JPWO2016017533A1 - 識別装置および識別方法 - Google Patents
識別装置および識別方法 Download PDFInfo
- Publication number
- JPWO2016017533A1 JPWO2016017533A1 JP2016538314A JP2016538314A JPWO2016017533A1 JP WO2016017533 A1 JPWO2016017533 A1 JP WO2016017533A1 JP 2016538314 A JP2016538314 A JP 2016538314A JP 2016538314 A JP2016538314 A JP 2016538314A JP WO2016017533 A1 JPWO2016017533 A1 JP WO2016017533A1
- Authority
- JP
- Japan
- Prior art keywords
- feature amount
- image
- optical thickness
- thickness distribution
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000000605 extraction Methods 0.000 claims abstract description 82
- 238000010801 machine learning Methods 0.000 claims abstract description 37
- 239000000284 extract Substances 0.000 claims abstract description 22
- 210000004027 cell Anatomy 0.000 claims description 108
- 230000003287 optical effect Effects 0.000 claims description 93
- 210000000265 leukocyte Anatomy 0.000 claims description 48
- 206010028980 Neoplasm Diseases 0.000 claims description 34
- 201000011510 cancer Diseases 0.000 claims description 33
- 239000003219 hemolytic agent Substances 0.000 claims description 13
- 238000010586 diagram Methods 0.000 description 20
- 210000003855 cell nucleus Anatomy 0.000 description 7
- 208000005443 Circulating Neoplastic Cells Diseases 0.000 description 6
- 210000000805 cytoplasm Anatomy 0.000 description 6
- 210000000170 cell membrane Anatomy 0.000 description 5
- 101100433753 Arabidopsis thaliana ABCG2 gene Proteins 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 101100377801 Arabidopsis thaliana ABCG1 gene Proteins 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 201000005787 hematologic cancer Diseases 0.000 description 2
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000003909 pattern recognition Methods 0.000 description 2
- 210000005259 peripheral blood Anatomy 0.000 description 2
- 239000011886 peripheral blood Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 101150042537 dld1 gene Proteins 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1429—Signal processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0205—Investigating particle size or size distribution by optical means
- G01N15/0227—Investigating particle size or size distribution by optical means using imaging; using holography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1429—Signal processing
- G01N15/1433—Signal processing using image recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
- G06T7/0014—Biomedical image inspection using an image reference approach
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/69—Microscopic objects, e.g. biological cells or cellular parts
- G06V20/698—Matching; Classification
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/01—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
- G01N2015/016—White blood cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0205—Investigating particle size or size distribution by optical means
- G01N2015/025—Methods for single or grouped particles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/1012—Calibrating particle analysers; References therefor
- G01N2015/1014—Constitution of reference particles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N2015/1493—Particle size
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30024—Cell structures in vitro; Tissue sections in vitro
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dispersion Chemistry (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Signal Processing (AREA)
- Theoretical Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Quality & Reliability (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (10)
- 対象物の光学的厚み分布の画像の特徴量を抽出する特徴量抽出部と、
種別が既知である既知対象物の光学的厚み分布の画像について前記特徴量抽出部により抽出された特徴量に基づいて機械学習を行った学習結果を記憶する記憶部と、
前記記憶部により記憶されている学習結果を用いて、種別が未知である未知対象物の光学的厚み分布の画像について前記特徴量抽出部により抽出された特徴量に基づいて未知対象物の種別を判定する識別部と、
を備え、
未知対象物の光学的厚み分布の画像の特徴量を抽出する際、または、未知対象物の種別を判定する際に、前記記憶部により記憶されている学習結果を用いるとともに、
前記特徴量抽出部が、光学的厚み分布の画像内の位置における光学的厚みの空間的変化量に関する情報を該画像の特徴量として抽出する、
識別装置。 - 既知対象物の光学的厚み分布の画像について前記特徴量抽出部により抽出された特徴量に基づいて機械学習を行う学習部を更に備え、
前記記憶部が、前記学習部による機械学習の学習結果を記憶する、
請求項1に記載の識別装置。 - 前記特徴量抽出部は、前記記憶部により記憶されている学習結果を用いて、前記未知対象物の光学的厚み分布の画像内において前記特徴量を抽出する領域を少なくとも1つ設定する、請求項1または2に記載の識別装置。
- 前記光学的厚みの空間的変化量に関する情報は、前記光学的厚み分布の画像内の位置におけるベクトルの勾配強度および勾配方向の双方または何れか一方である、請求項1〜3の何れか一項に記載の識別装置。
- 種別が未知である未知対象物の光学的厚み分布の画像の特徴量を特徴量抽出部により抽出する第1特徴量抽出ステップと、
種別が既知である既知対象物の光学的厚み分布の画像について前記特徴量抽出部により抽出された特徴量に基づいて機械学習を行って記憶部により記憶された当該学習結果を用いて、前記第1特徴量抽出ステップにおいて抽出された特徴量に基づいて未知対象物の種別を判定する識別ステップと、
を備え、
未知対象物の光学的厚み分布の画像の特徴量を抽出する際、または、未知対象物の種別を判定する際に、前記記憶部により記憶されている学習結果を用いるとともに、
前記特徴量抽出部により、光学的厚み分布の画像内の位置における光学的厚みの空間的変化量に関する情報を該画像の特徴量として抽出する、
識別方法。 - 既知対象物の光学的厚み分布の画像の特徴量を前記特徴量抽出部により抽出する第2特徴量抽出ステップと、
前記第2特徴量抽出ステップにおいて抽出された特徴量に基づいて機械学習を行い、その学習結果を前記記憶部に記憶させる学習ステップと、
を更に備える、請求項5に記載の識別方法。 - 前記第1特徴量抽出ステップは、前記記憶部により記憶された学習結果を用いて、前記未知対象物の光学的厚み分布の画像内において前記特徴量を抽出する領域を少なくとも1つを設定する、請求項5または6に記載の識別方法。
- 前記光学的厚みの空間的変化量に関する情報は、前記光学的厚み分布の画像内の位置におけるベクトルの勾配強度および勾配方向の双方または何れか一方である、請求項5〜7の何れか一項に記載の識別方法。
- 前記対象物として白血球およびがん細胞を含む、請求項5〜8の何れか一項に記載の識別方法。
- 前記特徴量抽出部により、溶血剤を添加した対象物の光学的厚み分布の画像の特徴量を抽出する、請求項9に記載の識別方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014153651 | 2014-07-29 | ||
JP2014153651 | 2014-07-29 | ||
PCT/JP2015/071023 WO2016017533A1 (ja) | 2014-07-29 | 2015-07-23 | 識別装置および識別方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2016017533A1 true JPWO2016017533A1 (ja) | 2017-05-25 |
JP6692049B2 JP6692049B2 (ja) | 2020-05-13 |
Family
ID=55217434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016538314A Active JP6692049B2 (ja) | 2014-07-29 | 2015-07-23 | 識別装置および識別方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10180387B2 (ja) |
EP (1) | EP3176563B1 (ja) |
JP (1) | JP6692049B2 (ja) |
WO (1) | WO2016017533A1 (ja) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6702340B2 (ja) * | 2016-01-28 | 2020-06-03 | 株式会社リコー | 画像処理装置、撮像装置、移動体機器制御システム、画像処理方法、及びプログラム |
US20200251184A1 (en) * | 2016-12-16 | 2020-08-06 | Osaka University | Classification analysis method, classification analysis device, and storage medium for classification analysis |
JP6873390B2 (ja) * | 2017-03-02 | 2021-05-19 | 株式会社島津製作所 | 細胞解析方法及び細胞解析装置 |
WO2018207524A1 (ja) * | 2017-05-07 | 2018-11-15 | 国立大学法人大阪大学 | 識別方法、分類分析方法、識別装置、分類分析装置および記憶媒体 |
WO2019040646A2 (en) * | 2017-08-24 | 2019-02-28 | Nano Global Corp. | DETECTION OF BIOLOGICAL CELLS OR BIOLOGICAL SUBSTANCES |
JP6999129B2 (ja) | 2017-09-06 | 2022-01-18 | 浜松ホトニクス株式会社 | 細胞観察システムおよび細胞観察方法 |
JP6798625B2 (ja) * | 2017-11-14 | 2020-12-09 | 株式会社ニコン | 定量位相画像生成方法、定量位相画像生成装置およびプログラム |
US11618875B2 (en) * | 2017-11-20 | 2023-04-04 | Nano Global Corporation | Data collection and analytics based on detection of biological cells or biological substances |
JP6732722B2 (ja) * | 2017-12-11 | 2020-08-05 | 憲隆 福永 | 胚選抜システム |
JP7000379B2 (ja) * | 2019-05-07 | 2022-01-19 | 憲隆 福永 | 胚選抜システム |
CN111105416B (zh) * | 2019-12-31 | 2022-09-09 | 北京理工大学重庆创新中心 | 一种骨髓细胞增生程度自动分级方法及系统 |
CN111784669B (zh) * | 2020-06-30 | 2024-04-02 | 长沙理工大学 | 一种胶囊内镜图像多病灶检测方法 |
JPWO2022024564A1 (ja) | 2020-07-30 | 2022-02-03 | ||
JP7495301B2 (ja) | 2020-08-28 | 2024-06-04 | 浜松ホトニクス株式会社 | 学習モデル生成方法、識別方法、学習モデル生成システム、識別システム、学習モデル生成プログラム、識別プログラム及び記録媒体 |
US20220180515A1 (en) * | 2020-12-09 | 2022-06-09 | The Chinese University Of Hong Kong | Artificial intelligence enabled reagent-free imaging hematology analyzer |
WO2022195754A1 (ja) * | 2021-03-17 | 2022-09-22 | 株式会社エビデント | データ処理方法、データ処理装置、三次元観察装置、学習方法、学習装置及び記録媒体 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009210542A (ja) * | 2008-03-06 | 2009-09-17 | Hamamatsu Photonics Kk | 観察装置 |
JP2010203949A (ja) * | 2009-03-04 | 2010-09-16 | Nec Corp | 画像診断支援装置、画像診断支援方法、画像診断支援プログラム、及びその記憶媒体 |
US20100284016A1 (en) * | 2009-05-06 | 2010-11-11 | The Regents Of The University Of California | Optical cytometry |
WO2011132586A1 (ja) * | 2010-04-23 | 2011-10-27 | 浜松ホトニクス株式会社 | 細胞観察装置および細胞観察方法 |
JP2014039535A (ja) * | 2012-07-24 | 2014-03-06 | Univ Of Electro-Communications | 細胞識別装置及び細胞識別方法、並びに、細胞識別方法のプログラム及びそのプログラムを記録した記録媒体 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8131053B2 (en) * | 1999-01-25 | 2012-03-06 | Amnis Corporation | Detection of circulating tumor cells using imaging flow cytometry |
EP1668595A4 (en) | 2003-09-23 | 2007-01-03 | Iatia Imaging Pty Ltd | METHOD AND DEVICE FOR DETERMINING THE SURFACE OR CONFLUENCE OF A SAMPLE |
US9322834B2 (en) * | 2007-05-30 | 2016-04-26 | Sysmex Corporation | Sample analyzer, blood analyzer and displaying method |
CN102047095B (zh) | 2008-06-04 | 2013-04-24 | 株式会社日立高新技术 | 粒子图像解析方法及装置 |
ES2796655T3 (es) * | 2008-11-14 | 2020-11-27 | Beckman Coulter Inc | Celdas de flujo óptico monolíticas y método de fabricación |
WO2011143121A2 (en) * | 2010-05-10 | 2011-11-17 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Spatial-domain low-coherence quantitative phase microscopy |
WO2012060163A1 (ja) * | 2010-11-01 | 2012-05-10 | 財団法人神奈川科学技術アカデミー | 細胞分析装置 |
US9522396B2 (en) * | 2010-12-29 | 2016-12-20 | S.D. Sight Diagnostics Ltd. | Apparatus and method for automatic detection of pathogens |
JP6460364B2 (ja) | 2011-01-25 | 2019-01-30 | マサチューセッツ インスティテュート オブ テクノロジー | 軸外し反射位相顕微鏡システムおよび軸外し位相顕微鏡のための方法 |
US10156479B2 (en) * | 2011-05-09 | 2018-12-18 | University of Pittsburgh—of the Commonwealth System of Higher Education | Spatial-domain low-coherence quantitative phase microscopy |
JP6144679B2 (ja) | 2011-08-02 | 2017-06-07 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 生細胞干渉法を介した急速超並列単細胞薬物反応測定法 |
US20140193892A1 (en) * | 2012-07-25 | 2014-07-10 | Theranos, Inc. | Image analysis and measurement of biological samples |
JP5464244B2 (ja) * | 2012-08-24 | 2014-04-09 | 富士ゼロックス株式会社 | 画像処理装置、プログラム及び画像処理システム |
US10705008B2 (en) * | 2013-03-15 | 2020-07-07 | Iris International, Inc. | Autofocus systems and methods for particle analysis in blood samples |
EP2997363A4 (en) * | 2013-05-13 | 2016-11-30 | Chiranjit Deka | APPARATUS AND METHODS FOR CELL ANALYSIS |
WO2015065909A1 (en) * | 2013-10-30 | 2015-05-07 | The General Hospital Corporation | System and method for inertial focusing cytometer with integrated optics for particle characterization |
JP6116502B2 (ja) * | 2014-02-28 | 2017-04-19 | シスメックス株式会社 | 検体分析装置および検体分析方法 |
US10036698B2 (en) * | 2015-06-19 | 2018-07-31 | Captl Llc | Time-sequential cytometry |
-
2015
- 2015-07-23 EP EP15827812.7A patent/EP3176563B1/en active Active
- 2015-07-23 WO PCT/JP2015/071023 patent/WO2016017533A1/ja active Application Filing
- 2015-07-23 US US15/329,456 patent/US10180387B2/en active Active
- 2015-07-23 JP JP2016538314A patent/JP6692049B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009210542A (ja) * | 2008-03-06 | 2009-09-17 | Hamamatsu Photonics Kk | 観察装置 |
JP2010203949A (ja) * | 2009-03-04 | 2010-09-16 | Nec Corp | 画像診断支援装置、画像診断支援方法、画像診断支援プログラム、及びその記憶媒体 |
US20100284016A1 (en) * | 2009-05-06 | 2010-11-11 | The Regents Of The University Of California | Optical cytometry |
WO2011132586A1 (ja) * | 2010-04-23 | 2011-10-27 | 浜松ホトニクス株式会社 | 細胞観察装置および細胞観察方法 |
JP2014039535A (ja) * | 2012-07-24 | 2014-03-06 | Univ Of Electro-Communications | 細胞識別装置及び細胞識別方法、並びに、細胞識別方法のプログラム及びそのプログラムを記録した記録媒体 |
Also Published As
Publication number | Publication date |
---|---|
US20170212033A1 (en) | 2017-07-27 |
JP6692049B2 (ja) | 2020-05-13 |
EP3176563B1 (en) | 2021-06-30 |
EP3176563A1 (en) | 2017-06-07 |
WO2016017533A1 (ja) | 2016-02-04 |
EP3176563A4 (en) | 2018-04-25 |
US10180387B2 (en) | 2019-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6692049B2 (ja) | 識別装置および識別方法 | |
Abdurahman et al. | Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models | |
WO2020260936A1 (en) | Medical image segmentation using an integrated edge guidance module and object segmentation network | |
US20220215548A1 (en) | Method and device for identifying abnormal cell in to-be-detected sample, and storage medium | |
Sanchez-Morillo et al. | Classification of breast cancer histopathological images using KAZE features | |
WO2015069824A2 (en) | Diagnostic system and method for biological tissue analysis | |
CN110889312A (zh) | 活体检测方法和装置、电子设备、计算机可读存储介质 | |
Aswathy et al. | An SVM approach towards breast cancer classification from H&E-stained histopathology images based on integrated features | |
WO2017109860A1 (ja) | 画像処理装置 | |
Nanni et al. | A comparison of methods for extracting information from the co-occurrence matrix for subcellular classification | |
US20240054639A1 (en) | Quantification of conditions on biomedical images across staining modalities using a multi-task deep learning framework | |
Peikari et al. | Clustering analysis for semi-supervised learning improves classification performance of digital pathology | |
Majid et al. | Enhanced transfer learning strategies for effective kidney tumor classification with CT imaging | |
Kong et al. | Texture based image recognition in microscopy images of diffuse gliomas with multi-class gentle boosting mechanism | |
Sharma et al. | Cell nuclei attributed relational graphs for efficient representation and classification of gastric cancer in digital histopathology | |
Di Ruberto et al. | On different colour spaces for medical colour image classification | |
Rathore et al. | A novel approach for ensemble clustering of colon biopsy images | |
Yancey | Deep Feature Fusion for Mitosis Counting | |
Hirata et al. | Plankton image classification based on multiple segmentations | |
KR20230063147A (ko) | 다단계 특징 분석을 사용한 전립선 조직의 효율적인 경량 cnn과 앙상블 머신 러닝 분류 방법 및 시스템 | |
Boonsiri et al. | 3D gray level co-occurrence matrix based classification of favor benign and borderline types in follicular neoplasm images | |
Naik et al. | Hybrid Feature Set based Mitotic Detection in Breast Histopathology Images | |
da Silva | Combining machine learning and deep learning approaches to detect cervical cancer in cytology images | |
Mahbod | Towards Improvement of Automated Segmentation and Classification of Tissues and Nuclei in Microscopic Images Using Deep Learning Approaches | |
Foran et al. | A cagrid-enabled, learning based image segmentation method for histopathology specimens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161228 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180517 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190702 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190829 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200310 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200326 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6692049 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |