JP2013053022A - Composite sintered body and composite sintered body tool using the same - Google Patents

Composite sintered body and composite sintered body tool using the same Download PDF

Info

Publication number
JP2013053022A
JP2013053022A JP2011190642A JP2011190642A JP2013053022A JP 2013053022 A JP2013053022 A JP 2013053022A JP 2011190642 A JP2011190642 A JP 2011190642A JP 2011190642 A JP2011190642 A JP 2011190642A JP 2013053022 A JP2013053022 A JP 2013053022A
Authority
JP
Japan
Prior art keywords
sintered body
composite sintered
binder
sialon
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011190642A
Other languages
Japanese (ja)
Inventor
Akira Kukino
暁 久木野
Rinko Matsukawa
倫子 松川
Natsuo Tatsumi
夏生 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011190642A priority Critical patent/JP2013053022A/en
Publication of JP2013053022A publication Critical patent/JP2013053022A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite sintered body excellent in wear resistance and chipping resistance.SOLUTION: The composite sintered body contains 60 vol.% or more and 99.7 vol.% or less of SiAlON and the rest of binder. The binder contains TiAl compound. The structure of the binder has noncontinuous parts. In is preferable that the binder further contains TiSi compound, TiN, SiN, and AlO. It is preferable that the major diameter of the particle size of 10% or more and less than 95% of the binder of the binder contained in the composite sintered body is 5 μm or less.

Description

本発明は、複合焼結体およびそれを用いた複合焼結体工具に関し、特に耐欠損性および耐摩耗性に優れる複合焼結体およびそれを用いた複合焼結体工具に関する。   The present invention relates to a composite sintered body and a composite sintered body tool using the same, and more particularly to a composite sintered body excellent in fracture resistance and wear resistance and a composite sintered body tool using the same.

切削工具は、被削材の種類や加工方法によって耐摩耗性や耐欠損性等の要求性能が異なるため、その要求に応じた材料のものを使い分けて用いている。たとえば、高能率加工や断続加工のように耐欠損性が要求される用途では、耐欠損性に優れた超硬合金製工具を使用するし、インコネル等のNi基耐熱合金系難削材料の仕上げ加工のように耐摩耗性が要求される用途では、耐摩耗性に優れたSiAlONセラミックス工具やcBN焼結体工具を使用する。   Since cutting tools have different required performances such as wear resistance and fracture resistance depending on the type and processing method of the work material, different cutting tools are used depending on the requirements. For example, in applications that require fracture resistance, such as high-efficiency machining and interrupted machining, use cemented carbide tools with excellent fracture resistance, and finish Ni-base heat-resistant alloy-based difficult-to-cut materials such as Inconel. In applications where wear resistance is required, such as machining, SiAlON ceramic tools and cBN sintered body tools with excellent wear resistance are used.

このように切削工具を選定して種々の切削加工に対応しているが、被削材に対応する好適な切削工具が開発されていないケースもある。一例として、たとえばロックウェルCスケール硬度(HRC)で40を超える高硬度の難削材を切削加工するときの切削工具を挙げることができる。   As described above, the cutting tool is selected to cope with various cutting processes, but there is a case where a suitable cutting tool corresponding to the work material has not been developed. As an example, for example, a cutting tool for cutting difficult-to-cut materials having a hardness of more than 40 in Rockwell C scale hardness (HRC) can be cited.

上記難削材を切削加工するには、耐欠損性に優れた工具が好ましいことが予想されるが、実際に耐欠損性に優れる超硬合金製の工具を用いて切削すると、工具が塑性変形するという問題がある。また、上記の難削剤をcBN焼結体を用いて切削すると、切削加工時の刃先が高温となるときにcBN焼結体中の鉄族金属(NiやCo等)が、被削材中の鉄族金属と反応し、摩耗も欠損も生じやすい。したがって、上記難削材の切削加工には、耐欠損性が必ずしも十分とは言えないSiAlONセラミックス工具に頼らざるを得ない状況である。   To cut the difficult-to-cut materials, it is expected that a tool with excellent fracture resistance is preferable, but when cutting with a cemented carbide tool with excellent fracture resistance, the tool is plastically deformed. There is a problem of doing. Further, when the above difficult-to-cut agent is cut using a cBN sintered body, the iron group metal (Ni, Co, etc.) in the cBN sintered body is in the work material when the cutting edge at the time of cutting becomes high temperature. It reacts with other iron group metals and tends to cause wear and defects. Therefore, the cutting of the above-mentioned difficult-to-cut material has to rely on a SiAlON ceramic tool whose fracture resistance is not necessarily sufficient.

ところで、パンチやダイスなどに代表される塑性加工用途においても、耐摩耗性に優れるSiAlONセラミックス等を用いた工具の適用が進んでおり、高速度鋼製の工具や超硬合金製の工具を代替する材料として期待されている。   By the way, in plastic working applications such as punches and dies, the use of tools using SiAlON ceramics with excellent wear resistance is advancing, replacing high-speed steel tools and cemented carbide tools. It is expected as a material.

以上のように、SiAlONセラミックス工具は、難削材の切削加工や、塑性加工の用途に使用されている。現在市販のSiAlONセラミックス工具は、Y23のガラス相が連続して結合相として存在するものであるため、欠損に対する安定性が十分ではなく、さらなる改善が期待されている。 As described above, SiAlON ceramic tools are used for cutting difficult-to-cut materials and plastic working. In the commercially available SiAlON ceramic tool, since the glass phase of Y 2 O 3 is continuously present as a binder phase, stability against defects is not sufficient, and further improvement is expected.

上記SiAlONセラミックス工具の改善を図る試みとして、たとえば特開平08−337477号公報(特許文献1)および特開2006−175561号公報(特許文献2)には、SiAlON焼結体粒子を主成分として含み、残部に酸化物またはガラス質相(非晶質相)からなる粒界相を充填したSiAlONセラミックス製の工具が開示されている。また、特開2005−212048号公報(特許文献3)には、Si2W、MoSi2等の金属合金と、ガラス質相(非晶質相)によってSiAlON焼結体粒子を結合したSiAlONセラミックス製の工具が開示されている。 As an attempt to improve the SiAlON ceramic tool, for example, Japanese Patent Application Laid-Open No. 08-337477 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2006-175561 (Patent Document 2) include SiAlON sintered body particles as a main component. A tool made of SiAlON ceramics is disclosed in which the remainder is filled with a grain boundary phase composed of an oxide or glassy phase (amorphous phase). Also, Japanese Patent Laid-Open No. 2005-212048 (Patent Document 3) discloses a SiAlON ceramics product in which SiAlON sintered body particles are bonded to each other by a glassy phase (amorphous phase) and a metal alloy such as Si 2 W or MoSi 2 . A tool is disclosed.

特開平08−337477号公報Japanese Patent Laid-Open No. 08-337477 特開2006−175561号公報JP 2006-175561 A 特開2005−212048号公報Japanese Patent Laid-Open No. 2005-212048

特許文献1〜3に開示される焼結体工具はいずれも、耐摩耗性を向上させることはできるが、耐欠損性が十分ではなく、また耐摩耗性においてもさらなる向上が要求されている。本発明は、上記のような現状に鑑みてなされたものであり、その目的とするところは、耐摩耗性および耐欠損性に優れた複合焼結体を提供することにある。   Although all of the sintered body tools disclosed in Patent Documents 1 to 3 can improve the wear resistance, the fracture resistance is not sufficient, and further improvement in the wear resistance is required. The present invention has been made in view of the current situation as described above, and an object thereof is to provide a composite sintered body having excellent wear resistance and fracture resistance.

本発明者らは、市販のSiAlON焼結体工具の摩耗面の損傷を観察したところ、結合材部分の摩耗が先行して進行しており、所々のSiAlON焼結体粒子が脱落していることが確認された。この結果から、SiAlON焼結体工具の摩耗の進行は、結合材の摩耗が選択的に進行し、次いでその結合材の周囲のSiAlON焼結体粒子が脱落するというように進むものと推測される。したがって、従来のSiAlON焼結体や特許文献1〜3に開示されるSiAlON焼結体工具が摩耗しやすい理由は、硬度が低い結合材が焼結体中に連続して存在することによるものと考えられる。   The present inventors have observed damage on the wear surface of a commercially available SiAlON sintered body tool. As a result, the wear of the binder part has advanced in advance, and some SiAlON sintered body particles have fallen off. Was confirmed. From this result, it is surmised that the progress of wear of the SiAlON sintered body tool proceeds such that the wear of the binder selectively proceeds, and then the SiAlON sintered body particles around the binder fall off. . Therefore, the reason why the conventional SiAlON sintered body and the SiAlON sintered body tools disclosed in Patent Documents 1 to 3 are likely to be worn is that a binder having low hardness is continuously present in the sintered body. Conceivable.

本発明者らは、上記考察に基づいて、結合材の組成および骨格構造に関し鋭意検討を重ねることにより本発明を完成した。すなわち、本発明の複合焼結体は、60体積%以上99.7体積%以下のSiAlONを含み、残部が結合材からなり、該結合材は、TiAl化合物を含み、該結合材の組織は、不連続な部分を有することを特徴とする。上記結合材は、TiSi化合物、TiN、Si34およびAl23の4種の化合物を含むことが好ましい。 Based on the above considerations, the inventors of the present invention have completed the present invention by earnestly studying the composition of the binder and the skeleton structure. That is, the composite sintered body of the present invention contains 60% by volume or more and 99.7% by volume or less of SiAlON, the balance is made of a binder, the binder contains a TiAl compound, and the structure of the binder is: It is characterized by having a discontinuous portion. The binding material preferably contains four kinds of compounds of TiSi compound, TiN, Si 3 N 4 and Al 2 O 3 .

複合焼結体に含まれる結合材のうちの、10%以上95%未満の結合材の粒子径の長径が5μm以下であることが好ましい。上記のSiAlONは、α−SiAlON、β−SiAlON、オルソ−SiAlON、およびc−SiAlONからなる群より選択される一種以上の結晶構造であることが好ましい。結合材は、TiAl化合物のみからなることが好ましい。TiAl化合物に含まれるTiの比率は、15原子%以上95原子%以下であることが好ましい。本発明は、上記の複合焼結体を切削加工または塑性加工に関与する少なくとも一部に含む複合焼結体工具でもある。   Of the binders included in the composite sintered body, the major axis of the particle diameter of the binder of 10% or more and less than 95% is preferably 5 μm or less. The SiAlON is preferably one or more crystal structures selected from the group consisting of α-SiAlON, β-SiAlON, ortho-SiAlON, and c-SiAlON. The binder is preferably made of only a TiAl compound. The ratio of Ti contained in the TiAl compound is preferably 15 atomic% or more and 95 atomic% or less. The present invention is also a composite sintered body tool that includes the above composite sintered body in at least a part involved in cutting or plastic working.

本発明の複合焼結体は、上記のような構成を有することにより、耐摩耗性および耐欠損性に優れるという効果を示す。   The composite sintered body of the present invention has an effect of being excellent in wear resistance and fracture resistance by having the above-described configuration.

<複合焼結体工具>
本発明の複合焼結体工具は、切削加工または塑性加工に関与する少なくとも一部に本発明の複合焼結体を含むものである。このような複合焼結体工具は、たとえばドリル、エンドミル、フライス加工用または旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ、またはクランクシャフトのピンミーリング加工用チップ等として極めて有用に用いることができる。本発明の複合焼結体を工具の刃先等に用いることにより、特にステンレス、インコネル、チタン等の難削材を削る場合にも、欠損が生じにくく、かつ摩耗しにくいという優れた性能を示す。本発明の複合焼結体工具は、cBN焼結体工具に比して、コストパフォーマンスに優れるだけでなく、耐摩耗性および耐欠損性にも優れたものとなる。
<Composite sintered body tool>
The composite sintered body tool of the present invention includes the composite sintered body of the present invention in at least a part involved in cutting or plastic working. Such composite sintered body tools are extremely useful as, for example, drills, end mills, milling or turning cutting edge-replaceable cutting tips, metal saws, gear cutting tools, reamers, taps, or crankshaft pin milling inserts. It can be usefully used. By using the composite sintered body of the present invention for a cutting edge of a tool or the like, it exhibits excellent performance that it is less likely to be damaged and is not easily worn even when cutting difficult-to-cut materials such as stainless steel, inconel and titanium. The composite sintered body tool of the present invention is superior not only in cost performance but also in wear resistance and fracture resistance as compared with the cBN sintered body tool.

<複合焼結体>
本発明の複合焼結体は、60体積%以上99.7体積%以下のSiAlONを含み、残部が結合材からなり、該結合材は、TiAl化合物を少なくとも含み、結合材の組織は、不連続な部分を有することを特徴とする。上記の結合材は、TiSi化合物、TiN、Si34、およびAl23の4種の化合物をさらに含むことが好ましい。ここで、「結合材の組織が不連続な部分を有する」とは、複合焼結体の断面を走査型電子顕微鏡で観察したときに、結合材が間隔を開けて配置されているか、または結合材同士の間にSiAlON粒子が存在しており、結合材同士が二次元的に見て互いに接触していない状態を意味する。このように結合材同士が不連続に配置されることにより、強度が低い結合材の摩耗が進行しにくくなり、複合焼結体の耐摩耗性を向上させることができる。
<Composite sintered body>
The composite sintered body of the present invention contains 60% by volume or more and 99.7% by volume or less of SiAlON, the balance is made of a binder, and the binder contains at least a TiAl compound, and the structure of the binder is discontinuous. It has the characteristic part. The binding material preferably further includes four types of compounds of TiSi compound, TiN, Si 3 N 4 , and Al 2 O 3 . Here, “the structure of the binder has a discontinuous portion” means that the binder is arranged at intervals or bonded when the cross section of the composite sintered body is observed with a scanning electron microscope. This means that SiAlON particles are present between the materials, and the binding materials are not in contact with each other when viewed two-dimensionally. By disposing the binders discontinuously in this manner, the wear of the binder having low strength is less likely to proceed, and the wear resistance of the composite sintered body can be improved.

<SiAlON>
本発明の複合焼結体に含まれるSiAlONは、60体積%以上99.7体積%以下であることを特徴とする。このような体積比でSiAlONを含むことにより、SiAlON粒子同士がネックグロースし、SiAlONの骨格構造が形成されて複合焼結体の硬度を高めることができる。しかも、硬度が低い結合材の組織が不連続な部分を有するものとなり、複合焼結体の靭性を向上させることができる。
<SiAlON>
SiAlON contained in the composite sintered body of the present invention is characterized by being 60 volume% or more and 99.7 volume% or less. By including SiAlON at such a volume ratio, SiAlON particles grow neck-to-neck, a SiAlON skeleton structure is formed, and the hardness of the composite sintered body can be increased. In addition, the structure of the binder having low hardness has a discontinuous portion, and the toughness of the composite sintered body can be improved.

上記のSiAlONの体積比が60体積%未満であると、摩耗し易い結合材の組織が連続することになるため、耐摩耗性が著しく低下する可能性が高い。一方、SiAlONの体積比が99.7体積%を超えると、複合焼結体の硬度そのものは向上させることができるが、複合焼結体を占める結合材の割合が少なすぎて、SiAlON粒子同士の結合力を高めることができない。なお、結合材を用いずにSiAlON粒子のみを焼結してSiAlON粒子同士を結合したとしても、その結合力が不十分であり、また仮に結合できたとしても、耐欠損性が不足するという問題がある。   When the volume ratio of SiAlON is less than 60% by volume, the structure of a binder that easily wears is continuous, so that there is a high possibility that the wear resistance is significantly reduced. On the other hand, if the volume ratio of SiAlON exceeds 99.7% by volume, the hardness of the composite sintered body itself can be improved, but the proportion of the binder occupying the composite sintered body is too small, and the SiAlON particles are not separated. The bond strength cannot be increased. In addition, even if only the SiAlON particles are sintered without using a binder and the SiAlON particles are bonded to each other, the bonding force is insufficient, and even if the bonding is possible, the defect resistance is insufficient. There is.

上記のSiAlONの結晶構造は、α−SiAlON、β−SiAlON、オルソ−SiAlON、およびc−SiAlONからなる群より選択される一種以上の結晶構造を含むものであるが、c−SiAlONの結晶構造の比率が高まるほど好ましい。これにより本発明の複合焼結体の切削性能、特に耐摩耗性を向上させることができる。   The crystal structure of the SiAlON includes one or more crystal structures selected from the group consisting of α-SiAlON, β-SiAlON, ortho-SiAlON, and c-SiAlON. The higher it is, the better. Thereby, the cutting performance of the composite sintered body of the present invention, particularly the wear resistance, can be improved.

<結合材>
本発明において、複合焼結体に含まれる結合材は、TiAl化合物を少なくとも含み、結合材の組織は、不連続な部分を有することを特徴とする。上記の結合材は、TiSi化合物、TiN、Si34、およびAl23の4種の化合物をさらに含むことが好ましい。本発明のようにTiAl化合物を含む複合焼結体は、SiAlON粒子のみからなる複合焼結体に比して、格段に耐摩耗性および耐欠損性が優れたものとなる。ここで、「TiAl化合物」とは、TiAl3、Ti3Al、TiAl等のTiAl合金やTiAlの窒化物等を意味し、「TiSi化合物」とは、TiSi2、TiSi等のTiSi合金やTiSiの窒化物等を意味する。このように性能を向上し得る要因としては、TiAl化合物を含む結合材がSiAlON粒子同士の結合力を高める役割を果たすだけでなく、靭性に優れたものであり、かつSiAlON粒子同士のネックグロースを促進する効果も発揮されることによるものと考えられる。従来のようにY23からなる結合材を用いても、上記のような耐摩耗性および耐欠損性を顕著に向上させる効果を得ることはできない。これは、TiAl化合物に含まれるTiおよびAl、ならびにTiSi化合物に含まれるTiおよびSiがいずれもSiAlONと親和性が高く、特にTiがSiAlONと親和性が高いが、このTiがAlまたはSiと共存することによりSiAlON粒子間で相互拡散を促進し、その結合力を高めると考えられるからである。したがって、上記のTiAl化合物に含まれるTiの比率は、15原子%以上95原子%以下であることが好ましい。Tiの原子比が15原子%未満であると、拡散が生じにくくなるため好ましくなく、95原子%を超えると、Alが少ないことによりAlによるTiAl化合物とSiAlON粒子との相互拡散促進作用が低下するため好ましくない。
<Binder>
In the present invention, the binder contained in the composite sintered body contains at least a TiAl compound, and the structure of the binder has a discontinuous portion. The binding material preferably further includes four types of compounds of TiSi compound, TiN, Si 3 N 4 , and Al 2 O 3 . A composite sintered body containing a TiAl compound as in the present invention has much more excellent wear resistance and fracture resistance than a composite sintered body made of only SiAlON particles. Here, the “TiAl compound” means a TiAl alloy such as TiAl 3 , Ti 3 Al, or TiAl, a nitride of TiAl, or the like, and the “TiSi compound” means a TiSi alloy such as TiSi 2 or TiSi, or TiSi. Means nitride and the like. As a factor that can improve the performance in this way, the binder containing the TiAl compound not only plays a role of increasing the bonding force between the SiAlON particles, but also has excellent toughness, and the neck growth between the SiAlON particles. This is considered to be due to the fact that the promoting effect is also exhibited. Even if a binder made of Y 2 O 3 is used as in the prior art, the effect of remarkably improving the wear resistance and fracture resistance as described above cannot be obtained. This is because Ti and Al contained in the TiAl compound, and Ti and Si contained in the TiSi compound are both highly compatible with SiAlON, especially Ti is highly compatible with SiAlON, but this Ti coexists with Al or Si. This is because it is considered that the interdiffusion between SiAlON particles is promoted to increase the bonding force. Therefore, the ratio of Ti contained in the TiAl compound is preferably 15 atomic% or more and 95 atomic% or less. When the atomic ratio of Ti is less than 15 atomic%, diffusion is difficult to occur, which is not preferable. When it exceeds 95 atomic%, the interdiffusion promoting action between the TiAl compound and the SiAlON particles due to Al decreases due to the small amount of Al. Therefore, it is not preferable.

ここで、上記のTiAl化合物、TiSi化合物、TiN、Si34およびAl23の化合物は、結合材の総量に対し、50体積%以上で含まれることが好ましい。本発明においては、結合材の残部に周期律表のIVa族元素、Va族元素、VIa族元素の遷移金属元素や、Al、Si、B、Co、Ni、C、N、O、および不可避不純物を含んでいてもよい。 Here, the TiAl compound, TiSi compound, TiN, Si 3 N 4 and Al 2 O 3 compound are preferably contained in an amount of 50% by volume or more based on the total amount of the binder. In the present invention, the remainder of the binder is a group IVa element, a group Va element, a group VIa element transition metal element, Al, Si, B, Co, Ni, C, N, O, and inevitable impurities in the periodic table. May be included.

また、複合焼結体に含まれる結合材のうちの、10%以上95%未満の結合材の粒子径の長径が5μm以下であることが好ましく、より好ましくは20%以上90%以下の結合材の粒子径の長径が5μm以下である。ここで、「結合材の粒子径の長径」とは、複合焼結体の断面を走査型電子顕微鏡で観察した際の結合材粒子が包含される仮想の円の直径のことである。   Further, of the binders included in the composite sintered body, the major axis of the particle diameter of 10% or more and less than 95% of the binder is preferably 5 μm or less, more preferably 20% or more and 90% or less. The major axis of the particle diameter is 5 μm or less. Here, the “major axis of the particle diameter of the binder” is the diameter of a virtual circle in which the binder particles are included when the cross section of the composite sintered body is observed with a scanning electron microscope.

このような比率で粒子径の長径が5μm以下の結合材を含むことにより、SiAlON粒子充填時の粒界の接触面積が増加し、結合力を顕著に高めることができ、また亀裂発生機構の異なる微粒子および粗粒子からなるSiAlON粒子、ならびに結合材粒子を混合した組織となることにより、亀裂伝播抵抗を高めることもできる。粒子径の長径が5μmを超える結合材が、10%未満または95%以上であると、上記の亀裂伝播抵抗の改善効果が少なくなる。   By including a binder having a major axis of particle size of 5 μm or less at such a ratio, the contact area of the grain boundary at the time of filling the SiAlON particles can be increased, the bonding force can be remarkably increased, and the crack generation mechanism is different. Crack propagation resistance can also be increased by forming a structure in which SiAlON particles composed of fine particles and coarse particles, and binder particles are mixed. When the length of the particle diameter exceeds 5 μm, the effect of improving the crack propagation resistance is reduced when the binder is less than 10% or 95% or more.

<製造方法>
本発明の複合焼結体の製造方法としては、まず、SiAlON粒子とTiAl粒子とを超硬合金製ボールに入れて配合してボールミル混合することにより混合粉末を準備する。ここで、SiAlON粒子は、レーザー回析・散乱式粒度分布測定装置で測定した平均粒子径(D50)が1〜10μmのものを用いることが好ましく、TiAl粒子は、平均粒子径(D50)が0.1〜10μmのものを用いることが好ましい。なお、上記のSiAlON粒子およびTiAl粒子は、後述する焼結により、互いに結合することや、溶解および溶浸することもあるため、その粒子径は大きくなることも小さくなることもある。
<Manufacturing method>
As a method for producing a composite sintered body of the present invention, first, mixed powder is prepared by putting SiAlON particles and TiAl particles in a cemented carbide ball and mixing them and ball mill mixing. Here, it is preferable to use SiAlON particles having an average particle diameter (D50) of 1 to 10 μm measured with a laser diffraction / scattering type particle size distribution measuring device, and TiAl particles have an average particle diameter (D50) of 0. It is preferable to use one having a thickness of 1 to 10 μm. The SiAlON particles and TiAl particles described above may be bonded to each other or dissolved and infiltrated by sintering, which will be described later. Therefore, the particle diameter may be increased or decreased.

次に、上記の混合粉末を超硬合金等の高融点の容器に充填し、3〜5GPaの圧力に加圧した上で、1200℃〜1700℃の温度で、1〜120分間焼結を行なうことにより複合焼結体を作製することが好ましい。なお、上記のような製造方法以外にも、たとえばSiAlON粉末を層状にしてその上にTi、Al、もしくはTiAl化合物からなる金属板を重ね合わせて、TiAl融液を溶浸させながら焼結することにより、複合焼結体を作製しても差し支えない。TiAl化合物が結合材の総量に対し、50体積%を超える場合は、1400℃未満で焼結することにより、複合焼結体の耐欠損性を高めることができる。一方、結合材が、TiAl化合物、TiSi化合物、TiN、Si34、およびAl23からなる場合は、1400℃以上で焼結することにより、耐摩耗性および耐欠損性のバランスに優れたものとなる。 Next, the mixed powder is filled in a high melting point container such as a cemented carbide and pressed to a pressure of 3 to 5 GPa, and then sintered at a temperature of 1200 ° C. to 1700 ° C. for 1 to 120 minutes. Thus, it is preferable to produce a composite sintered body. In addition to the manufacturing method as described above, for example, SiAlON powder is layered, and a metal plate made of Ti, Al, or TiAl compound is stacked thereon and sintered while infiltrating the TiAl melt. Thus, a composite sintered body can be produced. When the TiAl compound exceeds 50% by volume with respect to the total amount of the binder, the fracture resistance of the composite sintered body can be increased by sintering at less than 1400 ° C. On the other hand, when the binder is made of TiAl compound, TiSi compound, TiN, Si 3 N 4 , and Al 2 O 3 , it is excellent in the balance of wear resistance and fracture resistance by sintering at 1400 ° C. or higher. It will be.

以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.

<実施例1〜5および比較例1〜2>
まず、一次粒子の長径の平均粒子径が5μmであるβ−SiAlONと、長径の平均粒子径が5μmのTiAl粒子(Ti−50原子%Al)とを、表1の「SiAlON体積比」に示す配合比で超硬合金製ボールに入れてボールミル混合することにより混合粉末を得た。次に、上記混合粉末を超硬合金製容器に充填し、圧力6.0GPa、温度1390℃で30分間焼結することにより、実施例1〜5および比較例1〜2の複合焼結体をそれぞれ3個ずつ作製した。
<Examples 1-5 and Comparative Examples 1-2>
First, β-SiAlON in which the average particle diameter of primary particles is 5 μm and TiAl particles (Ti-50 atomic% Al) having an average particle diameter of 5 μm are shown in “SiAlON volume ratio” in Table 1. A mixed powder was obtained by ball mill mixing in a cemented carbide ball at a blending ratio. Next, the above mixed powder is filled into a cemented carbide container and sintered at a pressure of 6.0 GPa and a temperature of 1390 ° C. for 30 minutes, whereby the composite sintered bodies of Examples 1 to 5 and Comparative Examples 1 and 2 are obtained. Three each were prepared.

実施例1〜5および比較例1〜2の複合焼結体に対し、EDS分析を行なったところ、いずれの試料においてもSiAlONに加えて、TiAl化合物、ならびに微量のW、Si、Al、Ti、Coとの反応生成物等を同定した。   When the EDS analysis was performed on the composite sintered bodies of Examples 1 to 5 and Comparative Examples 1 and 2, in each sample, in addition to SiAlON, a TiAl compound and a trace amount of W, Si, Al, Ti, A reaction product with Co was identified.

実施例1〜5および比較例1〜2の複合焼結体を研磨し、その研磨面を走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いて観察し、それに付属の波長分散型X線分析(EPMA:Electron Probe Micro-Analysis)を用いて、複合焼結体の断面中におけるSiAlONと結合材成分の同定を行ない、5000倍の視野の反射電子像において、結合材成分が連なって存在している場合には、表1の「結合材組織」の欄に「連続」と記し、結合材成分がSiAlONによって分断されている場合には、表1の「結合材組織」の欄に「不連続」と記した。   The composite sintered bodies of Examples 1 to 5 and Comparative Examples 1 and 2 were polished, and the polished surface was observed using a scanning electron microscope (SEM), and wavelength dispersion X-ray analysis attached thereto. (EPMA: Electron Probe Micro-Analysis) is used to identify the SiAlON and binder component in the cross section of the composite sintered body. In the reflected electron image with a field of view of 5000 times, the binder component exists continuously. If the binder component is divided by SiAlON, “Discontinuous” appears in the “Binder texture” column of Table 1. "

次いで、結合材粒子を100点以上包含する領域の反射電子像について、画像処理によってSiAlONの面積比率の百分率を算出した。その結果、上記の各原材料の配合比と、最終的に得られる複合焼結体を構成する各組成の体積比とは同一とみなし得た。なお、結合材の体積比は、表1中に記載していないが、SiAlONを除く部分に相当し、100体積%から上記のSiAlONの体積比を引いた値となる。   Next, the percentage of the area ratio of SiAlON was calculated by image processing for the backscattered electron image of a region including 100 or more binder particles. As a result, the blending ratio of the above raw materials and the volume ratio of the respective compositions constituting the finally obtained composite sintered body could be regarded as the same. Although the volume ratio of the binder is not described in Table 1, it corresponds to a portion excluding SiAlON, and is a value obtained by subtracting the volume ratio of SiAlON from 100 volume%.

<比較例3〜6>
比較例3〜6には、以下の焼結体を用いた。
比較例3:Y23結合材を用いた市販のSiAlONセラミックス
比較例4:TiN結合材を用いた市販のcBN焼結体
比較例5:Co結合材を用いた市販のcBN焼結体
比較例6:市販の超硬合金
実施例1〜5および比較例1〜6の複合焼結体に対し、ビッカース硬度を測定し、その結果を表1の「硬度」の欄に示した。また、実施例1〜5および比較例1〜6の複合焼結体に対し、破壊靱性値(インデンテーション法)を測定し、その結果を表1の「破壊靱性値」に示した。
<Comparative Examples 3-6>
For Comparative Examples 3 to 6, the following sintered bodies were used.
Comparative example 3: Commercial SiAlON ceramics using Y 2 O 3 binder Comparative example 4: Commercial cBN sintered body using TiN binder Comparative example 5: Commercial cBN sintered body comparison using Co binder Example 6: Commercially available cemented carbide Vickers hardness was measured for the composite sintered bodies of Examples 1 to 5 and Comparative Examples 1 to 6, and the results are shown in the "Hardness" column of Table 1. Further, fracture toughness values (indentation method) were measured for the composite sintered bodies of Examples 1 to 5 and Comparative Examples 1 to 6, and the results are shown in “Fracture toughness values” in Table 1.

<切削試験>
実施例1〜5および比較例1〜6の複合焼結体を切削に関与する部分に備える切削チップを作製した。このチップ形状は、ISO型番でCNGA120408に分類され、刃先処理を−25°の角度で、幅0.15mmのチャンファー形状とし、切刃傾き角、横すくい角、前逃げ角、横逃げ角、前切刃角、横切刃角がそれぞれ、−5、−5、5、5、5、−5となるようにホルダーに取り付けた。
<Cutting test>
Cutting chips provided with the composite sintered bodies of Examples 1 to 5 and Comparative Examples 1 to 6 in portions involved in cutting were produced. This chip shape is classified as CNGA120408 by ISO model number, and the cutting edge processing is a chamfer shape with an angle of -25 ° and a width of 0.15 mm, the cutting edge inclination angle, the side rake angle, the front clearance angle, the side clearance angle, The front cutting edge angle and the side cutting edge angle were attached to the holder so as to be -5, -5, 5, 5, 5, and -5, respectively.

実施例1〜5および比較例1〜6の複合焼結体を備える切削工具を用いて、以下の切削条件で連続切削を行なうことにより、複合焼結体工具の工具寿命を評価した。
被 削 材:インコネル718の丸棒の外径加工
被削材硬度:HRC20
切削速度:V=200m/min
切り込み:d=0.3mm
送り速度:f=0.12mm/rev
クーラント:エマルジョン20倍希釈
工具寿命は、複合焼結体工具の逃げ面の最大摩耗量(VBmax)が0.2mmとなるまでの切削距離(km)によって評価し、最大摩耗量(VBmax)が0.2mmとなるまでに欠損が生じた場合は、その欠損が生じるまでの切削距離によって評価した。その結果を表1の「工具寿命」の欄に示す。なお、工具寿命が長いほど、複合焼結体工具の耐摩耗性および耐欠損性が優れることを示している。
Using the cutting tool provided with the composite sintered bodies of Examples 1 to 5 and Comparative Examples 1 to 6, the tool life of the composite sintered tool was evaluated by performing continuous cutting under the following cutting conditions.
Work Material: Outer Diameter Machining of Inconel 718 Round Work Material Hardness: HRC20
Cutting speed: V = 200 m / min
Cutting depth: d = 0.3mm
Feeding speed: f = 0.12mm / rev
Coolant: Emulsion diluted 20 times The tool life is evaluated by the cutting distance (km) until the maximum wear amount (VB max ) of the flank face of the composite sintered tool reaches 0.2 mm, and the maximum wear amount (VB max ) In the case where a defect occurred before the thickness became 0.2 mm, the evaluation was performed based on the cutting distance until the defect occurred. The result is shown in the column of “tool life” in Table 1. Note that the longer the tool life, the better the wear resistance and fracture resistance of the composite sintered tool.

Figure 2013053022
Figure 2013053022

表1に示される結果から、各実施例の複合焼結体工具は、各比較例のそれに比して、工具寿命が長いことが明らかである。この結果から、各実施例の複合焼結体工具は、各比較例のそれに比し、耐摩耗性および耐欠損性に優れたものであると言える。このように各実施例の複合焼結体工具の耐摩耗性および耐欠損性が向上したのは、本発明の結合材の組織が、不連続な部分を有することによるものと考えられる。   From the results shown in Table 1, it is clear that the composite sintered tool of each example has a longer tool life than that of each comparative example. From this result, it can be said that the composite sintered body tool of each example is excellent in wear resistance and fracture resistance as compared with that in each comparative example. Thus, it is thought that the abrasion resistance and fracture resistance of the composite sintered body tool of each example were improved because the structure of the binder of the present invention had discontinuous portions.

一方、比較例1の複合焼結体工具は、結合材の組織が連続していたため、欠損が生じやすかったものと考えられ、比較例2の複合焼結体工具は、SiAlON粒子の含有量が多すぎたため、結合材の触媒としての促進作用が得られなかったものと考えられる。   On the other hand, the composite sintered body tool of Comparative Example 1 was considered to be easily damaged because the binder structure was continuous. The composite sintered body tool of Comparative Example 2 had a content of SiAlON particles. It is considered that the promoting action of the binder as a catalyst was not obtained because of too much.

<実施例6〜12>
まず、1μmと、5μmとの2種類の長径の平均粒子径のβ−SiAlONを表2の「1μm/5μm」の欄に示す配合比で超硬合金製ボールに入れて混合した。さらに、長径の平均粒子径が5μmのTiAl粒子(Ti−25原子%Al)を、TiAl粒子(Ti−25原子%Al)の体積比が9体積%となる配合比で超硬合金製ボールに入れてボールミル混合することにより混合粉末を得た。次に、上記の混合粉末を超硬合金製容器に充填し、圧力6.0GPa、温度1700℃で30分間焼結することにより、実施例6〜12の複合焼結体をそれぞれ3個ずつ作製した。
<Examples 6 to 12>
First, β-SiAlON having an average particle diameter of two kinds of major diameters of 1 μm and 5 μm was mixed in a cemented carbide ball at a blending ratio shown in the column “1 μm / 5 μm” in Table 2. Furthermore, TiAl particles (Ti-25 atomic% Al) having a long average particle diameter of 5 μm are formed into cemented carbide balls with a mixing ratio of 9% by volume of TiAl particles (Ti-25 atomic% Al). The mixed powder was obtained by mixing and ball milling. Next, the above mixed powder is filled into a cemented carbide container and sintered at a pressure of 6.0 GPa and a temperature of 1700 ° C. for 30 minutes, thereby producing three composite sintered bodies of Examples 6 to 12, respectively. did.

実施例6〜12の複合焼結体に対し、EDS分析を行なったところ、いずれの試料においてもSiAlONに加えて、TiAl化合物、TiSi化合物、TiN、Si34およびAl23ならびに微量のAl、Si、Ti、W、Coとの反応生成物等を同定した。 When the EDS analysis was performed on the composite sintered bodies of Examples 6 to 12, in addition to SiAlON, TiAl compound, TiSi compound, TiN, Si 3 N 4 and Al 2 O 3 and a trace amount were added in any sample. Reaction products with Al, Si, Ti, W, Co and the like were identified.

実施例6〜12の複合焼結体を研磨し、該研磨面に対し実施例1〜5と同様の方法により、結合材組織の骨格構造を調べたところ、結合材は全て不連続に分布していることが明らかとなった。さらに、複合焼結体中のSiAlONの体積比の百分率を算出したところ、90体積%であることが明らかとなった。また、100点以上の結合材粒子の粒子径を測定し、そのうちの長径が5μm以下となる結合材粒子の割合の百分率を算出し、表2の「長径が5μm以下の結合材の割合」の欄に示した。   The composite sintered bodies of Examples 6 to 12 were polished, and the skeleton structure of the binder structure was examined on the polished surface by the same method as in Examples 1 to 5. As a result, all the binders were distributed discontinuously. It became clear that. Furthermore, when the percentage of the volume ratio of SiAlON in the composite sintered body was calculated, it was revealed that it was 90% by volume. Further, the particle diameter of the binder particles of 100 points or more was measured, and the percentage of the binder particles having a major axis of 5 μm or less was calculated, and the “ratio of the binder having a major axis of 5 μm or less” in Table 2 Shown in the column.

<比較例7〜9>
比較例7〜9には、以下の焼結体を用いた。
比較例7:Y23結合材を用いた市販のSiAlONセラミックス
比較例8:TiN結合材を用いた市販のcBN焼結体
比較例9:Co結合材を用いた市販のcBN焼結体
実施例6〜12および比較例7〜9の複合焼結体に対し、ビッカース硬度を測定し、その結果を表2の「硬度」の欄に示した。また、実施例6〜12および比較例7〜9の複合焼結体に対し、破壊靱性値(インデンテーション法)を測定し、その結果を表2の「破壊靱性値」に示した。
<Comparative Examples 7-9>
For Comparative Examples 7 to 9, the following sintered bodies were used.
Comparative Example 7: Commercial SiAlON ceramics using Y 2 O 3 binder Comparative Example 8: Commercial cBN sintered body using TiN binder Comparative Example 9: Commercial cBN sintered body using Co binder Vickers hardness was measured for the composite sintered bodies of Examples 6-12 and Comparative Examples 7-9, and the results are shown in the column of “Hardness” in Table 2. Further, fracture toughness values (indentation method) were measured for the composite sintered bodies of Examples 6 to 12 and Comparative Examples 7 to 9, and the results are shown in “Fracture toughness value” in Table 2.

<切削試験>
実施例4、6〜12および比較例7〜9の複合焼結体を切削に関与する部分に備える切削チップを作製した。このチップ形状は、ISO型番でCNGA120408に分類され、刃先処理を−25°の角度で、幅0.15mmのチャンファー形状とし、切刃傾き角、横すくい角、前逃げ角、横逃げ角、前切刃角、横切刃角がそれぞれ、−5、−5、5、5、5、−5となるようにホルダーに取り付けた。
<Cutting test>
Cutting tips provided with the composite sintered bodies of Examples 4 and 6 to 12 and Comparative Examples 7 to 9 at portions involved in cutting were produced. This chip shape is classified as CNGA120408 by ISO model number, and the cutting edge processing is a chamfer shape with an angle of -25 ° and a width of 0.15 mm, the cutting edge inclination angle, the side rake angle, the front clearance angle, the side clearance angle, The front cutting edge angle and the side cutting edge angle were attached to the holder so as to be -5, -5, 5, 5, 5, and -5, respectively.

実施例4、6〜12および比較例7〜9の複合焼結体を備える切削工具を用いて、以下の切削条件で連続切削を行なうことにより、複合焼結体工具の工具寿命を評価した。
被 削 材:インコネル718の丸棒の外径加工
被削材硬度:HRC40
切削速度:V=400m/min
切り込み:d=0.2mm
送り速度:f=0.06mm/rev
クーラント:エマルジョン20倍希釈
工具寿命は、複合焼結体工具の逃げ面の最大摩耗量(VBmax)が0.2mmとなるまでの切削距離(km)によって評価し、最大摩耗量(VBmax)が0.2mmとなるまでに欠損が生じた場合は、その欠損が生じるまでの切削距離によって評価した。その結果を表2の「工具寿命」の欄に示す。なお、工具寿命が長いほど、複合焼結体工具の耐摩耗性および耐欠損性が優れることを示している。
Using the cutting tools provided with the composite sintered bodies of Examples 4, 6-12 and Comparative Examples 7-9, the tool life of the composite sintered tool was evaluated by performing continuous cutting under the following cutting conditions.
Work material: Outside diameter machining of Inconel 718 round bar Work material hardness: HRC40
Cutting speed: V = 400 m / min
Cutting depth: d = 0.2mm
Feeding speed: f = 0.06mm / rev
Coolant: Emulsion diluted 20 times The tool life is evaluated by the cutting distance (km) until the maximum wear amount (VB max ) of the flank face of the composite sintered tool reaches 0.2 mm, and the maximum wear amount (VB max ) In the case where a defect occurred before the thickness became 0.2 mm, the evaluation was performed based on the cutting distance until the defect occurred. The result is shown in the column of “Tool life” in Table 2. Note that the longer the tool life, the better the wear resistance and fracture resistance of the composite sintered tool.

Figure 2013053022
Figure 2013053022

表2に示される結果から、実施例4、6〜12の複合焼結体は、比較例7〜9のそれに比して、工具寿命が長いことが明らかである。この結果から、実施例4、6〜12の複合焼結体は、比較例7〜9のそれに比し、耐摩耗性および耐欠損性に優れたものであると言える。このように実施例4、6〜12の複合焼結体の耐摩耗性および耐欠損性が向上したのは、本発明の結合材の組織が、不連続な部分を有することによるものと考えられる。   From the results shown in Table 2, it is clear that the composite sintered bodies of Examples 4 and 6 to 12 have a longer tool life than those of Comparative Examples 7 to 9. From this result, it can be said that the composite sintered bodies of Examples 4 and 6 to 12 are superior in wear resistance and fracture resistance to those of Comparative Examples 7 to 9. Thus, it was thought that the abrasion resistance and fracture resistance of the composite sintered bodies of Examples 4 and 6 to 12 were improved because the structure of the binder of the present invention had discontinuous portions. .

特に、実施例8〜10の複合焼結体においては、複合焼結体に含まれる結合材のうちの、10%以上95%未満の結合材の粒子径の長径が5μm以下であるため、耐摩耗性および耐欠損性の向上が顕著であった。また、実施例4は、1400℃以下の温度(1390℃)で焼結したため、複合焼結体の耐欠損性が高かった。一方、実施例6〜12は、1400℃以上の温度(1700℃)で焼結したため、複合焼結体の耐摩耗性および耐欠損性のバランスに優れていた。   In particular, in the composite sintered bodies of Examples 8 to 10, the major axis of the particle diameter of the binder of 10% or more and less than 95% of the binders included in the composite sintered body is 5 μm or less. The improvement in wear and fracture resistance was remarkable. Further, since Example 4 was sintered at a temperature of 1400 ° C. or lower (1390 ° C.), the fracture resistance of the composite sintered body was high. On the other hand, since Examples 6 to 12 were sintered at a temperature of 1400 ° C. or higher (1700 ° C.), the composite sintered body was excellent in the balance of wear resistance and fracture resistance.

以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。   Although the embodiments and examples of the present invention have been described as described above, it is also planned from the beginning to appropriately combine the configurations of the above-described embodiments and examples.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (6)

60体積%以上99.7体積%以下のSiAlONを含み、残部が結合材からなり、
前記結合材は、TiAl化合物を含み、
前記結合材の組織は、不連続な部分を有する、複合焼結体。
Containing 60% by volume or more and 99.7% by volume or less of SiAlON, the balance being made of a binder,
The binder includes a TiAl compound,
The composite sintered body has a discontinuous portion in the structure of the binder.
前記結合材は、TiSi化合物、TiN、Si34、およびAl23をさらに含む、請求項1に記載の複合焼結体。 The composite sintered body according to claim 1, wherein the binder further includes a TiSi compound, TiN, Si 3 N 4 , and Al 2 O 3 . 前記複合焼結体に含まれる前記結合材のうちの、10%以上95%未満の結合材の粒子径の長径が5μm以下である、請求項1または2に記載の複合焼結体。   3. The composite sintered body according to claim 1, wherein a major axis of a particle diameter of a binder of 10% or more and less than 95% of the binder contained in the composite sintered body is 5 μm or less. 前記SiAlONは、α−SiAlON、β−SiAlON、オルソ−SiAlON、およびc−SiAlONからなる群より選択される一種以上の結晶構造である、請求項1〜3のいずれかに記載の複合焼結体。   The composite sintered body according to any one of claims 1 to 3, wherein the SiAlON has one or more crystal structures selected from the group consisting of α-SiAlON, β-SiAlON, ortho-SiAlON, and c-SiAlON. . 前記TiAl化合物に含まれるTiの比率は、15原子%以上95原子%以下である、請求項1〜4のいずれかに記載の複合焼結体。   The composite sintered body according to any one of claims 1 to 4, wherein a ratio of Ti contained in the TiAl compound is 15 atomic percent or more and 95 atomic percent or less. 請求項1〜5のいずれかに記載の複合焼結体を切削加工または塑性加工に関与する少なくとも一部に含む、複合焼結体工具。   A composite sintered body tool comprising the composite sintered body according to any one of claims 1 to 5 in at least a part involved in cutting or plastic working.
JP2011190642A 2011-09-01 2011-09-01 Composite sintered body and composite sintered body tool using the same Withdrawn JP2013053022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011190642A JP2013053022A (en) 2011-09-01 2011-09-01 Composite sintered body and composite sintered body tool using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011190642A JP2013053022A (en) 2011-09-01 2011-09-01 Composite sintered body and composite sintered body tool using the same

Publications (1)

Publication Number Publication Date
JP2013053022A true JP2013053022A (en) 2013-03-21

Family

ID=48130371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011190642A Withdrawn JP2013053022A (en) 2011-09-01 2011-09-01 Composite sintered body and composite sintered body tool using the same

Country Status (1)

Country Link
JP (1) JP2013053022A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031714A1 (en) * 2014-08-29 2016-03-03 住友電気工業株式会社 Sintered body, tool using sintered body, and sintered body production method
CN108610057A (en) * 2018-04-09 2018-10-02 中国科学院兰州化学物理研究所 It is a kind of width temperature range antifriction antiwear have both grand based composites of match of high-ductility and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031714A1 (en) * 2014-08-29 2016-03-03 住友電気工業株式会社 Sintered body, tool using sintered body, and sintered body production method
CN106795059A (en) * 2014-08-29 2017-05-31 住友电气工业株式会社 Agglomerated material, the instrument comprising agglomerated material and agglomerated material manufacture method
JPWO2016031714A1 (en) * 2014-08-29 2017-07-06 住友電気工業株式会社 Sintered body, tool using the sintered body, and method for manufacturing the sintered body
EP3187476A4 (en) * 2014-08-29 2018-03-07 Sumitomo Electric Industries, Ltd. Sintered body, tool using sintered body, and sintered body production method
US10029948B2 (en) 2014-08-29 2018-07-24 Sumitomo Electric Industries, Ltd. Sintered material, tool including sintered material, and sintered material production method
US10501377B2 (en) 2014-08-29 2019-12-10 Sumitomo Electric Industries, Ltd. Sintered material, tool including sintered material, and sintered material production method
CN108610057A (en) * 2018-04-09 2018-10-02 中国科学院兰州化学物理研究所 It is a kind of width temperature range antifriction antiwear have both grand based composites of match of high-ductility and preparation method thereof

Similar Documents

Publication Publication Date Title
CA2792533C (en) Tool made of cubic boron nitride sintered body
JP5732663B2 (en) Cubic boron nitride sintered tool
JP5909607B1 (en) Cubic boron nitride sintered body and cutting tool
JP2011189421A (en) Cubic system boron nitride sintered body tool
JP5499718B2 (en) Sintered body and cutting tool using the sintered body
JP5880598B2 (en) Sintered body and cutting tool using the sintered body
JP2010234519A (en) Cermet and coated cermet
JP6206695B1 (en) tool
JP5811954B2 (en) Substrate for cutting tool made of cemented carbide and surface-coated cutting tool using the same
KR20190073370A (en) Composite sintered body
JP2013053022A (en) Composite sintered body and composite sintered body tool using the same
JP5504519B2 (en) Composite sintered body
JP5725441B2 (en) Cubic boron nitride sintered tool
JP2011207689A (en) Composite sintered compact
JP5499717B2 (en) Sintered body and cutting tool using the sintered body
JP6491232B2 (en) cBN sintered body and cutting tool
JP6066365B2 (en) Cemented carbide and cutting tools
JP2013053023A (en) Composite sintered body and composite sintered body tool using the same
JP2013053026A (en) Composite sintered body and composite sintered body tool using the same
JP2011207690A (en) Composite sintered compact
JP2013082593A (en) Composite sintered compact and composite sintered compact tool therewith
JP2013053024A (en) Composite sintered body and composite sintered body tool using the same
JP2013053025A (en) Composite sintered body and composite sintered body tool using the same
JP5234359B2 (en) CBN sintered compact tool for high precision cutting
JP5804111B2 (en) Sintered body and cutting tool using the sintered body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104