JPWO2015152037A1 - Phenol resin, epoxy resin composition containing the phenol resin, cured product of the epoxy resin composition, and semiconductor device having the cured product - Google Patents

Phenol resin, epoxy resin composition containing the phenol resin, cured product of the epoxy resin composition, and semiconductor device having the cured product Download PDF

Info

Publication number
JPWO2015152037A1
JPWO2015152037A1 JP2016511615A JP2016511615A JPWO2015152037A1 JP WO2015152037 A1 JPWO2015152037 A1 JP WO2015152037A1 JP 2016511615 A JP2016511615 A JP 2016511615A JP 2016511615 A JP2016511615 A JP 2016511615A JP WO2015152037 A1 JPWO2015152037 A1 JP WO2015152037A1
Authority
JP
Japan
Prior art keywords
epoxy resin
phenol
phenol resin
resin composition
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016511615A
Other languages
Japanese (ja)
Other versions
JP6469654B2 (en
Inventor
慎司 岡本
慎司 岡本
勝 中江
勝 中江
真人 竹之内
真人 竹之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiwa Plastic Industries Ltd
Original Assignee
Meiwa Plastic Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiwa Plastic Industries Ltd filed Critical Meiwa Plastic Industries Ltd
Publication of JPWO2015152037A1 publication Critical patent/JPWO2015152037A1/en
Application granted granted Critical
Publication of JP6469654B2 publication Critical patent/JP6469654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with monohydric phenols having only one hydrocarbon substituent ortho on para to the OH group, e.g. p-tert.-butyl phenol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/20Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
    • C08G8/22Resorcinol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

一般式(1)で表されるフェノール樹脂であって、該フェノール樹脂と、一般式(2)で表されるエポキシ樹脂と、硬化促進剤とから得られる硬化物に、40℃以上180℃以下において、1.5%以上の熱膨張率を与えるものである。前記フェノール樹脂は、硬化物に、250℃において、15MPa以上の貯蔵弾性率を与えるものであることが好適である。A phenol resin represented by the general formula (1), wherein the cured product obtained from the phenol resin, the epoxy resin represented by the general formula (2), and a curing accelerator is 40 ° C or higher and 180 ° C or lower. , A coefficient of thermal expansion of 1.5% or more is given. It is preferable that the phenol resin gives the cured product a storage elastic modulus of 15 MPa or more at 250 ° C.

Description

本発明はフェノール樹脂に関する。また本発明は、該フェノール樹脂を含むエポキシ樹脂組成物及び該エポキシ樹脂組成物の硬化物に関する。更に本発明は、該硬化物を有する半導体装置に関する。   The present invention relates to a phenolic resin. The present invention also relates to an epoxy resin composition containing the phenol resin and a cured product of the epoxy resin composition. Furthermore, this invention relates to the semiconductor device which has this hardened | cured material.

エポキシ樹脂組成物は作業性及びその硬化物の優れた電気特性、耐熱性、接着性、耐湿性等により電気・電子部品、構造用材料、接着剤、塗料等の分野で幅広く用いられている。   Epoxy resin compositions are widely used in the fields of electric / electronic parts, structural materials, adhesives, paints and the like due to workability and excellent electrical properties, heat resistance, adhesion, moisture resistance, etc. of the cured product.

近年、スマートフォンやタブレット端末などに代表される電子機器の高性能化、小型化、薄型化に伴い、半導体装置の多ピン化、高集積化、小型化、薄型化が加速している。このため、従来のBGA(Ball Grid Array)パッケージ等の片面封止パッケージにおいては薄型化に伴う反り低減による信頼性の向上が求められている。   In recent years, with the increase in performance, size, and thickness of electronic devices typified by smartphones and tablet terminals, the number of pins, high integration, size, and thickness of semiconductor devices are accelerating. For this reason, in a single-side sealed package such as a conventional BGA (Ball Grid Array) package, an improvement in reliability due to a reduction in warp accompanying thinning is required.

片面封止パッケージでは、基板材料と封止樹脂をはじめとする半導体装置に使用される部材との熱膨張率差により内部応力が残存し、そのことに起因して反りが発生し実装信頼性が低下するという問題点がある。従来の片面封止パッケージにおいては、ガラスクロス等の基材を含む基板材料よりも封止樹脂の熱膨張率が大きく、封止樹脂側に反りを発生することから封止樹脂の低熱膨張率化の検討が進められてきた。   In a single-sided sealed package, internal stress remains due to the difference in thermal expansion coefficient between the substrate material and the member used in the semiconductor device, such as a sealing resin, resulting in warpage and mounting reliability. There is a problem that it decreases. In conventional single-sided sealed packages, the thermal expansion coefficient of the sealing resin is larger than that of a substrate material including a base material such as glass cloth, and warping occurs on the sealing resin side, so that the thermal expansion coefficient of the sealing resin is reduced. Has been studied.

しかし、近年の片面封止パッケージにおいては薄型化が進行し、封止樹脂層の厚みが薄いパッケージが増えている。そのことに起因して、従来の片面封止パッケージと異なり、基板材料の収縮の影響を受け、基板材料側に反りを発生するという問題がある。そのため、成形後の封止樹脂の熱収縮を大きくすることで常温での基板材料側への反りを低減させる要望がある。   However, in recent single-side sealed packages, the thickness has been reduced, and the number of packages with a thin sealing resin layer is increasing. As a result, unlike the conventional single-side sealed package, there is a problem that warpage occurs on the substrate material side due to the shrinkage of the substrate material. Therefore, there is a demand for reducing warpage to the substrate material side at room temperature by increasing the thermal shrinkage of the sealing resin after molding.

このような封止樹脂の熱収縮を大きくすることによる反り低減の手法として、封止樹脂における無機充填材量の低減による熱収縮率の向上(特許文献1)や、シリコーン化合物のケイ素に直接結合するアルコキシ基を含有せず、シラノール基を含有するシリコーン化合物を用いることによる封止樹脂の熱収縮率の向上(特許文献2)を図る方法が提案されている。   As a technique for reducing the warp by increasing the thermal shrinkage of the sealing resin, the thermal shrinkage ratio is improved by reducing the amount of the inorganic filler in the sealing resin (Patent Document 1), or the silicon compound is directly bonded to silicon. There has been proposed a method for improving the thermal contraction rate (Patent Document 2) of a sealing resin by using a silicone compound containing a silanol group without containing an alkoxy group.

また、封止樹脂の厚みが薄くなるに従い、封止樹脂に対する熱時の剛性付与による信頼性向上の要望もある。そのため、熱時剛性の高い、すなわち熱時弾性率の高い材料の要望もある。   In addition, as the thickness of the sealing resin becomes thinner, there is a demand for improved reliability by imparting rigidity to the sealing resin when heated. Therefore, there is a demand for a material having high thermal rigidity, that is, a high thermal elastic modulus.

特開平8−153831号公報JP-A-8-153831 特開2013−224400号公報JP 2013-224400 A

しかしながら特許文献1に記載の技術のように、無機充填剤の量を低減したのでは、硬化物の吸水率悪化に起因する耐湿信頼性の悪化が懸念される。また、特許文献2に記載のシラノール基を含有するシリコーン化合物を用いても、硬化物の弾性率の改良にはつながらない。このように、これまで提案されてきた技術はエポキシ樹脂組成物における添加剤に着目したものであり、樹脂そのものの改良についての提案は未だされていない。したがって、エポキシ樹脂組成物の硬化物を加熱したときの熱膨張が大きく、換言すれば冷却時の熱収縮が大きく、また熱時の弾性率が高いフェノール樹脂の開発が望まれている。   However, if the amount of the inorganic filler is reduced as in the technique described in Patent Document 1, there is a concern about deterioration of moisture resistance reliability due to deterioration of the water absorption rate of the cured product. Moreover, even if it uses the silicone compound containing the silanol group of patent document 2, it does not lead to the improvement of the elasticity modulus of hardened | cured material. As described above, the technology that has been proposed so far focuses on the additive in the epoxy resin composition, and no proposal has been made for improvement of the resin itself. Therefore, it is desired to develop a phenol resin that has a large thermal expansion when a cured product of the epoxy resin composition is heated, in other words, a large thermal contraction during cooling and a high elastic modulus during heating.

したがって本発明の課題は、薄型化片面封止パッケージの反りを低減することによって、信頼性の向上の実現が可能な高熱収縮性且つ高熱時弾性率を有するエポキシ樹脂組成物を与え得るフェノール樹脂を提供することにある。   Accordingly, an object of the present invention is to provide a phenolic resin that can provide an epoxy resin composition having high heat shrinkage and high elastic modulus that can realize improvement in reliability by reducing warpage of a thinned single-side sealed package. It is to provide.

前記の課題を解決すべく本発明者らは鋭意検討した結果、加熱による熱膨張の程度が大きい硬化物は、冷却時の熱収縮率も高くなることを知見し、この知見に基づき更に検討を進めた結果、炭素数2以上15以下の飽和又は不飽和炭化水素基を有するフェノール化合物からなるフェノール樹脂を用いることにより、加熱による熱膨張の程度が大きく、冷却時の熱収縮率も高いエポキシ樹脂組成物及び硬化物が得られることを知見し、本発明を完成させた。   As a result of intensive investigations to solve the above problems, the present inventors have found that a cured product having a large degree of thermal expansion due to heating has a high thermal shrinkage rate upon cooling, and further studies based on this finding. As a result of the progress, by using a phenol resin comprising a phenol compound having a saturated or unsaturated hydrocarbon group having 2 to 15 carbon atoms, an epoxy resin having a large degree of thermal expansion due to heating and a high thermal shrinkage rate upon cooling. It was found that a composition and a cured product were obtained, and the present invention was completed.

すなわち本発明は、下記一般式(1)で表されるフェノール樹脂であって、

Figure 2015152037
前記フェノール樹脂は、該フェノール樹脂と、下記一般式(2)
Figure 2015152037
で表されるエポキシ樹脂と、硬化促進剤とから得られる硬化物に、40℃以上180℃以下において、1.5%以上の熱膨張率を与えるものであるフェノール樹脂を提供することにより、前記の課題を解決するものである。That is, the present invention is a phenol resin represented by the following general formula (1),
Figure 2015152037
The phenol resin includes the phenol resin and the following general formula (2).
Figure 2015152037
By providing a phenol resin that gives a coefficient of thermal expansion of 1.5% or more at 40 ° C. or more and 180 ° C. or less to a cured product obtained from the epoxy resin represented by It solves the problem.

また本発明は、前記のフェノール樹脂とエポキシ樹脂を含むエポキシ樹脂組成物及び該エポキシ樹脂組成物を硬化させてなるエポキシ樹脂硬化物を提供するものである。   Moreover, this invention provides the epoxy resin composition containing the said phenol resin and an epoxy resin, and the epoxy resin hardened | cured material formed by hardening | curing this epoxy resin composition.

本発明のフェノール樹脂を用いたエポキシ樹脂組成物から形成された封止材料を有する薄型片面封止パッケージの半導体装置は、該封止材料の加熱時の熱膨張率が高いことに起因して、冷却時の熱収縮率も高く、そのことによって、半導体装置が実装された基板材料に発生した反りを低減させることができる。   The semiconductor device of a thin single-sided sealed package having a sealing material formed from an epoxy resin composition using the phenolic resin of the present invention, due to the high coefficient of thermal expansion during heating of the sealing material, The thermal contraction rate at the time of cooling is also high, whereby warpage generated in the substrate material on which the semiconductor device is mounted can be reduced.

本発明のフェノール樹脂は前記一般式(1)で表されるものである。式(1)中、Rで表される飽和又は不飽和炭化水素基は、フェニレン軸まわりの回転自由体積が大きいものであることが、加熱時の高熱膨張性の発現、ひいては冷却時の高熱収縮性の発現の観点から好ましい。この観点から、Rの炭素数は上述のとおり2以上15以下であり、好ましくは3以上15以下であり、更に好ましくは3以上10以下であり、最も好ましくは3又は4である。   The phenol resin of the present invention is represented by the general formula (1). In the formula (1), the saturated or unsaturated hydrocarbon group represented by R has a large rotational free volume around the phenylene axis, so that it exhibits high thermal expansion during heating, and consequently high thermal shrinkage during cooling. From the viewpoint of expression of sex. From this viewpoint, the carbon number of R is 2 or more and 15 or less as described above, preferably 3 or more and 15 or less, more preferably 3 or more and 10 or less, and most preferably 3 or 4.

式(1)においてRが飽和炭化水素基である場合、該基としては例えばエチル基、n−ブチル基、tert−ブチル基、プロピル基、オクチル基などが挙げられる。特に、フェニレン軸まわりの回転自由体積が大きい基であるtert−ブチル基を用いることが好ましい。一方、Rが不飽和炭化水素基である場合、該基としては例えばアリル基、1−プロペニル基、アセチレン基などが挙げられる。特に、フェニレン軸まわりの回転自由体積が大きい基であるアリル基を用いると、エポキシ樹脂組成物の硬化物の熱膨張率を高くすることができ、且つ熱時弾性率も高くすることができるので好ましい。Rは同一でもよく、あるいは異なっていてもよい。好ましくはすべてのRは同一の基である。その場合、該基はアリル基であることが好ましい。   In the formula (1), when R is a saturated hydrocarbon group, examples of the group include an ethyl group, an n-butyl group, a tert-butyl group, a propyl group, and an octyl group. In particular, it is preferable to use a tert-butyl group which is a group having a large rotational free volume around the phenylene axis. On the other hand, when R is an unsaturated hydrocarbon group, examples of the group include an allyl group, a 1-propenyl group, and an acetylene group. In particular, when an allyl group that is a group having a large rotational free volume around the phenylene axis is used, the thermal expansion coefficient of the cured product of the epoxy resin composition can be increased, and the thermal elastic modulus can be increased. preferable. R may be the same or different. Preferably all R are the same group. In that case, the group is preferably an allyl group.

式(1)中、qは、上述のとおり1以上3以下の整数を表し、好ましくは1又は2である。エポキシ樹脂硬化物の熱時弾性率を高めるためには、qの値は大きい方が好ましい。また式(1)中、pは1又は2のどちらも好ましい。p及びqがいずれも1のとき、RはOHに対してo位又はp位に結合していることが好ましい。   In formula (1), q represents an integer of 1 or more and 3 or less as described above, and is preferably 1 or 2. In order to increase the thermal elastic modulus of the cured epoxy resin, a larger q value is preferable. In formula (1), p is preferably either 1 or 2. When p and q are both 1, R is preferably bonded to the o-position or p-position with respect to OH.

式(1)中、nは、上述のとおり0以上の整数を表す。nの上限値は、本発明のフェノール樹脂の150℃における溶融粘度が30.0P以下となるような値であることが好ましく、より好ましくは0.1P以上20.0P未満、更に好ましくは0.1P以上10.0P以下、更に一層好ましくは0.1P以上7.0P以下、最も好ましくは、0.1P以上5.0P以下となるような値であることが好ましい。本発明のフェノール樹脂は、様々な分子量を有する高分子の集合体なので、nの値は、該集合体における平均値で表される。   In formula (1), n represents an integer of 0 or more as described above. The upper limit of n is preferably a value such that the melt viscosity at 150 ° C. of the phenol resin of the present invention is 30.0 P or less, more preferably 0.1 P or more and less than 20.0 P, and still more preferably 0.8. The value is preferably 1 P or more and 10.0 P or less, more preferably 0.1 P or more and 7.0 P or less, and most preferably 0.1 P or more and 5.0 P or less. Since the phenol resin of the present invention is an aggregate of polymers having various molecular weights, the value of n is represented by an average value in the aggregate.

本発明のフェノール樹脂は、その150℃における溶融粘度が上述の範囲であることが、無機充填材等との混練によって得られる半導体封止材料を首尾よく製造し得る点から好ましい。また、その軟化点が、25℃を下回る温度(すなわち25℃で液体状態)から100℃以下、特に50℃以上100℃以下、とりわけ60℃以上90℃以下、とりわけ60℃以上80℃以下であることが、ブロッキング等による取扱い上のハンドリング性や、無機充填材等との混練作業のハンドリング性の点から好ましい。また、本発明のフェノール樹脂から得られるエポキシ樹脂硬化物の熱時弾性率を高め得る点からも好ましい。更に、その水酸基当量が400g/eq以下、特に300g/eq以下、とりわけ200g/eq以下であることが、エポキシ樹脂硬化物の架橋密度が過度に低くなることが効果的に防止され、熱時弾性率の低下を効果的に抑制し得る点から好ましい。水酸基当量の下限値に特に制限はないが、100g/eq以上であれば、満足すべき結果が得られる。これらの物性値の測定方法は、後述する実施例において説明する。   The phenol resin of the present invention preferably has a melt viscosity at 150 ° C. in the above range from the viewpoint of successfully producing a semiconductor sealing material obtained by kneading with an inorganic filler or the like. In addition, the softening point is 100 ° C. or less, particularly 50 ° C. or more and 100 ° C. or less, particularly 60 ° C. or more and 90 ° C. or less, particularly 60 ° C. or more and 80 ° C. or less from a temperature lower than 25 ° C. (ie, liquid state at 25 ° C.). It is preferable from the viewpoint of handling in handling due to blocking or the like, and handling in a kneading operation with an inorganic filler or the like. Moreover, it is preferable also from the point which can raise the elastic modulus at the time of the epoxy resin hardened | cured material obtained from the phenol resin of this invention. Further, the hydroxyl group equivalent is 400 g / eq or less, particularly 300 g / eq or less, particularly 200 g / eq or less, and it is effectively prevented that the crosslinking density of the cured epoxy resin is excessively low, and the elasticity at the time of heating. It is preferable from the point which can suppress the fall of a rate effectively. Although there is no restriction | limiting in particular in the lower limit of a hydroxyl equivalent, If it is 100 g / eq or more, a satisfactory result will be obtained. The measuring method of these physical property values will be described in the examples described later.

本発明のフェノール樹脂は、前記の一般式(2)で表されるエポキシ樹脂と、硬化促進剤とから得られる硬化物に、40℃以上180℃以下において、1.5%以上、好ましくは1.55%以上、より好ましくは1.60%以上、更に好ましくは1.65%以上、最も好ましくは2.00%以上という高い熱膨張率、換言すると冷却時に高い熱収縮率を与えるものである。このような熱膨張率を有する硬化剤からなる封止材料によって薄型片面封止パッケージの半導体装置を製造すると、該封止材料の熱膨張率が高い、すなわち冷却時の熱収縮率が高いことに起因して、半導体装置が実装された基板材料に発生した反りを低減させることができる。   The phenol resin of the present invention is a cured product obtained from the epoxy resin represented by the above general formula (2) and a curing accelerator, at 40 ° C. or higher and 180 ° C. or lower, 1.5% or higher, preferably 1 0.55% or more, more preferably 1.60% or more, still more preferably 1.65% or more, and most preferably 2.00% or more. In other words, it gives a high thermal contraction rate upon cooling. . When a semiconductor device of a thin single-sided sealed package is manufactured with a sealing material made of a curing agent having such a thermal expansion coefficient, the thermal expansion coefficient of the sealing material is high, that is, the thermal contraction rate during cooling is high. As a result, warpage generated in the substrate material on which the semiconductor device is mounted can be reduced.

反りの低減の効果を更に一層顕著なものとする観点から、本発明のフェノール樹脂は、前記の一般式(2)で表されるエポキシ樹脂と、硬化促進剤とから得られる硬化物に、250℃において、15MPa以上の貯蔵弾性率を与えるものであることが好ましい。反りの低減の効果を更に一層顕著なものとする観点から、本発明のフェノール樹脂は、15MPa以上120MPa以下、特に30MPa以上110MPa以下、とりわけ80MPa以上100MPa以下の貯蔵弾性率を与えるものであることが一層好ましい。   From the viewpoint of making the effect of reducing warpage even more remarkable, the phenol resin of the present invention is a cured product obtained from the epoxy resin represented by the general formula (2) and a curing accelerator. It is preferable to give a storage elastic modulus of 15 MPa or more at ° C. From the viewpoint of making the effect of reducing warpage even more pronounced, the phenolic resin of the present invention provides a storage elastic modulus of 15 MPa to 120 MPa, particularly 30 MPa to 110 MPa, particularly 80 MPa to 100 MPa. Even more preferred.

上述した熱膨張率及び貯蔵弾性率の測定方法は、後述する実施例において説明する。   The measuring method of the thermal expansion coefficient and the storage elastic modulus described above will be described in Examples described later.

本発明のフェノール樹脂は、下記一般式(3)で表されるフェノール化合物とホルムアルデヒドとを、酸性触媒下又は塩基性触媒下で反応させることで得ることができる。   The phenol resin of the present invention can be obtained by reacting a phenol compound represented by the following general formula (3) with formaldehyde under an acidic catalyst or a basic catalyst.

Figure 2015152037
Figure 2015152037

式(3)で表されるフェノール化合物の例としては、特に限定はないがエチルフェノール、プロピルフェノール、n−ブチルフェノール、tert−ブチルフェノール、オクチルフェノール、アリルフェノール、ジプロピルフェノール、ジブチルフェノール等が挙げられる。これらのフェノール化合物は1種を単独で、又は2種以上を組み合わせて用いることができる。特に、本発明のフェノール樹脂から得られる硬化物の加熱時における熱膨張率を高めて、冷却時における熱収縮率を高める点から、アリルフェノール又はtert−ブチルフェノールを用いることが好ましく、とりわけo−アリルフェノールを用いることが好ましい。   Examples of the phenol compound represented by the formula (3) include, but are not limited to, ethylphenol, propylphenol, n-butylphenol, tert-butylphenol, octylphenol, allylphenol, dipropylphenol, dibutylphenol and the like. These phenol compounds can be used individually by 1 type or in combination of 2 or more types. In particular, it is preferable to use allylphenol or tert-butylphenol from the viewpoint of increasing the thermal expansion coefficient during heating of the cured product obtained from the phenol resin of the present invention and increasing the thermal shrinkage ratio during cooling. Preference is given to using phenol.

式(3)で表される化合物間にメチレン架橋基を形成する化合物であるホルムアルデヒドは、その形態に特に制限はない。例えばホルムアルデヒドは、その水溶液の形態で用いることができる。あるいは、パラホルムアルデヒドやトリオキサンなど、酸存在下で分解してホルムアルデヒドを生成する重合物の形態で用いることもできる。   Formaldehyde, which is a compound that forms a methylene bridging group between the compounds represented by formula (3), is not particularly limited. For example, formaldehyde can be used in the form of its aqueous solution. Alternatively, it can be used in the form of a polymer such as paraformaldehyde or trioxane that decomposes in the presence of an acid to form formaldehyde.

本発明における好ましいフェノール樹脂は、低分子量成分が少ない狭分散型のものであることが、エポキシ樹脂組成物のゲル化時間を短縮化し得る点、及びエポキシ樹脂硬化物の熱膨張率を高め得る点から好ましい。特に一般式(1)中、n=0の化合物が少ないことが、ゲル化時間の一層の短縮化及び高熱膨張率の達成の点から好ましい。この観点から、本発明のフェノール樹脂をゲル浸透クロマトグラフ測定して得られたチャートに基づく面積比で、一般式(1)中、n=0の化合物が、フェノール樹脂全体を基準として5.5面積%以下であることが好ましく、4.5面積%以下であることが更に好ましい。n=0の化合物がフェノール樹脂全体に占める割合の下限値に特に制限はなく、小さければ小さいほど好ましく、最も好ましくは0である。   Preferable phenol resin in the present invention is a narrow dispersion type having a low low molecular weight component, can shorten the gelation time of the epoxy resin composition, and can increase the thermal expansion coefficient of the cured epoxy resin. To preferred. In general formula (1), it is preferable that the number of compounds with n = 0 is small in view of further shortening the gelation time and achieving a high thermal expansion coefficient. From this point of view, in the area ratio based on the chart obtained by measuring the phenol resin of the present invention by gel permeation chromatography, the compound of n = 0 in the general formula (1) is 5.5 based on the whole phenol resin. It is preferably area% or less, more preferably 4.5 area% or less. There is no restriction | limiting in particular in the lower limit of the ratio for which the compound of n = 0 occupies the whole phenol resin, It is so preferable that it is small, Most preferably, it is 0.

また、エポキシ樹脂組成物のゲル化時間を短縮化し得る点、及びエポキシ樹脂硬化物の熱時弾性率を高め得る点から、一般式(1)中、n=0である化合物と、n=1である化合物との合計の含有量が10.0面積%以下であることが好ましく、7.0面積%以下であることが更に好ましい。n=0の化合物及びn=1の化合物がフェノール樹脂全体に占める割合の下限値に特に制限はないが、熱時弾性率を高め得る点からは4.0面積%以上であることが好ましく、4.5面積%以上であることが更に好ましい。   Moreover, from the point which can shorten the gelatinization time of an epoxy resin composition, and the point which can raise the thermal elasticity modulus of an epoxy resin hardened | cured material, in the general formula (1), n = 1 and n = 1 The total content with the compound is preferably 10.0 area% or less, and more preferably 7.0 area% or less. The lower limit of the ratio of the compound of n = 0 and the compound of n = 1 to the entire phenol resin is not particularly limited, but is preferably 4.0% by area or more from the viewpoint of increasing the thermal elastic modulus, More preferably, it is 4.5 area% or more.

また、エポキシ樹脂組成物のゲル化時間を短縮化し得る点、及びエポキシ樹脂硬化物の熱時弾性率を高め得る点から、一般式(1)中、n=2である化合物の含有量が4.0面積%以上14.0面積%以下であることが好ましく、5.0面積%以上13.5面積%以下であることが更に好ましい。   In addition, the content of the compound in which n = 2 in the general formula (1) is 4 because the gelation time of the epoxy resin composition can be shortened and the thermal elastic modulus of the cured epoxy resin can be increased. It is preferably 0.0 area% or more and 14.0 area% or less, and more preferably 5.0 area% or more and 13.5 area% or less.

一般式(1)中、n=0である化合物と、n=1である化合物との合計の含有量と一般式(1)中、n=2である化合物の含有量とをともに前記範囲とすることにより、分子量分布と分子量とのバランスがよい狭分散型のフェノール樹脂が得られ、フェノール樹脂の軟化点及び150℃溶融粘度を好ましい範囲とすることができ、エポキシ樹脂組成物のゲル化時間を短縮化でき、併せてエポキシ樹脂硬化物の熱膨張率を高め且つ熱時弾性率を高めることができる。例えば、n=0である化合物と、n=1である化合物との合計の含有量が4.0面積%未満であり且つn=2である化合物の含有量が4.0面積%未満であるときは、n=2である化合物よりも分子量の高い化合物(n=3以上である化合物)の含有量が多くなり、高分子量化が進んでいるので、軟化点及び150℃溶融粘度が高くなりすぎる場合がある。また、n=0である化合物と、n=1である化合物との合計の含有量が10.0面積%以下である場合でも、n=2である化合物の含有量が14.0面積%より大きい場合は、分子量が低くなるので、軟化点及び150℃溶融粘度が低くなりすぎる場合がある。   In the general formula (1), the total content of the compound where n = 0 and the compound where n = 1 and the content of the compound where n = 2 in the general formula (1) are both within the above range. By doing so, a narrow dispersion type phenol resin having a good balance between the molecular weight distribution and the molecular weight can be obtained, and the softening point and 150 ° C. melt viscosity of the phenol resin can be within a preferable range, and the gelation time of the epoxy resin composition In addition, the thermal expansion coefficient of the cured epoxy resin and the thermal elastic modulus can be increased. For example, the total content of the compound with n = 0 and the compound with n = 1 is less than 4.0 area%, and the content of the compound with n = 2 is less than 4.0 area%. In some cases, the content of a compound having a higher molecular weight (a compound having n = 3 or more) is higher than that of a compound with n = 2, and a high molecular weight is advanced, so that the softening point and the 150 ° C. melt viscosity are increased. It may be too much. Further, even when the total content of the compound where n = 0 and the compound where n = 1 is 10.0 area% or less, the content of the compound where n = 2 is less than 14.0 area%. If it is large, the molecular weight is low, so the softening point and 150 ° C. melt viscosity may be too low.

本発明における好ましいフェノール樹脂の重量平均分子量は、特に限定するものではないが、好ましくは1000以上8000以下、より好ましくは1400以上4000以下、更に好ましくは1500以上〜3000以下である。分子量分布の分散度である重量平均分子量/数平均分子量の値は、好ましくは1.0以上4.0以下、より好ましくは1.3以上2.5以下、更に好ましくは1.4以上2.0以下である。また、重量平均分子量及び分散度をともに前記範囲とすることにより、エポキシ樹脂組成物のゲル化時間を短縮化し、併せてエポキシ樹脂硬化物の熱膨張率を高め且つ熱時弾性率を高めることができる。   Although the weight average molecular weight of the preferable phenol resin in this invention does not specifically limit, Preferably it is 1000 or more and 8000 or less, More preferably, it is 1400 or more and 4000 or less, More preferably, it is 1500 or more and 3000 or less. The value of weight average molecular weight / number average molecular weight, which is the degree of dispersion of the molecular weight distribution, is preferably 1.0 or more and 4.0 or less, more preferably 1.3 or more and 2.5 or less, and still more preferably 1.4 or more and 2. 0 or less. Moreover, by setting both the weight average molecular weight and the dispersity within the above ranges, the gelation time of the epoxy resin composition can be shortened, and the thermal expansion coefficient of the cured epoxy resin can be increased and the elastic modulus during heat can be increased. it can.

本発明のフェノール樹脂は、上述したフェノール化合物及びホルムアルデヒドを原料として、酸性触媒存在下又は塩基性触媒存在下に得ることができる。使用できる触媒は、それが酸性触媒である場合には、例えばシュウ酸、硫酸、パラトルエンスルホン酸等が挙げられる。塩基性触媒である場合には、例えば水酸化ナトリウム及び水酸化カリウム等のアルカリ金属触媒類、アンモニア、並びにトリエチルアミン等のアミン系触媒等が挙げられる。特に、シュウ酸、硫酸、パラトルエンスルホン酸等の酸触媒を用いることが好ましく、とりわけ触媒除去効率の観点からシュウ酸を用いることが好ましい。特に、上述した狭分散型のフェノール樹脂は、限定するものではないが、例えば、前記一般式(3)で表されるフェノール化合物とホルムアルデヒドとを塩基性触媒の存在下でレゾール化反応させる第1工程と、第1工程で得られた反応混合物に前記一般式(3)で表されるフェノール化合物を加えて、酸触媒の存在下でノボラック化反応させる第2工程とを含む製造方法によって、好適に調製することができる。この調製方法において、フェノール樹脂におけるi成分(iは一般式(1)におけるn=iの成分を表す)の成分の割合は、反応原料の割合、反応時間、及び反応温度を、以下で説明するように調節することで容易に制御することが可能である。なお、必要に応じて予備的な実験を行うことによって、当業者は実際の反応条件を精度よく決定することができる。   The phenol resin of the present invention can be obtained using the above-described phenol compound and formaldehyde as raw materials in the presence of an acidic catalyst or in the presence of a basic catalyst. The catalyst that can be used includes, for example, oxalic acid, sulfuric acid, paratoluenesulfonic acid and the like when it is an acidic catalyst. In the case of a basic catalyst, for example, alkali metal catalysts such as sodium hydroxide and potassium hydroxide, ammonia, and amine-based catalysts such as triethylamine are exemplified. In particular, it is preferable to use an acid catalyst such as oxalic acid, sulfuric acid, or paratoluenesulfonic acid, and it is particularly preferable to use oxalic acid from the viewpoint of catalyst removal efficiency. In particular, the above-mentioned narrow dispersion type phenol resin is not limited, but for example, a first resolation reaction of a phenol compound represented by the general formula (3) and formaldehyde in the presence of a basic catalyst. Suitable by a production method comprising a step and a second step of adding a phenol compound represented by the general formula (3) to the reaction mixture obtained in the first step and causing a novolak reaction in the presence of an acid catalyst. Can be prepared. In this preparation method, the proportion of the component i component (i represents the component of n = i in the general formula (1)) in the phenol resin, the proportion of the reaction raw material, the reaction time, and the reaction temperature will be described below. It is possible to easily control by adjusting as described above. By conducting preliminary experiments as necessary, those skilled in the art can accurately determine actual reaction conditions.

前記の調製方法における第1工程について説明する。
第1工程で反応する、一般式(3)で表されるフェノール化合物と、ホルムアルデヒドとの割合は、一般式(3)で表されるフェノール化合物1モルに対して、ホルムアルデヒドが好ましくは1〜3モル、より好ましくは1.5〜2.5モルである。フェノール化合物と、ホルムアルデヒドとの割合をこの範囲内に設定することで、低分子量成分の生成を抑制し得るとともに、高分子量成分の成分も抑制することができ、狭分散型のフェノール樹脂が得られる。
The first step in the preparation method will be described.
The ratio of the phenol compound represented by the general formula (3) and formaldehyde that reacts in the first step is preferably 1 to 3 with respect to 1 mol of the phenol compound represented by the general formula (3). Mol, more preferably 1.5 to 2.5 mol. By setting the ratio of the phenolic compound and formaldehyde within this range, the production of low molecular weight components can be suppressed, and the components of high molecular weight components can also be suppressed, resulting in a narrow dispersion type phenol resin. .

第1工程における塩基性触媒の使用量は、限定するものではないが、一般式(3)で表されるフェノール化合物1モルに対して、0.1〜1.5モルの割合であることが好ましく、0.2〜1.0モルの割合であることがより好ましい。この割合で塩基性触媒を使用することで、反応が首尾よく進行して未反応成分が残存しづらくなり、また触媒の除去が容易になり生産性が向上する。反応温度は、限定するものではないが、好ましくは10〜80℃であり、より好ましくは20〜60℃である。反応温度をこの範囲内に設定することで、反応が首尾よく進行し、また高分子量成分の成分も抑制することができ、レゾール化反応を制御しやすくなる。反応時間は、限定するものではないが、好ましくは0.5〜24時間であり、より好ましくは3〜12時間である。   Although the usage-amount of the basic catalyst in a 1st process is not limited, It should be a ratio of 0.1-1.5 mol with respect to 1 mol of phenolic compounds represented by General formula (3). Preferably, the ratio is 0.2 to 1.0 mol. By using a basic catalyst at this ratio, the reaction proceeds successfully and it becomes difficult for unreacted components to remain, and the removal of the catalyst becomes easy and productivity is improved. Although reaction temperature is not limited, Preferably it is 10-80 degreeC, More preferably, it is 20-60 degreeC. By setting the reaction temperature within this range, the reaction proceeds successfully, the high molecular weight component can also be suppressed, and the resolation reaction can be easily controlled. Although reaction time is not limited, Preferably it is 0.5 to 24 hours, More preferably, it is 3 to 12 hours.

次に、第2工程について説明する。
第2工程では、好ましくは、第1工程のレゾール化反応で得られた反応混合物を酸性化合物で中和した後、一般式(3)で表されるフェノール化合物を加え、更に酸性触媒を加える。中和に用いる酸性化合物としては、例えば塩酸、硫酸、リン酸、蟻酸、酢酸、シュウ酸、酪酸、乳酸、ベンゼンスルホン酸、p−トルエンスルホン酸等を好適に挙げることができる。酸性化合物は、一種類を単独で用いてもよく、二種類以上の複数種を併用して構わない。
Next, the second step will be described.
In the second step, preferably, the reaction mixture obtained by the resolation reaction in the first step is neutralized with an acidic compound, then the phenol compound represented by the general formula (3) is added, and an acidic catalyst is further added. Preferred examples of the acidic compound used for neutralization include hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, oxalic acid, butyric acid, lactic acid, benzenesulfonic acid, and p-toluenesulfonic acid. One kind of acidic compound may be used alone, or two or more kinds may be used in combination.

第2工程で用いられる一般式(3)で表されるフェノール化合物は、第1工程で用いられる一般式(3)で表されるフェノール化合物1モルに対して、好ましくは0.5〜1.5モルであり、より好ましくは0.7〜1.1モルである。第2工程で用いられる一般式(3)で表されるフェノール化合物の使用量をこの範囲に設定することで、高分子量成分の生成が抑制され、そのことに起因し得フェノール樹脂の溶融粘度が過度に高くなることが抑制される。また未反応のフェノール類が残りにくくなる。   The phenol compound represented by the general formula (3) used in the second step is preferably 0.5 to 1. per mole of the phenol compound represented by the general formula (3) used in the first step. 5 moles, more preferably 0.7 to 1.1 moles. By setting the amount of the phenolic compound represented by the general formula (3) used in the second step within this range, the generation of a high molecular weight component is suppressed, and the melt viscosity of the phenolic resin can be attributed to that. An excessive increase is suppressed. Moreover, unreacted phenols hardly remain.

第2工程で用いられる酸性触媒の使用量は、第1工程で用いられる一般式(3)で表されるフェノール類1モルに対して、好ましくは0.0001〜0.07モルの割合であり、より好ましくは、0.0005〜0,05モルの割合である。この割合の範囲で酸性触媒を使用することで、反応を首尾よく進行させることができ、また高分子量成分の生成が抑制され、反応を制御しやすくなる。反応温度は、限定するものではないが、好ましくは50〜150℃程度、より好ましくは80〜120℃程度、更に好ましくは70〜100℃程度である。この温度範囲内に設定することで、反応を首尾よく進行させることができ、また高分子量成分の生成が抑制され、ノボラック化反応を制御しやすくなる。反応時間は、限定するものではないが、好ましくは0.5〜12時間であり、より好ましくは1〜6時間である。反応時間をこの範囲に設定することで、反応を首尾よく進行させることができ、また高分子量成分の生成が抑制される。第2工程で用いられる酸性触媒の例としては、同工程で用いられる酸性化合物と同様のものが挙げられる。   The amount of the acidic catalyst used in the second step is preferably a ratio of 0.0001 to 0.07 mol with respect to 1 mol of the phenol represented by the general formula (3) used in the first step. More preferably, the ratio is 0.0005 to 0.05 mole. By using an acidic catalyst in the range of this ratio, the reaction can proceed successfully, the formation of high molecular weight components is suppressed, and the reaction can be easily controlled. Although reaction temperature is not limited, Preferably it is about 50-150 degreeC, More preferably, it is about 80-120 degreeC, More preferably, it is about 70-100 degreeC. By setting within this temperature range, the reaction can proceed successfully, the formation of high molecular weight components is suppressed, and the novolak reaction can be easily controlled. Although reaction time is not limited, Preferably it is 0.5 to 12 hours, More preferably, it is 1 to 6 hours. By setting the reaction time within this range, the reaction can proceed successfully, and the production of high molecular weight components is suppressed. Examples of the acidic catalyst used in the second step include the same acidic compounds used in the same step.

次に、前記のフェノール樹脂を含んでなる本発明のエポキシ樹脂組成物について説明する。本発明のエポキシ樹脂組成物に用いられるエポキシ樹脂としては特に限定はないが、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂などのグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ハロゲン化エポキシ樹脂など分子中にエポキシ基を2個以上有するエポキシ樹脂等が挙げられる。これらエポキシ樹脂は1種を単独で使用してもよく、2種以上を併用してもよい。特に好ましいエポキシ樹脂は、先に述べた一般式(2)で表されるビフェニル型エポキシ樹脂である。   Next, the epoxy resin composition of the present invention comprising the phenol resin will be described. The epoxy resin used in the epoxy resin composition of the present invention is not particularly limited. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol aralkyl type epoxy resin, cresol novolak type epoxy resin, phenol novolak type epoxy resin. , Glycidyl ether type epoxy resin such as triphenolmethane type epoxy resin, biphenyl type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, halogenated epoxy resin, etc. epoxy resin having two or more epoxy groups in the molecule, etc. Is mentioned. These epoxy resins may be used individually by 1 type, and may use 2 or more types together. A particularly preferable epoxy resin is the biphenyl type epoxy resin represented by the general formula (2) described above.

本発明のエポキシ樹脂組成物に用いるエポキシ樹脂の添加割合は、式(1)で表されるフェノール樹脂の水酸基当量(g/eq)とエポキシ樹脂中のエポキシ当量の比率である水酸基当量/エポキシ当量の値が、0.5以上2.0以下の範囲であることが好ましく、0.8以上1.2以下の範囲であることが更に好ましい。水酸基当量/エポキシ当量の値をこの範囲内に設定することで、硬化反応を十分に進行させることができ、未反応の硬化剤やエポキシ樹脂が残存することを効果的に防止することができる。それによって、加熱時に高熱膨張率を有し、ひいては冷却時に高熱収縮率を有する硬化物を得ることができる。   The addition ratio of the epoxy resin used in the epoxy resin composition of the present invention is the ratio of the hydroxyl equivalent (g / eq) of the phenol resin represented by the formula (1) to the epoxy equivalent in the epoxy resin. Is preferably in the range of 0.5 to 2.0, more preferably in the range of 0.8 to 1.2. By setting the value of hydroxyl equivalent / epoxy equivalent within this range, the curing reaction can sufficiently proceed, and it is possible to effectively prevent the unreacted curing agent and epoxy resin from remaining. Thereby, a cured product having a high coefficient of thermal expansion when heated, and thus having a high coefficient of thermal shrinkage when cooled can be obtained.

式(1)で表されるフェノール樹脂は、本発明のエポキシ樹脂組成物において、エポキシ樹脂の硬化剤の役割を有するところ、本発明のエポキシ樹脂組成物は、式(1)で表されるフェノール樹脂以外の他の硬化剤を含んでもよい。式(1)で表されるフェノール樹脂以外の他の硬化剤の種類に特に限定はなく、エポキシ樹脂組成物の使用目的に応じて種々の硬化剤を用いることができる。例えば、アミン系硬化剤、アミド系硬化剤、酸無水物系硬化剤などを用いることができる。   The phenol resin represented by the formula (1) has a role of a curing agent for the epoxy resin in the epoxy resin composition of the present invention, and the epoxy resin composition of the present invention is a phenol represented by the formula (1). A curing agent other than the resin may be included. There is no limitation in particular in the kind of hardening | curing agents other than the phenol resin represented by Formula (1), According to the intended purpose of an epoxy resin composition, various hardening | curing agents can be used. For example, an amine curing agent, an amide curing agent, an acid anhydride curing agent, or the like can be used.

本発明のエポキシ樹脂組成物において、すべての硬化剤に占める、式(1)で表されるフェノール樹脂の割合は、該エポキシ樹脂組成物から得られる硬化物の加熱時における高膨張性を十分に高くし、ひいては冷却時における高熱収縮性を十分に高くする観点から、より高い割合であることが好ましい。具体的には、すべての硬化剤に占める、式(1)で表されるフェノール樹脂の割合は、好ましくは30質量%以上、更に好ましくは50質量%以上、一層好ましくは70質量%以上、更に一層好ましくは90質量%、特に好ましくは100質量%である。   In the epoxy resin composition of the present invention, the proportion of the phenol resin represented by the formula (1) in all the curing agents is sufficient for high expansion during heating of the cured product obtained from the epoxy resin composition. From the viewpoint of increasing the temperature and, in turn, sufficiently increasing the high heat shrinkability during cooling, a higher ratio is preferable. Specifically, the proportion of the phenol resin represented by the formula (1) in all the curing agents is preferably 30% by mass or more, more preferably 50% by mass or more, and further preferably 70% by mass or more. More preferably, it is 90 mass%, Most preferably, it is 100 mass%.

本発明のエポキシ樹脂組成物においては、通常のエポキシ樹脂組成物で用いられる他の成分を、その用途に応じて好適に用いることができる。例えば、エポキシ樹脂をフェノール樹脂で硬化させるための硬化促進剤を用いることができる。硬化促進剤としては、例えば公知の有機ホスフィン化合物及びそのボロン塩、三級アミン、四級アンモニウム塩、イミダゾール類及びそのテトラフェニルボロン塩などを好適に挙げることができる。これらの中でも、硬化性や耐湿性の観点からトリフェニルホスフィンを用いることが好ましい。なお、エポキシ樹脂組成物に一層の高流動性が要求される場合には、加熱処理にて活性が発現する熱潜在性の硬化促進剤を用いることが好ましい。そのような硬化促進剤としては例えば、テトラフェニルホスフォニウム・テトラフェニルボレートなどのテトラフェニルホスフォニウム誘導体が挙げられる。エポキシ樹脂組成物への硬化促進剤の添加の割合は、公知のエポキシ樹脂組成物における割合と同様とすることができる。   In the epoxy resin composition of this invention, the other component used with a normal epoxy resin composition can be used suitably according to the use. For example, a curing accelerator for curing an epoxy resin with a phenol resin can be used. Preferred examples of the curing accelerator include known organic phosphine compounds and their boron salts, tertiary amines, quaternary ammonium salts, imidazoles and their tetraphenylboron salts. Among these, it is preferable to use triphenylphosphine from the viewpoints of curability and moisture resistance. In addition, when the high fluidity | liquidity is requested | required of an epoxy resin composition, it is preferable to use the heat | fever latent hardening accelerator which expresses activity by heat processing. Examples of such a curing accelerator include tetraphenylphosphonium derivatives such as tetraphenylphosphonium and tetraphenylborate. The ratio of the curing accelerator added to the epoxy resin composition can be the same as the ratio in the known epoxy resin composition.

本発明のエポキシ樹脂組成物には、更に、無機充填剤などの充填剤も好適に配合することができる。無機充填剤としては例えば非晶性シリカ、結晶性シリカ、アルミナ、珪酸カルシウム、炭酸カルシウム、タルク、マイカ、硫酸バリウムなどが使用できる。特に非晶性シリカ及び結晶性シリカを用いることが好ましい。無機充填剤の粒径に特に制限はないが、充填率を考慮すると0.01μm以上150μm以下であることが望ましい。無機充填剤の配合割合に特に制限はないが、エポキシ樹脂組成物に占める無機充填剤の割合が70質量%以上95質量%以下であることが好ましく、70質量%以上90質量%以下であることが更に好ましい。無機充填剤の配合割合をこの範囲に設定することで、エポキシ樹脂組成物の硬化物の吸水率が増加ににくくなるので好ましい。また、該硬化物の加熱時における熱膨張性が十分に高くなり、それによって冷却時における熱収縮性も十分に高くなり、しかも流動性が損なわれにくくなるので好ましい。   Further, a filler such as an inorganic filler can be suitably blended in the epoxy resin composition of the present invention. As the inorganic filler, for example, amorphous silica, crystalline silica, alumina, calcium silicate, calcium carbonate, talc, mica, barium sulfate and the like can be used. In particular, it is preferable to use amorphous silica and crystalline silica. Although there is no restriction | limiting in particular in the particle size of an inorganic filler, when a filling rate is considered, it is desirable that it is 0.01 micrometer or more and 150 micrometers or less. Although there is no restriction | limiting in particular in the mixture ratio of an inorganic filler, It is preferable that the ratio of the inorganic filler to an epoxy resin composition is 70 to 95 mass%, and it is 70 to 90 mass%. Is more preferable. Setting the blending ratio of the inorganic filler within this range is preferable because the water absorption rate of the cured product of the epoxy resin composition is difficult to increase. Moreover, the thermal expansion property at the time of heating of this hardened | cured material becomes high enough, and, thereby, the heat-shrinkability at the time of cooling becomes high enough, and also it becomes difficult for fluidity | liquidity to be impaired, and it is preferable.

本発明のエポキシ樹脂組成物には、更に必要に応じて、離型剤、着色剤、カップリング剤、難燃剤等を添加又は予め反応して用いることができる。これら添加剤の配合割合は、公知のエポキシ樹脂組成物における割合と同様でよい。本発明のエポキシ樹脂組成物には、この他、必要に応じて、メラミン及びイソシアヌル酸化合物等の窒素系難燃剤、並びに赤リン、リン酸化合物及び有機リン化合物等のリン系難燃剤を、難燃助剤として適宜添加することができる。   If necessary, the epoxy resin composition of the present invention may be added with a release agent, a colorant, a coupling agent, a flame retardant, or the like, or may be reacted in advance. The mixing ratio of these additives may be the same as the ratio in the known epoxy resin composition. In addition to this, the epoxy resin composition of the present invention contains a nitrogen-based flame retardant such as melamine and an isocyanuric acid compound, and a phosphorus-based flame retardant such as red phosphorus, a phosphoric acid compound and an organic phosphorus compound, if necessary. It can be added appropriately as a combustion aid.

本発明のエポキシ樹脂組成物を調製するには、例えばフェノール樹脂、エポキシ樹脂、更に必要に応じて加える硬化促進剤、無機充填剤、他の添加剤等を、ミキサー等を使用して均一に混合し、加熱ロール、ニーダー又は押出機等の混練機を用いて溶融状態で混練し、混練物を冷却し、必要に応じて粉砕すればよい。   To prepare the epoxy resin composition of the present invention, for example, a phenol resin, an epoxy resin, and a curing accelerator, an inorganic filler, and other additives that are added as necessary are uniformly mixed using a mixer or the like. The kneaded material is kneaded in a molten state using a kneader such as a heating roll, a kneader, or an extruder, the kneaded product is cooled, and pulverized as necessary.

このようにして得られたエポキシ樹脂組成物は、特に限定するものではないが、半導体素子を封止する封止材料として好適に用いることができる。例えば、該半導体素子を搭載したリードフレーム等を金属キャビティ内に設置した後に、エポキシ樹脂組成物をトランスファーモールド、コンプレッションモールド又はインジェクションモールド等の成形方法で成形し、120℃から300℃程度の温度で加熱処理等をすることによりエポキシ樹脂組成物を硬化させることで、半導体装置を好適に得ることができる。特に半導体装置が薄型片面封止パッケージからなる場合、該エポキシ樹脂組成物の硬化物が高膨張性を有していることに起因して、該硬化物が冷却時に大きく収縮し、それによって反りの発生を効果的に低減することができるという有利な効果が奏される。   The epoxy resin composition thus obtained is not particularly limited, but can be suitably used as a sealing material for sealing a semiconductor element. For example, after a lead frame or the like on which the semiconductor element is mounted is placed in a metal cavity, an epoxy resin composition is molded by a molding method such as a transfer mold, a compression mold, or an injection mold, and the temperature is about 120 ° C. to 300 ° C. A semiconductor device can be suitably obtained by curing the epoxy resin composition by heat treatment or the like. In particular, when the semiconductor device is formed of a thin single-sided sealed package, the cured product of the epoxy resin composition has a high expansibility, so that the cured product is greatly shrunk when cooled, thereby causing warping. There is an advantageous effect that generation can be effectively reduced.

以下に実施例を挙げて、本発明を更に具体的に説明する。しかしながら、本発明の範囲はこれらの実施例に限定されるものではない。特に断らない限り「部」は「質量部」を示す。また「%」は「質量%」を示す。   The present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to these examples. Unless otherwise specified, “part” means “part by mass”. “%” Indicates “mass%”.

[1]フェノール樹脂の調製
以下のフェノール樹脂の調製の例で用いた分析方法及び評価方法について説明する。
<軟化点>JIS K6910に基づく環球法軟化点測定によって求めた。
<150℃溶融粘度>ICI溶融粘度計を用い、150℃でのフェノール樹脂及びエポキシ樹脂の溶融粘度を測定した。
ICI粘度の測定方法は以下のとおりである。
ICIコーンプレート粘度計 MODEL CV−1S TOA工業(株)
ICI粘度計のプレート温度を150℃に設定し、試料を所定量秤量する。
プレート部に秤量した樹脂を置き、上部からコーンで押さえつけ、90秒放置する。コーンを回転させて、そのトルク値をICI粘度として読み取る。
<水酸基当量>JIS K0070に準じた水酸基当量測定によって求めた。
<分子量分布の測定>以下のようにしてゲル浸透クロマトグラフ測定によりフェノール樹脂の分子量分布を測定した。フェノール樹脂におけるi成分(iは一般式(1)におけるn=iの成分を表す)の割合は解析ソフトMulti Station GPC−8020を用い、測定されたチャートにおけるピーク面積に基づき算出した。その際、ピーク前後の直線部分をベースライン(ゼロ値)とし、各成分のピーク間は最も低くなるところでの縦切りでピークを分けた。サンプリングピッチは500ミリ秒とした。また分子量(Mw、Mn)及び分散度(Mw/Mn)は標準ポリスチレン換算によって算出した。
装置:HLC−8220(東ソー株式会社製、ゲル浸透クロマトグラフ分析装置)
カラム:TSK−GEL Hタイプ
G2000H×L 4本
G3000H×L 1本
G4000H×L 1本
測定条件:カラム圧力 13.5MPa
溶解液:テトラヒドロフラン(THF)
フローレート:1mL/分
測定温度:40℃
検出器:RI検出部
RANGE:256(レコーダ出力:256×10−6RIU/10mV)
温度制御(RI光学ブロックの温調温度):40℃
インジェクション量:100μmL
試料濃度:5mg/mL(THF)
<分子量(Mw、Mn)及び分散度(Mw/Mn)の測定>以下のようにしてゲル浸透クロマトグラフ測定によりフェノール樹脂の分子量(Mw、Mn)及び分散度(Mw/Mn)を測定した。フェノール樹脂におけるi成分(iは一般式(1)におけるn=iの成分を表す)の割合は解析ソフトMulti Station GPC−8020を用い、測定されたチャートにおけるピーク面積に基づき算出した。その際、ピーク前後の直線部分をベースライン(ゼロ値)とし、各成分のピーク間は最も低くなるところでの縦切りでピークを分けた。サンプリングピッチは500ミリ秒とした。また分子量(Mw、Mn)及び分散度(Mw/Mn)は標準ポリスチレン換算によって算出した。
装置:HLC−8220(東ソー株式会社製、ゲル浸透クロマトグラフ分析装置)
カラム:TSK−GEL Hタイプ
G2000H×L 4本
G3000H×L 1本
G4000H×L 1本
測定条件:カラム圧力 13.5MPa
溶解液:テトラヒドロフラン(THF)
フローレート:1mL/分
測定温度:40℃
検出器:スペクトロフォトメーター(UV−8020)
RANGE:2.56
WAVE LENGTH:254nm
インジェクション量:100μmL
試料濃度:5mg/mL(THF)
<ゲル化時間>
使用機器:株式会社サイバー製 自動硬化時間測定装置
測定条件:150℃ 600rpm
測定方法:o−クレゾール型エポキシ樹脂 EOCN−1020−55(日本化薬株式会社製 エポキシ当量:195g/eq)のエポキシ当量とフェノール樹脂の水酸基当量を当量比(エポキシ当量と水酸基当量との比が1)にて混合し、硬化促進剤としてトリフェニルホスフィンをエポキシ樹脂に対し1.9%配合したエポキシ樹脂組成物を、50%メチルエチルケトン(MEK)溶液に調製する。エポキシ樹脂組成物のMEK溶液を約0.6mL量りとり装置の熱板上に乗せ測定する。測定されたトルクが、装置の測定上限トルク値の20%になった時間をゲルタイムとした。
[1] Preparation of phenol resin The analysis method and evaluation method used in the following examples of preparation of phenol resin will be described.
<Softening point> The softening point was determined by ring and ball softening point measurement based on JIS K6910.
<150 ° C. melt viscosity> Using an ICI melt viscometer, the melt viscosities of phenol resin and epoxy resin at 150 ° C. were measured.
The measuring method of ICI viscosity is as follows.
ICI Cone Plate Viscometer MODEL CV-1S TOA Industrial Co., Ltd.
The plate temperature of the ICI viscometer is set to 150 ° C., and a predetermined amount of the sample is weighed.
Place the weighed resin on the plate, press it with a cone from the top, and leave it for 90 seconds. The cone is rotated and its torque value is read as ICI viscosity.
<Hydroxyl equivalent> It was determined by measuring the hydroxyl equivalent according to JIS K0070.
<Measurement of molecular weight distribution> The molecular weight distribution of the phenol resin was measured by gel permeation chromatography as follows. The ratio of i component (i represents the component of n = i in General formula (1)) in the phenol resin was calculated based on the peak area in the measured chart using analysis software Multi Station GPC-8020. At that time, the straight line part before and after the peak was taken as the baseline (zero value), and the peak was divided by the vertical cut at the lowest point between the peaks of each component. The sampling pitch was 500 milliseconds. Moreover, molecular weight (Mw, Mn) and dispersity (Mw / Mn) were calculated by standard polystyrene conversion.
Apparatus: HLC-8220 (manufactured by Tosoh Corporation, gel permeation chromatograph analyzer)
Column: TSK-GEL H type
G2000H × L 4
1 G3000H x L
One G4000H × L Measurement condition: Column pressure 13.5 MPa
Solution: Tetrahydrofuran (THF)
Flow rate: 1 mL / min Measurement temperature: 40 ° C
Detector: RI detector RANGE: 256 (Recorder output: 256 × 10 −6 RIU / 10 mV)
Temperature control (temperature control temperature of RI optical block): 40 ° C
Injection volume: 100 μmL
Sample concentration: 5 mg / mL (THF)
<Measurement of molecular weight (Mw, Mn) and dispersity (Mw / Mn)> The molecular weight (Mw, Mn) and dispersity (Mw / Mn) of the phenol resin were measured by gel permeation chromatography as follows. The ratio of i component (i represents the component of n = i in General formula (1)) in the phenol resin was calculated based on the peak area in the measured chart using analysis software Multi Station GPC-8020. At that time, the straight line part before and after the peak was taken as the baseline (zero value), and the peak was divided by the vertical cut at the lowest point between the peaks of each component. The sampling pitch was 500 milliseconds. Moreover, molecular weight (Mw, Mn) and dispersity (Mw / Mn) were calculated by standard polystyrene conversion.
Apparatus: HLC-8220 (manufactured by Tosoh Corporation, gel permeation chromatograph analyzer)
Column: TSK-GEL H type
G2000H × L 4
1 G3000H x L
One G4000H × L Measurement condition: Column pressure 13.5 MPa
Solution: Tetrahydrofuran (THF)
Flow rate: 1 mL / min Measurement temperature: 40 ° C
Detector: Spectrophotometer (UV-8020)
RANGE: 2.56
WAVE LENGTH: 254nm
Injection volume: 100 μmL
Sample concentration: 5 mg / mL (THF)
<Gelification time>
Equipment used: Cyber Co., Ltd. Automatic curing time measuring device Measuring conditions: 150 ° C 600 rpm
Measurement method: o-cresol type epoxy resin EOCN-1020-55 (manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent: 195 g / eq) and the hydroxyl equivalent of the phenolic resin equivalent ratio (ratio of epoxy equivalent to hydroxyl equivalent) Mixing in 1), an epoxy resin composition in which 1.9% of triphenylphosphine as a curing accelerator is blended with respect to the epoxy resin is prepared in a 50% methyl ethyl ketone (MEK) solution. About 0.6 mL of the MEK solution of the epoxy resin composition is weighed and placed on the hot plate of the apparatus for measurement. The time when the measured torque was 20% of the measurement upper limit torque value of the apparatus was defined as the gel time.

〔実施例1〕
温度計、仕込み・留出口、冷却器及び攪拌機を備えた容量300部のガラス製フラスコに、o−アリルフェノール134部(1.0モル)、92%パラホルムアルデヒド32部(0.98モル)、純水0.4部及びシュウ酸1.1部を入れた。還流下に、100℃で12時間反応させ、更に160℃で2時間反応させた後、95℃まで冷却した。冷却後、90℃以上の純水130部を投入して水洗した。その後、内温を160℃まで昇温し、減圧−スチーミング処理を行い、未反応成分を除去することで、フェノールノボラック樹脂A(一般式(1)におけるRがアリル基、p=1、q=1のフェノールノボラック樹脂)を得た。得られたフェノールノボラック樹脂Aの軟化点は73℃、150℃での溶融粘度は4.3P、水酸基当量は170g/eq、ゲル化時間は72秒であった。ゲル浸透クロマトグラフ測定による、n=0の化合物はフェノール樹脂全体の5.9面積%であり、n=1の化合物はフェノール樹脂全体の6.2面積%であった。
[Example 1]
In a glass flask having a capacity of 300 parts equipped with a thermometer, a charging / distilling outlet, a condenser and a stirrer, 134 parts (1.0 mol) of o-allylphenol, 32 parts (0.98 mol) of 92% paraformaldehyde, 0.4 parts of pure water and 1.1 parts of oxalic acid were added. The mixture was reacted at 100 ° C. for 12 hours under reflux, further reacted at 160 ° C. for 2 hours, and then cooled to 95 ° C. After cooling, 130 parts of pure water of 90 ° C. or higher was added and washed with water. Thereafter, the internal temperature is raised to 160 ° C., a decompression-steaming treatment is performed, and unreacted components are removed, whereby phenol novolak resin A (R in the general formula (1) is an allyl group, p = 1, q = 1 phenol novolac resin). The obtained phenol novolac resin A had a softening point of 73 ° C., a melt viscosity at 150 ° C. of 4.3 P, a hydroxyl group equivalent of 170 g / eq, and a gel time of 72 seconds. According to the gel permeation chromatographic measurement, the compound with n = 0 was 5.9 area% of the entire phenol resin, and the compound with n = 1 was 6.2 area% of the entire phenol resin.

〔実施例2〕
温度計、仕込み・留出口、冷却器及び攪拌機を備えた容量300部のガラス製フラスコに、o−アリルフェノール134部(1.0モル)、92%パラホルムアルデヒド36部(1.1モル)、純水0.4部及びシュウ酸1.1部を入れた。還流下に、100℃で12時間反応させ、更に160℃にて2時間反応させた後、95℃まで冷却した。冷却後、90℃以上の純水130部を投入して水洗した。その後、内温を160℃まで昇温し、減圧−スチーミング処理を行い、未反応成分を除去することで、フェノールノボラック樹脂B(一般式(1)におけるRがアリル基、p=1、q=1のフェノールノボラック樹脂)を得た。得られたフェノールノボラック樹脂Bの軟化点は98℃、150℃での溶融粘度は20P、水酸基当量は172g/eqであった。
[Example 2]
In a glass flask having a capacity of 300 parts equipped with a thermometer, charging / distilling outlet, condenser and stirrer, 134 parts (1.0 mol) of o-allylphenol, 36 parts of 92% paraformaldehyde (1.1 mol), 0.4 parts of pure water and 1.1 parts of oxalic acid were added. The mixture was reacted at 100 ° C. for 12 hours under reflux, further reacted at 160 ° C. for 2 hours, and then cooled to 95 ° C. After cooling, 130 parts of pure water of 90 ° C. or higher was added and washed with water. Thereafter, the internal temperature is raised to 160 ° C., a decompression-steaming treatment is performed, and unreacted components are removed, whereby phenol novolak resin B (R in the general formula (1) is an allyl group, p = 1, q = 1 phenol novolac resin). The obtained phenol novolac resin B had a softening point of 98 ° C., a melt viscosity at 150 ° C. of 20 P, and a hydroxyl group equivalent of 172 g / eq.

〔実施例3〕
温度計、仕込み・留出口、冷却器及び攪拌機を備えた容量2000部のガラス製フラスコに、o−アリルフェノール1200部(9.0モル)、42%ホルマリン127部(1.8モル)、及びシュウ酸12部を入れた。還流下に、100℃で7時間反応させた。反応終了後、90℃以上の純水600部を投入して水洗した。その後、内温を160℃まで昇温し、減圧−スチーミング処理を行い、未反応成分を除去することでフェノールノボラック樹脂C(一般式(1)におけるRがアリル基、p=1、q=1のフェノールノボラック樹脂)を得た。得られたフェノールノボラック樹脂Cは常温で液状であり、水酸基当量は141g/eqであった。
Example 3
In a glass flask having a capacity of 2000 parts equipped with a thermometer, a charging / distilling outlet, a condenser and a stirrer, 1200 parts (9.0 moles) of o-allylphenol, 127 parts (1.8 moles) of 42% formalin, and 12 parts of oxalic acid was added. The mixture was reacted at 100 ° C. for 7 hours under reflux. After completion of the reaction, 600 parts of pure water of 90 ° C. or higher was added and washed with water. Thereafter, the internal temperature is raised to 160 ° C., a decompression-steaming treatment is performed, and unreacted components are removed to remove phenol novolac resin C (R in the general formula (1) is an allyl group, p = 1, q = 1 phenol novolac resin). The obtained phenol novolac resin C was liquid at room temperature, and the hydroxyl group equivalent was 141 g / eq.

〔実施例4〕
温度計、仕込み・留出口、冷却器及び攪拌機を備えた容量300部のガラス製フラスコに、ジアリルレゾルシン95部(0.5モル)、42%ホルマリン14部(0.2モル)を入れた。還流下に、100℃で12時間反応させた後、95℃まで冷却した。冷却後、90℃以上の純水110部を投入して水洗した。その後、内温を160℃まで昇温し、減圧を行い、フェノールノボラック樹脂D(一般式(1)におけるRがアリル基、p=2、q=2のフェノールノボラック樹脂)を得た。得られたフェノールノボラック樹脂Dは常温で液状であり、水酸基当量は108g/eqであった。
Example 4
95 parts (0.5 mol) of diallyl resorcin and 14 parts (0.2 mol) of 42% formalin were placed in a glass flask having a capacity of 300 parts equipped with a thermometer, a charging / distilling outlet, a condenser and a stirrer. The mixture was reacted at 100 ° C. for 12 hours under reflux, and then cooled to 95 ° C. After cooling, 110 parts of pure water of 90 ° C. or higher was added and washed with water. Thereafter, the internal temperature was raised to 160 ° C. and the pressure was reduced to obtain a phenol novolac resin D (R in the general formula (1) is an allyl group, p = 2, q = 2 phenol novolac resin). The obtained phenol novolac resin D was liquid at normal temperature and the hydroxyl group equivalent was 108 g / eq.

〔実施例5〕
温度計、仕込み・留出口、冷却器及び攪拌機を備えた容量1000部のガラス製フラスコに、p−tert−ブチルフェノール200部(1.3モル)、42%ホルマリン57部(0.8モル)、シュウ酸0.3部を入れた。還流下に、100℃で20時間反応させた後、95℃まで冷却した。冷却後、90℃以上の純水130部を投入して水洗した。その後、内温を180℃まで昇温し、減圧−スチーミング処理を行い、未反応成分を除去することで、フェノールノボラック樹脂E(一般式(1)におけるRがtert−ブチル基、p=1、q=1のフェノールノボラック樹脂)を得た。得られたフェノールノボラック樹脂Eの軟化点は99℃、150℃でのICI粘度は4.3P、水酸基当量は167g/eqであった。
Example 5
To a glass flask having a capacity of 1000 parts equipped with a thermometer, charging / distilling outlet, condenser and stirrer, p-tert-butylphenol 200 parts (1.3 mol), 42% formalin 57 parts (0.8 mol), 0.3 parts of oxalic acid was added. The mixture was reacted at 100 ° C. for 20 hours under reflux, and then cooled to 95 ° C. After cooling, 130 parts of pure water of 90 ° C. or higher was added and washed with water. Thereafter, the internal temperature is raised to 180 ° C., a decompression-steaming treatment is performed, and unreacted components are removed, whereby phenol novolak resin E (R in the general formula (1) is a tert-butyl group, p = 1) , Q = 1 phenol novolac resin). The obtained phenol novolac resin E had a softening point of 99 ° C., an ICI viscosity at 150 ° C. of 4.3 P, and a hydroxyl group equivalent of 167 g / eq.

〔実施例6〕
温度計、仕込み・留出口、冷却器及び撹拌器を備えた容量300部(300mL)のガラス製フラスコに、o−アリルフェノール67.0部(0.50モル)、42%ホルマリン71.4部(1.00モル)、及び塩基性触媒として25%水酸化ナトリウム19.2部(0.12モル)を投入し、60℃で7時間反応させて第1工程のレゾール化反応を行った。この反応混合物に、反応停止用の純水134部を投入し、40℃に温度を下げて、25%塩化水素を17.5部(0.12モル)加えて中和して反応混合物を得た。次いで反応混合物にo−アリルフェノール73.7部(0.55モル)、及び酸触媒としてシュウ酸1.3部を投入し、100℃で2時間、次いで120℃で2時間反応させて第2工程のノボラック化反応を行った。得られた反応混合液を、95℃に温度を下げて、同温度の純水134部にて水洗した。水洗後、160℃に昇温し、減圧スチーミング処理を行い、未反応性分を除去することで、フェノールノボラック樹脂I(一般式(1)におけるRがアリル基、p=1、q=1のフェノールノボラック樹脂)を得た。得られたフェノールノボラック樹脂Iの軟化点は59℃、150℃でのICI粘度は1.2P、水酸基当量は154g/eq、ゲル化時間は59秒であった。ゲル浸透クロマトグラフ測定による、n=0の化合物はフェノール樹脂全体の3.5面積%であり、n=1の化合物はフェノール樹脂全体の6.0面積%であった。
Example 6
In a glass flask with a capacity of 300 parts (300 mL) equipped with a thermometer, charging / distilling outlet, condenser and stirrer, 67.0 parts (0.50 mol) of o-allylphenol, 71.4 parts of 42% formalin (1.00 mol) and 19.2 parts (0.12 mol) of 25% sodium hydroxide as a basic catalyst were added and reacted at 60 ° C. for 7 hours to carry out a resolation reaction in the first step. To this reaction mixture, 134 parts of pure water for stopping the reaction was added, the temperature was lowered to 40 ° C., and 17.5 parts (0.12 mol) of 25% hydrogen chloride was added to neutralize to obtain a reaction mixture. It was. Next, 73.7 parts (0.55 mol) of o-allylphenol and 1.3 parts of oxalic acid as an acid catalyst were added to the reaction mixture, and reacted at 100 ° C. for 2 hours and then at 120 ° C. for 2 hours. A novolak reaction of the process was performed. The resulting reaction mixture was cooled to 95 ° C. and washed with 134 parts of pure water at the same temperature. After washing with water, the temperature was raised to 160 ° C., a steaming treatment was performed, and unreacted components were removed, whereby phenol novolac resin I (R in the general formula (1) was an allyl group, p = 1, q = 1. Phenol novolac resin). The obtained phenol novolac resin I had a softening point of 59 ° C., an ICI viscosity of 1.2 P at 150 ° C., a hydroxyl group equivalent of 154 g / eq, and a gelation time of 59 seconds. According to the gel permeation chromatographic measurement, the compound with n = 0 was 3.5 area% of the entire phenol resin, and the compound with n = 1 was 6.0 area% of the entire phenol resin.

〔実施例7〕
温度計、仕込み・留出口、冷却器及び撹拌器を備えた容量300部のガラス製フラスコに、o−アリルフェノール67.0部(0.50モル)、42%ホルマリン71.4部(1.00モル)、及び塩基性触媒として25%水酸化ナトリウム19.2部(0.12モル)を投入し、60℃で7時間反応させて第1工程のレゾール化反応を行った。この反応混合物に、反応停止用の純水134部を投入し、40℃に温度を下げて、25%塩化水素を17.5部(0.12モル)加えて中和して反応混合物を得た。次いで反応混合物にo−アリルフェノール60.3部(0.45モル)、及び酸触媒としてシュウ酸1.3部を投入し、100℃で2時間、次いで120℃で2時間反応させて第2工程のノボラック化反応を行った。その後は実施例6と同様にして、フェノールノボラック樹脂J(一般式(1)におけるRがアリル基、p=1、q=1のフェノールノボラック樹脂)を得た。得られたフェノールノボラック樹脂Jの軟化点は74℃、150℃でのICI粘度は4.3P、水酸基当量は159g/eq、ゲル化時間は55秒であった。ゲル浸透クロマトグラフ測定による、n=0の化合物はフェノール樹脂全体の1.9面積%であり、n=1の化合物はフェノール樹脂全体の4.1面積%であった。
Example 7
In a glass flask having a capacity of 300 parts equipped with a thermometer, a charging / distilling outlet, a condenser and a stirrer, 67.0 parts (0.50 mol) of o-allylphenol, 71.4 parts of 42% formalin (1. 00 mol) and 19.2 parts (0.12 mol) of 25% sodium hydroxide as a basic catalyst were added and reacted at 60 ° C. for 7 hours to carry out a resorching reaction in the first step. To this reaction mixture, 134 parts of pure water for stopping the reaction was added, the temperature was lowered to 40 ° C., and 17.5 parts (0.12 mol) of 25% hydrogen chloride was added to neutralize to obtain a reaction mixture. It was. Next, 60.3 parts (0.45 mol) of o-allylphenol and 1.3 parts of oxalic acid as an acid catalyst were added to the reaction mixture, and reacted at 100 ° C. for 2 hours and then at 120 ° C. for 2 hours. A novolak reaction of the process was performed. Thereafter, in the same manner as in Example 6, a phenol novolac resin J (Phenol novolac resin in which R in the general formula (1) is an allyl group, p = 1, q = 1) was obtained. The obtained phenol novolac resin J had a softening point of 74 ° C., an ICI viscosity of 4.3 P at 150 ° C., a hydroxyl group equivalent of 159 g / eq, and a gel time of 55 seconds. According to gel permeation chromatographic measurement, the compound with n = 0 was 1.9 area% of the entire phenol resin, and the compound with n = 1 was 4.1 area% of the entire phenol resin.

〔実施例8〕
温度計、仕込み・留出口、冷却器及び撹拌器を備えた容量300部のガラス製フラスコに、o−アリルフェノール67.0部(0.50モル)、42%ホルマリン71.4部(1.00モル)、及び塩基性触媒として25%水酸化ナトリウム19.2部(0.12モル)を投入し、60℃で7時間反応させて第1工程のレゾール化反応を行った。この反応混合物に、反応停止用の純水134部を投入し、40℃に温度を下げて、25%塩化水素を17.5部(0.12モル)加えて中和して反応混合物を得た。次いで反応混合物にo−アリルフェノール46.9部(0.35モル)、及び酸触媒としてシュウ酸1.3部を投入し、100℃で2時間、次いで120℃で2時間反応させて第2工程のノボラック化反応を行った。その後は実施例6と同様にして、フェノールノボラック樹脂K(一般式(1)におけるRがアリル基、p=1、q=1のフェノールノボラック樹脂)を得た。得られたフェノールノボラック樹脂Kの軟化点は91℃、150℃でのICI粘度は29P、水酸基当量は159g/eq、ゲル化時間は51秒であった。ゲル浸透クロマトグラフ測定による、n=0の化合物はフェノール樹脂全体の1.4面積%であり、n=1の化合物はフェノール樹脂全体の2.8面積%であった。
Example 8
In a glass flask having a capacity of 300 parts equipped with a thermometer, a charging / distilling outlet, a condenser and a stirrer, 67.0 parts (0.50 mol) of o-allylphenol, 71.4 parts of 42% formalin (1. 00 mol) and 19.2 parts (0.12 mol) of 25% sodium hydroxide as a basic catalyst were added and reacted at 60 ° C. for 7 hours to carry out a resorching reaction in the first step. To this reaction mixture, 134 parts of pure water for stopping the reaction was added, the temperature was lowered to 40 ° C., and 17.5 parts (0.12 mol) of 25% hydrogen chloride was added to neutralize to obtain a reaction mixture. It was. Next, 46.9 parts (0.35 mol) of o-allylphenol and 1.3 parts of oxalic acid as an acid catalyst were added to the reaction mixture, and the mixture was reacted at 100 ° C. for 2 hours and then at 120 ° C. for 2 hours. A novolak reaction of the process was performed. Thereafter, in the same manner as in Example 6, a phenol novolac resin K (Phenol novolac resin in which R in the general formula (1) is an allyl group, p = 1, q = 1) was obtained. The obtained phenol novolak resin K had a softening point of 91 ° C., an ICI viscosity of 29 P at 150 ° C., a hydroxyl group equivalent of 159 g / eq, and a gelation time of 51 seconds. According to gel permeation chromatographic measurement, the compound of n = 0 was 1.4 area% of the whole phenol resin, and the compound of n = 1 was 2.8 area% of the whole phenol resin.

〔比較例1〕
温度計、仕込み・留出口、冷却器及び攪拌機を備えた容量1000部のガラス製フラスコに、フェノール513部(5.5モル)、42%ホルマリン229部(3.3モル)、及びシュウ酸0.6部を入れた。還流下に、100℃で6時間反応させた。反応終了後、内温を160℃まで昇温し、減圧−スチーミング処理を行い、未反応成分を除去することで、フェノールノボラック樹脂F(一般式(1)におけるp=1、q=0のフェノールノボラック樹脂)を得た。得られたフェノールノボラック樹脂Fの軟化点は83℃、150℃でのICI粘度は2.0P、水酸基当量は107g/eqであった。
[Comparative Example 1]
In a glass flask having a capacity of 1000 parts equipped with a thermometer, a charging / distilling outlet, a condenser and a stirrer, 513 parts (5.5 mol) of phenol, 229 parts (3.3 mol) of 42% formalin, and 0 oxalic acid .6 parts were added. The mixture was reacted at 100 ° C. for 6 hours under reflux. After completion of the reaction, the internal temperature was raised to 160 ° C., a decompression-steaming treatment was performed, and unreacted components were removed, whereby phenol novolac resin F (p = 1, q = 0 in the general formula (1)) Phenol novolac resin) was obtained. The obtained phenol novolac resin F had a softening point of 83 ° C., an ICI viscosity of 2.0 P at 150 ° C., and a hydroxyl group equivalent of 107 g / eq.

〔比較例2〕
温度計、仕込み・留出口、冷却器及び攪拌機を備えた容量300部のガラス製フラスコに、o−クレゾール108部(1.0モル)、92%パラホルムアルデヒド32部(0.98モル)、純水0.4部及びシュウ酸1.1部を入れた。還流下に、100℃で6時間反応させ、更に160℃で2時間反応させた。反応終了後、減圧−スチーミング処理を行い、未反応成分を除去することで、フェノールノボラック樹脂G(一般式(1)におけるRがメチル基、p=1、q=1のフェノールノボラック樹脂)を得た。得られたフェノールノボラック樹脂Gの軟化点は130℃であったが、150℃でのICI粘度は測定できなかった。水酸基当量は116g/eqであった。
[Comparative Example 2]
In a glass flask having a capacity of 300 parts equipped with a thermometer, charging / distilling outlet, condenser and stirrer, 108 parts (1.0 mol) of o-cresol, 32 parts (0.98 mol) of 92% paraformaldehyde, pure 0.4 parts of water and 1.1 parts of oxalic acid were added. The mixture was reacted at 100 ° C. for 6 hours under reflux, and further reacted at 160 ° C. for 2 hours. After completion of the reaction, a decompression-steaming treatment is performed to remove unreacted components, whereby a phenol novolac resin G (R in the general formula (1) is a methyl group, p = 1, q = 1 phenol novolac resin). Obtained. The resulting phenol novolac resin G had a softening point of 130 ° C., but the ICI viscosity at 150 ° C. could not be measured. The hydroxyl equivalent was 116 g / eq.

〔比較例3〕
温度計、仕込み・留出口、冷却器及び攪拌機を備えた容量300部のガラス製フラスコに、o−フェニルフェノール170部(1.0モル)、42%ホルマリン42部(0.58モル)、及びパラトルエンスルホン酸3.8部を入れた。還流下に、100℃で7時間反応させた後、95℃まで冷却した。冷却後、25%水酸化ナトリウム水溶液で中和した。更に、90℃以上の純水340部を投入して水洗した。その後、内温を160℃まで昇温し、減圧−スチーミング処理を行い、未反応成分を除去することで、フェノールノボラック樹脂H(一般式(1)におけるRがフェニル基、p=1、q=1のフェノールノボラック樹脂)を得た。得られたフェノールノボラック樹脂Hの軟化点は81℃、150℃でのICI粘度は1.7P、水酸基当量は188g/eqであった。
[Comparative Example 3]
In a glass flask having a capacity of 300 parts equipped with a thermometer, charging / distilling outlet, condenser and stirrer, 170 parts (1.0 mol) of o-phenylphenol, 42 parts (42 mol) of 42% formalin, and 3.8 parts of paratoluenesulfonic acid were added. The mixture was reacted at 100 ° C. for 7 hours under reflux, and then cooled to 95 ° C. After cooling, the mixture was neutralized with 25% aqueous sodium hydroxide solution. Further, 340 parts of pure water having a temperature of 90 ° C. or higher was added and washed with water. Thereafter, the internal temperature is raised to 160 ° C., a decompression-steaming treatment is performed, and unreacted components are removed, whereby phenol novolak resin H (R in the general formula (1) is a phenyl group, p = 1, q = 1 phenol novolac resin). The obtained phenol novolac resin H had a softening point of 81 ° C., an ICI viscosity at 150 ° C. of 1.7 P, and a hydroxyl group equivalent of 188 g / eq.

実施例及び比較例で得られたフェノール樹脂を用い、エポキシ樹脂組成物を調製し、該エポキシ樹脂組成物から得られた硬化物について硬化物特性を測定した。それらの結果を表1にまとめて示した。   Using the phenol resins obtained in Examples and Comparative Examples, an epoxy resin composition was prepared, and the cured product characteristics of the cured product obtained from the epoxy resin composition were measured. The results are summarized in Table 1.

[2]エポキシ樹脂組成物及び硬化物の調製及び評価
実施例及び比較例で得られたフェノール樹脂と、前記の一般式(2)で表されるビフェニル型エポキシ樹脂(三菱化学株式会社製 YX−4000 エポキシ当量:186g/eq)と、硬化促進剤としてのトリフェニルホスフィン(北興化学株式会社製 TPP)とを使用してエポキシ樹脂組成物を調製した。調製においては、フェノール樹脂とエポキシ樹脂とを、水酸基当量とエポキシ当量との比である〔水酸基当量(g/eq)/エポキシ当量(g/eq)〕の値が1となるように両者を配合して加熱溶融混合した後、表1に示す量のトリフェニルホスフィンを加え均一に混合し、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を150℃で5時間、180℃で8時間のポストキュアを行い、エポキシ樹脂硬化物を得た。得られたエポキシ樹脂硬化物について、熱膨張率、ガラス転移点、線膨張係数及び貯蔵弾性率を測定した。
[2] Preparation and Evaluation of Epoxy Resin Composition and Cured Product The phenol resin obtained in Examples and Comparative Examples, and the biphenyl type epoxy resin represented by the general formula (2) (YX-manufactured by Mitsubishi Chemical Corporation) 4000 epoxy equivalent: 186 g / eq) and triphenylphosphine (TPP manufactured by Hokuko Chemical Co., Ltd.) as a curing accelerator were used to prepare an epoxy resin composition. In preparation, the phenol resin and the epoxy resin are blended so that the value of [hydroxyl equivalent (g / eq) / epoxy equivalent (g / eq)], which is the ratio of the hydroxyl equivalent to the epoxy equivalent, is 1. The mixture was heated and melted and mixed, and then the amount of triphenylphosphine shown in Table 1 was added and mixed uniformly to obtain an epoxy resin composition. The obtained epoxy resin composition was post-cured at 150 ° C. for 5 hours and at 180 ° C. for 8 hours to obtain a cured epoxy resin. About the obtained epoxy resin hardened | cured material, the thermal expansion coefficient, the glass transition point, the linear expansion coefficient, and the storage elastic modulus were measured.

前記のエポキシ樹脂組成物の硬化物の例で用いた分析方法及び評価方法について説明する。
(1)貯蔵弾性率
エポキシ硬化物を40mm×2mm×4mmに切り出し測定試料とした。測定は、ティー・エイ・インスツルメント社製動的粘弾性測定装置RSA−G2を用い、30℃から3℃/分の昇温速度で昇温しながら貯蔵弾性率を測定し、250℃での貯蔵弾性率を求めた。またTanδのピーク温度をTgとした。
(2)ガラス転移温度(Tg)、線膨張係数(α1、α2)及び熱膨張率
エポキシ硬化物を10mm×6mm×4mmに切り出し測定試料とした。島津製作所株式会社製熱機械分析装置 TMA−60を用い、30℃から3℃/分の昇温速度で昇温しながら試料のガラス転移温度及び線膨張係数(α1、α2)を測定した。40℃から70℃の線膨張係数をα1、185℃から220℃の線膨張係数をα2とした。また、40℃から180℃における試料の熱膨張率を求めた。
The analysis method and the evaluation method used in the example of the cured product of the epoxy resin composition will be described.
(1) Storage elastic modulus The epoxy cured product was cut into 40 mm × 2 mm × 4 mm and used as a measurement sample. The measurement is performed using a dynamic viscoelasticity measuring device RSA-G2 manufactured by TA Instruments Inc., measuring the storage elastic modulus while increasing the temperature from 30 ° C. at a rate of 3 ° C./min, at 250 ° C. The storage elastic modulus was determined. The peak temperature of Tan δ was defined as Tg.
(2) Glass transition temperature (Tg), coefficient of linear expansion (α1, α2) and coefficient of thermal expansion An epoxy cured product was cut into 10 mm × 6 mm × 4 mm and used as a measurement sample. Using a thermomechanical analyzer TMA-60 manufactured by Shimadzu Corporation, the glass transition temperature and linear expansion coefficient (α1, α2) of the sample were measured while increasing the temperature from 30 ° C. at a rate of 3 ° C./min. The linear expansion coefficient from 40 ° C to 70 ° C was α1, and the linear expansion coefficient from 185 ° C to 220 ° C was α2. Moreover, the thermal expansion coefficient of the sample in 40 to 180 degreeC was calculated | required.

Figure 2015152037
Figure 2015152037

表1に示す結果から明らかなとおり、各実施例で得られたフェノールノボラック樹脂を用いて得られたエポキシ樹脂硬化物は、各比較例で得られたフェノールノボラック樹脂を用いて得られたエポキシ樹脂硬化物に比べて、加熱時に熱膨張率が高く、換言すれば冷却時に熱収縮率が高く、また貯蔵弾性率が高いことが判る。
特に、実施例1と実施例6ないし8との対比から明らかなとおり、一般式(1)においてn=0の化合物の割合を、フェノールノボラック樹脂の全体に対して5%以下の少量にすることによって、硬化物の熱膨張率を高くすることができ、且つゲル化時間を短縮化できる。
また、実施例1と実施例6ないし8との対比から明らかなとおり、一般式(1)においてn=0の化合物とn=1の化合物との合計の割合を、フェノールノボラック樹脂の全体に対して10%以下にすることによって、硬化物の熱膨張率を高くすることができ、且つゲル化時間を短縮化できる。
更に、実施例6ないし8との対比から明らかなとおり、一般式(1)においてn=0の化合物とn=1の化合物との合計の割合をフェノールノボラック樹脂の全体に対して10%以下とし、且つn=2である化合物の割合を5.0%以上13.5%以下とすることによって、硬化物の熱膨張率を高くすることができ、且つゲル化時間を短縮化でき、且つ貯蔵弾性率(熱時弾性率)を高くすることができる。
また実施例1、2、4及び7(置換基Rはアリル基)と、比較例1、2及び3(置換基Rはアリル基以外)との対比から明らかなとおり、置換基Rがアリル基とすることによって、硬化物の熱膨張率を高くすることができ、且つ熱時弾性率も高くすることができる。同様のことは、実施例1(置換基Rはアリル基)と実施例5(置換基Rはtert-ブチル基)との対比からも明らかである。
また、実施例1(150℃溶融粘度:4.3P、軟化点:73℃、貯蔵弾性率86MPa)と実施例2(150℃溶融粘度:20.0P、軟化点:98℃、貯蔵弾性率:33MPa)との対比から明らかなとおり、150℃溶融粘度の値が、より好ましくは0.1P以上20.0P未満、更に好ましくは0.1P以上10.0P以下、更に好ましくは0.1P以上7.0P以下、最も好ましくは、0.1P以上5.0P以下であるフェノールノボラック樹脂を用いて硬化体を製造すると、該硬化物の熱時弾性率を高くすることができる。同様のことは、実施例7(150℃溶融粘度:4.3P、軟化点:74℃、貯蔵弾性率96MPa)と、実施例8(150℃溶融粘度:29.0P、軟化点:91℃、貯蔵弾性率26MPa)との対比によっても明らかである。
更に、実施例4(置換基R:アリル基、p=2、q=2、軟化点:液状、150℃溶融粘度:<0.1、貯蔵弾性率100MPa)と、実施例3(置換基R:アリル基、p=1、q=1、軟化点:液状、150℃溶融粘度:<0.1、貯蔵弾性率19MPa)との対比から明らかなとおり、q(一つのフェノール核に結合するアリル基の数)が1を超える場合(2以上である場合)には、フェノールノボラック樹脂の150℃における溶融粘度が低い場合、例えば0.1P未満の場合であっても、高熱時弾性率の硬化体を得ることができる。
As is apparent from the results shown in Table 1, the cured epoxy resin obtained using the phenol novolak resin obtained in each example is the epoxy resin obtained using the phenol novolak resin obtained in each comparative example. It can be seen that the coefficient of thermal expansion is higher when heated compared to the cured product, in other words, the coefficient of thermal shrinkage is high when cooled, and the storage modulus is high.
In particular, as is clear from the comparison between Example 1 and Examples 6 to 8, the ratio of the compound of n = 0 in the general formula (1) is set to a small amount of 5% or less with respect to the whole phenol novolac resin. Thus, the coefficient of thermal expansion of the cured product can be increased and the gelation time can be shortened.
Further, as is clear from the comparison between Example 1 and Examples 6 to 8, the total ratio of the compound of n = 0 and the compound of n = 1 in the general formula (1) is based on the whole phenol novolac resin. By setting it to 10% or less, the thermal expansion coefficient of the cured product can be increased, and the gelation time can be shortened.
Further, as is clear from comparison with Examples 6 to 8, the total ratio of the compound of n = 0 and the compound of n = 1 in the general formula (1) is 10% or less with respect to the whole phenol novolac resin. In addition, by setting the ratio of the compound where n = 2 to 5.0% or more and 13.5% or less, the thermal expansion coefficient of the cured product can be increased, and the gelation time can be shortened and stored. The elastic modulus (thermal elastic modulus) can be increased.
In addition, as is clear from the comparison between Examples 1, 2, 4 and 7 (substituent R is an allyl group) and Comparative Examples 1, 2 and 3 (substituent R is other than an allyl group), the substituent R is an allyl group. By doing so, the coefficient of thermal expansion of the cured product can be increased, and the elastic modulus during heating can also be increased. The same is apparent from the comparison between Example 1 (substituent R is an allyl group) and Example 5 (substituent R is a tert-butyl group).
Further, Example 1 (150 ° C. melt viscosity: 4.3 P, softening point: 73 ° C., storage elastic modulus 86 MPa) and Example 2 (150 ° C. melt viscosity: 20.0 P, softening point: 98 ° C., storage elastic modulus: As is clear from the comparison with 33 MPa), the 150 ° C. melt viscosity value is more preferably 0.1 P or more and less than 20.0 P, further preferably 0.1 P or more and 10.0 P or less, and further preferably 0.1 P or more and 7 or less. When a cured product is produced using a phenol novolac resin having a viscosity of 0.0 P or less, and most preferably 0.1 P or more and 5.0 P or less, the thermal modulus of the cured product can be increased. The same applies to Example 7 (150 ° C. melt viscosity: 4.3 P, softening point: 74 ° C., storage modulus 96 MPa) and Example 8 (150 ° C. melt viscosity: 29.0 P, softening point: 91 ° C., It is also clear by comparison with the storage elastic modulus 26 MPa).
Further, Example 4 (substituent R: allyl group, p = 2, q = 2, softening point: liquid, 150 ° C. melt viscosity: <0.1, storage modulus 100 MPa) and Example 3 (substituent R) : Allyl group, p = 1, q = 1, softening point: liquid, 150 ° C. melt viscosity: <0.1, storage elastic modulus 19 MPa, q (allyl bonded to one phenol nucleus) When the number of groups is more than 1 (when it is 2 or more), even when the phenol novolak resin has a low melt viscosity at 150 ° C., for example, less than 0.1 P, it is cured with a high thermal modulus. You can get a body.

以上、詳述したとおり、本発明のフェノール樹脂を用いることで、加熱時の高熱膨張率、すなわち冷却時の高収縮率、及び高熱時弾性率を有するエポキシ樹脂組成物の硬化物を得ることができる。したがって本発明によれば、薄型片面封止パッケージのエポキシ樹脂組成物に好適に用いることができるフェノール樹脂を提供することができる。   As described above in detail, by using the phenol resin of the present invention, it is possible to obtain a cured product of an epoxy resin composition having a high thermal expansion coefficient during heating, that is, a high shrinkage ratio during cooling, and an elastic modulus during high heat. it can. Therefore, according to this invention, the phenol resin which can be used suitably for the epoxy resin composition of a thin single-sided sealing package can be provided.

Claims (13)

下記一般式(1)で表されるフェノール樹脂であって、
Figure 2015152037
前記フェノール樹脂は、該フェノール樹脂と、下記一般式(2)
Figure 2015152037
で表されるエポキシ樹脂と、硬化促進剤とから得られる硬化物に、40℃以上180℃以下において、1.5%以上の熱膨張率を与えるものであるフェノール樹脂。
A phenol resin represented by the following general formula (1),
Figure 2015152037
The phenol resin includes the phenol resin and the following general formula (2).
Figure 2015152037
The phenol resin which gives the thermal expansion coefficient of 1.5% or more to the hardened | cured material obtained from the epoxy resin represented by these, and a hardening accelerator in 40 to 180 degreeC.
前記硬化物に、250℃において、15MPa以上の貯蔵弾性率を与えるものである請求項1に記載のフェノール樹脂。   The phenol resin according to claim 1, wherein the cured product is given a storage elastic modulus of 15 MPa or more at 250 ° C. 前記一般式(1)におけるRがアリル基であり、pが1又は2であり、qが1又は2である請求項1又は2に記載のフェノール樹脂。   The phenol resin according to claim 1 or 2, wherein R in the general formula (1) is an allyl group, p is 1 or 2, and q is 1 or 2. 軟化点が60℃以上90℃以下である請求項1ないし3のいずれか一項に記載のフェノール樹脂。   The phenol resin according to any one of claims 1 to 3, which has a softening point of 60 ° C or higher and 90 ° C or lower. ゲル浸透クロマトグラフ測定による分子量分布において、一般式(1)中、n=0である化合物の含有量が5.5面積%以下である請求項1ないし4のいずれか一項に記載のフェノール樹脂。   5. The phenol resin according to claim 1, wherein in the molecular weight distribution measured by gel permeation chromatography, the content of the compound where n = 0 in the general formula (1) is 5.5 area% or less. . ゲル浸透クロマトグラフ測定による分散度[重量平均分子量/数平均分子量]が1.0以上4.0以下である請求項1ないし5のいずれか一項に記載のフェノール樹脂。   The phenol resin according to any one of claims 1 to 5, wherein the degree of dispersion [weight average molecular weight / number average molecular weight] measured by gel permeation chromatography is 1.0 or more and 4.0 or less. 請求項1ないし6のいずれか一項に記載のフェノール樹脂とエポキシ樹脂とを含むエポキシ樹脂組成物。   The epoxy resin composition containing the phenol resin and epoxy resin as described in any one of Claims 1 thru | or 6. 更に硬化促進剤を含む請求項7に記載のエポキシ樹脂組成物。   Furthermore, the epoxy resin composition of Claim 7 containing a hardening accelerator. 更に無機充填剤を含む請求項7又は8に記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 7 or 8, further comprising an inorganic filler. 請求項7ないし9のいずれか一項に記載のエポキシ樹脂組成物を硬化させてなるエポキシ樹脂硬化物。   An epoxy resin cured product obtained by curing the epoxy resin composition according to any one of claims 7 to 9. 40℃以上180℃以下における熱膨張率が1.5%以上である請求項10に記載のエポキシ樹脂硬化物。   The cured epoxy resin product according to claim 10, which has a coefficient of thermal expansion of 1.5% or more at 40 ° C. or more and 180 ° C. or less. 請求項10又は11に記載のエポキシ樹脂硬化物を有する半導体装置。   A semiconductor device comprising the cured epoxy resin according to claim 10. 薄型片面封止パッケージからなる請求項12に記載の半導体装置。   The semiconductor device according to claim 12, comprising a thin single-side sealed package.
JP2016511615A 2014-03-31 2015-03-27 Phenol resin, epoxy resin composition containing the phenol resin, cured product of the epoxy resin composition, and semiconductor device having the cured product Active JP6469654B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014072864 2014-03-31
JP2014072864 2014-03-31
PCT/JP2015/059580 WO2015152037A1 (en) 2014-03-31 2015-03-27 Phenolic resin, epoxy resin composition containing said phenolic resin, cured product of said epoxy resin composition, and semiconductor device equipped with said cured product

Publications (2)

Publication Number Publication Date
JPWO2015152037A1 true JPWO2015152037A1 (en) 2017-04-13
JP6469654B2 JP6469654B2 (en) 2019-02-13

Family

ID=54240363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016511615A Active JP6469654B2 (en) 2014-03-31 2015-03-27 Phenol resin, epoxy resin composition containing the phenol resin, cured product of the epoxy resin composition, and semiconductor device having the cured product

Country Status (5)

Country Link
JP (1) JP6469654B2 (en)
KR (1) KR102377368B1 (en)
CN (1) CN106133017B (en)
TW (1) TWI659975B (en)
WO (1) WO2015152037A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017105898A (en) * 2015-12-08 2017-06-15 Dic株式会社 Epoxy resin, manufacturing method of epoxy resin, curable resin composition and cured article thereof
JP2017128657A (en) * 2016-01-20 2017-07-27 日立化成株式会社 Sealing epoxy resin composition, and semiconductor device and method for manufacturing the same
CN109307898B (en) * 2017-07-28 2021-06-29 深圳市柯达科电子科技有限公司 Method for changing reflection due to different materials
TW202225229A (en) * 2020-11-16 2022-07-01 日商Dic股份有限公司 Resin composition, cured article, semiconductor encapsulation material, and semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119268B2 (en) * 1987-10-07 1995-12-20 群栄化学工業株式会社 Method for producing novolac type phenolic resin
JPH08120039A (en) * 1994-10-20 1996-05-14 Mitsui Toatsu Chem Inc Benzylated polyphenol, its epoxy resin, and their production and use thereof
WO2000034349A1 (en) * 1998-12-10 2000-06-15 Kashima Oil Co., Ltd. Process for producing modified phenolic resin
JP2001164091A (en) * 1999-12-13 2001-06-19 Japan Epoxy Resin Kk Epoxy resin composition
JP2006306953A (en) * 2005-04-27 2006-11-09 Dow Corning Toray Co Ltd Curable silicone composition and its cured product
JP2008274167A (en) * 2007-05-02 2008-11-13 Yamaguchi Univ Phenol novolak resin and method for producing the same, curing agent for epoxy resin and cured product
WO2011013571A1 (en) * 2009-07-27 2011-02-03 宇部興産株式会社 Phenol compound and method for producing same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3347228B2 (en) 1994-11-29 2002-11-20 日東電工株式会社 Semiconductor device
US6383660B2 (en) * 2000-04-06 2002-05-07 Nitto Denko Corporation Epoxy resin composition for encapsulating semiconductor and semiconductor device using the same
TWI318220B (en) * 2002-08-30 2009-12-11 Asahi Organic Chem Ind Manufacturing method of phenolic novolac
JP2007157758A (en) * 2005-11-30 2007-06-21 Sumitomo Bakelite Co Ltd Adhesive film for semiconductor and semiconductor device using the same
EP2136393A4 (en) * 2007-04-10 2012-10-24 Sumitomo Bakelite Co Adhesive film for semiconductor and semiconductor device made with the same
JP2009215484A (en) * 2008-03-12 2009-09-24 Toshiba Corp Resin composition and semiconductor device using the same
JP6107013B2 (en) 2012-03-22 2017-04-05 日立化成株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP6125967B2 (en) * 2013-09-30 2017-05-10 明和化成株式会社 Epoxy resin composition, sealing material, cured product thereof, and phenol resin
JP7119268B2 (en) * 2020-05-27 2022-08-17 三菱マテリアル株式会社 Copper/Ceramic Bonded Body and Insulated Circuit Board

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119268B2 (en) * 1987-10-07 1995-12-20 群栄化学工業株式会社 Method for producing novolac type phenolic resin
JPH08120039A (en) * 1994-10-20 1996-05-14 Mitsui Toatsu Chem Inc Benzylated polyphenol, its epoxy resin, and their production and use thereof
WO2000034349A1 (en) * 1998-12-10 2000-06-15 Kashima Oil Co., Ltd. Process for producing modified phenolic resin
JP2001164091A (en) * 1999-12-13 2001-06-19 Japan Epoxy Resin Kk Epoxy resin composition
JP2006306953A (en) * 2005-04-27 2006-11-09 Dow Corning Toray Co Ltd Curable silicone composition and its cured product
JP2008274167A (en) * 2007-05-02 2008-11-13 Yamaguchi Univ Phenol novolak resin and method for producing the same, curing agent for epoxy resin and cured product
WO2011013571A1 (en) * 2009-07-27 2011-02-03 宇部興産株式会社 Phenol compound and method for producing same
JP2012193217A (en) * 2009-07-27 2012-10-11 Ube Industries Ltd Phenolic compound, and process for producing the same

Also Published As

Publication number Publication date
TWI659975B (en) 2019-05-21
CN106133017B (en) 2019-06-28
TW201546107A (en) 2015-12-16
WO2015152037A1 (en) 2015-10-08
KR20160140638A (en) 2016-12-07
CN106133017A (en) 2016-11-16
JP6469654B2 (en) 2019-02-13
KR102377368B1 (en) 2022-03-22

Similar Documents

Publication Publication Date Title
JP5170493B2 (en) Phenol polymer, its production method and its use
JP5413488B2 (en) Phenol novolac resin, method for producing the same, epoxy resin composition and cured product using the same
JP5228328B2 (en) Low melt viscosity phenol novolac resin, process for producing the same, and cured epoxy resin using the same
JP5012003B2 (en) Low melt viscosity phenol novolac resin, its production method and its use
JP6469654B2 (en) Phenol resin, epoxy resin composition containing the phenol resin, cured product of the epoxy resin composition, and semiconductor device having the cured product
JP2015089940A (en) Polyhydric resin, production method thereof, curing agent for epoxy resin, epoxy resin composition, and cured product
JP3510869B2 (en) Phenolic polymer, its production method and its use
TWI640569B (en) Epoxy resin composition, encapsulating material, hardened material thereof and phenol resin
JP4067639B2 (en) Epoxy resin composition and cured product
JP5268404B2 (en) Phenol polymer, its production method and its use
CN111936540B (en) Phenolic resin, method for producing same, epoxy resin composition, and cured product thereof
JP6993158B2 (en) Phenol resin compositions, curing agents, epoxy resin compositions, cured products, and semiconductor devices
JP4401478B2 (en) Novel aromatic oligomer, epoxy resin composition containing the same, and cured product thereof
JP2010260802A (en) Dihydroxynaphthalene polymer, method of producing the same, and use therefor
JP3704081B2 (en) Epoxy resin, its production method and its use
TW202337944A (en) Epoxy resin composition and cured product to provide an epoxy resin composition capable of obtaining a cured product having excellent high-temperature properties such as heat resistance, thermal conductivity, and high-temperature elastic modulus
JP4979251B2 (en) Phenol polymer, its production method and its use
JP2012097229A (en) Method for producing curing agent composition for epoxy resin, and method for producing thermosetting molding material
JP2012172122A (en) Phenolic polymer, production method of the same and application of the same
JPH0782346A (en) Resin composition for sealing semiconductor
JP2019143091A (en) Method for producing polyhydric hydroxy resin, method for producing thermosetting resin composition, method for producing sealant, method for producing laminated plate, polyhydric hydroxy resin and thermosetting resin composition
JP2012097230A (en) Method for producing curing agent composition for epoxy resin, and method for producing thermosetting molding material
JP2007262129A (en) Epoxy resin composition and curing agent thereof

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190116

R150 Certificate of patent or registration of utility model

Ref document number: 6469654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250