 to which the nickel thin layer 19 is applied by electroless plating. Obtained. The sheet solder material is a sheet having a thickness of about 50 μm using a tin-silver-copper alloy composed of 20% by mass of silver, 10% by mass of copper, and the remainder of tin. This sheet solder material is placed on a lead frame 18 made of copper, and a silicon semiconductor element subjected to gold vapor deposition is mounted thereon, and a hot plate in a forming gas (nitrogen + hydrogen) atmosphere having an oxygen concentration of 100 ppm. Heated above. The heating conditions were 350 ° C. and 5 seconds.

接合後の接合界面の断面をSEM観察から、際立ったボイドは発生せず良好な接合性を示した。   From the SEM observation of the cross section of the bonded interface after bonding, no conspicuous voids were generated and good bonding properties were shown.

最後に接合したリードフレームと半導体素子とを樹脂封止し、パワー系半導体装置を得た。   Finally, the joined lead frame and the semiconductor element were sealed with resin to obtain a power semiconductor device.

(実施例4〜7、比較例1〜4)
以下のようにして接合体を得た。接合体は300μm厚の銅板上に無電解めっきにより形成した0.5および1μm厚のニッケル薄層と、300μmの錫板とを、加熱を行い実施例4〜9の接合体を作成した。
(Examples 4-7, Comparative Examples 1-4)
A joined body was obtained as follows. The joined bodies of Examples 4 to 9 were prepared by heating 0.5 and 1 μm thick nickel thin layers formed by electroless plating on a 300 μm thick copper plate and a 300 μm tin plate.

表1に、各実施例の薄層接合材材料、接合材供給方法及び加熱条件(ピーク温度×ピーク温度保持時間)を記載する。評価試験として、接合性に関して、得られた接合体の接合面積を蛍光液浸透試験により計測し、実施例1の接合面積を1.0とし、それ以下の接合面積を相対値で示す。また、耐熱性に関しては、260℃における接合居度を高温シェア装置を用いて測定し、実施例1の接合強度を1.0とし、それ以下の接合強度を相対値で示している。
Table 1 describes the thin-layer bonding material, the bonding material supply method, and the heating conditions (peak temperature × peak temperature holding time) of each example. As an evaluation test, regarding the bondability, the bonded area of the obtained bonded body is measured by a fluorescent solution penetration test, the bonded area of Example 1 is set to 1.0, and the bonded area below that is expressed as a relative value. Moreover, regarding heat resistance, the joining degree in 260 degreeC was measured using the high temperature shear apparatus, the joining strength of Example 1 was set to 1.0, and the joining strength below it is shown by the relative value.

Figure 2007260695
Figure 2007260695

実施例4〜7においては、表1に示される様に、耐熱性の良好な接合層を有する。またこのような接合層を有する実施例4〜9の接合体は高温における接合強度に優れることが明らかである。   In Examples 4-7, as Table 1 shows, it has a joining layer with favorable heat resistance. Moreover, it is clear that the joined bodies of Examples 4 to 9 having such a joining layer are excellent in joining strength at high temperatures.

比較例1〜4の接合体は、300μm厚の金蒸着によりメタライズした10mm角のシリコン半導体素子と銅板とを、50μm厚の表1に示す組成の錫―銀―銅合金を用い、表1に示す条件で加熱を行い作成したものである。   The bonded bodies of Comparative Examples 1 to 4 were prepared by using a tin-silver-copper alloy having a composition shown in Table 1 having a thickness of 10 μm and a 10 mm square silicon semiconductor element metallized by 300 μm thick gold vapor deposition. It was created by heating under the conditions shown.

(実施例8〜10)
実施例1と同様にして、10mm角のシリコン半導体素子に金の蒸着によりメタライズ処理した。これとは、別に、第2金属被接合材であるパラジウム、白金及びアルミニウムを電子ビーム処理により厚さ0.5μmとなるよう銅からなるリードフレーム上に形成した試料をそれぞれ用意した。次に、これらの試料の第2金属被接合材上に無電解メッキにより厚さ5μmとなるよう錫−20質量%銀−10質量%銅合金薄層21を形成した。しかる後、実施例1と同一条件で、リードフレームの錫層形成面にシリコン半導体素子のメタライズ面を接合させた。
いずれの試料も、際立ったボイドの発生は認められず良好な接合性を示した。
(Examples 8 to 10)
In the same manner as in Example 1, a 10 mm square silicon semiconductor element was metallized by gold vapor deposition. Separately, samples were prepared in which palladium, platinum, and aluminum, which are the second metal bonded materials, were formed on a lead frame made of copper so as to have a thickness of 0.5 μm by electron beam treatment. Next, a tin-20 mass% silver-10 mass% copper alloy thin layer 21 was formed on the second metal-bonded material of these samples by electroless plating so as to have a thickness of 5 μm. Thereafter, the metallized surface of the silicon semiconductor element was bonded to the tin layer forming surface of the lead frame under the same conditions as in Example 1.
In all the samples, no significant voids were observed, and good bondability was exhibited.

[本発明の応用分野]
本発明に係る接合体、接合方法は、広範な分野で利用できるが、特に製造プロセス、あるいは製品使用時に高温条件下に置かれる電子機器部品、半導体デバイス特にパワー系半導体デバイスにおける部品の接合に好適に用いられ、とりわけ半導体素子とリードフレームとの接合に際してはより好適に用いられる。
[Application field of the present invention]
The joined body and joining method according to the present invention can be used in a wide range of fields, but are particularly suitable for joining parts in electronic devices, semiconductor devices, particularly power-based semiconductor devices that are placed under high temperature conditions during the manufacturing process or product use. In particular, it is more preferably used for joining a semiconductor element and a lead frame.

本発明の接合方法の一実施形態を示す工程断面図。Process sectional drawing which shows one Embodiment of the joining method of this invention. 本発明の接合方法の他の実施形態を示す断面図。Sectional drawing which shows other embodiment of the joining method of this invention. 本発明の接合方法のさらに他の実施形態を示す断面図。Sectional drawing which shows other embodiment of the joining method of this invention. 本発明の実施例における半導体素子とリードフレームとの接合形態を示す断面図。Sectional drawing which shows the joining form of the semiconductor element and lead frame in the Example of this invention.

符号の説明Explanation of symbols

1………第1金属被接合材
2………第2金属被接合材
3………接合層
4………積層体
5………薄層接合材
6………接合体
7、8………母材
9………積層体
17………シリコン半導体素子
18………金薄層
19………銅リードフレーム
20………ニッケル薄層
21………錫−銀−銅合金層
DESCRIPTION OF SYMBOLS 1 ......... 1st metal to-be-joined material 2 ......... 2nd metal to-be-joined material 3 ......... Joint layer 4 ......... Laminated body 5 ......... Thin layer joining material 6 ......... Joint body 7,8 ... ...... Base material 9... Laminated body 17 ...... Silicon semiconductor element 18 ...... Gold thin layer 19 ...... Copper lead frame 20 ...... Nickel thin layer 21 ...... Tin-silver-copper alloy layer

Claims (3)

質量構成比で銀を15%以上40%以下、銅を4%以上15%以下、残部が錫からなることを特徴とする接合材料。   A bonding material characterized in that silver is 15% to 40% in mass composition ratio, copper is 4% to 15%, and the balance is tin. 質量構成比で銀を10%以上40%以下、銅を4%以上15%以下、残部が錫からなる金属構成成分を持つ金属合金を接合材料として用い、第1の被接合体表面に、該接合材料層を形成する第1の工程と、
前記第1の工程の温度より高い温度で、該接合材料層表面に第2の被接合体との接合を形成する工程とを有することを特徴とする接合方法。
Using a metal alloy having a metal component of 10% to 40%, copper of 4% to 15%, and the balance of tin as a bonding material in terms of mass composition ratio, A first step of forming a bonding material layer;
And a step of forming a bond with a second object to be bonded on the surface of the bonding material layer at a temperature higher than the temperature of the first step.
質量構成比で銀を15%以上40%以下、銅を4%以上15%以下、残部が錫からなる接合材料を用いて、半導体材料と金属材料とを接合したことを特徴とする接合体。
A joined body characterized in that a semiconductor material and a metal material are joined using a joining material in which silver is 15% or more and 40% or less, copper is 4% or more and 15% or less, and the balance is tin.
JP2006085911A 2006-03-27 2006-03-27 Joining material, joining method, and joined body Pending JP2007260695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085911A JP2007260695A (en) 2006-03-27 2006-03-27 Joining material, joining method, and joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006085911A JP2007260695A (en) 2006-03-27 2006-03-27 Joining material, joining method, and joined body

Publications (1)

Publication Number Publication Date
JP2007260695A true JP2007260695A (en) 2007-10-11

Family

ID=38634201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085911A Pending JP2007260695A (en) 2006-03-27 2006-03-27 Joining material, joining method, and joined body

Country Status (1)

Country Link
JP (1) JP2007260695A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132942A1 (en) * 2012-03-05 2013-09-12 株式会社村田製作所 Bonding method, bond structure, and manufacturing method for same
WO2013132954A1 (en) * 2012-03-05 2013-09-12 株式会社村田製作所 Bonding method, bond structure, and manufacturing method for same
CN104384186A (en) * 2014-09-23 2015-03-04 重庆川仪自动化股份有限公司 Preparation method of gold-containing three-layer micro deformed electric contact material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526468A (en) * 1975-07-04 1977-01-18 Sumitomo Metal Mining Co Ltd Brazing material
JP2005288458A (en) * 2004-03-31 2005-10-20 Toshiba Corp Joined body, semiconductor device, joining method and method for producing semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526468A (en) * 1975-07-04 1977-01-18 Sumitomo Metal Mining Co Ltd Brazing material
JP2005288458A (en) * 2004-03-31 2005-10-20 Toshiba Corp Joined body, semiconductor device, joining method and method for producing semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132942A1 (en) * 2012-03-05 2013-09-12 株式会社村田製作所 Bonding method, bond structure, and manufacturing method for same
WO2013132954A1 (en) * 2012-03-05 2013-09-12 株式会社村田製作所 Bonding method, bond structure, and manufacturing method for same
CN104144764A (en) * 2012-03-05 2014-11-12 株式会社村田制作所 Joining method, joint structure and method for producing the same
JPWO2013132954A1 (en) * 2012-03-05 2015-07-30 株式会社村田製作所 Bonding method, bonded structure and manufacturing method thereof
US9333593B2 (en) 2012-03-05 2016-05-10 Murata Manufacturing Co., Ltd. Joining method, joint structure and method for producing the same
CN104144764B (en) * 2012-03-05 2016-12-14 株式会社村田制作所 Joint method, bonded structure and manufacture method thereof
CN104384186A (en) * 2014-09-23 2015-03-04 重庆川仪自动化股份有限公司 Preparation method of gold-containing three-layer micro deformed electric contact material

Similar Documents

Publication Publication Date Title
KR101496592B1 (en) Semiconductor device bonding material
KR101722893B1 (en) Cu/ceramic material joint, method for manufacturing cu/ceramic material joint, and substrate for power module
EP1582287A1 (en) Soldered material, semiconductor device, method of soldering, and method of manufacturing semiconductor device
US20060081995A1 (en) Soldered material, semiconductor device, method of soldering, and method of manufacturing semiconductor device
TWI505899B (en) A bonding method, a bonding structure, and a method for manufacturing the same
JP5943065B2 (en) Bonding method, electronic device manufacturing method, and electronic component
JP4722751B2 (en) Powder solder material and bonding material
KR20140110926A (en) Bonding method, bond structure, and manufacturing method for same
JP2008238233A (en) Non-lead based alloy joining material, joining method, and joined body
JP5231727B2 (en) Joining method
JP2005032834A (en) Joining method of semiconductor chip and substrate
JP2008221290A (en) Joined member and joining method
JP2008080393A (en) Joining body using peritectic system alloy, joining method, and semiconductor device
JP5376356B2 (en) Electronic element mounting method and electronic component mounted by the mounting method
JP2007260695A (en) Joining material, joining method, and joined body
JP2015166304A (en) Copper/ceramics connected body, and power module substrate
JP2009039769A (en) Joining sheet
JP2006068765A (en) Joint and joining method
JP5744080B2 (en) Bonded body and semiconductor device
US10625356B2 (en) Electrical connection tape
Cui et al. Reliability of die attach on DBC substrates with different Ni surface finishes using BiAgX solder
Lang et al. Soldering of non-wettable Al electrode using Au-based solder
JP2017216308A (en) Solder joint and method for manufacturing the same
Eom et al. Low-temperature sintering behavior of ternary solder and copper powder for high-power device packaging
JP2015202507A (en) High temperature solder alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A977 Report on retrieval

Effective date: 20100303

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100309

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720