JPWO2016031714A1 - Sintered body, tool using the sintered body, and method for manufacturing the sintered body - Google Patents

Sintered body, tool using the sintered body, and method for manufacturing the sintered body Download PDF

Info

Publication number
JPWO2016031714A1
JPWO2016031714A1 JP2016545494A JP2016545494A JPWO2016031714A1 JP WO2016031714 A1 JPWO2016031714 A1 JP WO2016031714A1 JP 2016545494 A JP2016545494 A JP 2016545494A JP 2016545494 A JP2016545494 A JP 2016545494A JP WO2016031714 A1 JPWO2016031714 A1 JP WO2016031714A1
Authority
JP
Japan
Prior art keywords
compound
particles
sintered body
elements
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016545494A
Other languages
Japanese (ja)
Other versions
JP6597620B2 (en
Inventor
浩也 諸口
浩也 諸口
原田 高志
高志 原田
久木野 暁
暁 久木野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of JPWO2016031714A1 publication Critical patent/JPWO2016031714A1/en
Application granted granted Critical
Publication of JP6597620B2 publication Critical patent/JP6597620B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/0821Oxynitrides of metals, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/0821Oxynitrides of metals, boron or silicon
    • C01B21/0826Silicon aluminium oxynitrides, i.e. sialons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5603Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides with a well-defined oxygen content, e.g. oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58028Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on zirconium or hafnium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • C04B2235/3869Aluminium oxynitrides, e.g. AlON, sialon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)
  • Ceramic Products (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

[課題]耐摩耗性および耐欠損性に優れ、かつ耐酸化性にも優れた焼結体を提供すること。[課題を解決するための手段]Ti、Al、Si、OおよびNからなる第1化合物を含む、焼結体である。[Problem] To provide a sintered body excellent in wear resistance and fracture resistance and excellent in oxidation resistance. [Means for Solving the Problems] A sintered body containing a first compound composed of Ti, Al, Si, O and N.

Description

本発明は、焼結体、焼結体を用いた工具、および焼結体の製造方法に関する。  The present invention relates to a sintered body, a tool using the sintered body, and a method for manufacturing the sintered body.

従来より、焼結体からなる工具を用いて、鋼、鋳物などの切削加工が行われている。切削加工時において、工具の刃先は高温環境に曝されるため、工具は、耐摩耗性と耐欠損性といった特性はもちろん、耐酸化性も求められる。このような特性が期待される焼結体として、Ti、AlおよびNからなる焼結体が知られている。  Conventionally, cutting of steel, castings, and the like has been performed using a tool made of a sintered body. Since the cutting edge of the tool is exposed to a high temperature environment during cutting, the tool is required to have oxidation resistance as well as characteristics such as wear resistance and fracture resistance. As a sintered body expected to have such characteristics, a sintered body made of Ti, Al, and N is known.

たとえば、特開平05−078107号公報(特許文献1)には、メカニカルアロイニング(MA)法を用いてTi0.5Al0.5Nからなる粉末を作製し、これを焼結してTi0. 5Al0.5Nからなる焼結体を製造することが開示されている。特開平10−182233号公報(特許文献2)には、物理気相成長(PVD)法を用いてTi1-xAlxN(x=0.05〜0.70)からなる粉末を作製し、これを焼結して窒化チタンアルミ基焼結体を製造することが開示されている。特開2007−131493号公報(特許文献3)には、燃焼合成(SHS)法を用いてTi、AlおよびNからなる混合物を作製し、これを焼結してAl添加TiNバルク体を製造することが開示されている。For example, Japanese Laid-Open 05-078107 (Patent Document 1), to prepare a powder comprising Ti 0.5 Al 0.5 N with a mechanical alloying (MA) method, which was sintered Ti 0. 5 Al it is disclosed that the production of sintered bodies consisting of 0.5 N. In Japanese Patent Laid-Open No. 10-182233 (Patent Document 2), a powder made of Ti 1-x Al x N (x = 0.05 to 0.70) is prepared using a physical vapor deposition (PVD) method. It is disclosed that a titanium nitride aluminum based sintered body is produced by sintering this. JP 2007-131493 (Patent Document 3) uses a combustion synthesis (SHS) method to produce a mixture composed of Ti, Al, and N, and sinters it to produce an Al-added TiN bulk body. It is disclosed.

特開平05−078107号公報Japanese Patent Laid-Open No. 05-078107 特開平10−182233号公報Japanese Patent Laid-Open No. 10-182233 特開2007−131493号公報JP 2007-131493 A

しかしながら、上述のようなTi、AlおよびNからなる焼結体では、耐酸化性の点で、要望される性能にまで向上させることが難しい傾向にある。  However, in the sintered body made of Ti, Al and N as described above, it tends to be difficult to improve the required performance in terms of oxidation resistance.

そこで、ここでは、耐摩耗性および耐欠損性に優れ、かつ耐酸化性にも優れた焼結体、焼結体を用いた工具、およびその製造方法を提供することを目的とする。  Accordingly, an object of the present invention is to provide a sintered body excellent in wear resistance and fracture resistance and excellent in oxidation resistance, a tool using the sintered body, and a method for manufacturing the same.

本発明の一態様に係る焼結体は、Ti、Al、Si、OおよびNからなる第1化合物を含む、焼結体である。  The sintered body according to one embodiment of the present invention is a sintered body including a first compound composed of Ti, Al, Si, O, and N.

本発明の一態様に係る工具は、上記のTi、Al、Si、OおよびNからなる第1化合物を含む焼結体を用いた工具である。  The tool which concerns on 1 aspect of this invention is a tool using the sintered compact containing the 1st compound which consists of said Ti, Al, Si, O, and N.

本発明の一態様に係る焼結体の製造方法は、Ti、AlおよびSiの各元素を含む第1粒子を準備する工程と、第1粒子を処理して、Ti、Al、Si、OおよびNの各元素からなる第2粒子を作製する工程と、第2粒子を焼結して、Ti、Al、Si、OおよびNからなる第1化合物を含む焼結体を作製する工程と、を備え、第2粒子を作製する工程は、第1粒子を加熱する工程と、加熱後の第1粒子を急冷する工程とを備える。  A method for manufacturing a sintered body according to one aspect of the present invention includes a step of preparing first particles containing elements of Ti, Al, and Si, and processing the first particles to obtain Ti, Al, Si, O, and A step of producing second particles comprising each element of N, and a step of producing a sintered body containing the first compound comprising Ti, Al, Si, O and N by sintering the second particles. The step of preparing and producing the second particles includes a step of heating the first particles and a step of rapidly cooling the first particles after heating.

上記によれば、耐摩耗性および耐欠損性に優れ、かつ耐酸化性にも優れた焼結体、これを用いた工具、およびその製造方法を提供することが可能となる。  According to the above, it becomes possible to provide a sintered body excellent in wear resistance and fracture resistance and excellent in oxidation resistance, a tool using the same, and a manufacturing method thereof.

第3の実施形態に係る焼結体の製造方法を説明するためのフロー図である。It is a flowchart for demonstrating the manufacturing method of the sintered compact which concerns on 3rd Embodiment. 処理工程を説明するためのフロー図である。It is a flowchart for demonstrating a process process. 第4の実施形態に係る焼結体の製造方法を説明するためのフロー図である。It is a flowchart for demonstrating the manufacturing method of the sintered compact which concerns on 4th Embodiment.

[本発明の実施形態の説明]
最初に、本発明の実施形態を列挙して説明する。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.

〔1〕本発明の一態様に係る焼結体は、Ti、Al、Si、OおよびNからなる第1化合物を含む。  [1] A sintered body according to an aspect of the present invention includes a first compound composed of Ti, Al, Si, O, and N.

Ti、Al、Si、OおよびNからなる第1化合物は、Ti、Al、Si、OおよびNからなる化合物(以下、「TiAlSiON化合物」という)を有することができ、これにより、高い耐摩耗性と高い耐欠損性のみならず、高い耐酸化性を有することができる。したがって、本発明の一態様に係る焼結体は、耐摩耗性および耐欠損性に優れ、かつ耐酸化性にも優れるという特性を有することができる。  The first compound composed of Ti, Al, Si, O and N can have a compound composed of Ti, Al, Si, O and N (hereinafter referred to as “TiAlSiON compound”), thereby providing high wear resistance. In addition to high fracture resistance, it can have high oxidation resistance. Therefore, the sintered body according to one embodiment of the present invention can have characteristics such as excellent wear resistance and fracture resistance, and excellent oxidation resistance.

〔2〕上記焼結体において好ましくは、第1化合物は、Ti(1-a-b)AlaSibx yを含み、Ti(1-a-b)AlaSibxyにおけるa、b、xおよびyは、それぞれ、0.01≦a≦0.70、0.01≦b≦0.55、0.06≦a+b≦0.88、0.005≦x≦0.6、0.4≦y≦0.995、および0.5<x+y≦1を満たす。これにより、焼結体はさらに上記特性に優れる。  [2] Preferably, in the sintered body, the first compound is Ti.(1-ab)AlaSibOxN yContaining Ti(1-ab)AlaSibOxNyA, b, x and y in the formulas are 0.01 ≦ a ≦ 0.70, 0.01 ≦ b ≦ 0.55, 0.06 ≦ a + b ≦ 0.88, and 0.005 ≦ x ≦ 0. 6, 0.4 ≦ y ≦ 0.995 and 0.5 <x + y ≦ 1 are satisfied. Thereby, a sintered compact is further excellent in the said characteristic.

〔3〕上記焼結体において、第1化合物の含有量は、10体積%以上100体積%以下であることが好ましい。焼結体における第1化合物の含有量が10体積%未満の場合、焼結体の上記特性が低下する傾向がある。  [3] In the sintered body, the content of the first compound is preferably 10% by volume or more and 100% by volume or less. When content of the 1st compound in a sintered compact is less than 10 volume%, there exists a tendency for the said characteristic of a sintered compact to fall.

〔4〕上記焼結体は、第2化合物、第3化合物、第4化合物および第1金属からなる群より選択される1種以上をさらに含むことが好ましい。第2化合物は立方晶窒化ホウ素であり、第3化合物は、AlおよびSiの1種以上の元素と、B、C、N、およびOからなる群より選択される1種以上の元素との化合物であり、第4化合物は、周期表の第4族元素、第5族元素および第6族元素からなる群より選択される1種以上の元素と、B、C、N、およびOからなる群より選択される1種以上の元素との化合物であり、第1金属は、Ti、V、Cr、Mn、Co、Ni、Cu、Al、Sn、Si、Zr、Nb、Mo、Ag、Hf、Ta、WおよびPbからなる群より選ばれる1種以上からなる金属である。この場合、第2化合物、第3化合物、第4化合物および第1金属のそれぞれの組成や焼結体中での含有割合を適宜調整することにより、焼結体の種々の特性のバランスを調整することができ、もって様々なニーズに対応した焼結体を提供することができる。  [4] The sintered body preferably further includes one or more selected from the group consisting of the second compound, the third compound, the fourth compound, and the first metal. The second compound is cubic boron nitride, and the third compound is a compound of one or more elements of Al and Si and one or more elements selected from the group consisting of B, C, N, and O And the fourth compound is a group consisting of one or more elements selected from the group consisting of Group 4 elements, Group 5 elements and Group 6 elements of the periodic table, and B, C, N, and O The first metal is a compound with one or more elements selected from Ti, V, Cr, Mn, Co, Ni, Cu, Al, Sn, Si, Zr, Nb, Mo, Ag, Hf, It is a metal composed of one or more selected from the group consisting of Ta, W and Pb. In this case, the balance of various characteristics of the sintered body is adjusted by appropriately adjusting the composition of each of the second compound, the third compound, the fourth compound, and the first metal and the content ratio in the sintered body. Therefore, a sintered body corresponding to various needs can be provided.

〔5〕本発明の一態様に係る工具は、上記焼結体を用いた工具である。上記焼結体は、耐摩耗性、耐欠損性および耐酸化性といった特性に優れるため、これを用いた工具もまた、これらの特性に優れることができる。したがって、本発明の一態様に係る工具は、従来と比して長寿命を有することができる。  [5] A tool according to an aspect of the present invention is a tool using the sintered body. Since the sintered body is excellent in characteristics such as wear resistance, fracture resistance and oxidation resistance, a tool using the sintered body can also be excellent in these characteristics. Therefore, the tool according to one embodiment of the present invention can have a longer life than the conventional tool.

〔6〕本発明の一態様に係る焼結体の製造方法は、Ti、AlおよびSiの各元素を含む第1粒子を準備する工程と、第1粒子を処理して、Ti、Al、Si、OおよびNの各元素からなる第2粒子を作製する工程と、第2粒子を焼結して、Ti、Al、Si、OおよびNからなる第1化合物を含む焼結体を作製する工程と、を備え、第2粒子を作製する工程は、第1粒子を加熱する工程と、加熱後の第1粒子を急冷する工程とを備える。  [6] A method for manufacturing a sintered body according to one aspect of the present invention includes a step of preparing first particles containing each element of Ti, Al, and Si, and treating the first particles to obtain Ti, Al, Si. , A step of producing second particles made of each element of O and N, and a step of producing a sintered body containing the first compound made of Ti, Al, Si, O and N by sintering the second particles And the step of producing the second particle includes a step of heating the first particle and a step of rapidly cooling the first particle after heating.

本発明の一態様に係る焼結体の製造方法によれば、Ti、Al、Si、OおよびNからなる第1化合物を含む焼結体を製造することができる。このような第1化合物は耐摩耗性、耐欠損性および耐酸化性といった特性に優れ、もって第1化合物を含む焼結体は、これらの特性に優れることができる。  According to the method for manufacturing a sintered body according to one aspect of the present invention, a sintered body containing a first compound composed of Ti, Al, Si, O, and N can be manufactured. Such a first compound is excellent in properties such as wear resistance, fracture resistance and oxidation resistance, and a sintered body containing the first compound can be excellent in these properties.

〔7〕上記製造方法において好ましくは、焼結体を作製する工程の前に、第2粒子と第3粒子とを混合する工程を含む。第3粒子は、第5化合物、第6化合物、第7化合物および第2金属からなる群より選択される1種以上からなる粒子である。第5化合物は、立方晶窒化ホウ素である。第6化合物は、AlおよびSiの1種以上の元素と、B、C、N、およびOからなる群より選択される1種以上の元素との化合物である。第7化合物は、周期表の第4族元素、第5族元素および第6族元素からなる群より選択される1種以上の元素と、B、C、N、およびOからなる群より選択される1種以上の元素との化合物である。第2金属は、Ti、V、Cr、Mn、Co、Ni、Cu、Al、Sn、Si、Zr、Nb、Mo、Ag、Hf、Ta、WおよびPbからなる群より選択される1種以上からなる金属である。この場合、焼結する工程において、第2粒子と第3粒子との混合物が焼結されることになり、製造された焼結体は、上記第1化合物に加え、所望の第2化合物を有することができる。このため、焼結体の種々の特性のバランスを所望に調整することができ、もって様々なニーズに対応した焼結体を製造することができる。  [7] Preferably, the above production method includes a step of mixing the second particles and the third particles before the step of producing the sintered body. The third particles are particles composed of one or more selected from the group consisting of a fifth compound, a sixth compound, a seventh compound, and a second metal. The fifth compound is cubic boron nitride. The sixth compound is a compound of one or more elements of Al and Si and one or more elements selected from the group consisting of B, C, N, and O. The seventh compound is selected from the group consisting of one or more elements selected from the group consisting of Group 4 elements, Group 5 elements and Group 6 elements in the periodic table, and B, C, N, and O A compound with one or more elements. The second metal is one or more selected from the group consisting of Ti, V, Cr, Mn, Co, Ni, Cu, Al, Sn, Si, Zr, Nb, Mo, Ag, Hf, Ta, W, and Pb. It is a metal consisting of In this case, in the sintering step, the mixture of the second particles and the third particles is sintered, and the manufactured sintered body has a desired second compound in addition to the first compound. be able to. For this reason, the balance of the various characteristics of a sintered compact can be adjusted as desired, and the sintered compact corresponding to various needs can be manufactured.

〔8〕上記製造方法において好ましくは、混合する工程は、第2粒子と第3粒子との混合粒子における第3粒子の含有量を90体積%以上として実行する。これにより、第1化合物の有する特性を十分に維持したまま、第2化合物の有する特性が付加された焼結体を製造することができる。  [8] Preferably, in the manufacturing method, the mixing step is performed with the content of the third particles in the mixed particles of the second particles and the third particles being 90% by volume or more. Thereby, the sintered compact to which the characteristic which the 2nd compound has was added can be manufactured, maintaining the characteristic which the 1st compound has enough.

[本願発明の実施形態の詳細]
以下、本願発明の実施形態について詳細に説明する。
[Details of the embodiment of the present invention]
Hereinafter, embodiments of the present invention will be described in detail.

本明細書において「金属」とは、特に説明がない限り、「Co」のような1種の金属元素からなる単体金属に限定されるものではなく、「CoSi2」のような2種以上の金属元素からなる合金を含む。また、本明細書において「化合物」とは、1種以上の金属元素と1種以上の非金属元素とからなる化合物を示す。なお、非金属元素としては、B、C、NおよびOが挙げられる。In the present specification, the “metal” is not limited to a single metal composed of one kind of metal element such as “Co” unless otherwise specified, and includes two or more kinds such as “CoSi 2 ”. Includes alloys composed of metal elements. In the present specification, the “compound” refers to a compound composed of one or more metal elements and one or more non-metal elements. In addition, B, C, N, and O are mentioned as a nonmetallic element.

また、本明細書において記載される化学式において特に原子比が規定されない場合は、各元素の原子比は必ずしも等比となるものではなく、従来公知の原子比が全て含まれるものとする。たとえばTiNと記す場合、TiとNとの原子比は1:1が含まれる他、2:1、1:0.95、1:0.9、1:0.3等が含まれ、TiZrNと記す場合、TiとZrとNの原子比は25:25:50が含まれる他、従来公知の原子比が全て含まれるものとする。  In addition, when the atomic ratio is not particularly defined in the chemical formulas described in the present specification, the atomic ratio of each element is not necessarily equal, and all conventionally known atomic ratios are included. For example, when describing TiN, the atomic ratio of Ti and N includes 1: 1, and also includes 2: 1, 1: 0.95, 1: 0.9, 1: 0.3, etc. In the description, the atomic ratio of Ti, Zr, and N includes 25:25:50, and all conventionally known atomic ratios are included.

≪第1の実施形態≫
第1の実施形態に係る焼結体は、Ti、Al、Si、OおよびNからなる第1化合物を含む焼結体である。ここで、焼結体とはバルクであって、塊状の形状を有するものであり、薄膜(被膜)とはその形状が異なる。また、焼結体と薄膜とはその形状が異なることによって、その特性のみならず、その使用目的、製造方法も異なる。なお、一般的に薄膜の厚みは5μm程度であり、また、100μm以上の厚みを有する薄膜は実質的に製造できないのに対し、焼結体の厚みは100μm以上とすることができる。
<< First Embodiment >>
The sintered body according to the first embodiment is a sintered body containing a first compound composed of Ti, Al, Si, O, and N. Here, the sintered body is a bulk and has a lump shape, and its shape is different from that of a thin film (film). In addition, the sintered body and the thin film have different shapes, so that not only their characteristics but also their purpose of use and manufacturing method are different. In general, the thickness of the thin film is about 5 μm, and a thin film having a thickness of 100 μm or more cannot be substantially manufactured, whereas the thickness of the sintered body can be 100 μm or more.

Ti、Al、Si、OおよびNからなる第1化合物を含む焼結体は、後述する製造方法によって製造され得る新規なものであり、従来のTi、AlおよびNからなる焼結体(以下、「TiAlN焼結体」ともいう)とはその構成が大きく異なる。  The sintered body containing the first compound composed of Ti, Al, Si, O, and N is a novel one that can be produced by the production method described later, and is a conventional sintered body composed of Ti, Al, and N (hereinafter, The structure is greatly different from that of “TiAlN sintered body”.

具体的には、従来のTiAlN焼結体は、Ti、AlおよびNからなる化合物(以下、「TiAlN化合物」という)を含む。このようなTiAlN化合物は、通常、TiとNとからなる結晶構造中に、Alが固溶した構造を有している。これに対し、第1の実施形態に係る焼結体が備える第1化合物は、Ti、Al、N、SiおよびOからなる化合物(以下、「TiAlSiON化合物」という)を含む。このTiAlSiON化合物は、TiとNとからなる結晶構造中に、さらにAl、SiおよびOが固溶した構造を有している。なお、上記第1化合物が意図しない不可避不純物を含んでもよいことはいうまでもない。  Specifically, the conventional TiAlN sintered body includes a compound composed of Ti, Al and N (hereinafter referred to as “TiAlN compound”). Such a TiAlN compound usually has a structure in which Al is dissolved in a crystal structure composed of Ti and N. On the other hand, the first compound included in the sintered body according to the first embodiment includes a compound composed of Ti, Al, N, Si, and O (hereinafter referred to as “TiAlSiON compound”). This TiAlSiON compound has a structure in which Al, Si and O are further dissolved in a crystal structure composed of Ti and N. Needless to say, the first compound may contain unintended inevitable impurities.

第1の実施形態に係る焼結体は、上記第1化合物を含むことにより、高い硬度と高い耐摩耗性のみならず、高い耐酸化性を有することができる。これは、TiAlSiON化合物からなる第1化合物が高い耐摩耗性と高い耐欠損性を有し、かつTiAlN化合物よりも耐酸化性に優れていることによる。  By including the first compound, the sintered body according to the first embodiment can have not only high hardness and high wear resistance but also high oxidation resistance. This is because the first compound composed of the TiAlSiON compound has high wear resistance and high fracture resistance, and is more excellent in oxidation resistance than the TiAlN compound.

また、第1の実施形態に係る焼結体において、第1化合物は、Ti(1-a-b)AlaSi bxyを含み、Ti(1-a-b)AlaSibxyにおけるa、b、xおよびyは、それぞれ、0.01≦a≦0.70、0.01≦b≦0.55、0.06≦a+b≦0.88、0.005≦x≦0.6、0.4≦y≦0.995、および0.5<x+y≦1を満たすことが好ましい。第1化合物が上記組成比を満たすTiAlSiON化合物を含むことにより、焼結体はさらに高い耐酸化性を有することができる。その理由としては、本発明者は以下のように考察する。  In the sintered body according to the first embodiment, the first compound is Ti.(1-ab)AlaSi bOxNyContaining Ti(1-ab)AlaSibOxNyA, b, x and y in the formulas are 0.01 ≦ a ≦ 0.70, 0.01 ≦ b ≦ 0.55, 0.06 ≦ a + b ≦ 0.88, and 0.005 ≦ x ≦ 0. 6, 0.4 ≦ y ≦ 0.995 and 0.5 <x + y ≦ 1 are preferably satisfied. When the first compound includes a TiAlSiON compound that satisfies the above composition ratio, the sintered body can have higher oxidation resistance. The reason for this is as follows.

すなわち、第1化合物がTi(1-a-b)AlaSibxyを含み、Ti(1-a-b)AlaSibxyにおけるa、b、xおよびyがそれぞれ上記範囲を見たす場合に、第1化合物中に含まれるAlが熱力学的に安定なAl酸化物の皮膜を形成し、ならびにSiがAl酸化皮膜を緻密化させることにより、焼結体の上記特性がさらに向上する。That is, the first compound comprises Ti (1-ab) Al a Si b O x N y, Ti (1-ab) Al a Si b O x N a in y, b, x and y are the above range, respectively As seen, the Al contained in the first compound forms a thermodynamically stable Al oxide film, and Si densifies the Al oxide film, so that the above-mentioned characteristics of the sintered body can be obtained. Further improve.

また、Ti(1-a-b)AlaSibxyにおけるa、b、xおよびyは、それぞれ、0.30≦a≦0.70、0.10≦b≦0.20、0.01≦x≦0.30、0.80≦y≦0.99を満たすことがより好ましい。この場合、上記特性が顕著に向上する。Further, a, b, x, and y in Ti (1-ab) Al a Si b O x N y are 0.30 ≦ a ≦ 0.70, 0.10 ≦ b ≦ 0.20, 0, respectively. It is more preferable that 01 ≦ x ≦ 0.30 and 0.80 ≦ y ≦ 0.99 are satisfied. In this case, the above characteristics are remarkably improved.

ただし、第1の実施形態に係る焼結体における第1化合物の含有量は10体積%以上100体積%以下であることが好ましく、16体積%以上であることがより好ましく、20体積%以上であることがさらに好ましく、40体積%以上であることが特に好ましく、なかでも50体積%以上であることが好ましい。焼結体における第1化合物の含有量が10体積%未満の場合、焼結体の上記特性が低下する傾向がある。これは、焼結体におけるTiAlSiON化合物以外の化合物、金属等の含有量が増加することによると考えられる。  However, the content of the first compound in the sintered body according to the first embodiment is preferably 10% by volume or more and 100% by volume or less, more preferably 16% by volume or more, and 20% by volume or more. More preferably, it is more preferably 40% by volume or more, and particularly preferably 50% by volume or more. When content of the 1st compound in a sintered compact is less than 10 volume%, there exists a tendency for the said characteristic of a sintered compact to fall. This is considered to be due to an increase in the content of compounds, metals and the like other than the TiAlSiON compound in the sintered body.

また、第1の実施形態に係る焼結体は、第2化合物、第3化合物、第4化合物および第1金属からなる群より選択される1種以上をさらに含むことが好ましい。  Moreover, it is preferable that the sintered compact which concerns on 1st Embodiment further contains 1 or more types selected from the group which consists of a 2nd compound, a 3rd compound, a 4th compound, and a 1st metal.

第2化合物は、立方晶窒化ホウ素である。第3化合物は、AlおよびSiの1種以上の元素と、B、C、N、およびOからなる群より選択される1種以上の元素との化合物である。第4化合物は、周期表の第4族元素(Ti、Zr、Hf等)、第5族元素(V、Nb、Ta等)および第6族元素(Cr、Mo、W等)からなる群より選択される1種以上の元素と、B、C、N、およびOからなる群より選択される1種以上の元素との化合物である。また、第1金属は、Ti、V、Cr、Mn、Co、Ni、Cu、Al、Sn、Si、Zr、Nb、Mo、Ag、Hf、Ta、WおよびPbからなる群より選ばれる1種以上からなる金属である。  The second compound is cubic boron nitride. The third compound is a compound of one or more elements of Al and Si and one or more elements selected from the group consisting of B, C, N, and O. The fourth compound is from the group consisting of Group 4 elements (Ti, Zr, Hf, etc.), Group 5 elements (V, Nb, Ta, etc.) and Group 6 elements (Cr, Mo, W, etc.) of the periodic table. A compound of one or more selected elements and one or more elements selected from the group consisting of B, C, N, and O. The first metal is one selected from the group consisting of Ti, V, Cr, Mn, Co, Ni, Cu, Al, Sn, Si, Zr, Nb, Mo, Ag, Hf, Ta, W, and Pb. It is a metal composed of the above.

焼結体が第2化合物、第3化合物、第4化合物および第1金属からなる群より選択される1種以上(以下、便宜的にこれらを「第1化合物以外の他の特定物質」ともいう)を含む場合、これらは、第1化合物同士の界面に存在することとなる。すなわち、第1化合物以外の他の特定物質は、焼結体中において、1つの第1化合物よりなる粒子とこれと隣り合う他の第1化合物よりなる粒子との間に存在する。  One or more types of sintered bodies selected from the group consisting of the second compound, the third compound, the fourth compound and the first metal (hereinafter, these are also referred to as “specific substances other than the first compound” for convenience) ) Are present at the interface between the first compounds. That is, the specific substance other than the first compound exists in the sintered body between the particles made of one first compound and the particles made of another first compound adjacent thereto.

第1化合物よりなる粒子の界面に第1化合物以外の他の物質よりなる粒子が存在することにより、各第1化合物同士が強固に結合されることとなるため、焼結体はさらに耐欠損性に優れることとなる。これは、第1化合物と第2化合物とを含む焼結体が、第1化合物の原料となる第2粒子(後述)と、第1化合物以外の他の特定物質の原料となる第3粒子を混合して焼結することによって作製されるものであり、この場合に、焼結中に第2粒子と第3粒子との界面に反応生成物が生じ、これによって、結果的に第1化合物と第2化合物とが強固に結合されるためである。  The presence of particles made of a substance other than the first compound at the interface of the particles made of the first compound causes the first compounds to be firmly bonded to each other. It will be excellent. This is because the sintered body containing the first compound and the second compound is composed of second particles (described later) serving as raw materials for the first compound and third particles serving as raw materials for other specific substances other than the first compound. In this case, a reaction product is generated at the interface between the second particle and the third particle during the sintering, and as a result, the first compound and This is because the second compound is firmly bonded.

また、焼結体に第1化合物以外の他の特定物質が含まれることにより、第1化合物の特性に起因する特性に加え、さらに第1化合物以外の他の特定物質に起因する特性を有することができる。したがって、第1化合物以外の他の特定物質の組成を適宜調整することにより、焼結体は、様々な切削条件に必要とされる各ニーズに柔軟に対応することができる。  In addition, the sintered body contains a specific substance other than the first compound, so that in addition to the characteristic attributed to the characteristic of the first compound, the sintered body has a characteristic attributed to the specific substance other than the first compound. Can do. Therefore, by appropriately adjusting the composition of the specific substance other than the first compound, the sintered body can flexibly meet each need required for various cutting conditions.

たとえば、焼結体が立方晶窒化ホウ素(第2化合物)を含む場合、立方晶窒化ホウ素は極めて高い硬度を有するため、この焼結体は、第1化合物の界面に第2化合物を有することに起因する耐欠損性の向上に加え、第2化合物を有することに起因する高い硬度を有することができる。  For example, when the sintered body contains cubic boron nitride (second compound), cubic boron nitride has an extremely high hardness, so that this sintered body has the second compound at the interface of the first compound. In addition to the improved fracture resistance, it can have high hardness due to having the second compound.

上記第3化合物の具体例としては、SiB4、ホウ化アルミニウム(AlB12)などのホウ化物、炭化ケイ素(SiC)などの炭化物、窒化アルミニウム(AlN)、窒化ケイ素(Si34)などの窒化物、酸化ケイ素(SiO2)、酸化アルミニウム(Al23)などの酸化物が挙げられる。Specific examples of the third compound include borides such as SiB 4 , aluminum boride (AlB 12 ), carbides such as silicon carbide (SiC), aluminum nitride (AlN), and silicon nitride (Si 3 N 4 ). Examples thereof include oxides such as nitride, silicon oxide (SiO 2 ), and aluminum oxide (Al 2 O 3 ).

上記第4化合物の具体例としては、ホウ化チタン(TiB2)、ホウ化ジルコニウム(ZrB2)、ホウ化ハフニウム(HfB2)、ホウ化バナジウム(VB)、ホウ化ニオブ(NbB2)、ホウ化タンタル(TaB2)、ホウ化クロム(CrB2)、ホウ化モリブデン(MoB)およびホウ化タングステン(WB)などのホウ化物が挙げられる。また、炭化チタン(TiC)、炭化ジルコニウム(ZrC)、炭化ハフニウム(HfC)、炭化バナジウム(VC)、炭化ニオブ(NbC)、炭化タンタル(TaC)、炭化クロム(Cr32)、炭化モリブデン(Mo2C)、および炭化タングステン(WC)などの炭化物が挙げられる。また、窒化チタン(TiN)、窒化ジルコニウム(ZrN)、窒化ハフニウム(HfN)、窒化バナジウム(VN)、窒化ニオブ(NbN)、窒化タンタル(TaN)、窒化クロム(Cr2N)、窒化モリブデン(MoN)、および窒化タングステン(WN)などの、1種の金属元素と窒素とからなる窒化物が挙げられる。Specific examples of the fourth compound include titanium boride (TiB 2 ), zirconium boride (ZrB 2 ), hafnium boride (HfB 2 ), vanadium boride (VB), niobium boride (NbB 2 ), boron Borides such as tantalum boride (TaB 2 ), chromium boride (CrB 2 ), molybdenum boride (MoB) and tungsten boride (WB). In addition, titanium carbide (TiC), zirconium carbide (ZrC), hafnium carbide (HfC), vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr 3 C 2 ), molybdenum carbide ( And carbides such as Mo 2 C) and tungsten carbide (WC). Further, titanium nitride (TiN), zirconium nitride (ZrN), hafnium nitride (HfN), vanadium nitride (VN), niobium nitride (NbN), tantalum nitride (TaN), chromium nitride (Cr 2 N), molybdenum nitride (MoN) ) And a nitride composed of one metal element and nitrogen, such as tungsten nitride (WN).

また、上記第4化合物の他の具体例としては、窒化チタンジルコニウム(TiZrN)、窒化チタンハフニウム(TiHfN)、窒化チタンバナジウム(TiVN)、窒化チタンニオブ(TiNbN)、窒化チタンタンタル(TiTaN)、窒化チタンクロム(TiCrN)、窒化チタンモリブデン(TiMoN)、窒化チタンタングステン(TiWN)、窒化ジルコニウムハフニウム(ZrHfN)、窒化ジルコニウムバナジウム(ZrVN)、窒化ジルコニウムニオブ(ZrNbN)、窒化ジルコニウムタンタル(ZrTaN)、窒化ジルコニウムクロム(ZrCrN)、窒化ジルコニウムモリブデン(ZrMoN)、窒化ジルコニウムタングステン(ZrWN)、窒化ハフニウムバナジウム(HfVN)、窒化ハフニウムニオブ(HfNbN)、窒化ハフニウムタンタル(HfTaN)、窒化ハフニウムクロム(HfCrN)、窒化ハフニウムモリブデン(HfMoN)、窒化ハフニウムタングステン(HfWN)、窒化バナジウムニオブ(VNbN)、窒化バナジウムタンタル(VTaN)、窒化バナジウムクロム(VCrN)、窒化バナジウムモリブデン(VMoN)、窒化バナジウムタングステン(VWN)、窒化ニオブタンタル(NbTaN)、窒化ニオブクロム(NbCrN)、窒化ニオブモリブデン(NbMoN)、窒化ニオブタングステン(NbWN)、窒化タンタルクロム(TaCrN)、窒化タンタルモリブデン(TaMoN)、窒化タンタルタングステン(TaWN)、窒化クロムモリブデン(CrMoN)、窒化クロムタングステン(CrWN)、および窒化モリブデンクロム(MoWN)のような、2種の金属元素と窒素とからなる窒化物が挙げられる。また、酸化チタン(TiO2)、酸化ジルコニウム(ZrO2)、酸化ハフニウム(HfO2)、酸化バナジウム(V25)、酸化ニオブ(Nb25)、酸化タンタル(Ta25)、Cr23)、酸化モリブデン(MoO3)、および酸化タングステン(WO3)などの酸化物が挙げられる。Other specific examples of the fourth compound include titanium zirconium nitride (TiZrN), titanium hafnium nitride (TiHfN), titanium vanadium nitride (TiVN), titanium niobium nitride (TiNbN), titanium tantalum nitride (TiTaN), and titanium nitride. Chromium (TiCrN), titanium nitride molybdenum (TiMoN), titanium tungsten nitride (TiWN), zirconium nitride hafnium (ZrHfN), zirconium vanadium nitride (ZrVN), zirconium niobium nitride (ZrNbN), zirconium tantalum nitride (ZrTaN), zirconium nitride chromium (ZrCrN), zirconium molybdenum molybdenum (ZrMoN), zirconium tungsten nitride (ZrWN), hafnium vanadium nitride (HfVN), hafnium niobium nitride (Hf) bN), hafnium tantalum nitride (HfTaN), hafnium chromium nitride (HfCrN), hafnium molybdenum nitride (HfMoN), hafnium tungsten nitride (HfWN), vanadium niobium nitride (VNbN), vanadium tantalum nitride (VTaN), vanadium chromium nitride (VCrN) ), Vanadium nitride molybdenum (VMoN), vanadium tungsten nitride (VWN), niobium tantalum nitride (NbTaN), niobium chromium nitride (NbCrN), niobium molybdenum nitride (NbMoN), niobium tungsten nitride (NbWN), tantalum chromium nitride (TaCrN), Tantalum molybdenum nitride (TaMoN), tantalum tungsten nitride (TaWN), chromium molybdenum nitride (CrMoN), chromium tungsten nitride (CrWN), Such as fine molybdenum nitride chromium (MoWN), nitrides and the like consisting of two metal elements and nitrogen. In addition, titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), hafnium oxide (HfO 2 ), vanadium oxide (V 2 O 5 ), niobium oxide (Nb 2 O 5 ), tantalum oxide (Ta 2 O 5 ), Examples thereof include oxides such as Cr 2 O 3 ), molybdenum oxide (MoO 3 ), and tungsten oxide (WO 3 ).

上記第1金属の具体例としては、Co、Niなどの上記に列挙される単体金属の他、CoSi2、Ti3Al、TiAl、TiAl3、TiSi2、Ti5Si3、Ti5Si4、TiSi、Ti3Siなどの合金が挙げられる。Specific examples of the first metal include CoSi 2 , Ti 3 Al, TiAl, TiAl 3 , TiSi 2 , Ti 5 Si 3 , Ti 5 Si 4 , in addition to the simple metals listed above such as Co and Ni. An alloy such as TiSi or Ti 3 Si may be used.

≪第2の実施形態≫
第2の実施形態に係る工具は、第1の実施形態に係る焼結体を用いた工具である。上述のように、Ti、Al、Si、OおよびNからなる第1化合物を含む焼結体は、硬度、耐欠損性および耐酸化性といった特性に優れるため、これを用いた工具もまた、これらの特性に優れることとなる。
<< Second Embodiment >>
The tool according to the second embodiment is a tool using the sintered body according to the first embodiment. As described above, the sintered body containing the first compound composed of Ti, Al, Si, O, and N is excellent in properties such as hardness, fracture resistance, and oxidation resistance. It will be excellent in the characteristics.

第2の実施形態に係る工具としては、たとえば、エンドミル、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップを例示することができる。また、工具は、その全体が上記焼結体により構成されていてもよく、その一部(たとえば、刃先部分)が上記焼結体により構成されていてもよい。  Examples of the tool according to the second embodiment may include an end mill, a cutting edge replacement cutting tip for milling, and a cutting edge replacement cutting tip for turning. Moreover, the whole tool may be comprised with the said sintered compact, and the one part (for example, blade edge | tip part) may be comprised with the said sintered compact.

工具の全体が上記焼結体からなる場合、焼結体を所望の形状に加工することにより、工具を作製することができる。また、工具の一部が上記焼結体からなる場合、工具を構成する基体の所望の位置に焼結体を接合することにより、工具を作製することができる。なお、焼結体の接合方法は特に制限されないが、基体から焼結体が離脱することを抑制する観点から、基体と焼結体との間に、基体と焼結とを強固に結合させるための接合層を介在させることが好ましい。  When the entire tool is made of the sintered body, the tool can be produced by processing the sintered body into a desired shape. Moreover, when a part of tool consists of the said sintered compact, a tool can be produced by joining a sintered compact to the desired position of the base | substrate which comprises a tool. The method for joining the sintered bodies is not particularly limited, but in order to firmly bond the base body and the sintered body between the base body and the sintered body from the viewpoint of suppressing the separation of the sintered body from the base body. It is preferable to interpose a bonding layer.

≪第3の実施形態≫
第3の実施形態に係る焼結体の製造方法は、Ti、AlおよびSiの各元素を含む第1粒子を準備する工程(準備工程)と、第1粒子を処理して、Ti、Al、Si、OおよびNの各元素からなる第2粒子を作製する工程(処理工程)と、第2粒子を焼結して、Ti、Al、Si、OおよびNからなる第1化合物を含む焼結体を作製する工程(焼結工程)と、を備える。また、上記処理工程は、第1粒子を加熱する工程(加熱工程)と、加熱後の第1粒子を急冷する工程(急冷工程)とを備える。以下、各工程について、図1および図2を用いながら説明する。
<< Third Embodiment >>
The method for manufacturing a sintered body according to the third embodiment includes a step of preparing first particles containing each element of Ti, Al, and Si (preparation step), and processing the first particles to obtain Ti, Al, A step (processing step) for producing second particles made of each element of Si, O, and N, and sintering the second particles to contain a first compound made of Ti, Al, Si, O, and N And a step of producing a body (sintering step). Moreover, the said process process is equipped with the process (heating process) of heating 1st particle | grains, and the process (rapid cooling process) of rapidly cooling the 1st particle | grains after a heating. Hereinafter, each process will be described with reference to FIGS. 1 and 2.

(準備工程)
図1を参照し、まず、ステップS1の準備工程において、Ti、AlおよびSiの各元素を含む第1粒子を準備する。
(Preparation process)
With reference to FIG. 1, first, in the preparation step of Step S <b> 1, first particles containing Ti, Al, and Si elements are prepared.

第1粒子は、第1化合物の原料となる原料粒子である。特に、第1化合物を構成するTi、Al、Si、OおよびNのうちのTi、AlおよびSiといった金属元素は、第1粒子のみから供給される。このため、第1粒子は、少なくとも、目的とする第1化合物の組成と同様のTi、AlおよびSiの組成比を具備する必要がある。一方、第1化合物を構成するTi、Al、Si、OおよびNのうちのOおよびNといった非金属元素は、第1粒子から供給される他、後述する処理工程での雰囲気(窒素雰囲気等)からも供給され得る。このため、第1粒子は、必ずしも、第1化合物の組成と同等のOおよびNを有する必要はない。  1st particle | grains are raw material particles used as the raw material of a 1st compound. In particular, metal elements such as Ti, Al, and Si among Ti, Al, Si, O, and N constituting the first compound are supplied only from the first particles. For this reason, the first particles need to have at least the same composition ratio of Ti, Al, and Si as the composition of the first compound of interest. On the other hand, non-metallic elements such as O and N among Ti, Al, Si, O and N constituting the first compound are supplied from the first particles, and the atmosphere in the processing step described later (nitrogen atmosphere or the like) Can also be supplied. For this reason, the 1st particle does not necessarily need to have O and N equivalent to the composition of the 1st compound.

第1粒子として、特定の組成を有する1種の原料粒子を用いることによっては、第1化合物におけるTi、AlおよびSiの狙いの組成比を具備することが難しい場合には、組成の異なる2種以上の原料粒子が混合された第1粒子を用いればよい。  By using one kind of raw material particles having a specific composition as the first particles, it is difficult to provide the target composition ratio of Ti, Al and Si in the first compound. What is necessary is just to use the 1st particle | grains with which the above raw material particles were mixed.

上記原料粒子としては、たとえば、Ti粒子、Al粒子、Si粒子などの1種の元素からなる粒子、Ti、AlおよびSiのうちの2種または3種の元素からなる粒子が挙げられる。上記2種の元素からなる粒子としては、Ti3Al、TiAl、TiAl3などのTiおよびAlからなる粒子、TiSi、Ti3Si、TiSi2、Ti5Si3、Ti5Si4などのTiおよびSiからなるからなる粒子、AlSi合金などのAlおよびSiからなるからなる粒子が挙げられる。上記3種の元素からなる粒子としては、TiAlSi合金などが挙げられる。Examples of the raw material particles include particles made of one element such as Ti particles, Al particles, and Si particles, and particles made of two or three elements of Ti, Al, and Si. As the particles composed of the above two elements, Ti and Al particles such as Ti 3 Al, TiAl, TiAl 3 , Ti such as TiSi, Ti 3 Si, TiSi 2 , Ti 5 Si 3 , Ti 5 Si 4 , and Ti Examples thereof include particles made of Si and particles made of Al and Si such as an AlSi alloy. Examples of the particles composed of the above three elements include TiAlSi alloys.

また、上記原料粒子として、Ti、AlおよびSiからなる群より選択される1種以上の窒化物、酸化物、酸窒化物からなる粒子が挙げられる。具体的には、TiN、TiO2、TiO、TiONなどのTiの窒化物、酸化物または酸窒化物からなる粒子、AlN、Al23、AlONなどのAlの窒化物、酸化物または酸窒化物からなる粒子、Si34、SiO2、SiONなどのSiの窒化物、酸化物または酸窒化物からなる粒子、SiAlON、Si2Al313などが挙げられる。Examples of the raw material particles include particles made of one or more nitrides, oxides, and oxynitrides selected from the group consisting of Ti, Al, and Si. Specifically, particles of Ti nitride, oxide or oxynitride such as TiN, TiO 2 , TiO and TiON, Al nitride, oxide or oxynitride such as AlN, Al 2 O 3 and AlON And particles made of a material, particles of Si nitride such as Si 3 N 4 , SiO 2 and SiON, particles made of oxide or oxynitride, SiAlON, Si 2 Al 3 O 13 and the like.

原料粒子として、Ti、AlおよびSiの各元素のうち2種以上の元素からなる原料粒子を用いた場合、後述する処理工程において、より均一な組成の第1粒子を生成することができる。また、第1粒子として、Ti、AlおよびSiからなる群より選択される1種以上の窒化物、酸化物、酸窒化物からなる原料粒子を用いた場合、後述する処理工程で第1粒子に付与すべきNおよびOの量を容易に調整することができる。  In the case where raw material particles composed of two or more elements of Ti, Al, and Si are used as the raw material particles, first particles having a more uniform composition can be generated in the processing step described later. Further, when the raw material particles made of one or more nitrides, oxides, and oxynitrides selected from the group consisting of Ti, Al, and Si are used as the first particles, The amount of N and O to be applied can be easily adjusted.

また、第1粒子の平均粒径は10μm以下であることが好ましい。このような粒径の第1粒子を用いた場合、後述する処理工程において、粒子間の反応性をより高めることができ、目的とする組成の第2粒子を多く含む粒子を作製することができる。本明細書において、粒子の平均粒径とは、レーザー回折法などの公知の粒度分布測定法により測定された粒子の粒度分布に基づくメディアン径をいう。  The average particle size of the first particles is preferably 10 μm or less. When the first particles having such a particle size are used, the reactivity between the particles can be further increased in the processing step described later, and particles containing a large amount of the second particles having the target composition can be produced. . In the present specification, the average particle diameter of particles refers to the median diameter based on the particle size distribution of particles measured by a known particle size distribution measurement method such as laser diffraction method.

本工程において準備された第1粒子は、後述する処理工程に供するために加圧成形されることが好ましい。加圧成形の方法は特に限定されず、公知の方法を用いることができる。  The first particles prepared in this step are preferably pressure-molded for use in the processing step described later. The method of pressure molding is not particularly limited, and a known method can be used.

(処理工程)
次に、図1のステップS2の処理工程において、第1粒子を処理して、Ti、Al、Si、OおよびNの各元素からなる第2粒子を作製する。本工程は、第1粒子を加熱する工程(加熱工程)と、加熱後の第1粒子を急冷する工程(急冷工程)とを備える。これについて、図2を用いながら説明する。
(Processing process)
Next, in the processing step of step S2 in FIG. 1, the first particles are processed to produce second particles made of Ti, Al, Si, O, and N elements. This step includes a step of heating the first particles (heating step) and a step of rapidly cooling the first particles after heating (quenching step). This will be described with reference to FIG.

図2を参照し、まず、ステップS21の加熱工程において、第1粒子が加熱される。この加熱工程により、第1粒子における不足分のNが付与される。なお、「不足分のN」とは、第1粒子における窒素元素の組成比と、第1化合物におけるTiAlSiON化合物の狙いの組成比との差に相当する。  Referring to FIG. 2, first, the first particles are heated in the heating process of step S <b> 21. By this heating step, a shortage of N in the first particles is imparted. The “shortage N” corresponds to the difference between the composition ratio of the nitrogen element in the first particles and the target composition ratio of the TiAlSiON compound in the first compound.

この加熱工程においては、第1粒子からなる粉体、または第1粒子が加圧成形されることによって形成された成形体が、真空雰囲気下、窒素雰囲気下、アルゴン雰囲気下に置かれることになる。第1粒子が置かれる雰囲気をいずれの雰囲気下とするかは、第1粒子の組成により適宜選択される。  In this heating step, the powder composed of the first particles or the molded body formed by pressure-molding the first particles is placed in a vacuum atmosphere, a nitrogen atmosphere, and an argon atmosphere. . The atmosphere in which the first particles are placed is appropriately selected depending on the composition of the first particles.

たとえば、第1粒子がTi、AlおよびSiの各元素の他にOを含み、Oの含有量が第1化合物において狙いとされる量を満たす場合、第1粒子は、窒素ガスを含む雰囲気下に置かれることになる。また、たとえば、第1粒子がTi、AlおよびSiの各元素の他にNおよびOを含み、NおよびOの各含有量が第1化合物において狙いとされる量を満たす場合、第1粒子は、アルゴン雰囲気下または真空雰囲気下に置くことができる。  For example, when the first particles contain O in addition to Ti, Al, and Si elements, and the O content satisfies the amount targeted in the first compound, the first particles are in an atmosphere containing nitrogen gas. Will be placed in. In addition, for example, when the first particles include N and O in addition to Ti, Al and Si elements, and the respective contents of N and O satisfy the amount targeted in the first compound, the first particles are Can be placed in an argon atmosphere or in a vacuum atmosphere.

なお、第1粒子が、組成上、第1化合物において狙いとされるOの量を満たさない場合であっても、第2粒子においては狙いとされるOの量を満たすこととなることが、本発明者らの検討により分かっている。これは、第1粒子の表面に吸着されている酸素が存在し、加熱工程によってこの酸素が第1粒子に取り込まれ、その酸素量が不足分のOを満たす量に達するためである。  In addition, even if the first particles do not satisfy the amount of O targeted in the first compound because of the composition, the second particles may satisfy the amount of O targeted. This is known by the study of the present inventors. This is because there is oxygen adsorbed on the surface of the first particles, and this oxygen is taken into the first particles by the heating step, and the amount of oxygen reaches an amount that satisfies the insufficient amount of O.

加熱工程における加熱温度、気圧、各ガスの分圧は、適宜調整されるが、たとえば、加熱温度は1500℃以上が好ましく、気圧は0.1気圧以上が好ましい。  The heating temperature, atmospheric pressure, and partial pressure of each gas in the heating step are appropriately adjusted. For example, the heating temperature is preferably 1500 ° C. or higher, and the atmospheric pressure is preferably 0.1 atmospheric pressure or higher.

次に、ステップS22の急冷工程において、上記加熱工程で加熱されることによりNおよびOが付与された第1粒子からなる粉体、または第1粒子の成形体が冷却される。なお、以下、上記加熱工程を経ることによってNおよびOが付与された第1粒子からなる粉体、または第1粒子の成形体を第2粒子前駆体という。  Next, in the rapid cooling process of step S22, the powder composed of the first particles to which N and O are imparted by heating in the heating process, or the molded body of the first particles is cooled. Hereinafter, the powder composed of the first particles to which N and O have been imparted through the heating step, or the molded body of the first particles is referred to as a second particle precursor.

急冷工程における第2粒子前駆体の冷却速度は、少なくとも炉冷による冷却速度よりも大きく、100℃/sec以上であることが好ましく、200℃/sec以上であることがより好ましい。なお、炉冷による冷却速度は通常20℃/min程度である。  The cooling rate of the second particle precursor in the rapid cooling step is at least larger than the cooling rate by furnace cooling, preferably 100 ° C./sec or more, and more preferably 200 ° C./sec or more. In addition, the cooling rate by furnace cooling is about 20 degrees C / min normally.

上記急冷工程により、Ti、Si、Al、OおよびNからなる第2粒子を得ることができる。具体的には、第2粒子は、Ti、Si、Al、OおよびNからなり、かつその全てまたはその大部分はTiAlSiON化合物からなる。第2粒子中に含まれるTiAlSiON化合物の組成比は、第1化合物に狙いとされるTiAlSiON化合物の組成比とほぼ一致する。  By the rapid cooling step, second particles made of Ti, Si, Al, O and N can be obtained. Specifically, the second particles are composed of Ti, Si, Al, O and N, and all or most of the second particles are composed of a TiAlSiON compound. The composition ratio of the TiAlSiON compound contained in the second particles substantially matches the composition ratio of the TiAlSiON compound targeted for the first compound.

なお、第1粒子の成形体を用いて上記加熱工程および上記急冷工程を実行した場合、急冷工程後に得られるものは、Ti、Al、Si、OおよびNからなる構造体である。この構造体の組成は第2粒子と一致する、換言すれば、構造体は第2粒子からなるため、このように構造体を得る場合についても第2粒子を得るものとする。  In addition, when the said heating process and said rapid cooling process are performed using the molded object of a 1st particle, what is obtained after a rapid cooling process is a structure which consists of Ti, Al, Si, O, and N. The composition of this structure is the same as that of the second particles. In other words, since the structure is composed of the second particles, the second particles are obtained even when the structure is obtained in this way.

なお、上記構造体をこのまま後述する焼結工程に用いることもできるが、焼結効率をあげ、かつ均一に焼結を行うためには、この構造体を粉砕して粒子状の第2粒子を得ることが好ましい。この粉砕方法は特に制限されず、たとえば、公知の方法で粗粉砕し、その後、振動ミルまたは回転ミルで粉砕媒体を衝突させてさらに粉砕する方法を採用することができる。この粉砕を経ることによって、粒状の第2粒子を得ることができる。  The structure can be used as it is in the sintering step described later. However, in order to increase the sintering efficiency and perform uniform sintering, the structure is pulverized to form the second particles. It is preferable to obtain. This pulverization method is not particularly limited, and for example, a method of coarsely pulverizing by a known method and then further pulverizing by colliding a pulverizing medium with a vibration mill or a rotary mill can be adopted. Through this pulverization, granular second particles can be obtained.

ステップS2の処理工程においては、上述のように、加熱工程と急冷工程を連続的に行うことにより、第2粒子を得ることができる。これは以下の理由による。すなわち、加熱工程後に急冷工程を連続して実行しない場合、狙いとする組成を満たさない組成からなる粒子が生成される傾向がある。たとえば、加熱炉を用いて第1粒子を加熱し、その後、加熱後の第1粒子(第2粒子前駆体)を急冷工程に供することなく単に炉冷した場合、加熱された第1粒子の温度は極めてゆっくりと低下することとなる。この場合、加熱工程で生成されたTiAlSiON化合物からSiまたはAlが脱落し易くなり、結果的に、第1化合物において狙いとする組成比を満たさない粒子が生成されてしまう。これに対し、加熱工程後に連続して急冷工程を実行した場合、このような元素の抜けを効果的に抑制することができ、上記のような意図しない組成の粒子の生成を抑制することができる。  In the processing step of Step S2, as described above, the second particles can be obtained by continuously performing the heating step and the rapid cooling step. This is due to the following reason. That is, when the rapid cooling process is not continuously performed after the heating process, particles having a composition that does not satisfy the target composition tend to be generated. For example, when the first particles are heated using a heating furnace, and then the first particles after heating (second particle precursors) are simply cooled without being subjected to a rapid cooling step, the temperature of the heated first particles Will decline very slowly. In this case, Si or Al easily falls off from the TiAlSiON compound generated in the heating step, and as a result, particles that do not satisfy the targeted composition ratio in the first compound are generated. On the other hand, when the rapid cooling step is performed continuously after the heating step, such element escape can be effectively suppressed, and generation of particles having the unintended composition as described above can be suppressed. .

上述のような加熱工程および急冷工程を連続して実行できる方法としては、(1)カーボンヒータ等の熱源を用いて所望の雰囲気下の反応室内で第1粒子を加熱し、続いて雰囲気ガスを排気した後、Arなどの冷却ガスを導入する方法、(2)第1粒子を所望の雰囲気下の反応室内で燃焼合成させる方法、(3)第1粒子を所望の雰囲気下の反応室内で高温プラズマ中に通過させる方法、などを挙げることができる。  As a method capable of continuously executing the heating step and the rapid cooling step as described above, (1) the first particles are heated in a reaction chamber under a desired atmosphere using a heat source such as a carbon heater, and then the atmospheric gas is changed. A method of introducing a cooling gas such as Ar after exhausting, (2) a method of burning and synthesizing the first particles in a reaction chamber under a desired atmosphere, and (3) a high temperature of the first particles in the reaction chamber under a desired atmosphere. Examples thereof include a method of passing through plasma.

上記(1)の方法を用いた場合の加熱工程における好ましい条件を以下に示す。また、冷却速度も100℃/sec以上とすることができ、さらには200℃/sec以上とすることができる。
加熱温度:1500℃以上2000℃以下
気圧:0.1気圧以上
加熱時間:1時間以上。
Preferred conditions in the heating step when the method (1) is used are shown below. Also, the cooling rate can be set to 100 ° C./sec or more, and further to 200 ° C./sec or more.
Heating temperature: 1500 ° C. or more and 2000 ° C. or less Atmospheric pressure: 0.1 atm or more Heating time: 1 hour or more.

上記(2)の方法を用いた場合の加熱工程における好ましい条件を以下に示す。また、冷却速度も100℃/min以上とすることができ、さらには200℃/min以上とすることができる。
加熱温度:2000℃以上3000℃以下
気圧:1.0気圧以上
加熱時間:3秒以上。
The preferable conditions in the heating step when the method (2) is used are shown below. The cooling rate can also be set to 100 ° C./min or more, and further can be set to 200 ° C./min or more.
Heating temperature: 2000 ° C. or more and 3000 ° C. or less Atmospheric pressure: 1.0 atm or more Heating time: 3 seconds or more.

上記(3)の方法を用いた場合の加熱工程における好ましい条件を以下に示す。また、冷却速度も500℃/sec以上とすることができ、さらには1000℃/sec以上とすることができる。
加熱温度:2000℃以上5000℃以下
気圧:0.1気圧以上
加熱時間:0.5秒以上。
Preferred conditions in the heating step when the method (3) is used are shown below. Also, the cooling rate can be set to 500 ° C./sec or more, and further can be set to 1000 ° C./sec or more.
Heating temperature: 2000 ° C. or more and 5000 ° C. or less Pressure: 0.1 atmosphere or more Heating time: 0.5 seconds or more.

なお、本工程により第2粒子が作製されるが、本工程の一回の実行で所望の組成を有する第2粒子の作製が困難な場合には本工程を繰り返し行ってもよい。また、その場合に、必ずしも同じ処理方法を繰り返す必要はなく、たとえば、上記(1)〜(3)の方法を適宜組み合わせて、本工程を実行してもよい。  In addition, although 2nd particle | grains are produced by this process, when preparation of the 2nd particle | grains which have a desired composition is difficult by one execution of this process, you may perform this process repeatedly. In this case, it is not always necessary to repeat the same processing method. For example, the above steps (1) to (3) may be appropriately combined to execute this step.

(焼結工程)
次に図1のステップS3の焼結工程において、第2粒子を焼結して、Ti、Al、Si、OおよびNからなる第1化合物を含む焼結体を作製する。
(Sintering process)
Next, in the sintering step of step S3 in FIG. 1, the second particles are sintered to produce a sintered body containing the first compound composed of Ti, Al, Si, O, and N.

第2粒子の焼結は、第2粒子を加圧成形した後に行うことが好ましい。また、加圧成形と同時に行ってもよい。加圧成形と焼結とを同時に行う方法としては、ホットプレス(HP)法、放電プラズマ焼結(SPS)法、超高圧焼結法が挙げられる。また、冷間静水圧加圧(CIP)法で成形した後、さらに熱間静水圧加圧(HIP)法を用いて焼結することもできる。なお、上記のような加圧焼結法の代わりに常圧焼結法を用いてもよい。  The sintering of the second particles is preferably performed after the second particles are pressure-molded. Moreover, you may carry out simultaneously with pressure molding. Examples of methods for simultaneously performing pressure molding and sintering include a hot press (HP) method, a discharge plasma sintering (SPS) method, and an ultra-high pressure sintering method. Moreover, after shaping | molding by the cold isostatic pressing (CIP) method, it can also sinter using a hot isostatic pressing (HIP) method. In addition, you may use a normal pressure sintering method instead of the above pressure sintering methods.

本工程は、焼結体における第1化合物の組成が第2粒子の組成から大きく変化することを抑制するために、不活性雰囲気下で実行されることが好ましい。また、焼結時の圧力は40MPa以上20GPa以下であることが好ましく、温度は1100℃以上2500℃以下であることが好ましい。焼結時の温度が1100℃未満の場合には、焼結が不十分となり、緻密な焼結体が得られない傾向があり、2500℃を超える場合には、焼結体における第1化合物の組成が第2粒子の組成から大きく変化する懸念があるためである。また、焼結に要する時間は第2粒子の量(体積)、温度等によって異なるが、たとえば、1100℃以上2500℃以下の焼結温度の際には、15分以上とすることができる。  This step is preferably performed under an inert atmosphere in order to suppress the composition of the first compound in the sintered body from greatly changing from the composition of the second particles. The pressure during sintering is preferably 40 MPa or more and 20 GPa or less, and the temperature is preferably 1100 ° C. or more and 2500 ° C. or less. When the temperature at the time of sintering is less than 1100 ° C., the sintering tends to be insufficient, and a dense sintered body tends not to be obtained. When the temperature exceeds 2500 ° C., the first compound in the sintered body This is because there is a concern that the composition greatly changes from the composition of the second particles. The time required for the sintering varies depending on the amount (volume) of the second particles, the temperature, and the like. For example, when the sintering temperature is 1100 ° C. or higher and 2500 ° C. or lower, the time can be 15 minutes or longer.

上記焼結工程が行われることにより、第2粒子が焼結され、これにより、Ti、Al、Si、OおよびNからなる第1化合物からなる焼結体を得ることができる。  By performing the sintering step, the second particles are sintered, whereby a sintered body made of the first compound made of Ti, Al, Si, O and N can be obtained.

以上詳述した第3の実施形態に係る製造方法によれば、Ti、Al、Si、OおよびNからなる第1化合物を含む焼結体を製造することができるため、高い耐摩耗性、高い耐欠損性および高い耐酸化性を有する焼結体を提供することができる。また、製造された焼結体をレーザー、ワイヤー放電などによって切断して所望の形状に加工することにより、この焼結体からなる工具、またはこの焼結体を用いた工具を提供することができる。  According to the manufacturing method according to the third embodiment described in detail above, since a sintered body containing the first compound composed of Ti, Al, Si, O and N can be manufactured, high wear resistance and high A sintered body having defect resistance and high oxidation resistance can be provided. Moreover, the tool which consists of this sintered compact, or a tool using this sintered compact can be provided by cut | disconnecting the manufactured sintered compact by laser, wire discharge, etc. and processing it into a desired shape. .

≪第4の実施形態≫
第4の実施形態に係る焼結体の製造方法は、図3に示すように、焼結工程の前に、処理工程により作製された第2粒子と第3粒子とを混合する工程(混合工程)を備える点で、第3の実施形態と異なる。以下、図3を用いながらこの混合工程について説明する。なお、図3におけるステップS31の準備工程、ステップS32の処理工程、およびステップS34の焼結工程は、第3の実施形態のステップS1〜S3のそれぞれと同様であるため、その説明は繰り返さない。
<< Fourth Embodiment >>
As shown in FIG. 3, the method for manufacturing a sintered body according to the fourth embodiment includes a step of mixing the second particles and the third particles produced by the treatment step before the sintering step (mixing step). ) Is different from the third embodiment. Hereinafter, this mixing step will be described with reference to FIG. In addition, since the preparation process of step S31 in FIG. 3, the process process of step S32, and the sintering process of step S34 are the same as that of each of step S1-S3 of 3rd Embodiment, the description is not repeated.

(混合工程)
図3を参照し、ステップS33の混合工程において、ステップS32の処理工程により得られた第2粒子と、第2粒子と組成の異なる第3粒子とが混合される。
(Mixing process)
Referring to FIG. 3, in the mixing step of step S33, the second particles obtained by the processing step of step S32 and the third particles having a composition different from that of the second particles are mixed.

第3粒子は、第5化合物、第6化合物、第7化合物および第2金属からなる群より選択される1種以上からなる粒子である。  The third particles are particles composed of one or more selected from the group consisting of a fifth compound, a sixth compound, a seventh compound, and a second metal.

第5化合物は、立方晶窒化ホウ素である。第6化合物は、AlおよびSiの1種以上の元素と、B、C、N、およびOからなる群より選択される1種以上の元素との化合物であり、具体的には、第1の実施形態にて詳述した第1化合物と同様の化合物が挙げられる。第7化合物は、周期表の第4族元素、第5族元素および第6族元素からなる群より選択される1種以上の元素と、B、C、N、およびOからなる群より選択される1種以上の元素との化合物であり、具体的には、第1の実施形態にて詳述した第2化合物と同様の化合物が挙げられる。第2金属は、Ti、V、Cr、Mn、Co、Ni、Cu、Al、Sn、Si、Zr、Nb、Mo、Ag、Hf、Ta、WおよびPbからなる群より選択される1種以上からなる金属であり、具体的には、第1の実施形態にて詳述した第1金属と同様の金属が挙げられる。  The fifth compound is cubic boron nitride. The sixth compound is a compound of one or more elements of Al and Si and one or more elements selected from the group consisting of B, C, N, and O. Specifically, the sixth compound The compound similar to the 1st compound explained in full detail in embodiment is mentioned. The seventh compound is selected from the group consisting of one or more elements selected from the group consisting of Group 4 elements, Group 5 elements and Group 6 elements in the periodic table, and B, C, N, and O Specifically, the same compounds as the second compound described in detail in the first embodiment can be given. The second metal is one or more selected from the group consisting of Ti, V, Cr, Mn, Co, Ni, Cu, Al, Sn, Si, Zr, Nb, Mo, Ag, Hf, Ta, W, and Pb. Specifically, the same metal as the first metal described in detail in the first embodiment can be used.

第3粒子は、特に、立方晶窒化ホウ素を含むことが好ましい。たとえば、第3粒子が立方晶窒化ホウ素からなる場合、このような第3粒子と第2粒子との混合物を焼結すると、第2化合物の大部分は硬度に優れた立方晶窒化ホウ素となる。また、第3粒子が立方晶窒化ホウ素からなる場合、製造された焼結体の第2化合物において、第1化合物との界面近傍に、Si34を存在させることができる。この場合、両粒子(第1化合物からなる粒子と第2化合物からなる粒子)を強固に結合させることができ、粒子の脱落による摩耗を軽減させることができる。In particular, the third particles preferably include cubic boron nitride. For example, when the third particles are made of cubic boron nitride, when the mixture of such third particles and second particles is sintered, most of the second compound becomes cubic boron nitride having excellent hardness. Further, when the third particles are made of cubic boron nitride, Si 3 N 4 can be present in the vicinity of the interface with the first compound in the second compound of the manufactured sintered body. In this case, both the particles (the particles made of the first compound and the particles made of the second compound) can be firmly bonded, and wear due to dropping of the particles can be reduced.

本工程において、第2粒子と第3粒子との混合粒子における第3粒子の含有量を90体積%以下として実行することが好ましい。第3粒子の含有量が90体積%を超える場合、焼結体中の第1化合物の割合が低くなり過ぎるために、第1化合物に由来する効果が顕著に低下する傾向にある。  In this step, it is preferable that the content of the third particles in the mixed particles of the second particles and the third particles is 90% by volume or less. When the content of the third particles exceeds 90% by volume, since the ratio of the first compound in the sintered body is too low, the effect derived from the first compound tends to be significantly reduced.

また、第2粒子と第3粒子との混合粒子における第3粒子の含有量を50体積%以下として実行することがより好ましい。特に、第3粒子が金属粒子(金属元素のみからなる粒子)を含む場合、混合粒子における金属粒子の含有量を20体積%以下とすることが好ましい。混合粒子における金属粒子の含有量が20体積%を超える場合、製造される焼結体の硬度が低下する傾向にある。  More preferably, the content of the third particles in the mixed particles of the second particles and the third particles is 50% by volume or less. In particular, when the third particles include metal particles (particles composed only of metal elements), the content of the metal particles in the mixed particles is preferably 20% by volume or less. When the content of the metal particles in the mixed particles exceeds 20% by volume, the hardness of the manufactured sintered body tends to decrease.

上記混合工程が行われることにより、第2粒子および第3粒子からなる混合物が得られ、これをステップS34の焼結工程において焼結することにより、第1化合物と第2化合物とからなる焼結体を得ることができる。  By performing the mixing step, a mixture composed of the second particles and the third particles is obtained. By sintering this in the sintering step of step S34, the sintering composed of the first compound and the second compound is performed. You can get a body.

ここで、本実施形態において、第3粒子のほとんどはその組成を維持したまま、第2化合物に含まれることになる。すなわち、第3粒子の組成と、第2化合物に含まれる化合物および/または金属の組成とは概ね一致する。しかし、第2化合物中には、第3粒子の組成と異なる組成の化合物も含まれる場合がある。これは、第2粒子と第3粒子との界面において、第2粒子を構成する元素と第3粒子を構成する元素とが結びつくことによって化合物が生成されるためである。  Here, in the present embodiment, most of the third particles are contained in the second compound while maintaining the composition thereof. That is, the composition of the third particles and the composition of the compound and / or metal contained in the second compound are almost the same. However, the second compound may contain a compound having a composition different from the composition of the third particles. This is because at the interface between the second particle and the third particle, a compound is generated by combining the element constituting the second particle and the element constituting the third particle.

以上詳述した第4の実施形態に係る製造方法によれば、Ti、Al、Si、OおよびNからなる第1化合物と、第1化合物と組成の異なる第2化合物とを含む焼結体を製造することができる。このような焼結体は、第1化合物に起因する特性に加え、第2化合物に起因する特性を発揮することができる。したがって、第4の実施形態に係る製造方法によれば、高い耐摩耗性、高い耐欠損性および高い耐酸化性を有し、かつ切削条件の各種ニーズに対応した工具を提供することができる。  According to the manufacturing method according to the fourth embodiment described in detail above, a sintered body including a first compound composed of Ti, Al, Si, O, and N and a second compound having a composition different from that of the first compound. Can be manufactured. Such a sintered body can exhibit characteristics attributed to the second compound in addition to characteristics attributed to the first compound. Therefore, according to the manufacturing method according to the fourth embodiment, it is possible to provide a tool that has high wear resistance, high fracture resistance, and high oxidation resistance, and that meets various needs for cutting conditions.

本発明を実施例および比較例によりさらに具体的に説明する。ただし、これらの実施例および比較例により本発明が限定されるものではない。  The present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples and comparative examples.

[検討1]
上述の準備工程、および処理工程を実行することにより、Ti、Al、Si、OおよびNからなる第2粒子を作製し、その特性について評価した。
[Study 1]
By executing the above-described preparation process and processing process, second particles made of Ti, Al, Si, O, and N were produced and their characteristics were evaluated.

≪実施例1〜58≫
(準備工程)
第1粒子として、下記表1に示す原料粒子A、原料粒子Bおよび原料粒子Cとが混合された原料粒子を準備した。たとえば、実施例1においては、原料粒子AとしてのTi粒子、原料粒子BとしてのAl粒子、および原料粒子CとしてのSi粒子を、混合割合(原料粒子A:原料粒子B:原料粒子C)が質量比で80:10:10となるように混合させることにより、第1粒子を準備した。なお、実施例1〜58において準備された各第1粒子の平均粒径は、表1に示す通りであった。そして、準備した各第1粒子を加圧成形することにより、第1粒子からなる成形体を作製した。
<< Examples 1 to 58 >>
(Preparation process)
As first particles, raw material particles in which raw material particles A, raw material particles B, and raw material particles C shown in Table 1 below were mixed were prepared. For example, in Example 1, Ti particles as raw material particles A, Al particles as raw material particles B, and Si particles as raw material particles C have a mixing ratio (raw material particles A: raw material particles B: raw material particles C). The first particles were prepared by mixing so that the mass ratio was 80:10:10. In addition, the average particle diameter of each 1st particle prepared in Examples 1-58 was as showing in Table 1. And the molded object which consists of 1st particle | grains was produced by pressure-molding each prepared 1st particle | grain.

Figure 2016031714
Figure 2016031714

(処理工程)
次に、作製された成形体を用いて処理工程を実行することにより、Ti、Al、Si、OおよびNからなる第2粒子を作製した。各実施例における処理工程としては、(1)カーボンヒータ等の熱源を用いて所望の雰囲気下の反応室内で第1粒子を加熱し、続いて雰囲気ガスを排気した後、Arなどの冷却ガスを導入する方法(表2において「ガス急冷」と示す)、(2)第1粒子を所望の雰囲気下の反応室内で燃焼合成させる方法(表2において「燃焼合成」と示す)、(3)第1粒子を所望の雰囲気下の反応室内で高温プラズマ中に通過させる方法(表2において「高温プラズマ」と示す)のいずれかの方法を用いた。各実施例における処理工程の条件を下記表2に示す。
(Processing process)
Next, a second particle composed of Ti, Al, Si, O, and N was produced by executing a treatment process using the produced compact. The processing steps in each example include (1) heating the first particles in a reaction chamber under a desired atmosphere using a heat source such as a carbon heater, and then exhausting the atmospheric gas, followed by cooling gas such as Ar. A method of introducing (shown as “gas quench” in Table 2), (2) a method of burning and synthesizing the first particles in a reaction chamber under a desired atmosphere (shown as “burning synthesis” in Table 2), and (3) Any method of passing one particle through a high temperature plasma in a reaction chamber under a desired atmosphere (shown as “high temperature plasma” in Table 2) was used. The conditions of the processing steps in each example are shown in Table 2 below.

Figure 2016031714
Figure 2016031714

上記表2を参照しながら、上記(1)〜(3)の各方法について、それぞれ実施例1、8、11を用いながら具体的に説明する。  With reference to Table 2, the methods (1) to (3) will be specifically described using Examples 1, 8, and 11, respectively.

上記(1)の方法による実施例1の処理工程は、以下のように実行された。まず、ガス供給部およびガス排出部を有する坩堝内に成形体を配置した。そして、坩堝内に窒素ガスを流入して、坩堝内のガス圧を3気圧とし、坩堝の周囲に配置されたカーボンヒータにより坩堝内を1800℃で1時間加熱した。これにより、実施例1の第1粒子は、窒素雰囲気下、1800℃で60分間加熱工程に供された。  The processing steps of Example 1 by the method (1) were performed as follows. First, the molded body was placed in a crucible having a gas supply part and a gas discharge part. Then, nitrogen gas was introduced into the crucible, the gas pressure in the crucible was set to 3 atm, and the inside of the crucible was heated at 1800 ° C. for 1 hour by a carbon heater arranged around the crucible. Thereby, the 1st particle of Example 1 was used for the heating process for 60 minutes at 1800 ° C under nitrogen atmosphere.

加熱工程終了後、真空ポンプにより雰囲気ガスを排気した後、Arを3気圧まで導入することにより冷却し、試料温度を室温(25℃)以下にまで冷却させた。このときの冷却速度は100℃/sec程度であった。これにより、第2粒子前駆体が急冷工程に供され、Ti、Al、Si、OおよびNからなる構造体が得られた。  After completion of the heating step, the atmosphere gas was evacuated by a vacuum pump, and then cooled by introducing Ar to 3 atm. The sample temperature was cooled to room temperature (25 ° C.) or lower. The cooling rate at this time was about 100 ° C./sec. Thereby, the 2nd particle precursor was used for the rapid cooling process, and the structure which consists of Ti, Al, Si, O, and N was obtained.

実施例2〜7、16〜18および36〜39においても、各種条件を表2に示すように変更した以外は、実施例1と同様の方法により処理工程を実行した。  Also in Examples 2-7, 16-18, and 36-39, the processing steps were performed in the same manner as in Example 1 except that various conditions were changed as shown in Table 2.

上記(2)の方法による実施例8の処理工程は、以下のように実行された。まず、ガス供給部およびガス排出部を有する圧力容器内に成形体を配置した。そして、圧力容器内の窒素ガスの圧力を10MPa(100気圧)にまで昇圧し、タングステンフィラメント等の熱源を用いて成形体の一部を加熱させることにより、第1粒子を燃焼合成させた。このときの燃焼時間は15秒であり、加熱温度は3000℃であった。これにより、実施例8の第1粒子は、窒素雰囲気下、3000℃で15秒間加熱工程に供された。  The process of Example 8 by the method (2) was performed as follows. First, the molded body was placed in a pressure vessel having a gas supply part and a gas discharge part. Then, the pressure of the nitrogen gas in the pressure vessel was increased to 10 MPa (100 atm), and a part of the compact was heated using a heat source such as a tungsten filament to synthesize the first particles. The combustion time at this time was 15 seconds, and the heating temperature was 3000 ° C. Thereby, the first particles of Example 8 were subjected to a heating process at 3000 ° C. for 15 seconds in a nitrogen atmosphere.

また、燃焼合成において、熱源は着火時に存在するのみであるため、燃焼時間経過後、圧力容器内の温度は直ちに低下し、これに伴い燃焼合成後の第1粒子(第2粒子前駆体)の温度は早急に室温にまで低下した。このときの冷却速度は200℃/sec程度であった。これにより、第2粒子前駆体が急冷工程に供され、Ti、Al、Si、OおよびNからなる構造体が得られた。  In combustion synthesis, since the heat source is only present at the time of ignition, the temperature in the pressure vessel immediately decreases after the combustion time has elapsed, and accordingly, the first particle (second particle precursor) after combustion synthesis is reduced. The temperature quickly dropped to room temperature. The cooling rate at this time was about 200 ° C./sec. Thereby, the 2nd particle precursor was used for the rapid cooling process, and the structure which consists of Ti, Al, Si, O, and N was obtained.

実施例9、10、19〜21、および25〜35においても、各種条件を表2に示すように変更した以外は、実施例8と同様の方法により処理工程を実行した。  In Examples 9, 10, 19-21, and 25-35, the treatment steps were performed in the same manner as in Example 8 except that various conditions were changed as shown in Table 2.

上記(3)の方法による実施例11の処理工程は、以下のように実行された。まず、ガス圧が0.1気圧となるように圧力容器内に窒素ガスを供給しながら、圧力容器内に設けられたプラズマ発生用電極から4500℃の高温プラズマを発生させ、プラズマ中に第1粒子を通過させた。このときの処理時間は1秒であった。これにより、実施例11の第1粒子は、窒素雰囲気下、4500℃で1秒間加熱工程に供された。  The processing steps of Example 11 by the method (3) were performed as follows. First, while supplying nitrogen gas into the pressure vessel so that the gas pressure becomes 0.1 atm, high temperature plasma of 4500 ° C. is generated from the plasma generating electrode provided in the pressure vessel, and the first in the plasma. The particles were passed through. The processing time at this time was 1 second. Thereby, the first particles of Example 11 were subjected to a heating step at 4500 ° C. for 1 second in a nitrogen atmosphere.

また、加熱工程後の急冷工程における冷却速度は1000℃/sec程度であった。これにより、第2粒子前駆体が冷却工程に供され、Ti、Al、Si、OおよびNからなる構造体が得られた。なお、急冷工程は、加熱工程が終了することによって連続的に実施された。  The cooling rate in the rapid cooling step after the heating step was about 1000 ° C./sec. Thereby, the 2nd particle precursor was used for the cooling process, and the structure which consists of Ti, Al, Si, O, and N was obtained. In addition, the rapid cooling process was continuously implemented when the heating process was completed.

実施例12〜15、22〜24、40〜58においても、各種条件を表2に示すように変更した以外は、実施例1と同様の方法により処理工程を実行した。  Also in Examples 12 to 15, 22 to 24, and 40 to 58, the processing steps were performed in the same manner as in Example 1 except that various conditions were changed as shown in Table 2.

≪比較例1および2≫
比較例1においては、TiNからなる粉末を作製し、比較例2においては、TiAlNからなる粉末を作製した。具体的には、比較例1において、粒径が1μmのTiN(原子比は1:0.97)粒子を準備した。また、比較例2において、粒径が1μmのAlTiN(原子比は0.5:0.5:1)粒子を準備した。
<< Comparative Examples 1 and 2 >>
In Comparative Example 1, a powder made of TiN was produced, and in Comparative Example 2, a powder made of TiAlN was produced. Specifically, in Comparative Example 1, TiN (atomic ratio is 1: 0.97) particles having a particle size of 1 μm were prepared. In Comparative Example 2, AlTiN (atomic ratio: 0.5: 0.5: 1) particles having a particle size of 1 μm were prepared.

≪各粒子の特性評価≫
実施例1〜58の各粒子の組成、ならびに、実施例1〜58、比較例1および2の各粒子の耐酸化性について確認した。
≪Characteristic evaluation of each particle≫
The composition of each particle of Examples 1 to 58 and the oxidation resistance of each particle of Examples 1 to 58 and Comparative Examples 1 and 2 were confirmed.

(組成)
実施例1〜58で得られた第2粒子に含まれる生成物(化合物)およびTiAlSiON化合物の含有率(体積%)を表3に示す。含有される各生成物のうち、TiAlSiON化合物以外の化合物の組成は、粒子の断面および表面をXRD(X‐ray diffraction)装置で分析することにより同定し、TiAlSiON化合物の組成は、EDX(エネルギー分散型X線分光法)を行うことにより算出した。また得られた粉末の断面が観察できるように加工を行い、走査型電子顕微鏡で粉末の断面を観察し、粉末中の色の濃淡でTiSiAlON化合物を判別した。その際、予め元素分析により、各化合物を特定した。さらにその視野に対し、二値化処理を行い、TiSiAlON化合物を定量化した。
(composition)
Table 3 shows the contents (volume%) of the products (compounds) and TiAlSiON compounds contained in the second particles obtained in Examples 1 to 58. Among the contained products, the composition of compounds other than the TiAlSiON compound is identified by analyzing the cross section and surface of the particle with an XRD (X-ray diffraction) apparatus, and the composition of the TiAlSiON compound is EDX (energy dispersion). Type X-ray spectroscopy). Moreover, it processed so that the cross section of the obtained powder could be observed, the cross section of the powder was observed with the scanning electron microscope, and the TiSiAlON compound was discriminate | determined by the lightness and darkness of the color in powder. At that time, each compound was previously identified by elemental analysis. Furthermore, the visual field was binarized to quantify the TiSiAlON compound.

Figure 2016031714
Figure 2016031714

表3の「生成物」の欄に関し、たとえば、「TiAlSiON」はTiAlSiON化合物を示し、「Si34」はSi34化合物を示す。TiAlSiON化合物の組成は、「Ti(1-a-b)AlaSibxy」の欄に記す。また、TiAlSiON化合物の含有率は、「第1化合物含有率」の欄に記す。Regarding the column of “Product” in Table 3, for example, “TiAlSiON” indicates a TiAlSiON compound, and “Si 3 N 4 ” indicates a Si 3 N 4 compound. The composition of the TiAlSiON compound is described in the column “Ti (1-ab) Al a Si b O x N y ”. Further, the content of the TiAlSiON compound is described in the column of “first compound content”.

表3を参照し、実施例1〜58において、焼結体がTiAlSiON化合物を含む第1化合物からなることが確認された。また、TiAlSiON化合物が、Ti(1-a-b)AlaSibxy(ただし、a、b、xおよびyは、それぞれ、0.01≦a≦0.70、0.01≦b≦0.55、0.06≦a+b≦0.88、0.005≦x≦0.6、0.4≦y≦0.995、および0.5<x+y≦1を満たすことも確認された。Referring to Table 3, in Examples 1 to 58, it was confirmed that the sintered body was composed of the first compound containing the TiAlSiON compound. The TiAlSiON compound is Ti (1-ab) Al a Si b O x N y (where a, b, x and y are 0.01 ≦ a ≦ 0.70 and 0.01 ≦ b ≦, respectively. It was also confirmed that 0.55, 0.06 ≦ a + b ≦ 0.88, 0.005 ≦ x ≦ 0.6, 0.4 ≦ y ≦ 0.995, and 0.5 <x + y ≦ 1 were satisfied.

(耐酸化性)
各実施例1〜58、比較例1および2の各粒子を、それぞれ0.5mgずつ秤量した各試験体を準備した。この各試験体を大気雰囲気下で室温(25℃)から1400℃まで徐々に昇温しながら示差熱分析を行った。そして、各試験体の重量変化が確認された最も低い温度を酸化開始温度とした。各実施例1〜58の結果を表3に示す。
(Oxidation resistance)
Each specimen was prepared by weighing 0.5 mg of each particle of Examples 1 to 58 and Comparative Examples 1 and 2. Each test specimen was subjected to differential thermal analysis while gradually raising the temperature from room temperature (25 ° C.) to 1400 ° C. in an air atmosphere. The lowest temperature at which the weight change of each specimen was confirmed was taken as the oxidation start temperature. The results of Examples 1 to 58 are shown in Table 3.

表3を参照し、実施例1〜58の各第2粒子の酸化開始温度は、すべて460℃以上であった。一方、比較例1および2の各粒子の酸化開始温度は400℃および450℃であった。なお表3において、「酸化開始温度」が高いほど、耐酸化性に優れることとなる。  With reference to Table 3, all the oxidation start temperature of each 2nd particle of Examples 1-58 was 460 degreeC or more. On the other hand, the oxidation start temperatures of the particles of Comparative Examples 1 and 2 were 400 ° C. and 450 ° C. In Table 3, the higher the “oxidation start temperature”, the better the oxidation resistance.

[検討2]
上述の実施例1、11、27の各粒子および比較例1、2の各粒子をそれぞれ第2粒子とし、第2粒子と第3粒子とを混合する混合工程と、焼結工程を実行することにより、焼結体を作製し、その特性について評価した。
[Study 2]
The mixing step of mixing the second particles and the third particles, and the sintering step, each of the particles of Examples 1, 11 and 27 and the particles of Comparative Examples 1 and 2 are used as the second particles. Thus, a sintered body was produced and its characteristics were evaluated.

≪実施例61〜125および比較例3〜6≫
(混合工程)
実施例61〜125および比較例3〜6では、表4および表5に示す第2粒子と第3粒子とを用いて混合工程を実行した。表5を参照し、たとえば、実施例61では、実施例1において作製された第2粒子と立方晶窒化ホウ素(cBN)からなる第3粒子とを、混合割合(第2粒子:第3粒子)が体積比で50:50となるように混合させることにより、混合粒子を準備した。
<< Examples 61 to 125 and Comparative Examples 3 to 6 >>
(Mixing process)
In Examples 61 to 125 and Comparative Examples 3 to 6, the mixing step was performed using the second particles and the third particles shown in Tables 4 and 5. Referring to Table 5, for example, in Example 61, the second particles prepared in Example 1 and the third particles made of cubic boron nitride (cBN) are mixed in a mixing ratio (second particles: third particles). Were mixed so that the volume ratio was 50:50 to prepare mixed particles.

(焼結工程)
次に、得られた混合粒子をタンタル製のカプセルに充填し、プレス機を用いて、下記表4および表5に示す圧力、温度および焼結時間で、焼結処理を行った。
(Sintering process)
Next, the obtained mixed particles were filled in a tantalum capsule, and were subjected to a sintering treatment using a press machine at the pressure, temperature, and sintering time shown in Tables 4 and 5 below.

以上により、実施例61〜125において、TiAlSiON化合物を含む第1化合物と第2化合物とを含む焼結体が得られた。また、比較例3〜6において、第2粒子由来の化合物と、第3粒子由来の化合物とを含む焼結体が得られた。なお、各焼結体は、直径20mm、高さ1mmの円板形状を有していた。  As described above, in Examples 61 to 125, sintered bodies containing the first compound and the second compound containing the TiAlSiON compound were obtained. Moreover, in Comparative Examples 3-6, the sintered compact containing the compound derived from 2nd particle | grains and the compound derived from 3rd particle | grains was obtained. Each sintered body had a disk shape with a diameter of 20 mm and a height of 1 mm.

Figure 2016031714
Figure 2016031714

Figure 2016031714
Figure 2016031714

≪各焼結体の特性評価≫
実施例61〜125および比較例3〜6の各焼結体の組成、耐摩耗性、耐欠損性について確認した。
≪Characteristic evaluation of each sintered body≫
It confirmed about the composition, abrasion resistance, and fracture resistance of each sintered compact of Examples 61-125 and Comparative Examples 3-6.

(組成)
実施例61〜125および比較例3〜6で得られた焼結体に含まれる生成物(化合物、金属)およびTiAlSiON化合物の含有率(体積%)を表6に、TiNまたはTiAlNの含有率(体積%)を表7に示す。含有される各生成物のうち、TiAlSiON化合物以外の化合物の組成は、焼結体の断面および表面をXRD(X‐ray diffraction)装置で分析することにより同定し、TiAlSiON化合物の組成は、EDX(エネルギー分散型X線分光法)を行うことにより算出した。また得られた焼結体の断面が観察できるように加工を行い、走査型電子顕微鏡で焼結体の断面を観察し、焼結体中の色の濃淡でTiSiAlON化合物を判別した。その際、予め元素分析により、各化合物を特定した。さらにその視野に対し、二値化処理を行い、TiSiAlON化合物を定量化した。
(composition)
Table 6 shows the contents (volume%) of products (compounds, metals) and TiAlSiON compounds contained in the sintered bodies obtained in Examples 61 to 125 and Comparative Examples 3 to 6, and the contents of TiN or TiAlN ( Table 7 shows the volume%). Among the contained products, the composition of compounds other than the TiAlSiON compound is identified by analyzing the cross section and surface of the sintered body with an XRD (X-ray diffraction) apparatus, and the composition of the TiAlSiON compound is EDX ( It was calculated by performing energy dispersive X-ray spectroscopy. Moreover, it processed so that the cross section of the obtained sintered compact could be observed, the cross section of the sintered compact was observed with the scanning electron microscope, and the TiSiAlON compound was discriminate | determined by the lightness and darkness of the color in a sintered compact. At that time, each compound was previously identified by elemental analysis. Furthermore, the visual field was binarized to quantify the TiSiAlON compound.

Figure 2016031714
Figure 2016031714

Figure 2016031714
Figure 2016031714

表6および表7の「生成物」の欄に関し、たとえば、「TiAlSiON」はTiAlSiON化合物を示し、「Si34」はSi34化合物を示す。TiAlSiON化合物の組成は、「Ti(1-a-b)AlaSibxy」の欄に記す。また、TiAlSiON化合物の含有率は、「第1化合物含有率」の欄に記す。Regarding the column of “Product” in Tables 6 and 7, for example, “TiAlSiON” indicates a TiAlSiON compound, and “Si 3 N 4 ” indicates a Si 3 N 4 compound. The composition of the TiAlSiON compound is described in the column “Ti (1-ab) Al a Si b O x N y ”. Further, the content of the TiAlSiON compound is described in the column of “first compound content”.

表6を参照し、実施例61〜125において、焼結体がTiAlSiON化合物を含むこと、TiAlSiON化合物が、Ti(1-a-b)AlaSibxy(ただし、a、b、xおよびyは、それぞれ、0.01≦a≦0.70、0.01≦b≦0.55、0.06≦a+b≦0.88、0.005≦x≦0.6、0.4≦y≦0.995、および0.5<x+y≦1を満たすことが確認された。一方、TiAlSiON化合物の含有量は、第2粒子および第3粒子の混合割合から換算するに、わずかに減少がみられる場合が多くみられた。Referring to Table 6, in Examples 61 to 125, the sintered body contains a TiAlSiON compound, and the TiAlSiON compound is Ti (1-ab) Al a Si b O x N y (where a, b, x and y is 0.01 ≦ a ≦ 0.70, 0.01 ≦ b ≦ 0.55, 0.06 ≦ a + b ≦ 0.88, 0.005 ≦ x ≦ 0.6, and 0.4 ≦ y, respectively. ≦ 0.995 and 0.5 <x + y ≦ 1 were confirmed, while the content of the TiAlSiON compound slightly decreased when converted from the mixing ratio of the second particles and the third particles. Many cases were seen.

このことから、第2粒子の組成は、焼結工程の前後でかわらないものの、その界面では第3粒子との反応による反応生成物の発生が起こっており、故にその混合割合は、焼結工程前後でわずかな変動が見られたと考えられた。また、第2粒子の組成が焼成前後でかわらないことから、第2粒子に含まれるTiAlSiON化合物と、第1化合物を構成するTiAlSiON化合物は同一の化合物であり、故に、第1化合物の耐酸化性は、第2粒子の耐酸化性に依拠することが分かった。  Therefore, although the composition of the second particles does not change before and after the sintering process, reaction products are generated at the interface due to the reaction with the third particles. Therefore, the mixing ratio is determined by the sintering process. It was thought that slight fluctuations were observed before and after. In addition, since the composition of the second particles does not change before and after firing, the TiAlSiON compound contained in the second particles and the TiAlSiON compound constituting the first compound are the same compound. Therefore, the oxidation resistance of the first compound Was found to depend on the oxidation resistance of the second particles.

また、実施例61〜125の焼結体において、TiAlSiON化合物以外の生成物(化合物または金属)が含まれていた。また、TiAlSiON化合物以外の生成物は、TiAlSiON化合物の界面に存在していることが確認された。  In addition, in the sintered bodies of Examples 61 to 125, products (compounds or metals) other than the TiAlSiON compound were included. Moreover, it was confirmed that products other than the TiAlSiON compound exist at the interface of the TiAlSiON compound.

(耐摩耗性および耐欠損性)
実施例61〜125および比較例3〜6の焼結体のそれぞれの耐摩耗性および耐欠損性について以下の方法により評価した。
(Abrasion resistance and fracture resistance)
The wear resistance and fracture resistance of the sintered bodies of Examples 61 to 125 and Comparative Examples 3 to 6 were evaluated by the following methods.

まず、各焼結体をレーザーを用いて加工してその形状をISO型番CNGA120408のチップ形状、刃先処理が−25°の角度で、幅0.15mmのチャンファー形状の切削工具を作製した。作製した各切削工具を用いて、以下の切削条件で切削試験を行い、切削工具の平均逃げ面摩耗量(μm)およびチッピング量(μm)を測定した。なお、「チッピング」とは切れ刃に生じた微細な欠けを意味し、「チッピング量」とは、切削工具の刃の厚み方向に関する欠けの幅を意味する。  First, each sintered body was processed using a laser to form a chamfer-shaped cutting tool having a chip shape of ISO model number CNGA120408, a cutting edge treatment of −25 °, and a width of 0.15 mm. Using each of the produced cutting tools, a cutting test was performed under the following cutting conditions, and the average flank wear amount (μm) and chipping amount (μm) of the cutting tool were measured. “Chipping” means a minute chipping generated in the cutting edge, and “chipping amount” means a chip width in the thickness direction of the cutting tool blade.

被削材:SCM415焼入溝付き鋼(HRc58〜62)
(形状:丸棒に1cm間隔に幅2mmの溝をつけたもの)
切削速度:100m/min.
送り速度:0.1mm/rev
切込み量:0.1mm
切削油:なし
切削距離:4km。
Work material: SCM415 hardened grooved steel (HRc58-62)
(Shape: A round bar with grooves of 2mm width at 1cm intervals)
Cutting speed: 100 m / min.
Feeding speed: 0.1mm / rev
Cutting depth: 0.1 mm
Cutting oil: None Cutting distance: 4 km.

各評価結果を表6および表7に示す。表6および表7において、「逃げ面摩耗量」が小さいほど、耐摩耗性に優れることとなる。また、「チッピング量」が小さいほど、耐欠損性に優れることとなる。  Each evaluation result is shown in Table 6 and Table 7. In Tables 6 and 7, the smaller the “flank wear amount”, the better the wear resistance. Also, the smaller the “chipping amount”, the better the chipping resistance.

表6および表7より、実施例61〜125の焼結体は、比較例3〜6の焼結体と比して、耐摩耗性および耐欠損性といった特性に優れることが分かった。また、実施例110と実施例118とを比較すると、実施例110の焼結体のほうが特性に優れていた。これは、実施例118において、混合されたCo粒子の含有量(体積%)が多かったためと考えられる。  From Table 6 and Table 7, it turned out that the sintered compact of Examples 61-125 is excellent in characteristics, such as abrasion resistance and a fracture resistance, compared with the sintered compact of Comparative Examples 3-6. Further, when Example 110 and Example 118 were compared, the sintered body of Example 110 was superior in characteristics. This is considered to be because the content (volume%) of the mixed Co particles in Example 118 was large.

今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。  The embodiments and examples disclosed herein are illustrative in all respects and should not be construed as being restrictive. The scope of the present invention is shown not by the above-described embodiment but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.

本発明に係る焼結体は、切削工具に広く利用することができる。特に、高温での硬度の高い被削材、耐熱合金からなる被削材を切削するための切削工具に好適に利用することができる。  The sintered body according to the present invention can be widely used for cutting tools. In particular, it can be suitably used for a cutting tool for cutting a work material having high hardness at a high temperature and a work material made of a heat-resistant alloy.

Claims (8)

Ti、Al、Si、OおよびNからなる第1化合物を含む、焼結体。  The sintered compact containing the 1st compound which consists of Ti, Al, Si, O, and N. 前記第1化合物は、Ti(1-a-b)AlaSibxyを含み、
前記Ti(1-a-b)AlaSibxyにおけるa、b、xおよびyは、それぞれ、0.01≦a≦0.70、0.01≦b≦0.55、0.06≦a+b≦0.88、0.005≦x≦0.6、0.4≦y≦0.995、および0.5<x+y≦1を満たす、請求項1に記載の焼結体。
The first compound includes Ti (1-ab) Al a Si b O x N y ,
A, b, x, and y in the Ti (1-ab) Al a Si b O x N y are 0.01 ≦ a ≦ 0.70, 0.01 ≦ b ≦ 0.55, and 0.06, respectively. The sintered body according to claim 1, satisfying ≦ a + b ≦ 0.88, 0.005 ≦ x ≦ 0.6, 0.4 ≦ y ≦ 0.995, and 0.5 <x + y ≦ 1.
前記焼結体における第1化合物の含有量は、10体積%以上100体積%以下である、請求項1または請求項2に記載の焼結体。  The sintered body according to claim 1 or 2, wherein the content of the first compound in the sintered body is 10% by volume or more and 100% by volume or less. 前記焼結体は、第2化合物、第3化合物、第4化合物および第1金属からなる群より選択される1種以上をさらに含み、
前記第2化合物は立方晶窒化ホウ素であり、
前記第3化合物は、AlおよびSiの1種以上の元素と、B、C、N、およびOからなる群より選択される1種以上の元素との化合物であり、
前記第4化合物は、周期表の第4族元素、第5族元素および第6族元素からなる群より選択される1種以上の元素と、B、C、N、およびOからなる群より選択される1種以上の元素との化合物であり、
前記第1金属は、Ti、V、Cr、Mn、Co、Ni、Cu、Al、Sn、Si、Zr、Nb、Mo、Ag、Hf、Ta、WおよびPbからなる群より選ばれる1種以上からなる金属である、請求項1から請求項3のいずれか1項に記載の焼結体。
The sintered body further includes one or more selected from the group consisting of a second compound, a third compound, a fourth compound, and a first metal,
The second compound is cubic boron nitride;
The third compound is a compound of one or more elements of Al and Si and one or more elements selected from the group consisting of B, C, N, and O,
The fourth compound is selected from the group consisting of one or more elements selected from the group consisting of Group 4 elements, Group 5 elements and Group 6 elements in the periodic table, and B, C, N, and O A compound with one or more elements
The first metal is one or more selected from the group consisting of Ti, V, Cr, Mn, Co, Ni, Cu, Al, Sn, Si, Zr, Nb, Mo, Ag, Hf, Ta, W, and Pb. The sintered body according to any one of claims 1 to 3, wherein the sintered body is a metal made of
請求項1から請求項4のいずれか1項に記載の焼結体を用いた工具。  A tool using the sintered body according to any one of claims 1 to 4. Ti、AlおよびSiの各元素を含む第1粒子を準備する工程と、
前記第1粒子を処理して、Ti、Al、Si、OおよびNの各元素からなる第2粒子を作製する工程と、
前記第2粒子を焼結して、Ti、Al、Si、OおよびNからなる第1化合物を含む焼結体を作製する工程と、を備え、
前記第2粒子を作製する工程は、
前記第1粒子を加熱する工程と、加熱後の前記第1粒子を急冷する工程と、を備える、焼結体の製造方法。
Preparing a first particle containing each element of Ti, Al and Si;
Treating the first particles to produce second particles composed of Ti, Al, Si, O and N elements;
Sintering the second particles to produce a sintered body containing a first compound composed of Ti, Al, Si, O, and N, and
The step of producing the second particles includes
A method for manufacturing a sintered body, comprising: a step of heating the first particles; and a step of rapidly cooling the first particles after heating.
前記焼結体を作製する工程の前に、前記第2粒子と第3粒子とを混合する工程を含み、
前記第3粒子は、第5化合物、第6化合物、第7化合物および第2金属からなる群より選択される1種以上からなる粒子であり、
前記第5化合物は、立方晶窒化ホウ素であり、
前記第6化合物は、AlおよびSiの1種以上の元素と、B、C、N、およびOからなる群より選択される1種以上の元素との化合物であり、
前記第7化合物は、周期表の第4族元素、第5族元素および第6族元素からなる群より選択される1種以上の元素と、B、C、N、およびOからなる群より選択される1種以上の元素との化合物であり、
前記第2金属は、Ti、V、Cr、Mn、Co、Ni、Cu、Al、Sn、Si、Zr、Nb、Mo、Ag、Hf、Ta、WおよびPbからなる群より選択される1種以上からなる金属である、請求項6に記載の焼結体の製造方法。
Including the step of mixing the second particles and the third particles before the step of producing the sintered body,
The third particles are particles composed of one or more selected from the group consisting of a fifth compound, a sixth compound, a seventh compound and a second metal,
The fifth compound is cubic boron nitride;
The sixth compound is a compound of one or more elements of Al and Si and one or more elements selected from the group consisting of B, C, N, and O,
The seventh compound is selected from the group consisting of one or more elements selected from the group consisting of Group 4 elements, Group 5 elements and Group 6 elements in the periodic table, and B, C, N, and O A compound with one or more elements
The second metal is one selected from the group consisting of Ti, V, Cr, Mn, Co, Ni, Cu, Al, Sn, Si, Zr, Nb, Mo, Ag, Hf, Ta, W, and Pb. The manufacturing method of the sintered compact of Claim 6 which is a metal which consists of the above.
前記混合する工程は、前記第2粒子と前記第3粒子との混合粒子における前記第3粒子の含有量を90体積%以下として実行する、請求項7に記載の焼結体の製造方法。  The method for producing a sintered body according to claim 7, wherein the mixing step is performed by setting the content of the third particles in the mixed particles of the second particles and the third particles to 90% by volume or less.
JP2016545494A 2014-08-29 2015-08-21 Sintered body, tool using the sintered body, and method for manufacturing the sintered body Active JP6597620B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014175073 2014-08-29
JP2014175073 2014-08-29
PCT/JP2015/073532 WO2016031714A1 (en) 2014-08-29 2015-08-21 Sintered body, tool using sintered body, and sintered body production method

Publications (2)

Publication Number Publication Date
JPWO2016031714A1 true JPWO2016031714A1 (en) 2017-07-06
JP6597620B2 JP6597620B2 (en) 2019-10-30

Family

ID=55399607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016545494A Active JP6597620B2 (en) 2014-08-29 2015-08-21 Sintered body, tool using the sintered body, and method for manufacturing the sintered body

Country Status (6)

Country Link
US (2) US10029948B2 (en)
EP (1) EP3187476B1 (en)
JP (1) JP6597620B2 (en)
KR (1) KR20170048409A (en)
CN (1) CN106795059B (en)
WO (1) WO2016031714A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031714A1 (en) * 2014-08-29 2016-03-03 住友電気工業株式会社 Sintered body, tool using sintered body, and sintered body production method
JP6265103B2 (en) * 2014-10-23 2018-01-24 住友電気工業株式会社 Sintered body
JP7110647B2 (en) * 2018-03-22 2022-08-02 住友金属鉱山株式会社 Lithium-nickel-containing composite oxide, method for producing the same, lithium-ion secondary battery, and evaluation method for lithium-nickel-containing composite oxide
CN109336615B (en) * 2018-12-03 2021-06-22 中国科学院兰州化学物理研究所 High-toughness, wear-resistant and friction-reducing sialon-tin composite material
CN115417670B (en) * 2022-09-28 2023-03-10 昆明理工大学 High-dielectric-constant ceramic with high-entropy design at B site and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264066A (en) * 1998-03-16 1999-09-28 Hitachi Tool Eng Ltd Coated-hard tool
JP2012206222A (en) * 2011-03-30 2012-10-25 Mitsubishi Materials Corp Surface coating cutting tool having excellent oxidation resistance in full hard coating layer
JP2013053022A (en) * 2011-09-01 2013-03-21 Sumitomo Electric Ind Ltd Composite sintered body and composite sintered body tool using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8808356D0 (en) 1988-04-09 1988-05-11 Lucas Cookson Syalon Ltd Substituted silicon nitride material & method of production thereof
JP2539712B2 (en) 1991-09-19 1996-10-02 喜清 荻野 Nitride powder
JPH10182233A (en) 1996-12-25 1998-07-07 Agency Of Ind Science & Technol Titanium aluminum nitride-base sintered material and its production
JP5093433B2 (en) 2005-11-11 2012-12-12 学校法人同志社 Method for producing a bulk body of Al-added TiN
US8389115B2 (en) * 2008-03-07 2013-03-05 Seco Tools Ab Thermally stabilized (Ti,Si)N layer for cutting tool insert
US9187376B2 (en) 2012-12-21 2015-11-17 Sumitomo Electric Industries, Ltd. Sintered compact, cutting tool formed using sintered compact, and method for manufacturing sintered compact
WO2016031714A1 (en) * 2014-08-29 2016-03-03 住友電気工業株式会社 Sintered body, tool using sintered body, and sintered body production method
JP6265103B2 (en) * 2014-10-23 2018-01-24 住友電気工業株式会社 Sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264066A (en) * 1998-03-16 1999-09-28 Hitachi Tool Eng Ltd Coated-hard tool
JP2012206222A (en) * 2011-03-30 2012-10-25 Mitsubishi Materials Corp Surface coating cutting tool having excellent oxidation resistance in full hard coating layer
JP2013053022A (en) * 2011-09-01 2013-03-21 Sumitomo Electric Ind Ltd Composite sintered body and composite sintered body tool using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H.KITA ET AL.: "Thermal Conductivity, Strength, and Microstructure of Si-Ti-Al-O-N Porous Ceramics", ADVANCED MATERIALS '93, I, JPN6015040345, 1994, pages 467 - 470, XP009500407, ISSN: 0003979466, DOI: 10.1016/B978-0-444-81991-8.50118-7 *

Also Published As

Publication number Publication date
EP3187476A1 (en) 2017-07-05
CN106795059A (en) 2017-05-31
US20170253531A1 (en) 2017-09-07
US10501377B2 (en) 2019-12-10
JP6597620B2 (en) 2019-10-30
EP3187476A4 (en) 2018-03-07
US20180297899A1 (en) 2018-10-18
US10029948B2 (en) 2018-07-24
CN106795059B (en) 2020-01-31
EP3187476B1 (en) 2022-03-09
WO2016031714A1 (en) 2016-03-03
KR20170048409A (en) 2017-05-08

Similar Documents

Publication Publication Date Title
JP6597620B2 (en) Sintered body, tool using the sintered body, and method for manufacturing the sintered body
CN105283570B (en) Cermet and cutting tool
JP5652113B2 (en) WC-based cemented carbide cutting tool and surface-coated WC-based cemented carbide cutting tool exhibiting excellent fracture resistance in heat-resistant alloy cutting
JP6237530B2 (en) Hard material, sintered body, tool using sintered body, method for manufacturing hard material, and method for manufacturing sintered body
EP1359130A1 (en) Cubic boron nitride sintered body and cutting tool
Chicardi et al. Toughening of complete solid solution cermets by graphite addition
JP7272353B2 (en) Cemented Carbide, Cutting Tool and Cemented Carbide Manufacturing Method
JP4830571B2 (en) cBN super high pressure sintered body
JP6064549B2 (en) Sintered body and method of manufacturing the sintered body
WO2022137400A1 (en) Cemented carbide and cutting tool comprising same as base material
JP7392714B2 (en) Cemented carbide and cutting tools containing it as a base material
US20030054940A1 (en) Sintered body
JP6843096B2 (en) A tool having a cubic boron nitride sintered body and a cubic boron nitride sintered body
JP7013948B2 (en) Base material and cutting tools
JP7098969B2 (en) Cemented Carbide, Cutting Tools Containing It, Cemented Carbide Manufacturing Method and Cutting Tool Manufacturing Method
JP6695566B2 (en) Cemented carbide used as a tool for machining non-metallic materials
JP7388431B2 (en) Cemented carbide and cutting tools containing it as a base material
JP2021085052A (en) Cemented carbide and cutting tool including the same as base material
JP5799969B2 (en) Ceramic crystal particles, ceramic sintered body, and method for producing them
JP7494952B2 (en) Cemented carbide and cutting tools containing it as a substrate
JP7346751B1 (en) Cubic boron nitride sintered body
JP7336063B2 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
WO2022172729A1 (en) Cemented carbide and cutting tool which comprises same as base material
US12005507B2 (en) Cemented carbide and cutting tool including same as substrate
JP6304615B1 (en) tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190916

R150 Certificate of patent or registration of utility model

Ref document number: 6597620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250