JP2009039769A - Joining sheet - Google Patents

Joining sheet Download PDF

Info

Publication number
JP2009039769A
JP2009039769A JP2007208939A JP2007208939A JP2009039769A JP 2009039769 A JP2009039769 A JP 2009039769A JP 2007208939 A JP2007208939 A JP 2007208939A JP 2007208939 A JP2007208939 A JP 2007208939A JP 2009039769 A JP2009039769 A JP 2009039769A
Authority
JP
Japan
Prior art keywords
alloy
joining
bonding
foil
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007208939A
Other languages
Japanese (ja)
Inventor
Chuya Aoki
宙也 青木
Yuji Kawauchi
祐治 川内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2007208939A priority Critical patent/JP2009039769A/en
Publication of JP2009039769A publication Critical patent/JP2009039769A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Pb-free joining sheet used for joining electronic component, in which the oozing out of Sn upon the joining can be suppressed or reduced, and simultaneously, joining reliability can be secured. <P>SOLUTION: Disclosed is a joining sheet in which the surface of an Ag foil material is provided with a layer composed of an Sn-Ag alloy, preferably, the average thickness of the Ag foil material is 20 to 200 μm, and more preferably, the average thickness of the layer composed of an Sn-Ag alloy is 10 to 40 μm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電子部品の接合に用いられる接合シートに関するものである。   The present invention relates to a joining sheet used for joining electronic components.

近年の電子機器産業において、Siなどからなる半導体素子を配線基板に電気的に接続する方法として、Au線を用いたワイヤボンディングが広く用いられている。ワイヤボンディングを行うためには半導体素子を配線基板に接合し固定する必要があり、その固定のための接合材として様々な素材が提案されている。中でもPbを質量%で90%以上含有するPb−Sn合金は融点が300℃程度であり、樹脂系接合材と比較して耐熱性の面で優れること、低コストであることから、発熱量の大きなパワーデバイス系の半導体素子を配線基板に接合する際に多く用いられている。
また、Pb−Sn合金は電子部品の構造材料、特にセラミックパッケージの封止用金属リッドの接合材として、半導体素子の固定以外の用途でも使用されている。これは電子部品を配線基板に実装する際の200℃程度の温度において、Pb−Sn合金は融点が高いため、電子部品内の接合部分に使用していても、実装時に再溶融しないといった特徴を有するためである。加えてPb−Sn合金は延性に富むことから、携帯機器など落下衝撃を受ける電子機器の接合部材として使用された場合、落下衝撃エネルギーを十分に吸収し電子部品の電気的断線等の損傷を抑制することができる。
In recent electronic equipment industries, wire bonding using Au wire is widely used as a method for electrically connecting a semiconductor element made of Si or the like to a wiring board. In order to perform wire bonding, it is necessary to bond and fix a semiconductor element to a wiring board, and various materials have been proposed as bonding materials for the fixing. Among them, a Pb-Sn alloy containing 90% or more by mass of Pb has a melting point of about 300 ° C., is superior in terms of heat resistance compared to a resin-based bonding material, and is low in cost. It is often used when bonding a large power device semiconductor element to a wiring board.
Pb—Sn alloys are also used for applications other than fixing semiconductor elements as bonding materials for structural materials of electronic components, particularly metal lids for sealing ceramic packages. This is because the Pb—Sn alloy has a high melting point at a temperature of about 200 ° C. when the electronic component is mounted on the wiring board, and therefore, it is not remelted at the time of mounting even if it is used for a joint portion in the electronic component. It is for having. In addition, Pb-Sn alloy is rich in ductility, so when used as a joining member for electronic devices that are subject to a drop impact such as portable devices, the impact energy of the drop impact is sufficiently absorbed to prevent damage such as electrical disconnection of electronic components. can do.

一方、近年自然環境への配慮からはんだやロウ材中のPbを削減、削除しようとするいわゆるPbフリー化の動きがあり、Pb−Sn合金の代替材が各種提案されている。
たとえば特許文献1では、Au−20質量%Sn合金やAu−Snめっき層を有した蓋材を用いてセラミックパッケージを封止している。封止後のセラミックパッケージは、後工程でSn−Pb共晶はんだやSn−Ag−Cu系はんだを用いて回路に250℃程度ではんだ付けされる。このとき、前工程でセラミックパッケージに封止した特許文献1のAu−Sn合金の融点は、後工程でパッケージを回路基板に実装するはんだ付け温度より高いため、封止箇所はパッケージを回路基板にはんだ付けする際に再溶融せず接合状態を保つといった特徴をもつ。
On the other hand, in recent years, there has been a so-called Pb-free movement to reduce and eliminate Pb in solder and brazing materials in consideration of the natural environment, and various alternative materials for Pb—Sn alloys have been proposed.
For example, in Patent Document 1, a ceramic package is sealed using a lid member having an Au-20 mass% Sn alloy or an Au-Sn plating layer. The sealed ceramic package is soldered to the circuit at about 250 ° C. using Sn—Pb eutectic solder or Sn—Ag—Cu solder in a later step. At this time, since the melting point of the Au—Sn alloy of Patent Document 1 sealed in the ceramic package in the previous process is higher than the soldering temperature for mounting the package on the circuit board in the subsequent process, the sealed part is attached to the circuit board. It has the feature that it keeps the joined state without remelting when soldering.

また、特許文献2では、特許文献1に記載のAu−Sn合金よりコスト面で優れている高融点金属であるAgまたはCu箔材の表面に低融点金属であるSn層を形成したロウ材シートが提案されている。このロウ材シートはセラミックパッケージと蓋材とを介して加熱することによりSnが低融点であることを活かして封止している。さらに封止後高融点金属箔のAgまたはCuが低融点金属であるSnと反応し、高融点である金属間化合物相を形成することで接合信頼性を確保するといった特徴をもつ。
特開2003−229504号公報 特開2006−272449号公報
Further, in Patent Document 2, a brazing material sheet in which an Sn layer, which is a low melting point metal, is formed on the surface of an Ag or Cu foil material, which is a high melting point metal, which is superior in cost to the Au—Sn alloy described in Patent Document 1. Has been proposed. This brazing material sheet is sealed by utilizing the low melting point of Sn by heating through the ceramic package and the lid. Further, after sealing, Ag or Cu of the high melting point metal foil reacts with Sn, which is a low melting point metal, to form an intermetallic compound phase having a high melting point, thereby ensuring bonding reliability.
JP 2003-229504 A JP 2006-272449 A

上述した特許文献1に開示される蓋材は、Pbを含有せず250℃〜300℃程度の高温環境下でも接合状態を維持するという点では有利であるものの、Auは非常に高価であるためセラミックパッケージの製品コストが著しく上昇すると言った問題がある。さらにAuとSnの金属間化合物は比較的脆く、耐衝撃性の観点から不利である。
特許文献2に開示されるロウ材シートもPbを含有しないため、環境負荷が小さい点では有利であるものの、最初の接合段階での加熱時にまず低融点金属であるSnの融解を行うため、この液相SnがAgもしくはCuと金属間化合物を生成する前に、過剰の液相が染み出しとなって、接合部の外に出てくる現象が生じる可能性がある。このSnの染み出しが発生するとパッケージ内部に内蔵されているSAWフィルターや水晶振動子に液相Snが接触して誤作動の原因となったり、短絡の原因となる危険性がある。パッケージ外部に染み出す場合も電極間の短絡が生じ、電子機器の不良の原因となる。
Although the lid material disclosed in Patent Document 1 described above does not contain Pb and is advantageous in that it maintains a bonded state even in a high temperature environment of about 250 ° C. to 300 ° C., Au is very expensive. There is a problem that the product cost of the ceramic package is significantly increased. Furthermore, the intermetallic compound of Au and Sn is relatively brittle, which is disadvantageous from the viewpoint of impact resistance.
Since the brazing material sheet disclosed in Patent Document 2 also does not contain Pb, it is advantageous in that the environmental load is small. However, since the low melting point metal Sn is first melted at the time of heating in the first joining stage, Before the liquid phase Sn generates an intermetallic compound with Ag or Cu, there is a possibility that an excessive liquid phase oozes out and comes out of the joint. If this Sn oozes out, the liquid phase Sn may come into contact with the SAW filter or crystal resonator built in the package, resulting in malfunction or short circuit. Also when it oozes out of the package, a short circuit occurs between the electrodes, causing a failure of the electronic device.

本発明者は、Snの染み出しの問題について検討した結果、Snの単相ではなく、Sn−Agの合金相からなる層を高融点箔の表面に形成することで、高融点金属箔と金属間化合物相と低融点Sn相の三相からなる組織を形成し、Snの染み出しを抑制、低減できると同時に接合信頼性が確保できることを見出し本発明に到達した。   As a result of studying the problem of Sn exudation, the present inventor formed a layer made of an alloy phase of Sn—Ag instead of a single phase of Sn on the surface of the refractory foil, so that the refractory metal foil and the metal were formed. The present inventors have found that a structure composed of an intermetallic compound phase and a low-melting point Sn phase is formed to suppress and reduce Sn oozing, and at the same time secure joint reliability.

すなわち本発明はAgの箔材の表面にSn−Ag合金からなる層を有するロウ材シートである。
好ましくは前記Agの箔材の平均厚さが20〜200μmである。
また好ましくは前記Sn−Ag合金からなる層の平均厚さが10〜40μmである。
That is, the present invention is a brazing material sheet having a layer made of an Sn-Ag alloy on the surface of an Ag foil material.
The average thickness of the Ag foil material is preferably 20 to 200 μm.
Preferably, the average thickness of the layer made of the Sn—Ag alloy is 10 to 40 μm.

本発明によれば、Snの融点で接合を可能とし、一端接合した後はSn−Ag合金の寄与により、たとえばセラミックパッケージを封止する際に、Snの染み出しを防止することができ、電子部品の接合にとって欠くことのできない技術となる。   According to the present invention, it is possible to bond at the melting point of Sn, and after joining one end, the Sn-Ag alloy contributes to preventing Sn from exuding when sealing a ceramic package, for example. This is an indispensable technology for joining parts.

上述したように、本発明の重要な特徴はAgの箔材の表面にSn−Ag合金からなるはんだ層を有することにある。特許文献2に記載のロウ材シートは、はんだ層が純Snであるため、はんだ層であるSnは完全な液体状態となりパッケージ内外へのSnの染み出しが生じやすい。これに対して本発明は、はんだ層がSn−Ag合金で形成されるため、パッケージに加熱封止する際、Sn−Ag合金とSn液相からなる固体と液体の2相状態を有し、粘度が高くなる。このため、この固体と液体の2相状態が存在する温度範囲で加熱封止すれば、Snの染み出しを抑制させることが可能となる。
さらに、Ag箔は、Sn−Ag合金層との界面にSn−Ag金属間化合物を形成し、はんだ層内部にもSn−Ag金属間化合物粒子を形成することに寄与する。これによって、加熱封止時に接合部の流体の粘性を高くすることができるため、Snの染み出しを抑制することができる。
As described above, an important feature of the present invention is to have a solder layer made of Sn—Ag alloy on the surface of the Ag foil material. In the brazing material sheet described in Patent Document 2, since the solder layer is pure Sn, Sn as the solder layer is in a completely liquid state and Sn is likely to ooze out into and out of the package. On the other hand, since the solder layer is formed of a Sn-Ag alloy, the present invention has a two-phase state of a solid and a liquid consisting of a Sn-Ag alloy and a Sn liquid phase when heat-sealed in a package. Viscosity increases. For this reason, if heat sealing is performed in the temperature range in which the two-phase state of the solid and the liquid exists, it is possible to suppress the seepage of Sn.
Further, the Ag foil contributes to the formation of Sn—Ag intermetallic compound at the interface with the Sn—Ag alloy layer and the formation of Sn—Ag intermetallic compound particles inside the solder layer. Accordingly, the viscosity of the fluid at the joint portion can be increased during heat sealing, so that it is possible to suppress the seepage of Sn.

Sn−Ag合金からなる層の形成方法としては、たとえばめっき法が挙げられる。めっき法では、厚いSn−Ag合金からなる層を形成することが容易であり、生産速度を速くすることができる。また、めっき法ではめっき浴中のAg濃度を調整することによりあらゆる濃度のSn−Ag合金を箔材へダイレクトに形成することができる。
本発明のSn−Ag合金を形成するAgの濃度範囲は、20〜55質量%Agが望ましい。Ag濃度が20質量%未満であると、加熱封止時の固体の割合が少ないため、Snの染み出し抑制の効果が十分でない場合がある。また、Agの濃度範囲が55質量%を超えると、はんだ層内部にSn−Ag化合物が多く形成され、接合に寄与する液相の生成量が不足して、いわゆる濡れが不足して、接合信頼性の面で問題となる可能性がある。
Examples of the method for forming the layer made of the Sn—Ag alloy include a plating method. In the plating method, it is easy to form a layer made of a thick Sn—Ag alloy, and the production rate can be increased. Further, in the plating method, by adjusting the Ag concentration in the plating bath, it is possible to directly form Sn-Ag alloys having any concentration on the foil material.
As for the density | concentration range of Ag which forms the Sn-Ag alloy of this invention, 20-55 mass% Ag is desirable. If the Ag concentration is less than 20% by mass, the ratio of the solid at the time of heat sealing is small, so that the effect of suppressing the seepage of Sn may not be sufficient. On the other hand, if the Ag concentration range exceeds 55 mass%, a large amount of Sn-Ag compound is formed inside the solder layer, the amount of liquid phase that contributes to bonding is insufficient, so-called wetting is insufficient, and bonding reliability is reduced. May be problematic in terms of sex.

また前記Agの箔材の平均厚さは、20〜200μmであることが好ましい。これは箔の厚さが20μm以上であれば、接合シートの作製時やはんだ付け時のハンドリングが容易である。一方、200μmを超えると薄型化が進む傾向にある電子部品に対して接合材の厚さがかなりの部分を占めてしまうことと、高価なAgの使用量が増えることから現実的でない。   Further, the average thickness of the Ag foil material is preferably 20 to 200 μm. If the thickness of the foil is 20 μm or more, it is easy to handle at the time of producing the joining sheet or soldering. On the other hand, when the thickness exceeds 200 μm, the thickness of the bonding material occupies a considerable part with respect to the electronic component that tends to be thinned, and the amount of expensive Ag used is unrealistic.

また前記Sn−Ag合金からなる層の平均厚さは、10〜40μmであることが好ましい。10μmよりも薄い場合は、接合自体は可能であるが、Sn−Ag合金からなる層の厚みに対してSn起因の接合相手材との間で生成される金属間化合物が多く形成され、接合信頼性の面で問題となる可能性がある。一方、40μmよりも厚い場合は、元々マトリックス部に比べて強度等の信頼性に劣る接合部自体の厚みが厚くなることで、接合部の信頼性が低下する危険性がある。   Moreover, it is preferable that the average thickness of the layer which consists of said Sn-Ag alloy is 10-40 micrometers. When the thickness is less than 10 μm, the bonding itself is possible, but a large amount of intermetallic compounds are formed between the Sn-Ag alloy and the bonding partner material caused by Sn, resulting in bonding reliability. May be problematic in terms of sex. On the other hand, when it is thicker than 40 μm, there is a risk that the reliability of the joint portion is lowered because the thickness of the joint portion itself, which is originally inferior in reliability such as strength, is thicker than that of the matrix portion.

電子部品用パッケージを封止することを想定し、蓋材となる厚さ100μmのFe−42質量%Ni板上に厚さ30μmのAg箔をTi蒸着層を介して接合した後、Ag箔の表面に、表1に示すSn−Ag合金からなる層を10μmの厚さとなるよう、めっき法で形成し気密封止用リッドを作製した。
また、比較例として、表1に示す厚さ30μmのAg箔の表面に、厚さ10μmのSn層を真空蒸着法で形成した接合シートでも同様の気密封止用リッドを作製した。
Assuming that the package for electronic components is sealed, after bonding a 30 μm thick Ag foil on a 100 μm thick Fe-42 mass% Ni plate to be a lid material through a Ti vapor deposition layer, the Ag foil On the surface, a layer made of an Sn—Ag alloy shown in Table 1 was formed by plating so as to have a thickness of 10 μm, and an airtight sealing lid was produced.
Further, as a comparative example, a similar hermetic sealing lid was prepared using a bonding sheet in which an Sn layer having a thickness of 10 μm was formed on the surface of an Ag foil having a thickness of 30 μm shown in Table 1 by a vacuum deposition method.

次に、接合時のSnの染み出しの有無を確認するために、Snが染み出しやすい環境として、Snと濡れ性が悪いNi箔上に上記気密封止用リッドを置き、水素雰囲気中で260℃に加熱して気密封止用リッドを2.23×10−2MPaで加圧しながらはんだ付けを実施した。 Next, in order to confirm the presence or absence of Sn exudation at the time of bonding, the airtight sealing lid is placed on a Ni foil having poor wettability with Sn as an environment in which Sn easily exudes, and 260 in a hydrogen atmosphere. Soldering was carried out while heating the airtight sealing lid at 2.23 × 10 −2 MPa by heating to ° C.

Snの染み出しの評価は、Ni箔に接合した気密封止用リッドを光学顕微鏡(KEYENCE社製 型式VH−7000C)で平面から撮影し、染み出したSnの量を画像解析により染み出し面積として測定した。
Snの染み出し面積の測定結果を表1に示す。表1のように、本発明例1のSn−20.9質量%Ag合金を用いた接合シートでは、比較例2に比べ大幅にSnの染み出し面積が低減できていることが確認できた。
さらに、本発明例2のSn−54.3質量%Ag合金を用いた接合シートでは、Snの染み出しは皆無であり、本発明のSnの染み出し抑制に対する効果の大きいことがわかる。
The evaluation of Sn exudation was carried out by photographing the airtight sealing lid joined to the Ni foil from the plane with an optical microscope (Model VH-7000C, manufactured by KEYENCE Inc.), and using the amount of Sn exuded as the exudation area by image analysis. It was measured.
Table 1 shows the measurement results of the Sn exudation area. As shown in Table 1, it was confirmed that in the joining sheet using the Sn-20.9 mass% Ag alloy of Example 1 of the present invention, the Sn seepage area was significantly reduced as compared with Comparative Example 2.
Furthermore, in the joining sheet | seat using the Sn-54.3 mass% Ag alloy of the example 2 of this invention, there is no Sn ooze-out and it turns out that the effect with respect to the oozing-out of Sn of this invention is large.

次に、せん断強度試験を実施した。実際にセラミックパッケージを封止することを想定し、セラミックと同様の低熱膨張係数を示すFe−29質量%Ni−17質量%Co合金の基材上に電解Ni/Auめっきを施し、次いで上記と同様に作製した気密封止用リッドを置き、窒素雰囲気中で260℃に加熱して気密封止用リッドを2.10×10−2MPaで加圧をしながらはんだ付けを実施した。ここで、窒素雰囲気とした理由は、加熱接合時のSnの酸化を防ぎ、加圧は基材と接合シートの密着性を高め、より接合信頼性を確保するためである。
室温環境下で、せん断強度試験機(dage社製 型式DS100)の固定冶具にセットし、基材上の気密封止用リッドをせん断することで接合強度を測定した。また、比較例として、Ag箔上にSn層を形成した接合シートとSn−95質量%Pb合金からなる接合シートについても同様の試験を実施した。
せん断強度試験結果を表1に示す。表1のように、本発明の接合シートは、従来用いられていた比較例1のSn−95質量%Pbを用いた接合シートよりせん断強度が高く、接合シートとして実用的な接合強度を有することが確認できた。
Next, a shear strength test was performed. Assuming that the ceramic package is actually sealed, electrolytic Ni / Au plating is performed on a base material of Fe-29 mass% Ni-17 mass% Co alloy showing the same low thermal expansion coefficient as ceramic, and then Similarly prepared lid for airtight sealing was placed and heated to 260 ° C. in a nitrogen atmosphere, and soldering was performed while pressurizing the airtight sealing lid at 2.10 × 10 −2 MPa. Here, the reason for the nitrogen atmosphere is to prevent oxidation of Sn at the time of heat bonding, and pressurization enhances the adhesion between the base material and the bonding sheet and further secures the bonding reliability.
Under a room temperature environment, the bonding strength was measured by setting on a fixing jig of a shear strength tester (model DS100 manufactured by dage) and shearing the hermetic sealing lid on the substrate. Moreover, the same test was implemented also about the joining sheet | seat which consists of Sn-95 mass% Pb alloy and the joining sheet | seat which formed Sn layer on Ag foil as a comparative example.
The shear strength test results are shown in Table 1. As shown in Table 1, the joining sheet of the present invention has higher shear strength than the joining sheet using Sn-95 mass% Pb of Comparative Example 1 conventionally used, and has practical joining strength as a joining sheet. Was confirmed.

次に、接合状態を確認するため、接合部の断面組織観察を行った。図1に、本発明例2の接合シートを用いた気密封止用リッドを電解Ni/Auめっきした基材上に加熱接合したときの接合断面の走査型電子顕微鏡写真を示す。図1より、Ag箔/はんだ層界面にAg−Sn化合物が形成され、基材側にNi−Sn−Au化合物およびNi−Sn化合物が形成され、接合が十分に行えていることが確認できた。   Next, in order to confirm the bonding state, the cross-sectional structure of the bonded portion was observed. FIG. 1 shows a scanning electron micrograph of a bonded cross section when a hermetic sealing lid using the bonding sheet of Example 2 of the present invention is heat bonded onto a substrate plated with electrolytic Ni / Au. From FIG. 1, it was confirmed that the Ag—Sn compound was formed at the Ag foil / solder layer interface, the Ni—Sn—Au compound and the Ni—Sn compound were formed on the base material side, and the bonding was sufficiently performed. .

本発明の一例を示す走査型電子顕微鏡による断面組織写真である。It is a cross-sectional structure | tissue photograph by the scanning electron microscope which shows an example of this invention.

符号の説明Explanation of symbols

1.基材、2.電解Ni/Auめっき層、3.Ni−Sn化合物、4.Au−Ni−Sn化合物、5.Ag−Sn化合物、6.Sn、7.Ag箔   1. Base material, 2. 2. electrolytic Ni / Au plating layer; Ni-Sn compound, 4. 4. Au—Ni—Sn compound; Ag-Sn compound, 6. Sn, 7. Ag foil

Claims (3)

Agの箔材の表面にSn−Ag合金からなる層を有することを特徴とする接合シート。 A joining sheet comprising a layer made of an Sn-Ag alloy on a surface of an Ag foil material. 前記Agの箔材の平均厚さが20〜200μmであることを特徴とする請求項1に記載の接合シート。 The bonding sheet according to claim 1, wherein an average thickness of the Ag foil material is 20 to 200 μm. 前記Sn−Ag合金からなる層の平均厚さが10〜40μmであることを特徴とする請求項1または2に記載の接合シート。 The bonding sheet according to claim 1 or 2, wherein an average thickness of the layer made of the Sn-Ag alloy is 10 to 40 µm.
JP2007208939A 2007-08-10 2007-08-10 Joining sheet Pending JP2009039769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007208939A JP2009039769A (en) 2007-08-10 2007-08-10 Joining sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007208939A JP2009039769A (en) 2007-08-10 2007-08-10 Joining sheet

Publications (1)

Publication Number Publication Date
JP2009039769A true JP2009039769A (en) 2009-02-26

Family

ID=40441094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007208939A Pending JP2009039769A (en) 2007-08-10 2007-08-10 Joining sheet

Country Status (1)

Country Link
JP (1) JP2009039769A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856282A (en) * 2011-06-30 2013-01-02 罗姆股份有限公司 Laminated high melting point soldering layer and fabrication method for the same, and semiconductor device
JP2013013933A (en) * 2011-06-30 2013-01-24 Rohm Co Ltd Laminated high melting point soldering layer and fabrication method for the same, and semiconductor device
JP7014991B1 (en) 2021-03-31 2022-02-02 千住金属工業株式会社 Preform solder and its manufacturing method, and solder joint manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856282A (en) * 2011-06-30 2013-01-02 罗姆股份有限公司 Laminated high melting point soldering layer and fabrication method for the same, and semiconductor device
JP2013013933A (en) * 2011-06-30 2013-01-24 Rohm Co Ltd Laminated high melting point soldering layer and fabrication method for the same, and semiconductor device
JP7014991B1 (en) 2021-03-31 2022-02-02 千住金属工業株式会社 Preform solder and its manufacturing method, and solder joint manufacturing method
JP2022155884A (en) * 2021-03-31 2022-10-14 千住金属工業株式会社 Preform solder and method for manufacture thereof, and solder joint manufacturing method
US11628520B2 (en) 2021-03-31 2023-04-18 Senju Metal Industry Co., Ltd. Preform solder and method of manufacturing the same, and method of manufacturing solder joint
US11772204B2 (en) 2021-03-31 2023-10-03 Senju Metal Industry Co., Ltd. Preform solder and method of manufacturing the same, and method of manufacturing solder joint

Similar Documents

Publication Publication Date Title
KR101496592B1 (en) Semiconductor device bonding material
JP4262672B2 (en) Semiconductor device and manufacturing method thereof
JP2002307188A (en) PRODUCT USING Zn-Al BASED SOLDER
JP2009060101A (en) Electronic device
KR20150133194A (en) Method for manufacturing bonded body and method for manufacturing power-module substrate
JP5041102B2 (en) Lead-free solder alloy, joining member and manufacturing method thereof, and electronic component
JP2002305213A (en) Solder foil, semiconductor device, and electronic device
JP2009088476A (en) Semiconductor device
JP5936407B2 (en) Power module manufacturing method
JP5031677B2 (en) Manufacturing method of bonded structure
JP5152125B2 (en) Connection material, method for manufacturing connection material, and semiconductor device
JP5231727B2 (en) Joining method
JP2006100739A (en) Junction material, semiconductor device, manufacturing method thereof and joining method
JP4877046B2 (en) Semiconductor device and manufacturing method thereof
JP2011243752A (en) Semiconductor device manufacturing method, internal semiconductor connection member, and internal semiconductor connection member group
JP2009039769A (en) Joining sheet
JP2008080393A (en) Joining body using peritectic system alloy, joining method, and semiconductor device
Zhou et al. Au/Sn solder alloy and its applications in electronics packaging
JP5738523B2 (en) Connection material, connection method, and manufacturing method of semiconductor device
WO2011030517A1 (en) Connecting material, semiconductor device and method for manufacturing semiconductor device
JP2011056555A (en) Joining material, method for manufacturing joining material, and semi-conductor device
JP5251849B2 (en) Connection material and method for manufacturing semiconductor device
JP4573167B2 (en) Brazing material sheet
JP2007260695A (en) Joining material, joining method, and joined body
JP6543890B2 (en) High temperature solder alloy