JPWO2016051727A1 - Welded steel pipe, thick steel plate and method for producing them - Google Patents

Welded steel pipe, thick steel plate and method for producing them Download PDF

Info

Publication number
JPWO2016051727A1
JPWO2016051727A1 JP2016551522A JP2016551522A JPWO2016051727A1 JP WO2016051727 A1 JPWO2016051727 A1 JP WO2016051727A1 JP 2016551522 A JP2016551522 A JP 2016551522A JP 2016551522 A JP2016551522 A JP 2016551522A JP WO2016051727 A1 JPWO2016051727 A1 JP WO2016051727A1
Authority
JP
Japan
Prior art keywords
less
hic
following formula
steel plate
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016551522A
Other languages
Japanese (ja)
Other versions
JP6237920B2 (en
Inventor
彰彦 谷澤
彰彦 谷澤
善之 菅野
善之 菅野
松田 洋平
洋平 松田
村岡 隆二
隆二 村岡
亮 長尾
亮 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2016051727A1 publication Critical patent/JPWO2016051727A1/en
Application granted granted Critical
Publication of JP6237920B2 publication Critical patent/JP6237920B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Abstract

要求されるHIC環境に応じて優れた耐HIC性能を確保しつつ、優れた母材靭性も有する高靭性溶接鋼管および高靭性厚鋼板ならびにそれらの製造方法を提供することを目的とする。特定の成分組成を有し、Ca/Oが2.5以下であり、式(1)で示されるACRMが0以上であり、式(2)で示されるPHICが式(3)を満たし、残部はFeおよび不可避的不純物からなり、中心偏析部ならびに表層および裏層のミクロ組織に含まれる硬質第二相のマイクロビッカース硬さの最大値HVが、式(4)を満たし、表層および裏層のビッカース硬さが248以下であり、X線回析により得られる管厚中心位置での圧延面の(211)面の集積度が1.6以上であることを特徴とする低硫化水素濃度環境における耐サワー性能に優れた高靱性溶接鋼管。An object of the present invention is to provide a high toughness welded steel pipe and high tough steel plate having excellent base metal toughness while ensuring excellent HIC resistance according to the required HIC environment, and a method for producing them. It has a specific component composition, Ca / O is 2.5 or less, ACRM represented by formula (1) is 0 or more, PHIC represented by formula (2) satisfies formula (3), and the balance Is composed of Fe and inevitable impurities, and the maximum value HV of the micro Vickers hardness of the hard second phase contained in the central segregation part and the microstructure of the surface layer and the back layer satisfies the formula (4), and the surface layer and the back layer In a low hydrogen sulfide concentration environment characterized in that the Vickers hardness is 248 or less and the degree of integration of the (211) plane of the rolled surface at the tube thickness center position obtained by X-ray diffraction is 1.6 or more High toughness welded steel pipe with excellent sour resistance.

Description

本発明は、プロセス配管やラインパイプ用の溶接鋼管、厚鋼板およびそれらの製造方法に関し、特に低硫化水素濃度環境(0.5〜50Vol%)における耐サワー性能に優れた高靭性溶接鋼管および高靭性厚鋼板ならびにそれらの製造方法に関する。   TECHNICAL FIELD The present invention relates to a welded steel pipe, a thick steel plate, and a manufacturing method thereof for process piping and line pipe, and particularly to a high toughness welded steel pipe excellent in sour resistance performance in a low hydrogen sulfide concentration environment (0.5 to 50 Vol%) and a high The present invention relates to tough steel plates and methods for producing them.

パイプラインで輸送する石油や天然ガスはその性状によっては硫化水素が含まれる場合があり、また、海底や土壌に硫化水素が含まれる環境に敷設されることもある。   Oil and natural gas transported by pipelines may contain hydrogen sulfide depending on their properties, and may be laid in an environment where hydrogen sulfide is contained in the seabed or soil.

そのような環境にさらされるラインパイプには、耐HIC(水素誘起割れ)性能および耐SSC(硫化水素応力腐食割れ)性能が必要とされる。それらの性能に優れるラインパイプのことを耐サワーラインパイプと呼ぶ。耐HIC性能および耐SSC性能は従来、NACE−TM0284およびNACE−TM0177で規定される溶液Aに100%のHS(硫化水素)を吹き込んだ条件で評価していた。A line pipe exposed to such an environment requires HIC (hydrogen induced cracking) resistance and SSC (hydrogen sulfide stress corrosion cracking) resistance. Line pipes that excel in their performance are called sour-resistant line pipes. Conventionally, the HIC resistance and the SSC resistance were evaluated under the condition that 100% H 2 S (hydrogen sulfide) was blown into the solution A defined by NACE-TM0284 and NACE-TM0177.

しかしながら、この条件は、実環境に対して極めてHICおよびSSCが起こりやすい苛酷な条件であり、耐HIC性能および耐SSC性能を評価する上では過度に安全側の評価となる。そのため、耐サワーラインパイプを製造する場合、とりわけ耐HIC性能を確保するための種々の制約(例えば、Mnなどの偏析部に濃化する元素の添加制限、ミクロ組織の複相化の抑制など。)がある。この制約の結果、強度、靱性などの他の性能と、耐HIC性能および耐SSC性能を両立することが難しい。なお、耐SSC性能については、ビッカース硬さを248以下に抑えるとSSCの発生が抑制されることが広く知られている。特に、ラインパイプでしばしば要求されるDWTT性能の改善には、制御圧延により微細なミクロ組織や集合組織を得ることが必要であり、そのためには、低温で圧延することが必要である。このことはミクロ組織の複相化を起こしやすくするため耐HIC性能を劣化させることになり、それを抑制するために変態点を下げる効果の大きいNiを多量に添加してコストの増大を招く。   However, this condition is a severe condition in which HIC and SSC are very likely to occur in an actual environment, and is an excessively safe evaluation in evaluating the HIC resistance and SSC resistance. Therefore, when producing a sour-resistant pipe, various restrictions for ensuring the HIC-resistant performance (for example, addition of elements concentrated in segregation parts such as Mn, suppression of multiphase formation of the microstructure, etc.). ) As a result of this restriction, it is difficult to make other performance such as strength and toughness compatible with HIC resistance and SSC resistance. As for SSC resistance, it is widely known that the occurrence of SSC is suppressed when the Vickers hardness is suppressed to 248 or less. In particular, in order to improve the DWTT performance often required for line pipes, it is necessary to obtain a fine microstructure or texture by controlled rolling, which requires rolling at a low temperature. This easily deteriorates the HIC resistance in order to facilitate the formation of a multi-phase microstructure, and in order to suppress this, a large amount of Ni, which has a large effect of lowering the transformation point, is added, leading to an increase in cost.

一方で、最近、Fit for Purposeと呼ばれる考え方が提唱された。これは、ラインパイプに対する耐HIC性能および耐SSC性能の要求を得るために、実環境の苛酷度を考慮した条件でHIC試験およびSSC試験を行うというものである。耐SSC性能に関しては、ISO15156において環境の苛酷度をpHおよびHS分率で領域分けしている。そのため、従来のNACE−TM0288およびNACE−TM0177で規定される溶液Aに100%のHSを吹き込んだ条件に比べ、耐HIC性能および耐SSC性能の目標を容易に満足させやすく、他の性能と両立する製造条件に設定することができる。On the other hand, recently, a concept called Fit for Purpose has been proposed. This is to perform the HIC test and the SSC test under conditions that consider the severity of the real environment in order to obtain the requirements of the HIC resistance and SSC resistance for the line pipe. Regarding SSC resistance, ISO 15156 classifies environmental severity by pH and H 2 S fraction. Therefore, compared with the condition where 100% H 2 S is blown into the solution A defined by the conventional NACE-TM0288 and NACE-TM0177, it is easy to satisfy the target of HIC resistance and SSC resistance, and other performance Can be set to manufacturing conditions compatible with the above.

このような背景に関し、非特許文献1では、HIC試験環境の苛酷度をpHとHS分率で評価するとともに、中心偏析部に生成するMnSの限界長さを導出している。また、非特許文献2では、HIC試験環境の苛酷度をpHとHS分率で評価するとともに、HICが発生する限界硬さを導出している。With regard to such a background, Non-Patent Document 1 evaluates the severity of the HIC test environment by pH and H 2 S fraction, and derives the limit length of MnS generated in the central segregation part. In Non-Patent Document 2, the severity of the HIC test environment is evaluated by the pH and H 2 S fraction, and the limit hardness at which HIC occurs is derived.

原、朝日、寺田、重信、小川 湿潤H2S環境下でのX65ラインパイプのHIC発生条件、第45回材料と環境討論会、P.341−344(1998)Hara, Asahi, Terada, Shigenobu, Ogawa HIC generation conditions of X65 line pipe under humid H2S environment, 45th Materials and Environmental Discussion, 341-344 (1998) Y.Inohara,N.Ishikawa,S.Endo Recent Development in High Strength Linepipe for Sour Environment,Proceedings of The Thirteenth International Offshore and Polar Engineering Conference,P.60−66(2003)Y. Inohara, N .; Ishikawa, S .; Endo Development Development in High Strength Linepipe for Source Environment, Proceedings of The Thirteenth International Offensive and Polar Eng. 60-66 (2003)

しかしながら、非特許文献1では、中心偏析部にMnSが存在することを前提としており、実際のラインパイプで要求されるような厳格な耐HIC性能を満足できない。また、非特許文献1には、MnSが存在しない場合の耐HIC性能の限界についても十分に開示されていない。また、非特許文献2では、目標の硬さ上限を満足するための鋼材の化学成分や製造方法が定量的に開示されていない。また、非特許文献2では、ラインパイプとして用いる際に必要な強度や靭性と、耐HIC性能とを両立する方法も開示されていない。   However, Non-Patent Document 1 is based on the premise that MnS exists in the center segregation part, and cannot satisfy the strict HIC resistance performance required for an actual line pipe. Further, Non-Patent Document 1 does not fully disclose the limit of the HIC resistance performance when MnS is not present. Further, Non-Patent Document 2 does not quantitatively disclose the chemical composition or manufacturing method of steel for satisfying the target hardness upper limit. Further, Non-Patent Document 2 does not disclose a method for achieving both strength and toughness required for use as a line pipe and HIC resistance.

本発明は、上記実情に鑑みてなされたものであって、要求されるHIC環境に応じて優れた耐HIC性能を確保しつつ、優れた母材靭性も有する高靭性溶接鋼管および高靭性厚鋼板ならびにそれらの製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and ensures a high toughness welded steel pipe and a high toughness thick steel plate having excellent base metal toughness while ensuring excellent HIC resistance according to the required HIC environment. An object of the present invention is to provide a production method thereof.

本発明では、要求されるHIC環境に応じて優れた耐HIC性能と、優れた母材靭性とを両立する方法を得るために、HIC試験環境のpHおよびHS分率に応じた鋼材の割れ発生限界と、優れたDWTT性能を得るための圧延条件およびミクロ組織形態について鋭意検討し、以下の知見を得た。In the present invention, in order to obtain a method of achieving both excellent HIC resistance performance and excellent base material toughness according to the required HIC environment, the steel material according to the pH and H 2 S fraction of the HIC test environment is used. The following findings were obtained through intensive studies on the crack generation limit and rolling conditions and microstructure for obtaining excellent DWTT performance.

鋼材は、従来の知見からも明らかなように、pHが低く、HS分率が高いほどHICが発生しやすくなる。その割れについて調査した結果、ミクロ組織が不均一であったり、中心偏析が大きい場合に、硬質第二相に割れが発生し、割れが伝播することが分かった。そして、鋼材中心偏析部でのMnSや表裏面での粗大なCaOクラスタの生成が抑制されている状態では、中心偏析部のマイクロビッカース硬さの最大値HV、および、表層と裏層のミクロ組織に含まれる硬質第二相のマイクロビッカース硬さの最大値HVが、後述する式(4)を満たさない場合に、割れが発生することがわかった。また、後述する式(2)で求められるPHICが、後述する式(3)を満たす必要があることがわかった。なお、PHICとは中心偏析部での合金元素の濃化度と炭素等量を掛け合わせたパラメータであり、PHICによって中心偏析部の硬さを定量化することができる。As is clear from conventional knowledge, steel materials are more susceptible to HIC as the pH is lower and the H 2 S fraction is higher. As a result of investigating the crack, it was found that when the microstructure is uneven or the center segregation is large, the hard second phase cracks and propagates. And in the state where generation of MnS in the steel material segregation part and coarse CaO clusters on the front and back surfaces is suppressed, the maximum value HV of the micro-Vickers hardness of the center segregation part, and the microstructure of the surface layer and the back layer It was found that cracking occurs when the maximum value HV of the micro Vickers hardness of the hard second phase contained in the above does not satisfy formula (4) described later. Further, it was found that the PHIC calculated by the expression (2) described later needs to satisfy the expression (3) described later. Note that the P HIC is a parameter obtained by multiplying the thickening degree and carbon equivalent of the alloy elements in the center segregation area, it is possible to quantify the hardness of the center segregation area by P HIC.

次に、耐HIC性能を確保した上で、DWTT性能を確保する方法について検討した。耐HIC性能を確保するためには、中心偏析部近傍が均一なミクロ組織になることが必須であり、熱間圧延温度Tが後述する式(6)を満たすように熱間圧延を終了させること、および、加速冷却開始温度Tが後述する式(6)を満たすように加速冷却を開始する必要がある。また、その制約の中で優れたDWTT性能を確保するためには、未再結晶域低温側で集中的に圧延を行うことが必要で、累積圧下率で50%以上であり、かつ後述する式(5)で示すTを満たす圧延開始温度で圧延を行い、(211)面を集積させる必要があることがわかった。Next, after securing the HIC resistance, a method for securing the DWTT performance was examined. In order to ensure the HIC resistance, it is essential that the vicinity of the center segregation portion has a uniform microstructure, and the hot rolling is terminated so that the hot rolling temperature TF satisfies the formula (6) described later. In addition, it is necessary to start the accelerated cooling so that the accelerated cooling start temperature TF satisfies the formula (6) described later. In addition, in order to ensure excellent DWTT performance within the constraints, it is necessary to perform intensive rolling on the low temperature side of the non-recrystallized region, the cumulative rolling reduction is 50% or more, and a formula described later It performs rolling at a rolling start temperature consistent with T s as indicated by (5), it was found that it is necessary to integrate the (211) plane.

本発明は上記の知見に更に検討を加えてなされたものであり、以下のとおりである。
[1]質量%で、C:0.02〜0.10%、Si:0.40%以下、Mn:1.00〜2.00%、Nb:0.005〜0.060%、Ti:0.005〜0.025%、Ca:0.0010〜0.0040%、N:0.0010〜0.0100%を含有し、Ca/Oが2.5以下であり、下記式(1)で示されるACRMが0以上であり、下記式(2)で示されるPHICが下記式(3)を満たし、残部はFeおよび不可避的不純物からなり、
中心偏析部ならびに表層および裏層のミクロ組織に含まれる硬質第二相のマイクロビッカース硬さの最大値HVが、下記式(4)を満たし、
表層および裏層のビッカース硬さが248以下であり、
X線回析により得られる管厚中心位置での圧延面の(211)面の集積度が1.6以上であることを特徴とする低硫化水素濃度環境における耐サワー性能に優れた高靱性溶接鋼管。
ACRM=([Ca]−(1.23[O]−0.000365))/(1.25[S])・・・(1)
HIC=4.46[C]+2.37[Mn]/6+(1.74[Cu]+1.7[Ni])/15+(1.18[Cr]+1.95[Mo]+1.74[V])/5+22.36[P]・・・(2)
HIC≦1.35+(pH−12)(1+log(PH2S))/60・・・(3)
HV≦400+50(pH−12)(1+log(PH2S))/9・・・(4)
ただし、式(1)〜(4)において、
[Ca]、[O]、[S]、[C]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、[P]:各元素の含有量(質量%)であり、含まない場合は0とする
pH:HIC試験環境のpH
H2S:HIC試験環境のHS分率(Vol%)
とする。
[2]さらに、質量%で、Cu:0.50%以下、Ni:1.00%以下、Cr:0.50%以下、Mo:0.50%以下、V:0.060%以下、B:0.0030%以下から選ばれる1種以上を含有することを特徴とする[1]に記載の低硫化水素濃度環境における耐サワー性能に優れた高靱性溶接鋼管。
[3]質量%で、C:0.02〜0.10%、Si:0.40%以下、Mn:1.00〜2.00%、Nb:0.005〜0.060%、Ti:0.005〜0.025%、Ca:0.0010〜0.0040%、N:0.0010〜0.0100%を含有し、Ca/Oが2.5以下であり、下記式(1)で示されるACRMが0以上であり、下記式(2)で示されるPHICが下記式(3)を満たし、残部はFeおよび不可避的不純物からなり、
中心偏析部ならびに表層および裏層のミクロ組織に含まれる硬質第二相のマイクロビッカース硬さの最大値HVが、下記式(4)を満たし、
表層および裏層のビッカース硬さが248以下であり、
X線回析により得られる板厚中心位置での圧延面の(211)面の集積度が1.6以上であることを特徴とする低硫化水素濃度環境における耐サワー性能に優れた高靱性厚鋼板。
ACRM=([Ca]−(1.23[O]−0.000365))/(1.25[S])・・・(1)
HIC=4.46[C]+2.37[Mn]/6+(1.74[Cu]+1.7[Ni])/15+(1.18[Cr]+1.95[Mo]+1.74[V])/5+22.36[P]・・・(2)
HIC≦1.35+(pH−12)(1+log(PH2S))/60・・・(3)
HV≦400+50(pH−12)(1+log(PH2S))/9・・・(4)
ただし、式(1)〜(4)において、
[Ca]、[O]、[S]、[C]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、[P]:各元素の含有量(質量%)であり、含まない場合は0とする
pH:HIC試験環境のpH
H2S:HIC試験環境のHS分率(Vol%)
とする。
[4]さらに、質量%で、Cu:0.50%以下、Ni:1.00%以下、Cr:0.50%以下、Mo:0.50%以下、V:0.060%以下、B:0.0030%以下から選ばれる1種以上を含有することを特徴とする[3]に記載の低硫化水素濃度環境における耐サワー性能に優れた高靱性厚鋼板。
[5][3]または[4]に記載の成分組成を有する連続鋳造スラブ鋼素材を、1000〜1200℃に加熱し、圧延開始温度Tが下記式(5)を満たすように累積圧下率50%以上で熱間圧延を行い、次いで、圧延終了温度Tが下記式(6)を満たすように熱間圧延を終了し、その後、加速冷却開始温度TACSが下記式(7)を満たすように加速冷却を開始し、冷却停止温度が600℃以下で加速冷却を停止させた後、空冷することを特徴とする低硫化水素濃度環境における耐サワー性能に優れた高靱性厚鋼板の製造方法。
≦174log([Nb]([C]+12[N]/14))+1444−1.2t・・・(5)
≧910−310[C]−80[Mn]−20[Cu]−55[Ni]−15[Cr]−80[Mo]−0.6t・・・(6)
ACS≧910−310[C]−80[Mn]−20[Cu]−55[Ni]−15[Cr]−80[Mo]−0.6t・・・(7)
ただし、上記式(5)、(6)、(7)において、
[Nb]、[C]、[N]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]:各元素の含有量(質量%)であり、含まない場合は0とする
t:圧延終了時の板厚(mm)
とする。
[6]前記空冷後、480〜720℃に焼戻すことを特徴とする[5]に記載の低硫化水素濃度環境における耐サワー性能に優れた高靱性厚鋼板の製造方法。
[7][5]または[6]の方法で製造した厚鋼板を筒状に冷間加工し、その突合せ部を溶接することで溶接鋼管とすることを特徴とする低硫化水素濃度環境における耐サワー性能に優れた高靱性溶接鋼管の製造方法。
The present invention has been made by further studying the above findings and is as follows.
[1] By mass%, C: 0.02 to 0.10%, Si: 0.40% or less, Mn: 1.00 to 2.00%, Nb: 0.005 to 0.060%, Ti: 0.005 to 0.025%, Ca: 0.0010 to 0.0040%, N: 0.0010 to 0.0100%, Ca / O is 2.5 or less, and the following formula (1) in ACRM shown is not less than 0, P HIC satisfies the following formula (3) represented by the following formula (2), the balance being Fe and unavoidable impurities,
The maximum value HV of the micro Vickers hardness of the hard second phase contained in the microstructure of the center segregation part and the surface layer and the back layer satisfies the following formula (4),
The Vickers hardness of the surface layer and the back layer is 248 or less,
High toughness welding with excellent sour resistance in a low hydrogen sulfide concentration environment characterized in that the degree of integration of the (211) surface of the rolled surface at the tube thickness center position obtained by X-ray diffraction is 1.6 or more Steel pipe.
ACRM = ([Ca] − (1.23 [O] −0.000365)) / (1.25 [S]) (1)
P HIC = 4.46 [C] +2.37 [Mn] / 6 + (1.74 [Cu] +1.7 [Ni]) / 15+ (1.18 [Cr] +1.95 [Mo] +1.74 [ V]) / 5 + 22.36 [P] (2)
P HIC ≦ 1.35 + (pH−12) (1 + log (P H2S )) / 60 (3)
HV ≦ 400 + 50 (pH−12) (1 + log (P H2S )) / 9 (4)
However, in the formulas (1) to (4),
[Ca], [O], [S], [C], [Mn], [Cu], [Ni], [Cr], [Mo], [V], [P]: Content of each element ( Mass%), and when not included, pH is 0: pH of the HIC test environment
P H2S: H 2 S fraction of HIC test environment (Vol%)
And
[2] Further, by mass%, Cu: 0.50% or less, Ni: 1.00% or less, Cr: 0.50% or less, Mo: 0.50% or less, V: 0.060% or less, B : A high toughness welded steel pipe excellent in sour resistance performance in a low hydrogen sulfide concentration environment according to [1], comprising at least one selected from 0.0030% or less.
[3] By mass%, C: 0.02 to 0.10%, Si: 0.40% or less, Mn: 1.00 to 2.00%, Nb: 0.005 to 0.060%, Ti: 0.005 to 0.025%, Ca: 0.0010 to 0.0040%, N: 0.0010 to 0.0100%, Ca / O is 2.5 or less, and the following formula (1) in ACRM shown is not less than 0, P HIC satisfies the following formula (3) represented by the following formula (2), the balance being Fe and unavoidable impurities,
The maximum value HV of the micro Vickers hardness of the hard second phase contained in the microstructure of the center segregation part and the surface layer and the back layer satisfies the following formula (4),
The Vickers hardness of the surface layer and the back layer is 248 or less,
High toughness thickness excellent in sour resistance in low hydrogen sulfide concentration environment, characterized in that the degree of integration of the (211) plane of the rolled surface at the thickness center position obtained by X-ray diffraction is 1.6 or more steel sheet.
ACRM = ([Ca] − (1.23 [O] −0.000365)) / (1.25 [S]) (1)
P HIC = 4.46 [C] +2.37 [Mn] / 6 + (1.74 [Cu] +1.7 [Ni]) / 15+ (1.18 [Cr] +1.95 [Mo] +1.74 [ V]) / 5 + 22.36 [P] (2)
P HIC ≦ 1.35 + (pH−12) (1 + log (P H2S )) / 60 (3)
HV ≦ 400 + 50 (pH−12) (1 + log (P H2S )) / 9 (4)
However, in the formulas (1) to (4),
[Ca], [O], [S], [C], [Mn], [Cu], [Ni], [Cr], [Mo], [V], [P]: Content of each element ( Mass%), and when not included, pH is 0: pH of the HIC test environment
P H2S: H 2 S fraction of HIC test environment (Vol%)
And
[4] Further, by mass%, Cu: 0.50% or less, Ni: 1.00% or less, Cr: 0.50% or less, Mo: 0.50% or less, V: 0.060% or less, B : A high tough steel plate excellent in sour resistance in a low hydrogen sulfide concentration environment according to [3], containing one or more selected from 0.0030% or less.
[5] [3] or a continuously cast slab steel material having a composition as set forth in [4], was heated to 1000 to 1200 ° C., the cumulative rolling reduction rolling start temperature T S is to satisfy the following formula (5) Hot rolling is performed at 50% or more, then the hot rolling is finished so that the rolling end temperature TF satisfies the following formula (6), and then the accelerated cooling start temperature T ACS satisfies the following formula (7). The method for producing a high toughness thick steel plate excellent in sour resistance in a low hydrogen sulfide concentration environment is characterized in that accelerated cooling is started, the accelerated cooling is stopped at a cooling stop temperature of 600 ° C. or less, and then air cooling is performed. .
T S ≦ 174 log ([Nb] ([C] +12 [N] / 14)) + 1444-1.2t (5)
T F ≧ 910-310 [C] -80 [Mn] -20 [Cu] -55 [Ni] -15 [Cr] -80 [Mo] -0.6t (6)
T ACS ≧ 910-310 [C] -80 [Mn] -20 [Cu] -55 [Ni] -15 [Cr] -80 [Mo] -0.6 t (7)
However, in the above formulas (5), (6), (7),
[Nb], [C], [N], [Mn], [Cu], [Ni], [Cr], [Mo]: content (% by mass) of each element, 0 if not included T: Thickness at the end of rolling (mm)
And
[6] The method for producing a high toughness thick steel plate excellent in sour resistance performance in a low hydrogen sulfide concentration environment according to [5], wherein after the air cooling, tempering to 480 to 720 ° C.
[7] A thick steel plate produced by the method of [5] or [6] is cold worked into a cylindrical shape, and the butt portion is welded to form a welded steel pipe. A method of manufacturing high toughness welded steel pipes with excellent sour performance.

本発明によれば、必要とされるHIC試験の試験環境に応じて合理的な成分設計が可能となる。さらに高靱性を確保することが可能となり、産業上極めて有効である。   According to the present invention, rational component design is possible according to the required test environment of the HIC test. Further, it is possible to ensure high toughness, which is extremely effective in the industry.

なお、本発明におけるHIC試験の試験環境とは、HS分率で0.5〜50%である。In addition, the test environment of the HIC test in the present invention is 0.5 to 50% in terms of H 2 S fraction.

以下、本発明について具体的に説明する。   Hereinafter, the present invention will be specifically described.

<成分組成>
以下に、本発明に係る溶接鋼管または厚鋼板の成分組成の限定理由を説明する。なお、成分組成を示す単位の%は、全て質量%を意味する。
<Ingredient composition>
Below, the reason for limitation of the component composition of the welded steel pipe or thick steel plate which concerns on this invention is demonstrated. In addition,% of the unit which shows a component composition means the mass% altogether.

C:0.02〜0.10%
Cは加速冷却によって製造される鋼板の強度を高めるために最も有効な元素である。しかしながら、C量(含有量)が0.02%未満では十分な強度を確保できず、0.10%を超えると靭性および耐HIC性が劣化する。従って、C量は0.02%以上、好ましくは0.03%以上とし、0.10%以下、好ましくは0.08%以下とする。
C: 0.02-0.10%
C is the most effective element for increasing the strength of the steel sheet produced by accelerated cooling. However, if the C content (content) is less than 0.02%, sufficient strength cannot be secured, and if it exceeds 0.10%, the toughness and HIC resistance deteriorate. Therefore, the C content is 0.02% or more, preferably 0.03% or more, 0.10% or less, preferably 0.08% or less.

Si:0.40%以下
Siは脱酸のために添加する。脱酸のためにはSi含有量が0.01%以上が好ましい。しかしながら、Si量が0.40%を超えると靭性や溶接性が劣化する。従って、Si量は0.40%以下の範囲内、好ましくは0.35%以下とする。
Si: 0.40% or less Si is added for deoxidation. For deoxidation, the Si content is preferably 0.01% or more. However, when the Si content exceeds 0.40%, toughness and weldability deteriorate. Therefore, the Si content is within the range of 0.40% or less, preferably 0.35% or less.

Mn:1.00〜2.00%
Mnは鋼の強度および靭性の向上のため添加する。しかしながら、Mn量が1.00%未満ではその効果が十分ではなく、2.00%を超えると溶接性と耐HIC性が劣化する。従って、Mn量は1.00%以上、好ましくは1.10%以上とし、2.00%以下、好ましくは1.90%以下とする。
Mn: 1.00 to 2.00%
Mn is added to improve the strength and toughness of the steel. However, if the amount of Mn is less than 1.00%, the effect is not sufficient, and if it exceeds 2.00%, weldability and HIC resistance deteriorate. Therefore, the amount of Mn is 1.00% or more, preferably 1.10% or more, 2.00% or less, preferably 1.90% or less.

Nb:0.005〜0.060%
Nbは固溶Nbとして鋼中に存在すると圧延時の粒成長を抑制し、微細粒化により靭性を向上させる。しかしながら、Nb量が0.005%未満ではその効果がなく、0.060%を超えるとHAZの靭性が劣化するだけでなく、粗大なNb炭窒化物の生成を招き耐HIC性能が劣化する。従って、Nb量は0.005%以上、好ましくは0.010%以上とし、0.060%以下、好ましくは0.040%以下とする。
Nb: 0.005 to 0.060%
When Nb is present in the steel as solute Nb, it suppresses grain growth during rolling and improves toughness by making the particles finer. However, when the Nb content is less than 0.005%, the effect is not obtained. When the Nb content exceeds 0.060%, not only the toughness of the HAZ is deteriorated, but also the formation of coarse Nb carbonitrides is caused and the HIC resistance is deteriorated. Therefore, the Nb content is 0.005% or more, preferably 0.010% or more, 0.060% or less, preferably 0.040% or less.

Ti:0.005〜0.025%
TiはTiNを形成してスラブ加熱時の粒成長を抑制するだけでなく、HAZの粒成長を抑制し、母材及びHAZの微細粒化により靭性を向上させる。しかしながら、Ti量が0.005%未満ではその効果がなく、0.025%を超えると靭性が劣化する。従って、Ti量は0.005%以上、0.025%以下、好ましくは0.020%以下とする。
Ti: 0.005-0.025%
Ti not only suppresses grain growth during slab heating by forming TiN, but also suppresses HAZ grain growth and improves toughness by making the base material and HAZ finer. However, if the amount of Ti is less than 0.005%, there is no effect, and if it exceeds 0.025%, the toughness deteriorates. Therefore, the Ti content is 0.005% or more and 0.025% or less, preferably 0.020% or less.

Ca:0.0010〜0.0040%
Caは酸硫化物系介在物の形態を制御し、延性を改善するために有効な元素である。しかしながら、Ca量が0.0010%未満ではその効果がなく、0.0040%を超えても効果が飽和し、むしろ清浄度の低下により靱性が劣化する。従って、Ca量は0.0010%以上、好ましくは0.0015%以上とし、0.0040%以下、好ましくは0.0035%以下とする。
Ca: 0.0010 to 0.0040%
Ca is an effective element for controlling the form of oxysulfide inclusions and improving ductility. However, if the Ca content is less than 0.0010%, the effect is not obtained, and if the Ca content exceeds 0.0040%, the effect is saturated, but rather the toughness deteriorates due to a decrease in cleanliness. Therefore, the Ca content is 0.0010% or more, preferably 0.0015% or more, 0.0040% or less, preferably 0.0035% or less.

N:0.0010〜0.0100%
NはTiNのピンニング効果により加熱時のオーステナイトの粗大化を抑制し、母材や溶接熱影響部の靱性を改善するために有効な元素である。しかし、N量が0.0010%未満では効果がなく、0.0100%を超える添加はTiNの粗大化や固溶Nの増大により、逆に溶接熱影響部の靱性の劣化を招く。そこで、Nの含有量は、0.0010%以上、好ましくは0.0020%以上とし、0.0100%以下、好ましくは0.0055%以下に規定する。さらに、Nを0.0010〜0.0060%にし、Ti/N(Ti含有量(質量%)/N含有量(質量%)))を1〜5にすることが、靭性向上の観点から好ましく、いっそう好ましくは2〜4とすることで、より優れた靱性を示す。
N: 0.0010 to 0.0100%
N is an element effective for suppressing the austenite coarsening during heating by the pinning effect of TiN and improving the toughness of the base metal and the weld heat affected zone. However, if the amount of N is less than 0.0010%, there is no effect, and the addition exceeding 0.0100% conversely causes the deterioration of the toughness of the weld heat affected zone due to the coarsening of TiN and the increase of solute N. Therefore, the N content is 0.0010% or more, preferably 0.0020% or more, and is specified to be 0.0100% or less, preferably 0.0055% or less. Further, N is preferably 0.0010 to 0.0060% and Ti / N (Ti content (mass%) / N content (mass%)) is preferably 1 to 5 from the viewpoint of improving toughness. More preferably, when it is 2 to 4, more excellent toughness is exhibited.

O:0.0030%以下
Oは鋼中に不可避的に含まれる元素であり、通常AlやCaと結合した酸化物として存在している。Oが過剰に含まれると、これらAl、Ca系酸化物の鋼中含有量が多くなりすぎ、クラスタを形成し、耐HIC性能が劣化する。このため、Oの含有量を0.0030%以下とすることが好ましく、0.0025%以下とすることがより好ましい。
O: 0.0030% or less O is an element inevitably contained in the steel, and is usually present as an oxide combined with Al or Ca. When O is excessively contained, the content of these Al and Ca-based oxides in the steel becomes too large to form clusters, and the HIC resistance is deteriorated. For this reason, it is preferable to make content of O into 0.0030% or less, and it is more preferable to set it as 0.0025% or less.

Ca/O:2.5以下
Ca/Oは、CaOクラスタ発生限界を定量化するための指標である。Ca/Oが2.5を超えるとCaクラスタが生成しやすくなり、表層近傍や介在物集積帯での耐HIC性能が劣化する。このため、Ca/Oの上限を2.5とし、上限を2.3とすることが好ましい。
Ca / O: 2.5 or less Ca / O is an index for quantifying the CaO cluster generation limit. When Ca / O exceeds 2.5, Ca clusters are likely to be generated, and the HIC resistance in the vicinity of the surface layer or inclusion inclusion zone deteriorates. For this reason, it is preferable that the upper limit of Ca / O is 2.5 and the upper limit is 2.3.

ACRM:0以上
ACRMは、CaによるMnSの形態制御を定量化するための指標である。ACRMが0以上になると、中心偏析でのMnSの生成が抑制されて板厚(管厚)中心での耐HIC性能が改善する。そこでACRMの下限を0とし、下限を0.2とすることが好ましい。
なお、ACRMは、下記式(1)で定義される。
ACRM=([Ca]−(1.23[O]−0.000365))/(1.25[S])・・・(1)
ただし、上記式(1)において、[Ca]、[O]、[S]は、各元素の含有量(質量%)を表す。
ACRM: 0 or more ACRM is an index for quantifying the morphology control of MnS by Ca. When ACRM is 0 or more, the generation of MnS due to center segregation is suppressed, and the HIC resistance performance at the center of the plate thickness (tube thickness) is improved. Therefore, it is preferable to set the lower limit of ACRM to 0 and the lower limit to 0.2.
The ACRM is defined by the following formula (1).
ACRM = ([Ca] − (1.23 [O] −0.000365)) / (1.25 [S]) (1)
However, in said formula (1), [Ca], [O], [S] represents content (mass%) of each element.

HICが、1.35+(pH−12)(1+log(PH2S))/60以下
HICは中心偏析の硬さを定量化するためのパラメータであり、下記式(2)で定義される。
HIC=4.46[C]+2.37[Mn]/6+(1.74[Cu]+1.7[Ni])/15+(1.18[Cr]+1.95[Mo]+1.74[V])/5+22.36[P]・・・(2)
ただし、上記式(2)において、[C]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、[P]は、各元素の含有量(質量%)であり、含まない場合は0とする。
HICの値が大きいほど中心偏析の硬さが高くなり、板厚(管厚)中心でのHIC発生を助長する。HICが発生する限界PHICは、HIC試験環境のHS分率が低く、pHが高いほど高くなる。本発明者らが検討した結果、PHICが、下記式(3)を満たす範囲であれば、耐HIC性能が確保できる。このため、PHICの上限を、1.35+(pH−12)(1+log(PH2S))/60とする。
HIC≦1.35+(pH−12)(1+log(PH2S))/60・・・(3)
ただし、上記式(3)において、
pH:HIC試験環境のpH
H2S:HIC試験環境のHS分率(Vol%)
である。
PHIC is 1.35+ (pH-12) (1 + log ( PH2S )) / 60 or less PHIC is a parameter for quantifying the hardness of center segregation, and is defined by the following formula (2).
P HIC = 4.46 [C] +2.37 [Mn] / 6 + (1.74 [Cu] +1.7 [Ni]) / 15+ (1.18 [Cr] +1.95 [Mo] +1.74 [ V]) / 5 + 22.36 [P] (2)
However, in the above formula (2), [C], [Mn], [Cu], [Ni], [Cr], [Mo], [V], and [P] are the contents (% by mass) of each element. ) And 0 if not included.
The value of P HIC higher the higher the hardness of the center segregation large, it promotes HIC generation of sheet thickness (wall thickness) center. The limit P HIC at which HIC is generated increases as the H 2 S fraction of the HIC test environment is lower and the pH is higher. The present inventors have studied, P HIC is as long as it satisfies the following expression (3), HIC resistance performance can be ensured. For this reason, the upper limit of PHIC is set to 1.35+ (pH-12) (1 + log ( PH2S )) / 60.
P HIC ≦ 1.35 + (pH−12) (1 + log (P H2S )) / 60 (3)
However, in the above formula (3),
pH: pH of the HIC test environment
P H2S: H 2 S fraction of HIC test environment (Vol%)
It is.

本発明において、P、S、Oは、不可避的に含まれる不純物元素であり、いずれも少ないほど好ましいが、それぞれ、下記の範囲ならば許容される。Oについては上述の通りである。   In the present invention, P, S and O are inevitably contained impurity elements, and the smaller the number, the better. However, the following ranges are acceptable. O is as described above.

P:0.015%以下
Pは偏析しやすく、中央部に濃化する元素であり、少量含まれるだけでも中央偏析の硬さを顕著に上げ、耐サワー性を劣化させる。このためP量は少なければ少ないほどよい。ただし、P量は0.015%までは許容することができる。より好ましくは、0.010%以下である。
P: 0.015% or less P is an element that easily segregates and concentrates in the central portion, and even if contained in a small amount, the hardness of the central segregation is remarkably increased and sour resistance is deteriorated. For this reason, the smaller the amount of P, the better. However, the amount of P can be allowed up to 0.015%. More preferably, it is 0.010% or less.

S:0.0015%以下
SはMnを結合し、MnSを生成する。また、SはMnを同じく中央偏析に濃化しやすい元素であるためS量が多いとMnSの中央偏析が多数生成し、耐サワー性が著しく劣化する。従って、S量は極力低減することが望ましいが、0.0015%までは許容することができる。より好ましくは、0.0010%以下である。
S: 0.0015% or less S combines with Mn to generate MnS. Further, since S is an element that is also likely to concentrate Mn into central segregation, if the amount of S is large, a large number of central segregation of MnS is generated, and sour resistance is significantly deteriorated. Therefore, it is desirable to reduce the amount of S as much as possible, but it is acceptable up to 0.0015%. More preferably, it is 0.0010% or less.

また、強度、靭性の確保のために、以下から選ばれる元素を1種以上添加することができる。   In order to ensure strength and toughness, one or more elements selected from the following can be added.

Cu:0.50%以下
Cuは、母材靭性の改善と強度の上昇に有効な元素であり、この効果を発揮させるにはCu量は0.10%以上であることが好ましい。しかしながら、Cu量が0.50%を超えると溶接性が劣化する。従って、Cuを添加する場合はCu量を0.50%以下とすることが好ましく、0.30%以下であることがより好ましい。
Cu: 0.50% or less Cu is an element effective for improving the toughness of the base metal and increasing the strength, and the Cu content is preferably 0.10% or more for exhibiting this effect. However, when the amount of Cu exceeds 0.50%, weldability deteriorates. Therefore, when adding Cu, it is preferable to make Cu amount into 0.50% or less, and it is more preferable that it is 0.30% or less.

Ni:1.00%以下
Niは、母材靭性の改善と強度の上昇に有効な元素であり、この効果を発揮させるにはNi量は0.10%以上であることが好ましい。しかしながら、Ni量が1.00%を超えると溶接性が劣化する。従って、Niを添加する場合は、Ni量を1.00%以下とすることが好ましく、0.50%以下であることがより好ましい。
Ni: 1.00% or less Ni is an element effective for improving the toughness of the base metal and increasing the strength. In order to exhibit this effect, the Ni content is preferably 0.10% or more. However, if the Ni content exceeds 1.00%, the weldability deteriorates. Therefore, when adding Ni, it is preferable to make Ni amount into 1.00% or less, and it is more preferable that it is 0.50% or less.

Cr:0.50%以下
Crは焼き入れ性を高めることで強度の上昇に有効な元素であり、この効果を発揮させるにはCr量は0.10%以上であることが好ましい。しかしながら、Cr量が0.50%を超えると溶接性が劣化する。従って、Crを添加する場合はCr量を0.50%以下とすることが好ましく、0.30%以下であることがより好ましい。
Cr: 0.50% or less Cr is an element effective for increasing the strength by enhancing the hardenability, and the Cr content is preferably 0.10% or more in order to exhibit this effect. However, if the Cr content exceeds 0.50%, the weldability deteriorates. Therefore, when adding Cr, the Cr content is preferably 0.50% or less, and more preferably 0.30% or less.

Mo:0.50%以下
Moは母材靭性の改善と強度の上昇に有効な元素であり、この効果を発揮させるにはMo量は0.10%以上であることが好ましい。しかしながら、Mo量が0.50%を超えるとHAZ靭性および溶接性が劣化する。従って、Moを添加する場合はMo量を0.50%以下とすることが好ましく、0.30%以下であることがより好ましい。
Mo: 0.50% or less Mo is an element effective for improving the toughness of the base metal and increasing the strength, and the Mo amount is preferably 0.10% or more in order to exert this effect. However, if the Mo content exceeds 0.50%, the HAZ toughness and weldability deteriorate. Therefore, when adding Mo, it is preferable to make Mo amount into 0.50% or less, and it is more preferable that it is 0.30% or less.

V:0.060%以下
Vは強度を上昇させる元素であり、この効果を発揮させるにはV量は0.010%以上であることが好ましい。しかしながら、V量が0.060%を超えるとHAZ靭性および溶接性を著しく損なう。従って、Vを添加する場合は、V量を0.060%以下とすることが好ましく、0.050%以下であることがより好ましい。
V: 0.060% or less V is an element that increases the strength, and in order to exhibit this effect, the V content is preferably 0.010% or more. However, if the V content exceeds 0.060%, the HAZ toughness and weldability are significantly impaired. Therefore, when adding V, it is preferable to make V amount into 0.060% or less, and it is more preferable that it is 0.050% or less.

B:0.0030%以下
Bは強度の上昇に有効な元素であり、この効果を発揮させるにはB量は0.0005%以上であることが好ましい。しかしながら、B量が0.0030%を超えるとHAZ靭性および溶接性が劣化する。従って、Bを添加する場合はB量を0.0030%以下とすることが好ましく、0.0025%以下であることがより好ましい。
B: 0.0030% or less B is an element effective for increasing the strength, and the B content is preferably 0.0005% or more in order to exhibit this effect. However, if the B content exceeds 0.0030%, the HAZ toughness and weldability deteriorate. Therefore, when adding B, the amount of B is preferably 0.0030% or less, and more preferably 0.0025% or less.

本発明の溶接鋼管または厚鋼板における上記成分以外の残部は、Feおよび不可避的不純物である。ただし、本発明の作用効果を害さない範囲であれば、上記以外の元素の含有を問題としない。   The remainder other than the said component in the welded steel pipe or thick steel plate of this invention is Fe and an unavoidable impurity. However, the content of elements other than the above is not a problem as long as the effects of the present invention are not impaired.

<硬さ>
中心偏析部ならびに表層および裏層のミクロ組織に含まれる硬質第二相のマイクロビッカース硬さの最大値HVが、それぞれ、400+50(pH−12)(1+log(PH2S))/9以下
中心偏析部の硬さ、表層および裏層のミクロ組織に含まれる硬質第二相の硬さが、それぞれ大きいほどHICが発生しやすくなる。本発明者らが検討した結果、それら各々のマイクロビッカース硬さの最大値が、下記式(4)を満たさない場合、HICが発生することがわかった。なお、表層及び裏層とは、表面から板厚方向に5mmまでの領域を指す。
HV≦400+50(pH−12)(1+log(PH2S))/9・・・(4)
ただし、式(4)において、
pH:HIC試験環境のpH
H2S:HIC試験環境のHS分率(Vol%)
とする。
したがって、本発明では、中心偏析部ならびに表層および裏層のミクロ組織に含まれる硬質第二相のマイクロビッカース硬さの最大値HVの上限を、400+50(pH−12)(1+log(PH2S))/9とする。なお、マイクロビッカースの荷重は、硬質第二相の断面寸法に合わせて5〜50gの範囲で設定し、測定する硬質第二相から圧痕がはみ出さないように測定する。また、ミクロ組織がほぼ均一(例えば、ベイナイト単相組織など)で、5gを用いても測定できるような大きさの硬質第二相がない場合は、50gで任意の箇所を測定する。また、マイクロビッカース試験は測定ばらつきの大きい試験であるため、中心偏析部、表層および裏層のミクロ組織に含まれる硬質第二相のマイクロビッカース硬さの最大値は、5点以上測定した結果の最大値を用いる。
<Hardness>
Central segregation part and maximum value HV of micro Vickers hardness of hard second phase contained in microstructure of surface layer and back layer are 400 + 50 (pH-12) (1 + log (P H2S )) / 9 or less, respectively. HIC is more likely to occur as the hardness of the second layer and the hardness of the hard second phase contained in the microstructures of the surface layer and the back layer increase. As a result of investigations by the present inventors, it has been found that HIC occurs when the maximum value of each micro Vickers hardness does not satisfy the following formula (4). In addition, a surface layer and a back layer refer to the area | region to 5 mm from the surface to a plate | board thickness direction.
HV ≦ 400 + 50 (pH−12) (1 + log (P H2S )) / 9 (4)
However, in Formula (4),
pH: pH of the HIC test environment
P H2S: H 2 S fraction of HIC test environment (Vol%)
And
Therefore, in the present invention, the upper limit of the maximum value HV of the micro-Vickers hardness of the hard second phase contained in the center segregation portion and the microstructures of the surface layer and the back layer is set to 400 + 50 (pH-12) (1 + log (P H2S )). / 9. The micro Vickers load is set in the range of 5 to 50 g in accordance with the cross-sectional dimension of the hard second phase, and is measured so that no indentation protrudes from the hard second phase to be measured. If the microstructure is almost uniform (for example, a bainite single phase structure) and there is no hard second phase that can be measured even with 5 g, an arbitrary portion is measured with 50 g. In addition, since the micro Vickers test is a test with a large measurement variation, the maximum value of the micro Vickers hardness of the hard second phase contained in the microstructure of the central segregation part, the surface layer and the back layer is a result of measurement of 5 points or more. Use the maximum value.

表層および裏層のビッカース硬さが248以下
耐SSC性能を確保するためには、一般にビッカース硬さを248以下に抑える必要があることが知られている。本発明で扱うTMCP(Thermo−Mechanical Control Process)で製造される溶接鋼管および厚鋼板については、表層および裏層が最も硬くなるため、表層および裏層の硬さを248以下に抑える必要がある。なお、ビッカース硬さの荷重は、10kgを用い、測定位置としては、管厚方向断面において表層および裏層から管厚方向に1.5mmの深さの位置で測定することが望ましい。
It is known that the Vickers hardness of the surface layer and the back layer is generally 248 or less. In order to ensure the SSC resistance, it is generally necessary to suppress the Vickers hardness to 248 or less. In the welded steel pipe and the thick steel plate manufactured by TMCP (Thermo-Mechanical Control Process) handled in the present invention, the surface layer and the back layer are the hardest, so the hardness of the surface layer and the back layer needs to be suppressed to 248 or less. Note that the load of Vickers hardness is 10 kg, and the measurement position is preferably measured at a depth of 1.5 mm in the tube thickness direction from the surface layer and the back layer in the cross section in the tube thickness direction.

<集合組織>
X線回析により得られる管厚中心位置または板厚中心位置での圧延面の(211)面の集積度が1.6以上
ラインパイプで要求されるDWTT性能などの母材靭性は、鋼材のミクロ組織や集合組織の影響を受ける。本発明者らは、オーステナイトからベイナイトに変態する際に発達する、管厚中心位置または板厚中心位置での圧延面の(211)面の集積度と母材靭性の間に良好な相関があることを見出した。上記集積度が1.6以上になると母材靭性が良好になるため、集積度の下限を1.6とする。より好ましくは、1.8以上である。なお、ここで(211)面の集積度とは、対象材の(211)結晶面の集積度を表す数値で、対象材の管厚中心位置から鋼板圧延面に平行に採取した板面における(211)反射のX線回折強度(I(211))と、集合組織のないランダムな標準試料の(211)反射のX線回折強度(I0(211))との比(I(211)/I0(211))を指す。
<Group organization>
The accumulation degree of the (211) plane of the rolled surface at the tube thickness center position or the sheet thickness center position obtained by X-ray diffraction is 1.6 or more. Base material toughness such as DWTT performance required for a line pipe is Influenced by microstructure and texture. The present inventors have a good correlation between the degree of integration of the (211) plane of the rolled surface at the tube thickness center position or the sheet thickness center position and the base material toughness that develop when transforming from austenite to bainite. I found out. Since the base material toughness becomes good when the integration degree is 1.6 or more, the lower limit of the integration degree is set to 1.6. More preferably, it is 1.8 or more. Here, the degree of integration of the (211) plane is a numerical value representing the degree of integration of the (211) crystal plane of the target material, and is the value of the plate surface taken in parallel to the steel sheet rolling surface from the tube thickness center position of the target material ( 211) the ratio of the X-ray diffraction intensity of the reflection (I (211)) and, (211) reflection of X-ray diffraction intensity (I 0 (211) without random standard sample of texture) (I (211) / I 0 (211) ).

<製造条件>
本発明の製造方法は、上述した成分組成を有する連続鋳造スラブ鋼素材を、1000〜1200℃に加熱し、圧延開始温度がT以下で累積圧下率50%以上で熱間圧延を行い、次いで圧延終了温度がT以上を満たすように熱間圧延を終了し、その後、冷却停止温度が600℃以下となる加速冷却を行った後、空冷することを特徴とする。
<Production conditions>
Production method of the present invention, a continuous cast slab steel material having the above-mentioned composition of ingredients, and heated to 1000 to 1200 ° C., rolling start temperature perform hot rolling at a cumulative rolling reduction of 50% or more below T S, then Hot rolling is terminated so that the rolling end temperature satisfies TF or higher, and then accelerated cooling is performed so that the cooling stop temperature is 600 ° C. or lower, followed by air cooling.

次に、各製造条件の限定理由について説明する。本発明において、製造条件における温度は、いずれも鋼素材や鋼板の表面温度とする。鋼素材や鋼板の表面温度は、たとえば放射温度計により測定することができる。   Next, the reasons for limiting each manufacturing condition will be described. In the present invention, the temperature under the production conditions is the surface temperature of the steel material or steel plate. The surface temperature of a steel material or a steel plate can be measured by, for example, a radiation thermometer.

鋼素材としては、連続鋳造スラブを用いることができる。   As the steel material, a continuously cast slab can be used.

加熱温度:1000〜1200℃
スラブをオーステナイト化しつつ、最低限のNbの固溶量を得るため、スラブ加熱温度の下限温度は1000℃とする。一方、1200℃を超える温度までスラブを加熱すると、NbCおよびTiNによるピンニング効果が弱まり、オーステナイト粒が著しく成長し、母材靭性が劣化する。このため、スラブ加熱温度は1000〜1200℃の範囲とする。
Heating temperature: 1000-1200 ° C
In order to obtain a minimum amount of Nb solid solution while austenizing the slab, the lower limit temperature of the slab heating temperature is set to 1000 ° C. On the other hand, when the slab is heated to a temperature exceeding 1200 ° C., the pinning effect by NbC and TiN is weakened, austenite grains grow significantly, and the base material toughness deteriorates. For this reason, slab heating temperature shall be 1000-1200 degreeC.

累積圧下率50%以上の圧下を加える際の圧延開始温度T:174log([Nb]([C]+12[N]/14))+1444−1.2t以下
母材靭性を向上させるためには、オーステナイト未再結晶温度域低温側で累積圧下率を大きくとる圧延をすることが望ましい。下記式(5)で表されるTは、鋼の成分と圧延終了時の板厚(mm)に応じて決まり、母材靭性確保のために必要な圧延時の圧延開始温度を示すものである。
≦174log([Nb]([C]+12[N]/14))+1444−1.2t・・・(5)
ただし、上記式(5)において、
[Nb]、[C]、[N]:各元素の含有量(質量%)であり、含まない場合は0とする
t:圧延終了時の板厚(mm)
とする。
本発明では、累積圧下率50%以上の圧下を加える際の圧延開始温度が、174log([Nb]([C]+12[N]/14))+1444−1.2tを超える場合、母材靭性が劣化する。このため、圧延開始温度の上限を174log([Nb]([C]+12[N]/14))+1444−1.2tとする。
Rolling start temperature T S : 174 log ([Nb] ([C] +12 [N] / 14)) + 1444-1.2t or less when applying rolling reduction of 50% or more to reduce the base metal toughness It is desirable to perform rolling to increase the cumulative rolling reduction at the low temperature side of the austenite non-recrystallization temperature range. T S represented by the following formula (5) is determined in accordance with the composition of steel plate thickness at the completion of rolling (mm), it shows a rolling start temperature during rolling necessary for the base material toughness ensure is there.
T S ≦ 174 log ([Nb] ([C] +12 [N] / 14)) + 1444-1.2t (5)
However, in the above formula (5),
[Nb], [C], [N]: content (% by mass) of each element, 0 if not included t: thickness at the end of rolling (mm)
And
In the present invention, when the rolling start temperature when applying a reduction of 50% or more of the cumulative reduction ratio exceeds 174 log ([Nb] ([C] +12 [N] / 14)) + 1444-1.2t, the base material toughness Deteriorates. For this reason, the upper limit of the rolling start temperature is set to 174 log ([Nb] ([C] +12 [N] / 14)) + 1444-1.2 t.

圧延終了温度T:910−310[C]−80[Mn]−20[Cu]−55[Ni]−15[Cr]−80[Mo]−0.6t以上
圧延終了温度は低いほど母材靭性が向上する。一方で、圧延終了温度が低いと耐HIC性能が劣化する。圧延終了温度が下記式(6)を満足しない場合には、表面近傍に加工フェライトが生成し、硬質第二相の硬さも高くなり表層近傍の耐HIC性能が劣化する。
≧910−310[C]−80[Mn]−20[Cu]−55[Ni]−15[Cr]−80[Mo]−0.6t・・・(6)
ただし、上記式(6)において、
[C]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]:各元素の含有量(質量%)であり、含まない場合は0とする
t:圧延終了時の板厚(mm)
とする。
このため、圧延終了温度Tの下限を910−310[C]−80[Mn]−20[Cu]−55[Ni]−15[Cr]−80[Mo]−0.6tとする。また、圧延終了温度はラインパイプ用途として必要最小限の母材靭性を確保するという理由で950℃以下が好ましい。また、加速冷却開始温度についてもTを下回ると、中心偏析部近傍にフェライトが生成し、中心偏析近傍の硬質第二相が著しく硬化し、耐HIC性能が劣化する場合があるため、下限をTとすることが好ましい。
Rolling end temperature TF : 910-310 [C] -80 [Mn] -20 [Cu] -55 [Ni] -15 [Cr] -80 [Mo] -0.6t or more The lower the rolling end temperature, the base material Toughness is improved. On the other hand, when the rolling end temperature is low, the HIC resistance is deteriorated. When the rolling end temperature does not satisfy the following formula (6), processed ferrite is generated near the surface, the hardness of the hard second phase is increased, and the HIC resistance near the surface layer is deteriorated.
T F ≧ 910-310 [C] -80 [Mn] -20 [Cu] -55 [Ni] -15 [Cr] -80 [Mo] -0.6t (6)
However, in the above formula (6),
[C], [Mn], [Cu], [Ni], [Cr], [Mo]: content (mass%) of each element and 0 when not included t: plate at the end of rolling Thickness (mm)
And
Therefore, the lower limit of the rolling end temperature T F and 910-310 [C] -80 [Mn] -20 [Cu] -55 [Ni] -15 [Cr] -80 [Mo] -0.6t. Further, the rolling end temperature is preferably 950 ° C. or lower for the purpose of ensuring the minimum base metal toughness required for line pipe applications. If the lower T F also accelerated cooling start temperature, ferrite is generated in the vicinity of the center segregation area, and hard cured second phase significantly central polarized析近near, since the HIC resistance may deteriorate, the lower limit T F is preferable.

加速冷却開始温度TACS:910−310[C]−80[Mn]−20[Cu]−55[Ni]−15[Cr]−80[Mo]−0.6t以上
加速冷却開始温度は低いほど母材靭性が向上する。一方で、加速冷却開始温度が低いと耐HIC性能が劣化する。加速冷却開始温度が下記式(7)で表されるTACS未満では、表面近傍に加工フェライトが生成し、硬質第二相の硬さも高くなり表層近傍の耐HIC性能が劣化する。
ACS≧910−310[C]−80[Mn]−20[Cu]−55[Ni]−15[Cr]−80[Mo]−0.6t・・・(7)
ただし、上記式(7)において、
[C]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]:各元素の含有量(質量%)であり、含まない場合は0とする
t:圧延終了時の板厚(mm)
とする。
このため、加速冷却開始温度TACSの下限を910−310[C]−80[Mn]−20[Cu]−55[Ni]−15[Cr]−80[Mo]−0.6tとする。
Accelerated cooling start temperature T ACS: 910-310 [C] -80 [Mn] -20 [Cu] -55 [Ni] -15 [Cr] -80 [Mo] accelerated cooling start temperature or higher -0.6t is as low Base material toughness is improved. On the other hand, when the accelerated cooling start temperature is low, the HIC resistance is deteriorated. If the accelerated cooling start temperature is less than TACS represented by the following formula (7), processed ferrite is generated near the surface, the hardness of the hard second phase is increased, and the HIC resistance near the surface layer is deteriorated.
T ACS ≧ 910-310 [C] -80 [Mn] -20 [Cu] -55 [Ni] -15 [Cr] -80 [Mo] -0.6 t (7)
However, in the above formula (7),
[C], [Mn], [Cu], [Ni], [Cr], [Mo]: content (mass%) of each element and 0 when not included t: plate at the end of rolling Thickness (mm)
And
Therefore, the lower limit of the accelerated cooling start temperature T ACS and 910-310 [C] -80 [Mn] -20 [Cu] -55 [Ni] -15 [Cr] -80 [Mo] -0.6t.

なお、T、TおよびTACSは、鋼板表面温度とする。鋼板表面温度は、たとえば、放射温度計により測定することができる。Note that T S , T F, and T ACS are steel plate surface temperatures. The steel sheet surface temperature can be measured by, for example, a radiation thermometer.

加速冷却の冷却停止温度が600℃以下
圧延終了後、加速冷却を行う。冷却停止温度は低いほど強度が大きくなり、高いほど鋼板の平坦度が良好になる。一方で、耐HIC性能確保の観点から、600℃を超える温度にすると冷却停止後にフェライトおよびパーライト変態が起こり、ミクロ組織が不均一になりHIC性能が劣化する。このため、上限を600℃とする。また、冷却停止温度は必要以上に高強度化することに起因するHIC性能の劣化の抑制という理由で300℃以上が好ましい。なお、加速冷却時の冷却速度は、10℃/s以上が好ましい。
Cooling stop temperature of accelerated cooling is 600 ° C. or less After the rolling, accelerated cooling is performed. The lower the cooling stop temperature, the greater the strength, and the higher the temperature, the better the flatness of the steel sheet. On the other hand, from the viewpoint of securing HIC resistance, if the temperature exceeds 600 ° C., ferrite and pearlite transformation occurs after cooling is stopped, the microstructure becomes non-uniform, and the HIC performance deteriorates. For this reason, an upper limit shall be 600 degreeC. Further, the cooling stop temperature is preferably 300 ° C. or higher for the purpose of suppressing the deterioration of the HIC performance caused by increasing the strength more than necessary. The cooling rate during accelerated cooling is preferably 10 ° C./s or higher.

焼戻し温度:480〜720℃
本発明では、加速冷却後に強度や靭性を調整するために、あるいは応力除去焼鈍時の特性変化を小さくするために、加速冷却後に空冷した後、必要に応じて、焼戻し熱処理を行うことができる。その効果は、焼戻し温度が480℃未満では得られず、720℃を超えるとミクロ組織の一部が逆変態し、HIC性能が劣化する。このため、焼戻し熱処理を行う場合は、焼戻し温度を480〜720℃の範囲で行うことが好ましい。
Tempering temperature: 480-720 ° C
In the present invention, in order to adjust the strength and toughness after accelerated cooling, or to reduce the change in characteristics at the time of stress-relieving annealing, after air cooling after accelerated cooling, tempering heat treatment can be performed as necessary. The effect cannot be obtained when the tempering temperature is less than 480 ° C., and when it exceeds 720 ° C., a part of the microstructure is reversely transformed, and the HIC performance is deteriorated. For this reason, when performing tempering heat processing, it is preferable to perform tempering temperature in the range of 480-720 degreeC.

上記の製造条件により、本発明の高靭性厚鋼板を得ることができる。さらに、本発明の高靭性溶接鋼管の製造方法について説明する。   According to the above production conditions, the high toughness thick steel plate of the present invention can be obtained. Furthermore, the manufacturing method of the high toughness welded steel pipe of this invention is demonstrated.

本発明は上述の厚鋼板を用いて鋼管となす。鋼管の成形方法としては、UOEプロセスやプレスベンド(ベンディングプレスとも称する)等の冷間成形によって鋼管形状に成形する方法が挙げられる。   The present invention forms a steel pipe using the above-described thick steel plate. Examples of the method for forming a steel pipe include a method for forming a steel pipe into a shape by cold forming such as a UOE process or a press bend (also called a bending press).

UOEプロセスでは、素材となる厚鋼板の幅方向端部に開先加工を施したのち、プレス機を用いて鋼板の幅方向端部の端曲げを行い、続いて、プレス機を用いて鋼板をU字状にそしてO字状に成形することにより、鋼板の幅方向端部同士が対向するように鋼板を円筒形状に成形する。次いで、鋼板の対向する幅方向端部をつき合わせて溶接する。この溶接をシーム溶接と呼ぶ。このシーム溶接においては、円筒形状の鋼板を拘束し、対向する鋼板の幅方向端部同士を突き合わせて仮付溶接する仮付溶接工程と、サブマージアーク溶接法によって鋼板の突き合わせ部の内外面に溶接を施す本溶接工程との、二段階の工程を有する方法が好ましい。シーム溶接を行った後に、溶接残留応力の除去と鋼管真円度の向上のため、拡管を行う。拡管工程において拡管率(拡管前の管の外径に対する拡管前後の外径変化量の比)は、通常、0.3%〜1.5%の範囲で実施される。真円度改善効果と拡管装置に要求される能力とのバランスの観点から、拡管率は0.5%〜1.2%の範囲であることが好ましい。その後、防食を目的としてコーティング処理を実施することができる。コーティング処理としては、たとえば、200〜300℃の温度域に加熱した後、外面に、公知の樹脂を塗布すればよい。   In the UOE process, after performing groove processing on the width direction end of the thick steel plate used as a raw material, the end bending of the width direction end of the steel plate is performed using a press machine, and then the steel plate is processed using a press machine. By forming it into a U shape and an O shape, the steel plate is formed into a cylindrical shape so that the widthwise ends of the steel plate face each other. Next, the opposing widthwise ends of the steel plates are brought together and welded. This welding is called seam welding. In this seam welding, a cylindrical steel plate is constrained, the widthwise ends of opposing steel plates are butted against each other in a tack welding process, and welding is performed on the inner and outer surfaces of the butt portion of the steel plate by the submerged arc welding method. A method having a two-stage process, that is, a main welding process for performing the above-described process is preferable. After seam welding, pipe expansion is performed to remove residual welding stress and improve roundness of the steel pipe. In the pipe expansion process, the pipe expansion ratio (ratio of the outer diameter change amount before and after the pipe expansion to the outer diameter of the pipe before the pipe expansion) is usually performed in the range of 0.3% to 1.5%. From the viewpoint of the balance between the roundness improvement effect and the capacity required for the tube expansion device, the tube expansion rate is preferably in the range of 0.5% to 1.2%. Thereafter, a coating treatment can be carried out for the purpose of preventing corrosion. As the coating treatment, for example, after heating to a temperature range of 200 to 300 ° C., a known resin may be applied to the outer surface.

プレスベンドの場合には、鋼板に三点曲げを繰り返すことにより逐次成形し、ほぼ円形の断面形状を有する鋼管を製造する。その後は、上述のUOEプロセスと同様に、シーム溶接を実施する。プレスベンドの場合にも、シーム溶接の後、拡管を実施してもよく、また、コーティングを実施することもできる。   In the case of a press bend, a steel pipe having a substantially circular cross-sectional shape is manufactured by sequentially forming a steel plate by repeating three-point bending. Thereafter, seam welding is performed in the same manner as the above-described UOE process. Also in the case of press bend, tube expansion may be performed after seam welding, and coating may also be performed.

表1に示す化学成分の鋼を連続鋳造によりスラブとした。その後、表2、3に示す条件でスラブを再加熱した後、熱間圧延し、加速冷却を行った後、室温まで空冷し、厚鋼板とした。一部厚鋼板については、室温まで空冷した後に、焼戻しを行った。さらに、一部の厚鋼板以外については、厚鋼板幅端が突合せ部となるように冷間加工で筒状にし、突合せ部でサブマージアーク溶接を行うことによって、溶接鋼管とした。   Steel of chemical composition shown in Table 1 was made into a slab by continuous casting. Thereafter, the slab was reheated under the conditions shown in Tables 2 and 3, then hot-rolled, accelerated cooled, and then air-cooled to room temperature to obtain a thick steel plate. Some thick steel plates were tempered after air cooling to room temperature. Furthermore, except for some of the thick steel plates, the steel plate was made into a tubular shape by cold working so that the width end of the thick steel plate became the butt portion, and submerged arc welding was performed at the butt portion to obtain a welded steel pipe.

これらの厚鋼板および溶接鋼管について、以下に示す方法で性能評価を行った。   These thick steel plates and welded steel pipes were evaluated for performance by the following methods.

中心偏析部、表層および裏層のミクロ組織に含まれる硬質第二相のマイクロビッカース硬さは、硬質第二相の断面寸法に合わせて5〜50gの範囲で設定し、圧痕が測定する硬質第二相からはみ出さないように測定した。また、ミクロ組織がほぼ均一(例えば、ベイナイト単相組織など)で、5gを用いても測定できるような大きさの硬質第二相がない場合は、50gで任意の箇所を測定した。中心偏析部、表層および裏層のミクロ組織に含まれる硬質第二相のマイクロビッカース硬さの値は、10点測定した結果の最大値を用いた。   The micro Vickers hardness of the hard second phase contained in the microstructure of the central segregation part, surface layer and back layer is set in the range of 5 to 50 g according to the cross-sectional dimension of the hard second phase, and the hard second phase measured by the indentation is measured. It measured so that it might not protrude from two phases. In addition, when the microstructure was almost uniform (for example, a bainite single phase structure) and there was no hard second phase that could be measured using 5 g, an arbitrary portion was measured at 50 g. As the value of the micro Vickers hardness of the hard second phase contained in the microstructure of the center segregation part, the surface layer and the back layer, the maximum value obtained by measuring 10 points was used.

管厚および板厚中心位置での圧延面の(211)面の集積度は、圧延面が測定面となるように5mm厚の薄膜を採取し、X線回折装置を用いて、インバース法で測定した値を用いた。なお、ここで(211)面の集積度とは、対象材の(211)結晶面の集積度を表す数値で、対象材の管厚中心位置から鋼板圧延面に平行に採取した板面における(211)反射のX線回折強度(I(211))と、集合組織のないランダムな標準試料の(211)反射のX線回折強度(I0(211))との比(I(211)/I0(211))を指す。The degree of integration of the (211) plane of the rolled surface at the center position of the tube thickness and the plate thickness was measured by an inverse method using an X-ray diffractometer by collecting a 5 mm thick thin film so that the rolled surface becomes the measurement surface. The values obtained were used. Here, the degree of integration of the (211) plane is a numerical value representing the degree of integration of the (211) crystal plane of the target material, and is the value of the plate surface taken in parallel to the steel sheet rolling surface from the tube thickness center position of the target material ( 211) the ratio of the X-ray diffraction intensity of the reflection (I (211)) and, (211) reflection of X-ray diffraction intensity (I 0 (211) without random standard sample of texture) (I (211) / I 0 (211) ).

強度は、ASTM A516で規定される幅38.1mmの引張試験片を用いて評価し、API 5L X65Mの最小強度である引張強度535MPa以上を合格とした。母材靭性は、API RP 5L3で規定されるDWTTによって評価し、板厚および管厚が30mm以下については全厚試験片を用いて−10℃で、30mm超えは19mm減厚試験片を用いて−27℃でそれぞれ試験し、2本試験した延性破面率の平均値が85%以上になったものを合格とした。   The strength was evaluated using a tensile test piece having a width of 38.1 mm defined by ASTM A516, and a minimum tensile strength of 535 MPa, which is the minimum strength of API 5L X65M, was accepted. The base material toughness is evaluated by DWTT specified by API RP 5L3. When the plate thickness and the tube thickness are 30 mm or less, the full thickness test piece is used at -10 ° C., and when it exceeds 30 mm, the 19 mm thickness test piece is used. Each test was conducted at −27 ° C., and the average value of the ductile fracture surface ratio of the two tested was 85% or more.

HIC試験は、1〜100%の硫化水素ガス(バランスガス:N)雰囲気下で、緩衝溶液のNaClとCHCOOHとCHCOONaとの比率を適宜変えることで、試験開始時のpHを2.7〜5.8の間に調整した。その他の条件については、NACE TM0284に準じる方法で行った。評価は、試験片表面から行った超音波探傷により割れ面積率を測定(板厚および管厚30mm超えについては、板厚方向に分割して採取した試験片の平均値を測定)し、5%以下を合格とした。In the HIC test, the pH at the start of the test was adjusted by appropriately changing the ratio of NaCl, CH 3 COOH, and CH 3 COONa in the buffer solution in an atmosphere of 1 to 100% hydrogen sulfide gas (balance gas: N 2 ). Adjustment was made between 2.7 and 5.8. About other conditions, it carried out by the method according to NACE TM0284. The evaluation is performed by measuring the cracked area ratio by ultrasonic flaw detection performed from the surface of the test piece (when the plate thickness and the tube thickness exceed 30 mm, the average value of the test pieces taken by dividing in the plate thickness direction is measured), and 5% The following was accepted.

表3に得られた試験結果を示す。   Table 3 shows the test results obtained.

本発明例はいずれも目標の性能を満足しているのに対し、比較例は、DWTT性能、HIC性能のいずれかの性能が目標を満たしていない。   All of the examples of the present invention satisfy the target performance, whereas in the comparative example, either the DWTT performance or the HIC performance does not meet the target.

Figure 2016051727
Figure 2016051727

Figure 2016051727
Figure 2016051727

Figure 2016051727
Figure 2016051727

Claims (7)

質量%で、C:0.02〜0.10%、Si:0.40%以下、Mn:1.00〜2.00%、Nb:0.005〜0.060%、Ti:0.005〜0.025%、Ca:0.0010〜0.0040%、N:0.0010〜0.0100%を含有し、Ca/Oが2.5以下であり、下記式(1)で示されるACRMが0以上であり、下記式(2)で示されるPHICが下記式(3)を満たし、残部はFeおよび不可避的不純物からなり、
中心偏析部ならびに表層および裏層のミクロ組織に含まれる硬質第二相のマイクロビッカース硬さの最大値HVが、下記式(4)を満たし、
表層および裏層のビッカース硬さが248以下であり、
X線回析により得られる管厚中心位置での圧延面の(211)面の集積度が1.6以上である溶接鋼管。
ACRM=([Ca]−(1.23[O]−0.000365))/(1.25[S])・・・(1)
HIC=4.46[C]+2.37[Mn]/6+(1.74[Cu]+1.7[Ni])/15+(1.18[Cr]+1.95[Mo]+1.74[V])/5+22.36[P]・・・(2)
HIC≦1.35+(pH−12)(1+log(PH2S))/60・・・(3)
HV≦400+50(pH−12)(1+log(PH2S))/9・・・(4)
ただし、式(1)〜(4)において、
[Ca]、[O]、[S]、[C]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、[P]:各元素の含有量(質量%)であり、含まない場合は0とする
pH:HIC試験環境のpH
H2S:HIC試験環境のHS分率(Vol%)
とする。
In mass%, C: 0.02-0.10%, Si: 0.40% or less, Mn: 1.00-2.00%, Nb: 0.005-0.060%, Ti: 0.005 -0.025%, Ca: 0.0010-0.0040%, N: 0.0010-0.0100% is contained, Ca / O is 2.5 or less, and is shown by following formula (1) ACRM is not less than 0, satisfying P HIC has the following formula (3) represented by the following formula (2), the balance being Fe and unavoidable impurities,
The maximum value HV of the micro Vickers hardness of the hard second phase contained in the microstructure of the center segregation part and the surface layer and the back layer satisfies the following formula (4),
The Vickers hardness of the surface layer and the back layer is 248 or less,
A welded steel pipe having an accumulation degree of the (211) plane of the rolled surface at the tube thickness center position obtained by X-ray diffraction of 1.6 or more.
ACRM = ([Ca] − (1.23 [O] −0.000365)) / (1.25 [S]) (1)
P HIC = 4.46 [C] +2.37 [Mn] / 6 + (1.74 [Cu] +1.7 [Ni]) / 15+ (1.18 [Cr] +1.95 [Mo] +1.74 [ V]) / 5 + 22.36 [P] (2)
P HIC ≦ 1.35 + (pH−12) (1 + log (P H2S )) / 60 (3)
HV ≦ 400 + 50 (pH−12) (1 + log (P H2S )) / 9 (4)
However, in the formulas (1) to (4),
[Ca], [O], [S], [C], [Mn], [Cu], [Ni], [Cr], [Mo], [V], [P]: Content of each element ( Mass%), and when not included, pH is 0: pH of the HIC test environment
P H2S: H 2 S fraction of HIC test environment (Vol%)
And
さらに、質量%で、Cu:0.50%以下、Ni:1.00%以下、Cr:0.50%以下、Mo:0.50%以下、V:0.060%以下、B:0.0030%以下から選ばれる1種以上を含有する請求項1に記載の溶接鋼管。   Further, in terms of mass%, Cu: 0.50% or less, Ni: 1.00% or less, Cr: 0.50% or less, Mo: 0.50% or less, V: 0.060% or less, B: 0.0. The welded steel pipe according to claim 1, comprising one or more selected from 0030% or less. 質量%で、C:0.02〜0.10%、Si:0.40%以下、Mn:1.00〜2.00%、Nb:0.005〜0.060%、Ti:0.005〜0.025%、Ca:0.0010〜0.0040%、N:0.0010〜0.0100%を含有し、Ca/Oが2.5以下であり、下記式(1)で示されるACRMが0以上であり、下記式(2)で示されるPHICが下記式(3)を満たし、残部はFeおよび不可避的不純物からなり、
中心偏析部ならびに表層および裏層のミクロ組織に含まれる硬質第二相のマイクロビッカース硬さの最大値HVが、下記式(4)を満たし、
表層および裏層のビッカース硬さが248以下であり、
X線回析により得られる板厚中心位置での圧延面の(211)面の集積度が1.6以上である厚鋼板。
ACRM=([Ca]−(1.23[O]−0.000365))/(1.25[S])・・・(1)
HIC=4.46[C]+2.37[Mn]/6+(1.74[Cu]+1.7[Ni])/15+(1.18[Cr]+1.95[Mo]+1.74[V])/5+22.36[P]・・・(2)
HIC≦1.35+(pH−12)(1+log(PH2S))/60・・・(3)
HV≦400+50(pH−12)(1+log(PH2S))/9・・・(4)
ただし、式(1)〜(4)において、
[Ca]、[O]、[S]、[C]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、[P]:各元素の含有量(質量%)であり、含まない場合は0とする
pH:HIC試験環境のpH
H2S:HIC試験環境のHS分率(Vol%)
とする。
In mass%, C: 0.02-0.10%, Si: 0.40% or less, Mn: 1.00-2.00%, Nb: 0.005-0.060%, Ti: 0.005 -0.025%, Ca: 0.0010-0.0040%, N: 0.0010-0.0100% is contained, Ca / O is 2.5 or less, and is shown by following formula (1) ACRM is not less than 0, satisfying P HIC has the following formula (3) represented by the following formula (2), the balance being Fe and unavoidable impurities,
The maximum value HV of the micro Vickers hardness of the hard second phase contained in the microstructure of the center segregation part and the surface layer and the back layer satisfies the following formula (4),
The Vickers hardness of the surface layer and the back layer is 248 or less,
A thick steel plate having a degree of integration of the (211) plane of the rolled surface at the plate thickness center position obtained by X-ray diffraction of 1.6 or more.
ACRM = ([Ca] − (1.23 [O] −0.000365)) / (1.25 [S]) (1)
P HIC = 4.46 [C] +2.37 [Mn] / 6 + (1.74 [Cu] +1.7 [Ni]) / 15+ (1.18 [Cr] +1.95 [Mo] +1.74 [ V]) / 5 + 22.36 [P] (2)
P HIC ≦ 1.35 + (pH−12) (1 + log (P H2S )) / 60 (3)
HV ≦ 400 + 50 (pH−12) (1 + log (P H2S )) / 9 (4)
However, in the formulas (1) to (4),
[Ca], [O], [S], [C], [Mn], [Cu], [Ni], [Cr], [Mo], [V], [P]: Content of each element ( Mass%), and when not included, pH is 0: pH of the HIC test environment
P H2S: H 2 S fraction of HIC test environment (Vol%)
And
さらに、質量%で、Cu:0.50%以下、Ni:1.00%以下、Cr:0.50%以下、Mo:0.50%以下、V:0.060%以下、B:0.0030%以下から選ばれる1種以上を含有する請求項3に記載の厚鋼板。   Further, in terms of mass%, Cu: 0.50% or less, Ni: 1.00% or less, Cr: 0.50% or less, Mo: 0.50% or less, V: 0.060% or less, B: 0.0. The thick steel plate according to claim 3, containing one or more selected from 0030% or less. 請求項3または4に記載の成分組成を有する連続鋳造スラブ鋼素材を、1000〜1200℃に加熱し、圧延開始温度Tが下記式(5)を満たすように累積圧下率50%以上で熱間圧延を行い、次いで、圧延終了温度Tが下記式(6)を満たすように熱間圧延を終了し、その後、加速冷却開始温度TACSが下記式(7)を満たすように加速冷却を開始し、冷却停止温度が600℃以下で加速冷却を停止させた後、空冷する厚鋼板の製造方法。
≦174log([Nb]([C]+12[N]/14))+1444−1.2t・・・(5)
≧910−310[C]−80[Mn]−20[Cu]−55[Ni]−15[Cr]−80[Mo]−0.6t・・・(6)
ACS≧910−310[C]−80[Mn]−20[Cu]−55[Ni]−15[Cr]−80[Mo]−0.6t・・・(7)
ただし、上記式(5)、(6)、(7)において、
[Nb]、[C]、[N]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]:各元素の含有量(質量%)であり、含まない場合は0とする
t:圧延終了時の板厚(mm)
とする。
Heat continuously cast slab steel material, with heating to 1000 to 1200 ° C., initial rolling temperature T S the following formula (5) to meet as cumulative rolling reduction of 50% or more having a composition as set forth in claim 3 or 4 Then, the hot rolling is finished so that the rolling end temperature TF satisfies the following formula (6), and then the accelerated cooling is performed so that the accelerated cooling start temperature T ACS satisfies the following formula (7). A method for producing a thick steel plate, which is started and air-cooled after stopping cooling at a cooling stop temperature of 600 ° C. or less.
T S ≦ 174 log ([Nb] ([C] +12 [N] / 14)) + 1444-1.2t (5)
T F ≧ 910-310 [C] -80 [Mn] -20 [Cu] -55 [Ni] -15 [Cr] -80 [Mo] -0.6t (6)
T ACS ≧ 910-310 [C] -80 [Mn] -20 [Cu] -55 [Ni] -15 [Cr] -80 [Mo] -0.6 t (7)
However, in the above formulas (5), (6), (7),
[Nb], [C], [N], [Mn], [Cu], [Ni], [Cr], [Mo]: content (% by mass) of each element, 0 if not included T: Thickness at the end of rolling (mm)
And
前記空冷後、480〜720℃に焼戻す請求項5に記載の厚鋼板の製造方法。   The manufacturing method of the thick steel plate of Claim 5 which tempers to 480-720 degreeC after the said air cooling. 請求項5または6の方法で製造した厚鋼板を筒状に冷間加工し、その突合せ部を溶接することで溶接鋼管とする溶接鋼管の製造方法。
A method for producing a welded steel pipe, wherein the thick steel plate produced by the method according to claim 5 or 6 is cold-worked into a cylindrical shape and the butt portion is welded to form a welded steel pipe.
JP2016551522A 2014-09-30 2015-09-18 Welded steel pipe, thick steel plate and method for producing them Active JP6237920B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014199642 2014-09-30
JP2014199642 2014-09-30
PCT/JP2015/004813 WO2016051727A1 (en) 2014-09-30 2015-09-18 Welded steel pipe, steel plate, and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JPWO2016051727A1 true JPWO2016051727A1 (en) 2017-04-27
JP6237920B2 JP6237920B2 (en) 2017-11-29

Family

ID=55629798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016551522A Active JP6237920B2 (en) 2014-09-30 2015-09-18 Welded steel pipe, thick steel plate and method for producing them

Country Status (3)

Country Link
JP (1) JP6237920B2 (en)
BR (1) BR112017006565B1 (en)
WO (1) WO2016051727A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6696393B2 (en) * 2016-10-04 2020-05-20 日本製鉄株式会社 Method for producing test solution used for stress corrosion cracking test of stainless steel, and stress corrosion cracking test method for stainless steel
JP6369658B1 (en) * 2017-09-19 2018-08-08 新日鐵住金株式会社 Steel pipe and steel plate
JP7215332B2 (en) * 2019-05-29 2023-01-31 Jfeスチール株式会社 Manufacturing method of welded steel pipe for sour resistant line pipe
JP7226102B2 (en) * 2019-05-29 2023-02-21 Jfeスチール株式会社 Manufacturing method of welded steel pipe for sour resistant line pipe
CN111500941B (en) * 2020-05-15 2021-06-29 佛山科学技术学院 HIC (hydrogen induced cracking) resistant pipeline steel based on structure regulation and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056962A (en) * 2006-08-30 2008-03-13 Jfe Steel Kk Steel sheet for high strength line pipe which is excellent in resistance to crack induced by hydrogen and has small reduction in yield stress due to bauschinger effect, and manufacturing method therefor
JP2010196161A (en) * 2009-01-30 2010-09-09 Jfe Steel Corp Method for manufacturing heavy gauge high tensile strength hot rolled steel sheet with excellent hic resistance
JP2010209461A (en) * 2009-02-12 2010-09-24 Nippon Steel Corp High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe
JP2011017048A (en) * 2009-07-08 2011-01-27 Nippon Steel Corp Method for manufacturing electroseamed steel pipe having sour-gas resistance for line pipe
JP2012241273A (en) * 2011-05-24 2012-12-10 Jfe Steel Corp High strength linepipe superior in collapse resistance and sour-resistance and method for producing the same
JP2013217901A (en) * 2012-03-14 2013-10-24 Jfe Steel Corp Method for evaluating hic sensitivity of steel material and method for manufacturing thick steel plate excellent in hic resistance
WO2013190750A1 (en) * 2012-06-18 2013-12-27 Jfeスチール株式会社 Thick, high-strength, sour-resistant line pipe and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056962A (en) * 2006-08-30 2008-03-13 Jfe Steel Kk Steel sheet for high strength line pipe which is excellent in resistance to crack induced by hydrogen and has small reduction in yield stress due to bauschinger effect, and manufacturing method therefor
JP2010196161A (en) * 2009-01-30 2010-09-09 Jfe Steel Corp Method for manufacturing heavy gauge high tensile strength hot rolled steel sheet with excellent hic resistance
JP2010209461A (en) * 2009-02-12 2010-09-24 Nippon Steel Corp High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe
JP2011017048A (en) * 2009-07-08 2011-01-27 Nippon Steel Corp Method for manufacturing electroseamed steel pipe having sour-gas resistance for line pipe
JP2012241273A (en) * 2011-05-24 2012-12-10 Jfe Steel Corp High strength linepipe superior in collapse resistance and sour-resistance and method for producing the same
JP2013217901A (en) * 2012-03-14 2013-10-24 Jfe Steel Corp Method for evaluating hic sensitivity of steel material and method for manufacturing thick steel plate excellent in hic resistance
WO2013190750A1 (en) * 2012-06-18 2013-12-27 Jfeスチール株式会社 Thick, high-strength, sour-resistant line pipe and method for producing same

Also Published As

Publication number Publication date
BR112017006565A2 (en) 2017-12-19
WO2016051727A1 (en) 2016-04-07
BR112017006565B1 (en) 2021-05-04
JP6237920B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP5223511B2 (en) Steel sheet for high strength sour line pipe, method for producing the same and steel pipe
JP6226062B2 (en) Steel material for high deformability line pipe excellent in strain aging resistance and HIC resistance, manufacturing method thereof, and welded steel pipe
EP3276026B1 (en) Thick steel sheet for structural pipe, method for manufacturing thick steel sheet for structural pipe, and structural pipe
JP6682785B2 (en) Steel plate having excellent sour resistance and method of manufacturing the same
JP5928405B2 (en) Tempered steel sheet excellent in resistance to hydrogen-induced cracking and method for producing the same
JP5348383B2 (en) High toughness welded steel pipe with excellent crushing strength and manufacturing method thereof
JP6146358B2 (en) High strength hot rolled steel sheet and method for producing the same
RU2677554C1 (en) Steel plates for construction pipes or tubes, steel plates for construction pipes or tubes manufacturing method, and construction pipes or tubes
JP6237920B2 (en) Welded steel pipe, thick steel plate and method for producing them
JP6048436B2 (en) Tempered high tensile steel plate and method for producing the same
JP2009270197A (en) High-strength steel sheet and steel pipe excellent in low-temperature toughness and production methods thereof
JP5845674B2 (en) High strength steel plate excellent in bending workability and low temperature toughness and method for producing the same
JP6048615B2 (en) Steel material for high deformability line pipe excellent in strain aging resistance and HIC resistance, manufacturing method thereof, and welded steel pipe
JP2015190015A (en) High strength hot rolled steel sheet and manufacturing method therefor
JP2015190026A (en) Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor
JP2016006209A (en) Hot rolled steel sheet having high strength and excellent in low temperature toughness and production method therefor
EP3276025A1 (en) Steel plate for structural pipe, method for producing steel plate for structural pipe, and structural pipe
JP6400516B2 (en) High strength steel material with excellent fatigue crack propagation resistance and method for producing the same
WO2016157235A1 (en) High-strength steel, production method therefor, steel pipe, and production method therefor
JP6179604B2 (en) Steel strip for electric resistance welded steel pipe, electric resistance welded steel pipe, and method for producing steel strip for electric resistance welded steel pipe
JP6400517B2 (en) High strength steel material with excellent fatigue crack propagation resistance and method for producing the same
JP6241434B2 (en) Steel plate for line pipe, steel pipe for line pipe, and manufacturing method thereof
JP6565890B2 (en) Low yield ratio and high strength hot rolled steel sheet with excellent low temperature toughness
JP7163777B2 (en) Steel plate for line pipe
JP7226102B2 (en) Manufacturing method of welded steel pipe for sour resistant line pipe

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171016

R150 Certificate of patent or registration of utility model

Ref document number: 6237920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250