JP5744080B2 - Bonded body and semiconductor device - Google Patents

Bonded body and semiconductor device Download PDF

Info

Publication number
JP5744080B2
JP5744080B2 JP2013019663A JP2013019663A JP5744080B2 JP 5744080 B2 JP5744080 B2 JP 5744080B2 JP 2013019663 A JP2013019663 A JP 2013019663A JP 2013019663 A JP2013019663 A JP 2013019663A JP 5744080 B2 JP5744080 B2 JP 5744080B2
Authority
JP
Japan
Prior art keywords
bonding
joined
layer
metal
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013019663A
Other languages
Japanese (ja)
Other versions
JP2013099790A (en
Inventor
利英 高橋
利英 高橋
河野 龍興
龍興 河野
充浩 沖
充浩 沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013019663A priority Critical patent/JP5744080B2/en
Publication of JP2013099790A publication Critical patent/JP2013099790A/en
Application granted granted Critical
Publication of JP5744080B2 publication Critical patent/JP5744080B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Description

本発明は、特に電子機器の部品の接合に好適に用いられる接合体に関し、改善された耐熱性を有する接合体に関する。
In particular, the present invention relates to a joined body preferably used for joining parts of an electronic device, and more particularly to a joined body having improved heat resistance.

ある物体とその物体よりも融点が低い物質を用いた接合技術であるはんだ接合技術は、古くから一般に使用されており、電子機器の接合においても、マイクロプロセッサ、メモリ、抵抗、及びコンデンサなどの半導体素子や電子部品と実装基板との接合をはじめとして幅広く用いられている。はんだ接合は、部品を基板に機械的に固定するだけでなく、導電性を有する金属をはんだに含有させることにより電気的にも接合する特長を有する。   Solder bonding technology, which is a bonding technology using a certain object and a material having a lower melting point than that object, has been used for a long time, and semiconductors such as microprocessors, memories, resistors, and capacitors have also been used for bonding electronic devices. Widely used for joining devices and electronic components to mounting boards. Solder bonding not only mechanically fixes a component to a substrate, but also has an advantage of being electrically bonded by including a conductive metal in the solder.

今日、パーソナルコンピュータ、携帯電話などに代表されるパーソナル機器の普及が急速に進むにつれ、電子部品の実装技術における接合材や接合方法の選択はますますその重要性が増大している。   Today, as personal devices such as personal computers and mobile phones are rapidly spreading, the selection of bonding materials and bonding methods in electronic component mounting technology is becoming increasingly important.

従来から、実用に極めて適しているところから、錫−鉛系共晶はんだが多用されてきた。しかし、錫−鉛系共晶はんだに含まれる鉛は、人体に対し有害であることから、鉛を含まない、いわゆる非鉛系はんだの開発が急務とされている。   Conventionally, tin-lead eutectic solder has been frequently used because it is extremely suitable for practical use. However, since the lead contained in the tin-lead eutectic solder is harmful to the human body, there is an urgent need to develop a so-called lead-free solder that does not contain lead.

一方、現在半導体デバイスの中で例えばパワーデバイスの接合材としては、主に融点が183℃の低温系はんだ(Sn−Pb共晶はんだ)と、融点が約300℃程度の高温系はんだ(Pb−5Snはんだ)が多用されており、それぞれ工程に応じて使い分けられている。   On the other hand, among the current semiconductor devices, for example, power device bonding materials are mainly low-temperature solder (Sn—Pb eutectic solder) having a melting point of 183 ° C. and high-temperature solder (Pb—) having a melting point of about 300 ° C. 5Sn solder) is widely used, and is used properly according to the process.

このうち、低温系はんだについては、錫−銀−銅系合金を中心としたものが実用化の段階に到達しており、今後数年で多くのセットメーカーで非鉛系共晶はんだの代替は完了することが予定されている。   Among these, for low-temperature solders, those centered on tin-silver-copper alloys have reached the stage of practical application, and in the next few years, many set manufacturers will replace lead-free eutectic solders. It is scheduled to be completed.

しかしながら、高温系はんだ、すなわち例えば260℃の高温条件下においても良好な機械的強度を保持する接合部を形成する接合材については、高鉛含有材料以外は金を主成分とした金基合金が挙げられるが、貴金属の金を使用するため、大幅な材料価格が上昇するため汎用的に使用するには、難しい材料である。また、鉛及び金以外の金属材料を主成分とした金属合金も、高温系はんだとして未だに実用化には至ってはいない。   However, for a high-temperature solder, that is, a bonding material that forms a bonding portion that maintains good mechanical strength even at a high temperature condition of 260 ° C., for example, a gold-based alloy containing gold as a main component other than a high-lead-containing material is used. Although it is mentioned, it is a difficult material to use for general purposes because it uses a precious metal gold, and the material price increases significantly. Further, metal alloys mainly composed of metal materials other than lead and gold have not yet been put into practical use as high-temperature solders.

これまでに、鉛及び金以外の金属材料を主成分とし260℃の高温条件下においても良好な機械的強度を保持する接合部を形成する接合材のひとつとして、Zn系合金が候補として挙げられている(特許文献1、2参照)。この接合材料は、Zn元素から成る金属材料であるため、安価であり、環境にも配慮された接合材である。しかしながら、銅とのぬれ性が悪く、また、接合材料としても硬いため、実用化にまで至っていない。   Up to now, Zn-based alloys have been cited as candidates as one of the bonding materials that form a bonding portion that has a metal material other than lead and gold as a main component and maintains good mechanical strength even at a high temperature of 260 ° C. (See Patent Documents 1 and 2). Since this bonding material is a metal material made of Zn element, it is inexpensive and is a bonding material that is environmentally friendly. However, since it has poor wettability with copper and is hard as a bonding material, it has not been put into practical use.

また、Snを主成分とするSn系合金を高温はんだ適用しようと試みられている(特許文献3、4参照)が、Sn系合金の場合、Cuなどの被接合材との接合性や硬さなどの加工性には優れるものの、低融点で液化が始まるため、高温はんだとしての耐熱性を満たすことは困難である。

特開2004−237357号公報 特開2001−121285号公報 特開2003−364363号公報 特開2001−284792号公報
Further, an attempt has been made to apply a high temperature solder to a Sn-based alloy containing Sn as a main component (see Patent Documents 3 and 4), but in the case of a Sn-based alloy, the bondability and hardness with a material to be bonded such as Cu. However, since liquefaction starts at a low melting point, it is difficult to satisfy the heat resistance as a high-temperature solder.

JP 2004-237357 A JP 2001-121285 A JP 2003-364363 A JP 2001-284792 A

本発明は、実質的に鉛および金を含有しない接合材を用い、高温条件においてもなお良好な機械的強度を保持可能な接合部を短時間で形成可能とする接合方法、接合体、及び実質的に鉛を含有しない接合材を用い、高温条件にあっても半導体素子とリードフレームとの接合部が良好な機械的強度を保持することが可能とする接合方法、接合体、またその接合方法により製造される半導体装置を提供することを目的とするものである。
The present invention uses a bonding material that does not substantially contain lead and gold, and a bonding method, a bonded body, and a material that can form a bonded portion capable of maintaining good mechanical strength even under high temperature conditions in a short time. Bonding method, bonded body, and bonding method capable of maintaining good mechanical strength at the bonding portion between the semiconductor element and the lead frame using a bonding material that does not contain lead in general An object of the present invention is to provide a semiconductor device manufactured by the above method.

本実施の形態の接合体は、第1の被接合部材と、前記被接合部材上に形成されたSn,Ag及びCuよりなる金属材料であり、前記Snが質量比で35%以上70%以下である材料からなり、厚さが1μm以上、50μm以下である接合層と、Cuからなる第2の接合部材、あるいはFe−42Ni合金にCu又はAgを被覆した第2の被接合部材を有することを特徴とする。 The joined body of the present embodiment is a metal material made of Sn, Ag, and Cu formed on the first member to be joined and the member to be joined , and the Sn is in a mass ratio of 35% to 70%. A bonding layer having a thickness of 1 μm or more and 50 μm or less, and a second bonding member made of Cu, or a second bonded member in which an Fe-42Ni alloy is coated with Cu or Ag. It is characterized by.

前記接合によって得られる接合層は、その固相線温度が260℃以上であることが好ましい。
The bonding layer obtained by the bonding preferably has a solidus temperature of 260 ° C. or higher.

本発明の接合体は、有害な鉛及び高価な金を実質的に使用せずとも十分な接合強度を有し、かつ高温条件においても機械的強度が維持可能である。   The joined body of the present invention has sufficient joint strength without substantially using harmful lead and expensive gold, and can maintain mechanical strength even under high temperature conditions.

本発明の接合方法によれば、300℃以上450℃以下の接合温度条件において、良好な接合状態を確保することが可能であり、有害な鉛及び高価な金を実質的に使用せず、かつ従来の高温系はんだと同等の接合時間で耐熱性が高い接合部が形成される。
According to the bonding method of the present invention, it is possible to ensure a good bonding state under a bonding temperature condition of 300 ° C. or higher and 450 ° C. or lower, substantially using no harmful lead and expensive gold, and A joint having high heat resistance is formed in a joining time equivalent to that of a conventional high-temperature solder.

[発明の原理]
本発明は、Snと、これより高融点の金属元素とからなる接合材を用いて、接合を行う際に、接合材を薄膜状で、被接合部材表面に付与することで、Snに添加する高融点金属の溶融温度より低い温度での接合を可能にするとともに、得られる接合層は高融点合金化するために耐熱性も向上するものである。
すなわち、接合材を構成する成分の内、低融点金属であるSnと、これより高融点の添加金属成分とが、薄膜内において相互に接触し、低融点金属の溶融温度以上に加熱することで、溶融した低融点金属に高融点金属が溶解して合金化することによって、高融点合金が形成されるものである。
[Principle of the Invention]
In the present invention, when bonding is performed using a bonding material composed of Sn and a metal element having a higher melting point than this, the bonding material is applied to the surface of the member to be bonded in a thin film form and added to Sn. In addition to enabling bonding at a temperature lower than the melting temperature of the refractory metal, the resulting bonding layer is improved in heat resistance in order to form a refractory alloy.
That is, among the components constituting the bonding material, Sn, which is a low melting point metal, and an additive metal component having a higher melting point contact each other in the thin film, and are heated to a temperature higher than the melting temperature of the low melting point metal. The high melting point metal is dissolved in the molten low melting point metal and alloyed to form a high melting point alloy.

[第1の実施の形態:接合体]
接合体の概略断面図である図1に示すように、この実施の形態の接合体4は、第1の被接合部材1と、第2の被接合部材3が、Snと、前記Sn以上の融点を有する金属材料を含有し、前記Snが質量比で35%以上70%以下である接合層2によって接合されていることを特徴とするものである。
前記接合体において、前記接合層2が、固相線温度が260℃以上の材料からなっていることが好ましい。固相線温度が260℃を下回った場合には、本接合体が260℃以上に加熱されると、接合部が溶融し、高温強度が維持されないという不都合が生じる。
[First embodiment: joined body]
As shown in FIG. 1 which is a schematic cross-sectional view of a joined body, the joined body 4 of this embodiment includes a first joined member 1 and a second joined member 3 that are Sn and Sn or more. A metal material having a melting point is contained, and the Sn is bonded by the bonding layer 2 having a mass ratio of 35% to 70%.
In the joined body, the joining layer 2 is preferably made of a material having a solidus temperature of 260 ° C. or higher. When the solidus temperature is below 260 ° C., if this bonded body is heated to 260 ° C. or higher, the bonded portion is melted and the high temperature strength is not maintained.

本実施の形態の薄膜状の接合層は、Snからなる第1成分と、これに添加する金属材料からなるものである。添加される第2成分として、少なくとも第1成分金属元素より高融点金属元素を用いるものである。高融点金属元素として、具体的には、Ag,Cu,Ni,Au,Sb、Bi、Co、Alなどが上げられる。第2成分として用いられる元素は前述の元素から2種類以上を選択して用いてもよい。また、Snより低融点の元素が含まれる場合には接合層に対して数%以下が好ましい。   The thin film-like bonding layer of the present embodiment is made of a first component made of Sn and a metal material added to the first component. As the second component to be added, at least a refractory metal element is used rather than the first component metal element. Specific examples of the refractory metal element include Ag, Cu, Ni, Au, Sb, Bi, Co, and Al. Two or more kinds of elements used as the second component may be selected from the elements described above. Further, when an element having a melting point lower than that of Sn is contained, the content is preferably several percent or less with respect to the bonding layer.

本発明の接合層材料としては、AgCuSn系合金を用いることが好ましく、より具体的には、Ag22Cu25Sn53,Ag13Cu35Sn52,Ag13Cu40Sn47,Ag13Cu45Sn42などが好ましいが、これらに限定されるものではない。   As the bonding layer material of the present invention, an AgCuSn-based alloy is preferably used, and more specifically, Ag22Cu25Sn53, Ag13Cu35Sn52, Ag13Cu40Sn47, Ag13Cu45Sn42, and the like are preferable, but not limited thereto.

第2の被接合部材がCuなど高熱膨張材料の場合は、接合温度400℃以下で接合可能な接合材料を選択することが好ましい。また、第2の接合部材がFe−42Ni合金(以下42アロイと称する)などの低膨張材料の場合は、接合温度450℃以下で接合可能な接合材料を選択することが望ましい。また、第2の被接合部材が42アロイなどの低膨張材料の表面に高膨張材料のCuなどが被覆された場合でも、接合温度450℃以下で接合可能な接合材料を選択することが望ましい。上記接合温度以上で、接合すると、第1の被接合部材と第2の被接合部材の熱膨張係数の差による熱応力が増大し、接合ひずみが生じるため好ましくない。特に、第2の被接合部材にCu、Ag、Au、Sbを含有しない場合には、接合材のSnの質量比は50%以下であることが望ましい。   When the second member to be bonded is a high thermal expansion material such as Cu, it is preferable to select a bonding material that can be bonded at a bonding temperature of 400 ° C. or lower. When the second bonding member is a low expansion material such as an Fe-42Ni alloy (hereinafter referred to as 42 alloy), it is desirable to select a bonding material that can be bonded at a bonding temperature of 450 ° C. or lower. Further, it is desirable to select a bonding material that can be bonded at a bonding temperature of 450 ° C. or lower even when the second member to be bonded is coated with a high expansion material such as Cu on the surface of a low expansion material such as 42 alloy. Joining at a temperature equal to or higher than the joining temperature is not preferable because thermal stress due to the difference in thermal expansion coefficient between the first member to be joined and the second member to be joined increases to cause joining strain. In particular, when the second member to be joined does not contain Cu, Ag, Au, or Sb, the Sn mass ratio of the joining material is desirably 50% or less.

また、この接合層には、第1の被接合部材及び第2の被接合部材の少なくとも一方の構成金属元素が溶解・拡散することにより生成した金属間化合物が存在していても良い。   Further, the bonding layer may contain an intermetallic compound generated by dissolving and diffusing at least one constituent metal element of the first bonded member and the second bonded member.

接合の条件によっては、接合体の断面図である図2に示すように、第1の被接合部材1および第2の被接合部材3と接合層7との界面に、Snと第1の被接合部材1の構成元素からなる金属間化合物層8およびSnと第2の被接合部材3の構成元素からなる金属間化合物層9が形成されることもある。このような接合体においても、本発明の効果を達成することができる。   Depending on the joining conditions, as shown in FIG. 2 which is a cross-sectional view of the joined body, Sn and the first to-be-bonded material may be present at the interface between the first to-be-joined member 1 and the second to-be-joined member 3 and the joining layer 7. The intermetallic compound layer 8 made of the constituent elements of the joining member 1 and the intermetallic compound layer 9 made of the constituent elements of the Sn and the second joined member 3 may be formed. Even in such a joined body, the effects of the present invention can be achieved.

上記実施の形態の接合体は、以下に説明する接合方法によって製造することができる。   The joined body of the said embodiment can be manufactured with the joining method demonstrated below.

[第2の実施の形態:接合方法]
以下本実施の形態である接合方法について説明する。
本実施の形態の接合方法は、第1の被接合部材の表面に、Snと、前記Snより高融点を有する金属材料とを含み、Snが35%以上70%以下含有される接合材を薄膜状に形成する工程と、
前記第1の被接合部材表面に形成された前記薄膜接合材と第2の被接合部材とを、300℃以上、より好ましくは350℃以上で加熱して密着させ、接合する工程を有する接合方法である。接合温度の上限温度は、第2の被接合部材により異なり、42アロイなどの低膨張材料を有する場合は、接合温度450℃以下で接合することを特徴とし、高膨張材料のみからなる場合は、接合温度400℃以下で接合することを特徴とする。
[Second Embodiment: Joining Method]
Hereinafter, the bonding method according to the present embodiment will be described.
In the bonding method of the present embodiment, a thin bonding material containing Sn and a metal material having a higher melting point than Sn is contained on the surface of the first member to be bonded, and the Sn content is 35% to 70%. Forming into a shape,
A bonding method including a step of bonding the thin film bonding material formed on the surface of the first member to be bonded and the second member to be bonded to each other by heating at 300 ° C. or higher, more preferably 350 ° C. or higher. It is. The upper limit temperature of the bonding temperature differs depending on the second member to be bonded, and when having a low expansion material such as 42 alloy, the bonding temperature is characterized by bonding at a bonding temperature of 450 ° C. or lower. The bonding is performed at a bonding temperature of 400 ° C. or lower.

この接合方法における接合工程において、第1の被接合部材、薄膜接合材と第2の被接合部材との加熱、および、これらの密着とは同時に行ってもよいし、いずれか一方を先行して行ってもよい。また、密着させるに当たり、加圧して行うこともできる。
接合工程において、加熱時間は、0.1秒以上が望ましく、特にピーク温度での加熱時間が0.5秒以上となるように加熱すればより好ましい。また、加熱時間は長くとも30秒以下でよく、ピーク温度での加熱時間が10秒以下となるように加熱すればよい。
はんだ付け工程は、大気中雰囲気で行ってもよいが、酸化されやすい金属を含む接合材を用いた場合には、窒素のような非酸化性雰囲気で加熱を行うことが好ましい。さらには、水素を含有した還元性雰囲気で加熱を行うことがなお好ましい。
In the joining step in this joining method, the heating of the first member to be joined, the thin film joining material and the second member to be joined, and the close contact thereof may be performed at the same time, or one of them may be preceded. You may go. Moreover, it can also carry out by pressurizing, when making it closely_contact | adhere.
In the joining step, the heating time is desirably 0.1 seconds or more, and it is more preferable if heating is performed so that the heating time at the peak temperature is 0.5 seconds or more. The heating time may be 30 seconds or less at the longest, and the heating may be performed so that the heating time at the peak temperature is 10 seconds or less.
The soldering process may be performed in an atmosphere in the air, but when a bonding material containing a metal that is easily oxidized is used, it is preferable to perform heating in a non-oxidizing atmosphere such as nitrogen. Furthermore, it is more preferable to perform heating in a reducing atmosphere containing hydrogen.

(接合材及び接合層)
本実施の形態の薄膜状の接合材は、第1の実施形態で示した接合層2で使用する接合材料を用いることができる。すなわち、Snからなる第1成分と、これに添加する金属元素からなる添加成分からなる接合材において、第2成分として、第1成分金属元素より高融点金属元素を用いるものである。第2成分として用いられる元素は前述の元素から2種類以上を選択して用いてもよい。
(Joining material and joining layer)
The bonding material used in the bonding layer 2 shown in the first embodiment can be used for the thin-film bonding material of the present embodiment. That is, in the bonding material composed of the first component composed of Sn and the additive component composed of the metal element added thereto, a refractory metal element is used as the second component rather than the first component metal element. Two or more kinds of elements used as the second component may be selected from the elements described above.

前記接合材を第1の被接合部材表面に薄膜として形成する手段としては、物理的成膜法、特に、真空蒸着、イオンプレーティング、電子ビーム処理等を採用することができるが、このような物理的成膜法以外にも、めっき法や化学的成膜法を採用することもできる。
本実施の形態の接合材は、すべての成分を同時に薄膜状に成膜してもよいし、各成分を順次成膜してもよい。各成分を順次成膜する場合、単一元素の層を複数層に分けて成膜してもよい。具体的には、仮にA金属とB金属を成膜する場合、A層、B層、A層、B層のように、4層に分割して成膜することもできる。このような成膜法によれば、A金属とB金属の合金化が速やかに進行するので好ましい。
前記薄膜接合材の厚さは、1μm以上、50μm以下の範囲であることが望ましい。複数層にわたって薄膜化する場合、合計の膜厚を、上記範囲とすることが好ましい。金属層が1μmより薄い場合には、良好な接合性を確保することが困難となり、また、50μm以上の場合には、物理的成膜法によって接合層を形成する場合、製造効率を妨げる恐れがあるため、好ましくない。
As a means for forming the bonding material as a thin film on the surface of the first member to be bonded, a physical film forming method, in particular, vacuum deposition, ion plating, electron beam treatment, etc. can be adopted. In addition to the physical film forming method, a plating method or a chemical film forming method can also be employed.
In the bonding material of the present embodiment, all components may be formed into a thin film at the same time, or each component may be formed sequentially. In the case of sequentially depositing each component, a single element layer may be divided into a plurality of layers. Specifically, if the A metal and the B metal are formed, the film can be divided into four layers such as an A layer, a B layer, an A layer, and a B layer. Such a film forming method is preferable because the alloying of the A metal and the B metal proceeds rapidly.
The thickness of the thin film bonding material is preferably in the range of 1 μm or more and 50 μm or less. When thinning over a plurality of layers, the total film thickness is preferably in the above range. When the metal layer is thinner than 1 μm, it is difficult to ensure good bonding properties. When the metal layer is 50 μm or more, when the bonding layer is formed by a physical film forming method, the production efficiency may be hindered. This is not preferable.

接合工程によって得られる接合層の材料は、上記接合材を構成する元素が合金化したものとなるが、接合層中には、第1の被接合部材及び第2の被接合部材の構成金属元素が溶解・拡散することにより形成した金属間化合物が存在していても良い。
接合層材料の固相線温度は、260℃以上であることが好ましい。液相線温度が260℃を超えると、接合部が溶融し、高温強度が維持されないという不都合が生じる。
The material of the bonding layer obtained by the bonding step is an alloy of the elements constituting the bonding material, and the bonding layer includes constituent metal elements of the first member to be bonded and the second member to be bonded. An intermetallic compound formed by dissolving and diffusing may exist.
The solidus temperature of the bonding layer material is preferably 260 ° C. or higher. When the liquidus temperature exceeds 260 ° C., the joint is melted and the high temperature strength is not maintained.

(被接合部材)
この実施形態では、第1の被接合部材及び第2の被接合部材は金属材料を使用することができる。使用する金属材料は用途に応じて選択可能で特に限定されないが、溶融したSnとの接合性が良好である材料であることが望ましい。具体的には、Au、Ni、Ag、Cu、Pd、Pt、Al、Ge、Be、Nb、Mn、あるいはこれらの合金などが、好ましい。
(Members to be joined)
In this embodiment, a metal material can be used for the first member to be joined and the second member to be joined. Although the metal material to be used can be selected according to a use and is not specifically limited, It is desirable that it is a material with favorable joining property with molten Sn. Specifically, Au, Ni, Ag, Cu, Pd, Pt, Al, Ge, Be, Nb, Mn, or alloys thereof are preferable.

(効果)
本実施の形態によれば、はんだ接合に高融点の合金材料を用いても極度に接合時間が増加することが無いため、接合体の製造効率の低下を招かない。例えば、実際の半導体装置の実装工程において鉛含有はんだを用いた現行の製造速度と同程度の製造速度に設定することを可能とし、製造効率を低減させることはない。
(effect)
According to the present embodiment, even if an alloy material having a high melting point is used for solder joining, the joining time does not extremely increase, so that the production efficiency of the joined body is not lowered. For example, in an actual semiconductor device mounting process, it is possible to set a manufacturing speed comparable to the current manufacturing speed using lead-containing solder, and the manufacturing efficiency is not reduced.

また、本実施の形態の接合方法によれば、260℃以上の耐熱性を有する接合層が形成されるため、260℃の高温条件下においても接合層の耐熱性を維持することができ、高温系マウント材として求められる260℃において耐熱性があるという要求に十分応えることができる。また、接合材内部において、第1の被接合部材、または第2の被接合部材の構成元素が、接合層に固溶した相、または、接合層中の接合材構成元素と各被接合部材構成元素とで構成される金属間化合物相等が生成してよい。その結果として、高温条件下においても機械的強度の良好な接合体が短時間で得ることができる。   Further, according to the bonding method of the present embodiment, since the bonding layer having a heat resistance of 260 ° C. or higher is formed, the heat resistance of the bonding layer can be maintained even under a high temperature condition of 260 ° C. It is possible to sufficiently meet the demand for heat resistance at 260 ° C., which is required as a system mount material. Further, in the bonding material, the phase in which the constituent elements of the first bonded member or the second bonded member are dissolved in the bonding layer, or the bonding material constituting elements in the bonding layer and each bonded member configuration An intermetallic compound phase composed of elements may be generated. As a result, a bonded body with good mechanical strength can be obtained in a short time even under high temperature conditions.

本発明に係る接合体、接合方法は、はんだ接合を行うことができるいかなる分野で用いられてもよいが、特に製造プロセス、あるいは製品使用時に高温条件下に置かれる電子機器部品、半導体デバイス特にパワー系半導体デバイスにおける部品の接合に好適に用いられる。特に半導体素子とリードフレームとの接合に際しては特に好適に用いられる。   The joined body and joining method according to the present invention may be used in any field where solder joining can be performed, but in particular, an electronic equipment component, a semiconductor device, especially power, which is placed under high temperature conditions during the manufacturing process or product use. It is suitably used for joining components in a semiconductor device. In particular, it is particularly preferably used for joining a semiconductor element and a lead frame.

[第3の実施の形態:接合方法の変形例]
上記第1の実施の形態においては、被接合部材の一方の表面に接合材を形成する例を示したが、接合材を第1の被接合部材および第2の被接合部材の双方の表面に形成してもよい。
この場合、2つの接合材は、同一組成の層であってもよいし、それぞれ異なる組成の層であってもよい。最終的にはんだ接合された後の接合層材料が、上記本発明の接合層の組成となるように、各層の組成を調整することによって、本発明のはんだ接合を形成することができる。
また、各基材表面に形成される薄膜の厚さは、それらの合計量が1μm以上、50μm以下の範囲となるよう、それぞれ設定することができる。
[Third Embodiment: Modification of Joining Method]
In the said 1st Embodiment, although the example which forms a joining material in one surface of a to-be-joined member was shown, a joining material is shown in the surface of both the 1st to-be-joined member and the 2nd to-be-joined member. It may be formed.
In this case, the two bonding materials may be layers having the same composition, or layers having different compositions. The solder joint of the present invention can be formed by adjusting the composition of each layer so that the joint layer material after the final solder joint has the composition of the joint layer of the present invention.
Moreover, the thickness of the thin film formed on each substrate surface can be set so that the total amount thereof is in the range of 1 μm or more and 50 μm or less.

[第4の実施の形態:接合方法の他の変形例]
この実施形態の接合方法は、第1の被接合部材および第2の被接合部材の少なくとも一方を、金属、セラミックス、あるいは半導体などからなる母材の表面にメタライズ層を形成したものとするものである。この方法は、上記はんだ接合に適さない材料を被接合部材として用いる場合に適している。
[Fourth Embodiment: Another Modification of Joining Method]
In the bonding method of this embodiment, at least one of the first member to be bonded and the second member to be bonded is formed by forming a metallized layer on the surface of a base material made of metal, ceramics, or semiconductor. is there. This method is suitable when a material that is not suitable for soldering is used as a member to be joined.

前述のように、第1の被接合部材または第2の被接合部材が、金属、セラミックス、半導体等の材料からなる母材と、その表面に形成されたメタライズ層とからなっている。このメタライズ層は、Au、Ni、Ag、Cu、Pd、Pt、Al、Ge、Be、Nb、Mnまたはこれらの金属材料を用いた金属合金からなる群より選択される材料であることが好ましいが、用途に応じて選択可能であり特に限定されることはない。このメタライズ層は、単一材料の層であってもよいし、相互に異なる材料からなる複数のメタライズ層からなっていてもよい。母材表面にメタライズする手段としては、蒸着、スパッタリング、めっき処理や電子ビーム処理等の物理的あるいは化学的成膜法を採用することができる。   As described above, the first member or the second member is composed of a base material made of a material such as metal, ceramics, or semiconductor, and a metallized layer formed on the surface thereof. The metallized layer is preferably a material selected from the group consisting of Au, Ni, Ag, Cu, Pd, Pt, Al, Ge, Be, Nb, Mn, or a metal alloy using these metal materials. It can be selected according to the application and is not particularly limited. This metallized layer may be a single material layer, or may be composed of a plurality of metallized layers made of different materials. As means for metallizing on the surface of the base material, physical or chemical film formation methods such as vapor deposition, sputtering, plating treatment, and electron beam treatment can be employed.

メタライズ層の厚さ(平均厚さ)は、特に限定されるものではないが、0.1μm以上、500μm以下の範囲であることが望ましい。この厚さが、0.1μm以下であると、十分なはんだ接合強度が得られない。また、500μm以上のメタライズ層を形成するには、薄膜形成に長時間を要し、実用的ではない。   The thickness (average thickness) of the metallized layer is not particularly limited, but is preferably in the range of 0.1 μm or more and 500 μm or less. If this thickness is 0.1 μm or less, sufficient solder joint strength cannot be obtained. In addition, forming a metallized layer of 500 μm or more requires a long time to form a thin film and is not practical.

本実施の形態においては、前記メタライズ層表面に、前記成膜法を適用して、接合材層を形成し、前記第1の実施の形態における方法と同様にして接合することができる。また、メタライズ層を備えていない接合部材表面に接合材層を形成し、メタライズ層を備えた基材と接合することもできる。   In the present embodiment, a bonding material layer can be formed on the surface of the metallized layer by applying the film forming method, and bonding can be performed in the same manner as in the method in the first embodiment. Further, a bonding material layer can be formed on the surface of the bonding member not provided with the metallized layer, and bonded to the base material provided with the metallized layer.

[第5の実施の形態:上記接合技術を適用した半導体装置]
上記はんだ接合技術は、半導体装置の製造に適用することできる。
[Fifth Embodiment: Semiconductor Device Applying the Joining Technique]
The solder joining technique can be applied to the manufacture of semiconductor devices.

以下、本発明を適用することができる半導体装置について、図面を用いて説明する。
図3は、本発明の接合技術を適用した半導体装置の一例を示す断面図である。この実施形態の半導体装置は、外部端子となるリード部37を有するリードフレーム34と、リードフレーム34表面に配置されている半導体素子36と、このリードフレーム34と半導体素子36との間で両者を接合している接合層35と、これらを包囲する封止樹脂32とを有している。
リードフレーム34は、42アロイなどの低熱膨張材料、銅など高熱膨張材料の金属の表面に、例えば銀めっきおよび銅めっきなどが施されていてもよい。本実施の形態の半導体装置としては、例えばダイオード、トランジスタ、コンデンサ、サイリスタ等を挙げることができる。
Hereinafter, a semiconductor device to which the present invention can be applied will be described with reference to the drawings.
FIG. 3 is a cross-sectional view showing an example of a semiconductor device to which the bonding technique of the present invention is applied. The semiconductor device according to this embodiment includes a lead frame 34 having a lead portion 37 serving as an external terminal, a semiconductor element 36 disposed on the surface of the lead frame 34, and the lead frame 34 and the semiconductor element 36. It has the joining layer 35 which has joined, and the sealing resin 32 which surrounds these.
The lead frame 34 may be subjected to, for example, silver plating or copper plating on a metal surface of a low thermal expansion material such as 42 alloy or a high thermal expansion material such as copper. Examples of the semiconductor device of this embodiment include a diode, a transistor, a capacitor, and a thyristor.

上記本実施の形態の半導体装置においては、半導体素子表面を、Au、Ni、Ag、Cu、Pd、Pt及びAl、またはこれらの金属材料を用いた金属合金からなる群より選択される材料を用いた金属薄膜でメタライズし、この半導体素子の金属薄膜がメタライズされた面と、前記半導体素子を載置する金属リードフレームとを、Snと、これらより融点の高い金属元素とからなる接合材によって接合するものである。   In the semiconductor device of the present embodiment, the surface of the semiconductor element is made of a material selected from the group consisting of Au, Ni, Ag, Cu, Pd, Pt and Al, or a metal alloy using these metal materials. The metal thin film of the semiconductor element and the metal lead frame on which the semiconductor element is mounted are bonded to each other by a bonding material composed of Sn and a metal element having a higher melting point. To do.

前記半導体装置において、前記金属フレームは、Au、Ni、Ag、Cu、Pd、Pt及びAl、またはこれらの金属材料を用いた金属合金からなる群より選択される材料で構成されていてもよいし、任意の金属母材表面が、Au、Ni、Ag、Cu、Pd、Pt及びAl、またはこれらの金属材料を用いた金属合金からなる群より選択される材料を用いた金属薄膜でメタライズされていても良い。   In the semiconductor device, the metal frame may be made of Au, Ni, Ag, Cu, Pd, Pt, and Al, or a material selected from the group consisting of metal alloys using these metal materials. The surface of any metal matrix is metallized with a metal thin film using a material selected from the group consisting of Au, Ni, Ag, Cu, Pd, Pt and Al, or a metal alloy using these metal materials. May be.

本実施の形態において、接合材を構成するSn以上の融点を有する金属材料としては、Ag、Cu、Ni、Pd、Pt及びAl、またはこれらの金属材料を用いた金属合金からなる群により選択される材料を用いることが好ましい。また、これ以外の金属元素が微量添加されていても、本発明の効果は変わらない。   In the present embodiment, the metal material having a melting point equal to or higher than Sn constituting the bonding material is selected from the group consisting of Ag, Cu, Ni, Pd, Pt and Al, or a metal alloy using these metal materials. It is preferable to use a material. Even if a trace amount of other metal elements is added, the effect of the present invention does not change.

(効果)
本実施の形態の半導体装置の製造方法及び半導体装置によれば、半導体装置の製造過程において有害な高鉛含有接合材を使用せずとも、高温条件下にさらされても半導体素子とリードフレーム間の接合強度は維持され、信頼性の高い半導体装置を短時間で提供できる。
(effect)
According to the method of manufacturing a semiconductor device and the semiconductor device of the present embodiment, the semiconductor element and the lead frame are not exposed to a high lead-containing bonding material, which is harmful in the manufacturing process of the semiconductor device, even when exposed to high temperature conditions. Therefore, a highly reliable semiconductor device can be provided in a short time.

以下、実施例により本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail by way of examples.

(実施例1)
パワー系半導体装置における半導体素子とリードフレームとの接合を行った。図3は2.5×3.0×0.6mmサイズの半導体素子とリードフレームとの接合形態を示す断面図である。このパワー系半導体モジュールでは、10mm角のシリコン半導体素子11に、第1の被接合部材として、金を蒸着することによりメタライズが施され0.1μm厚の金よりなるメタライズ層1が形成されている。さらに、メタライズ層1表面には、実質的に質量構成比でSnを25%、Cuを22%含み、残部がAgよりなる10μm厚の接合材5を蒸着形成した。
また、第2の被接合部材としてCuよりなるメタライズ層3は、42アロイよりなるリードフレーム12表面上に無電解めっき処理により施した。
更に、上記接合材5とメタライズ層3とが接するように積層し、その後加熱して接合を行なった。加熱は、100ppm以下の酸素濃度にしたフォーミングガス(窒素+水素)雰囲気中で熱板上で加熱した。加熱条件は、450℃、5秒とした。
Example 1
The semiconductor element and the lead frame in the power semiconductor device were joined. FIG. 3 is a cross-sectional view showing a bonding form between a 2.5 × 3.0 × 0.6 mm semiconductor element and a lead frame. In this power semiconductor module, a metalized layer 1 made of gold having a thickness of 0.1 μm is formed on a 10 mm square silicon semiconductor element 11 by depositing gold as a first bonded member by vapor deposition of gold. . Further, on the surface of the metallized layer 1, a 10 μm-thick bonding material 5 containing substantially 25% Sn and 22% Cu with the balance being Ag was formed by vapor deposition.
Further, the metallized layer 3 made of Cu as the second member to be joined was applied to the surface of the lead frame 12 made of 42 alloy by electroless plating.
Further, the bonding material 5 and the metallized layer 3 were laminated so as to be in contact with each other, and then heated to perform bonding. The heating was performed on a hot plate in a forming gas (nitrogen + hydrogen) atmosphere having an oxygen concentration of 100 ppm or less. The heating conditions were 450 ° C. and 5 seconds.

接合後の接合界面の断面をSEM観察から、際立ったボイドの発生は認められず、良好な接合性を示した。   From the SEM observation of the cross section of the bonded interface after bonding, no significant voids were observed, indicating good bonding properties.

最後に接合したリードフレームと半導体素子とを樹脂封止し、260℃の耐熱性を有したパワー系半導体装置を得た。   Finally, the joined lead frame and the semiconductor element were sealed with a resin to obtain a power semiconductor device having heat resistance of 260 ° C.

(実施例2)
接合材として、Ag13Cu35Sn52を用いたこと以外には、上記実施例1と同様にして、パワー半導体とリードフレームとの接合を行った。
接合後の接合界面の断面をSEM観察したところ、際立ったボイドの発生は認められず、良好な接合性を示していた。
(Example 2)
The power semiconductor and the lead frame were bonded in the same manner as in Example 1 except that Ag13Cu35Sn52 was used as the bonding material.
When a cross section of the bonded interface after bonding was observed with an SEM, no significant voids were observed, indicating good bonding properties.

(実施例3)
接合材として、Ag13Cu40Sn47を用いたこと以外には、上記実施例1と同様にして、パワー半導体とリードフレームとの接合を行った。
接合後の接合界面の断面をSEM観察したところ、際立ったボイドの発生は認められず、良好な接合性を示していた。
(Example 3)
The power semiconductor and the lead frame were bonded in the same manner as in Example 1 except that Ag13Cu40Sn47 was used as the bonding material.
When a cross section of the bonded interface after bonding was observed with an SEM, no significant voids were observed, indicating good bonding properties.

(評価)
上記各実施例で作成した接合体について、高温剪断試験を行った。その試験装置の概略を図4に示す。図4に見られるように、リードフレーム41の表面に接合層42を介して半導体素子43が接合されている試験体を、加圧片44を用いて矢印方向に力を印加し、破断時の強度を測定した。この測定は、各試験片について、室温及び275℃加熱時について、各10サンプルについて行った。その結果を図5に示す。
図5は、本願実施例により提供されるサンプルに対するせん断強度試験結果の一例であり、室温と、275℃におけるせん断強度を測定している。各実施例において試料を3〜5個用意し、それぞれのサンプルのせん断強度を測定し、その平均値を算出した。
図5に見られるように、各結果においては全て275℃加熱時においても室温時並のせん断強度を示しており、耐熱性があることが分かった。
(Evaluation)
A high temperature shear test was performed on the joined bodies prepared in the above Examples. An outline of the test apparatus is shown in FIG. As shown in FIG. 4, a test body in which the semiconductor element 43 is bonded to the surface of the lead frame 41 via the bonding layer 42 is applied with a force in the direction of the arrow using the pressure piece 44, The strength was measured. This measurement was performed on each test piece for 10 samples each at room temperature and at 275 ° C. heating. The result is shown in FIG.
FIG. 5 is an example of the shear strength test result for the sample provided by the embodiment of the present application, and the shear strength at room temperature and 275 ° C. is measured. In each example, 3 to 5 samples were prepared, the shear strength of each sample was measured, and the average value was calculated.
As can be seen from FIG. 5, in each result, even when heated at 275 ° C., the shear strength was comparable to that at room temperature, indicating that it had heat resistance.

(実施例4)
本実施例では、第2の被接合部材としてAgよりなるメタライズ層を42アロイよりなるリードフレーム上に成膜して用いた以外は実施例1と同様にパワー系半導体装置を得た。
Example 4
In this example, a power semiconductor device was obtained in the same manner as in Example 1 except that a metallized layer made of Ag was formed on a lead frame made of 42 alloy as the second member to be joined.

接合後の接合界面の断面をSEM観察から、際立ったボイドは発生せず良好な接合性を示し、高温での接合性も良好であった。   From the SEM observation of the cross section of the bonded interface after bonding, no conspicuous voids were generated and good bonding property was exhibited, and the bonding property at high temperature was also good.

最後に接合したリードフレームと半導体素子とを樹脂封止し、260℃の耐熱性を有したパワー系半導体装置を得た。   Finally, the joined lead frame and the semiconductor element were sealed with a resin to obtain a power semiconductor device having heat resistance of 260 ° C.

(実施例5)
本実施例では、2.5×3.0×0.6mmサイズの半導体素子13上に真空蒸着により形成された0.1μm厚の金層1および10μm厚のSn層5の表面上に、更に真空蒸着により10μm厚のZn−Sn系接合層6を形成した以外は実施例1と同様にパワー系半導体装置を得た。蒸着により形成されたZn−Sn接合層6は、Snが50.0質量%、残りがZnからなるZn-Sn系合金を用いている。この接合層6を、Cuからなるリードフレーム7上に施された錫層8上に搭載して、100ppmの酸素濃度にしたフォーミングガス(窒素+水素)雰囲気中で熱板上で加熱した。加熱条件は、400℃、5秒とした。
(Example 5)
In this example, on the surface of the 0.1 μm-thick gold layer 1 and the 10 μm-thick Sn layer 5 formed by vacuum deposition on the semiconductor element 13 of 2.5 × 3.0 × 0.6 mm size, A power semiconductor device was obtained in the same manner as in Example 1 except that a 10 μm thick Zn—Sn bonding layer 6 was formed by vacuum deposition. The Zn—Sn bonding layer 6 formed by vapor deposition uses a Zn—Sn alloy composed of 50.0% by mass of Sn and the balance of Zn. This bonding layer 6 was mounted on a tin layer 8 provided on a lead frame 7 made of Cu, and heated on a hot plate in a forming gas (nitrogen + hydrogen) atmosphere having an oxygen concentration of 100 ppm. The heating conditions were 400 ° C. and 5 seconds.

接合後の接合界面の断面をSEM観察から、際立ったボイドは発生せず良好な接合性を示し、高温での接合性も良好であった。   From the SEM observation of the cross section of the bonded interface after bonding, no conspicuous voids were generated and good bonding property was exhibited, and the bonding property at high temperature was also good.

最後に接合したリードフレームと半導体素子とを樹脂封止し、パワー系半導体装置を得た。   Finally, the joined lead frame and the semiconductor element were sealed with resin to obtain a power semiconductor device.

(実施例6〜11及び比較例1〜3)
実施例6では、第1の被接合部材として42アロイに銅メッキした被接合部材を、実施例7〜11は被接合部材に銅を用い、AgCuSn系接合材を表1に示すような比率になるように各元素を蒸着によって成膜した例である。加熱は実施例6の場合には450℃、実施例7〜11の場合には400℃、N雰囲気下で接合性を評価した。
一方、比較例1及び2被接合材として42アロイを用い、表1に示すような比率になるように実施例6同様に各元素を蒸着によって成膜し、比較例3では被接合部材として銅を用い、Ag13Cu75Sn12となるように各元素を蒸着によって成膜して評価した。例、
表1にその結果を示した。評価は各接合材の接合性と265℃における接合強度により行った。接合性は実施例1と同様に接合界面をSEM観察し、接合が良好であるものは○、接合界面にボイドが発生したり、接合していないものには×を示した。また、接合強度の測定は実施例4と同様に半導体素子が接合されている試験体を作製し、各試験体の260℃におけるせん断強度を測定した。接合しておらずせん断強度の測定ができない試験体については「−」で、測定ができた試験体については破断時の強度(kg・f)を示した。
本願発明の実施例6〜11はは全て十分接合したのに対して、比較例1はは、接合しなかった。また、実施例6〜11はいずれも接合強度10kg・fより大きく、十分な接合強度を示したのに対し、比較例2及び3については265℃における接合強度が10kgf以下(表1において×で示す)となり、実用上不十分であった。
(Examples 6-11 and Comparative Examples 1-3)
In Example 6, as a first member to be bonded, a member to be bonded that was copper-plated to 42 alloy, in Examples 7 to 11, copper was used as the member to be bonded, and the AgCuSn-based bonding material was in a ratio as shown in Table 1. In this example, each element is formed into a film by vapor deposition. In the case of Example 6, the heating was evaluated at 450 ° C., and in the case of Examples 7 to 11, the bonding property was evaluated at 400 ° C. in an N 2 atmosphere.
On the other hand, 42 alloys were used as the materials to be joined in Comparative Examples 1 and 2, and each element was formed by vapor deposition in the same manner as in Example 6 so that the ratios shown in Table 1 were obtained. In Comparative Example 3, copper was used as the member to be joined. Each element was formed into a film by vapor deposition and evaluated so as to be Ag13Cu75Sn12. Example,
Table 1 shows the results. The evaluation was performed based on the bondability of each bonding material and the bonding strength at 265 ° C. As in the case of Example 1, the bonding interface was observed by SEM, and “Good” indicates that the bonding was good, and “V” indicates that a void was generated at the bonding interface or the bonding interface was not bonded. Moreover, the measurement of joining strength produced the test body to which the semiconductor element was joined similarly to Example 4, and measured the shear strength in 260 degreeC of each test body. The specimens that were not joined and for which the shear strength could not be measured were indicated by “-”, and the specimens that could be measured for the specimens showed the strength at break (kg · f).
All of Examples 6 to 11 of the present invention were sufficiently joined, whereas Comparative Example 1 was not joined. In addition, all of Examples 6 to 11 had a bonding strength larger than 10 kg · f and showed a sufficient bonding strength, whereas in Comparative Examples 2 and 3, the bonding strength at 265 ° C. was 10 kgf or less (in Table 1, “×”). It was not practically sufficient.

Figure 0005744080
Figure 0005744080

本願実施の形態の接合体の断面図である。It is sectional drawing of the conjugate | zygote of this-application embodiment. 本願実施の形態の接合体の他の例を示す断面図である。It is sectional drawing which shows the other example of the conjugate | zygote of embodiment of this application. 本願発明を適用した半導体装置の断面図である。It is sectional drawing of the semiconductor device to which this invention is applied. 接合体の耐熱性を測定する装置の概念図である。It is a conceptual diagram of the apparatus which measures the heat resistance of a joined body. 本願発明の実施例の効果を示すグラフである。It is a graph which shows the effect of the Example of this invention.

1…第1の被接合部材
2…接合層
3…第2の被接合部材
4…接合体
7…接合層
8、9…金属間化合物層
10…接合体
32…封止樹脂
34…リードフレーム
35…接合層
36…半導体素子
37…リード線
DESCRIPTION OF SYMBOLS 1 ... 1st to-be-joined member 2 ... Joining layer 3 ... 2nd to-be-joined member 4 ... Joined body 7 ... Joining layer 8, 9 ... Intermetallic compound layer 10 ... Joined body 32 ... Sealing resin 34 ... Lead frame 35 ... Junction layer 36 ... Semiconductor element 37 ... Lead wire

Claims (3)

第1の被接合部材と、前記被接合部材上に形成されたSn,Ag及びCuよりなる金属材料であり、前記Snが質量比で35%以上70%以下である材料からなり、厚さが1μm以上、50μm以下である接合層と、Cuからなる第2の接合部材、あるいはFe−42Ni合金にCu又はAgを被覆した第2の被接合部材を有することを特徴とする接合体。 A first member to be joined, Sn formed on said workpieces, a metal material made of Ag and Cu, the Sn is a material 70% or less than 35% by mass ratio, the thickness A joined body comprising a joining layer having a thickness of 1 μm or more and 50 μm or less, and a second joining member made of Cu, or a second joined member in which an Fe-42Ni alloy is coated with Cu or Ag . 前記接合体は、前記第1の被接合部材または前記第2の被接合部材の構成元素と、前記接合層の構成元素とで構成される金属間化合物相を有することを特徴とする請求項1記載の接合体。   The said joined body has an intermetallic compound phase comprised by the component element of the said 1st to-be-joined member or the said 2nd to-be-joined member, and the constituent element of the said joining layer. The joined body described. 請求項1または請求項2に記載の接合体を用いた半導体装置。
A semiconductor device using the joined body according to claim 1.
JP2013019663A 2013-02-04 2013-02-04 Bonded body and semiconductor device Expired - Fee Related JP5744080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013019663A JP5744080B2 (en) 2013-02-04 2013-02-04 Bonded body and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013019663A JP5744080B2 (en) 2013-02-04 2013-02-04 Bonded body and semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006266600A Division JP5231727B2 (en) 2006-09-29 2006-09-29 Joining method

Publications (2)

Publication Number Publication Date
JP2013099790A JP2013099790A (en) 2013-05-23
JP5744080B2 true JP5744080B2 (en) 2015-07-01

Family

ID=48620969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013019663A Expired - Fee Related JP5744080B2 (en) 2013-02-04 2013-02-04 Bonded body and semiconductor device

Country Status (1)

Country Link
JP (1) JP5744080B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193036A (en) * 1983-04-16 1984-11-01 Toshiba Corp Semiconductor device
JPS63212087A (en) * 1987-02-27 1988-09-05 Taiyo Yuden Co Ltd Brazing filler metal for electrical parts
JP4279594B2 (en) * 2003-05-16 2009-06-17 財団法人電力中央研究所 Thermoelectric conversion module assembling method and brazing material used for assembling the module
JP4305751B2 (en) * 2003-10-15 2009-07-29 千住金属工業株式会社 High-temperature lead-free solder for lamps
JP3992107B2 (en) * 2004-09-03 2007-10-17 Tdk株式会社 Lead-free solder alloy

Also Published As

Publication number Publication date
JP2013099790A (en) 2013-05-23

Similar Documents

Publication Publication Date Title
KR100867871B1 (en) Solder paste and electronic device
TWI335850B (en) Joints and method for forming the same
KR101528515B1 (en) Bonding method, bonding structure, electronic device, manufacturing method for electronic device, and electronic component
JP6050308B2 (en) Stud bump, its package structure, and its manufacturing method
TWI505899B (en) A bonding method, a bonding structure, and a method for manufacturing the same
US20060081995A1 (en) Soldered material, semiconductor device, method of soldering, and method of manufacturing semiconductor device
KR101528030B1 (en) Stud bump structure and method for manufacturing the same
WO2013132942A1 (en) Bonding method, bond structure, and manufacturing method for same
JP2005288458A (en) Joined body, semiconductor device, joining method and method for producing semiconductor device
JP5231727B2 (en) Joining method
JPWO2013132953A1 (en) Bonding method, electronic device manufacturing method, and electronic component
TWI579992B (en) Semiconductor device and method of manufacturing the semiconductor device
JP2008238233A (en) Non-lead based alloy joining material, joining method, and joined body
JP2008221290A (en) Joined member and joining method
JP2008080393A (en) Joining body using peritectic system alloy, joining method, and semiconductor device
JP2005032834A (en) Joining method of semiconductor chip and substrate
JP5376356B2 (en) Electronic element mounting method and electronic component mounted by the mounting method
JP2005052869A (en) Brazing material for high temperature soldering and semiconductor device using it
JP6887183B1 (en) Solder alloys and molded solders
JP5744080B2 (en) Bonded body and semiconductor device
JP2007260695A (en) Joining material, joining method, and joined body
JP2015080812A (en) Joint method
JP4573167B2 (en) Brazing material sheet
JP2009039769A (en) Joining sheet
JP6543890B2 (en) High temperature solder alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150428

R151 Written notification of patent or utility model registration

Ref document number: 5744080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees