JPWO2015119154A1 - 表面プラズモン共鳴蛍光分析装置および表面プラズモン共鳴蛍光分析方法 - Google Patents

表面プラズモン共鳴蛍光分析装置および表面プラズモン共鳴蛍光分析方法 Download PDF

Info

Publication number
JPWO2015119154A1
JPWO2015119154A1 JP2015561008A JP2015561008A JPWO2015119154A1 JP WO2015119154 A1 JPWO2015119154 A1 JP WO2015119154A1 JP 2015561008 A JP2015561008 A JP 2015561008A JP 2015561008 A JP2015561008 A JP 2015561008A JP WO2015119154 A1 JPWO2015119154 A1 JP WO2015119154A1
Authority
JP
Japan
Prior art keywords
light
metal film
excitation light
fluorescence
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015561008A
Other languages
English (en)
Other versions
JP6536413B2 (ja
Inventor
藤井 英之
英之 藤井
野田 哲也
哲也 野田
幸登 中村
幸登 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2015119154A1 publication Critical patent/JPWO2015119154A1/ja
Application granted granted Critical
Publication of JP6536413B2 publication Critical patent/JP6536413B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J3/4406Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6471Special filters, filter wheel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • G01N2201/0612Laser diodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0633Directed, collimated illumination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/068Optics, miscellaneous

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Optics & Photonics (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

表面プラズモン共鳴蛍光分析装置は、チップホルダー、光源、角度調整部、光センサー、フィルターホルダー、励起光カットフィルター、散乱光透過部、散乱光透過部、透過調整部および制御部を有する。散乱光透過部を平面視したときの面積は、励起光カットフィルターまたはフィルターホルダーに配置され、蛍光透過領域を平面視したときの面積より小さい。

Description

本発明は、表面プラズモン共鳴(Surface Plasmon Resonance:SPR)を利用して検体に含まれる被検出物質の検出を行う表面プラズモン共鳴蛍光分析装置および表面プラズモン共鳴蛍光分析方法に関する。
臨床検査などにおいて、タンパク質やDNAなどの微量の被検出物質を高感度かつ定量的に検出することができれば、患者の状態を迅速に把握して治療を行うことが可能となる。このため、微量の被検出物質を高感度かつ定量的に検出できる分析方法および分析装置が求められている。
被検出物質を高感度に検出できる方法として、表面プラズモン共鳴蛍光分析(表面プラズモン励起増強蛍光分光法(Surface Plasmon-field enhanced Fluorescence Spectroscopy):以下「SPFS」と略記する)が知られている(例えば、特許文献1,2参照)。
特許文献1,2には、SPFSを利用する分析方法および分析装置が開示されている。これらの分析方法および分析装置では、誘電体からなるプリズムと、プリズムの1面上に形成された金属膜と、金属膜上に固定された捕捉体(例えば抗体)とを有するセンサチップを使用する。金属膜上に被検出物質を含む検体を提供すると、被検出物質が捕捉体により捕捉される(1次反応)。捕捉された被検出物質は、さらに蛍光物質で標識される(2次反応)。この状態で、SPRが生じる角度で励起光を、プリズムを介して金属膜に照射すると、金属膜表面上に局在場光を発生させることができる。この局在場光により、金属膜上に捕捉された被検出物質を標識する蛍光物質が選択的に励起され、蛍光物質から放出された蛍光が観察される。これらの分析方法および分析装置では、蛍光を検出して、被検出物質の存在またはその量を検出する。
このようなSPFSを利用する分析方法および分析装置では、蛍光を検出する光センサーの前には、励起光を遮り、蛍光を透過させる励起光カットフィルターが設置される。
特開平10−307141号公報 国際公開第2012/042805号
SPFSを利用する分析方法および分析装置では、検出感度および検出精度を十分に向上させるために、蛍光強度が最大となるように金属膜に対する励起光の入射角を設定する必要がある。
この点について、特許文献1には、金属膜からの反射光の強度が最小となるときの入射角(以下「共鳴角」という)で励起光を照射することが記載されている。しかしながら、蛍光の強度が最大となるときの入射角と共鳴角とはわずかに異なるため、特許文献1に記載の分析方法および分析装置には、検出感度および検出精度に改善の余地がある。
一方、特許文献2に記載の分析方法および分析装置では、励起光と同じ波長を有し、SPRにより発生する散乱光(以下「プラズモン散乱光」という)の強度が最大となるときの入射角(以下「増強角」という)で励起光を照射している。増強角は、共鳴角よりも蛍光の強度が最大となるときの入射角に近いため、特許文献2に記載の分析方法および分析装置は、特許文献1に記載の分析方法および分析装置に比べて検出感度および検出精度の点で優れている。しかしながら、特許文献2に記載の分析方法および分析装置では、蛍光を検出するための光センサーを用いてプラズモン散乱光も検出するため、増強角を決定する際にプラズモン散乱光の光路から励起光カットフィルターを完全に退避させなければならず、分析装置が大型化するという問題がある。
本発明の目的は、励起光カットフィルターを受光光学系の光路から大きく移動させることなく、プラズモン散乱光が最大となる増強角を決定することができる表面プラズモン共鳴蛍光分析装置および表面プラズモン共鳴蛍光分析方法を提供することである。
本発明者らは、SPFSを利用する分析装置および分析方法において、励起光カットフィルターまたはフィルターホルダーに、プラズモン散乱光を透過させる散乱光透過部を形成し、散乱光透過部を透過したプラズモン散乱光を光センサーで検出することで上記課題を解決できることを見出し、さらに検討を加えて本発明を完成させた。
上記課題を解決するため、本発明の一実施の形態に係る表面プラズモン共鳴蛍光分析装置は、金属膜を一面に有する誘電体を含む分析チップが装着され、前記誘電体を介して前記金属膜に励起光を照射することで、前記金属膜上の被検出物質を標識する蛍光物質を励起させ、前記蛍光物質から放出された蛍光を検出することで、被検出物質の存在またはその量を検出する表面プラズモン共鳴蛍光分析装置であって、前記分析チップを着脱可能に保持するチップホルダーと、励起光を出射する光源と、前記誘電体を介して前記金属膜に所定の入射角で励起光を照射するために、前記金属膜に対する励起光の入射角を調整する角度調整部と、前記金属膜の前記誘電体と対向しない面の近傍から出射される光を検出する光センサーと、前記金属膜の近傍から出射された光を前記光センサーに導く受光光学系と、前記受光光学系内に配置され、前記金属膜上から出射された蛍光を透過させ、励起光の少なくとも一部の波長の光を遮断する蛍光透過領域を含む、励起光カットフィルターと、前記励起光カットフィルターを保持するフィルターホルダーと、前記励起光カットフィルターまたは前記フィルターホルダーに配置され、前記金属膜上から出射されたプラズモン散乱光を透過させる散乱光透過部と、前記散乱光透過部を介するプラズモン散乱光の透過の可否を調整する透過調整部と、を有し、前記散乱光透過部を平面視したときの面積は、前記励起光カットフィルターの蛍光透過領域を平面視したときの面積より小さい。
また、上記課題を解決するため、本発明の他の実施の形態に係る表面プラズモン共鳴蛍光分析装置は、金属膜を一面に有する誘電体を含む分析チップが装着され、前記誘電体を介して前記金属膜に励起光を照射することで、前記金属膜上の被検出物質を標識する蛍光物質を励起させ、前記蛍光物質から放出された蛍光を検出することで、被検出物質の存在またはその量を検出する表面プラズモン共鳴蛍光分析装置であって、前記分析チップを着脱可能に保持するチップホルダーと、励起光を出射する光源と、前記誘電体を介して前記金属膜に所定の入射角で励起光を照射するために、前記金属膜に対する励起光の入射角を調整する角度調整部と、前記金属膜の前記誘電体と対向しない面の近傍から出射される光を検出する光センサーと、前記金属膜の近傍から出射された光を前記光センサーに導く受光光学系と、前記受光光学系内に配置され、前記金属膜上から出射された蛍光を透過させ、励起光の少なくとも一部の波長の光を遮断する励起光カットフィルターと、前記金属膜上から出射されたプラズモン散乱光が透過可能となるように、前記励起光カットフィルターを前記金属膜表面の法線に対して傾斜させる透過調整部と、を有する。
また、上記課題を解決するため、本発明の一実施の形態に係る表面プラズモン共鳴蛍光分析方法は、被検出物質を標識する蛍光物質が、表面プラズモン共鳴に基づく局在場光により励起されて発した蛍光を検出して、前記被検出物質の存在またはその量を検出する表面プラズモン共鳴蛍光分析方法であって、前記被検出物質を、誘電体の一面上に配置された金属膜上に配置する工程と、蛍光を透過させ、励起光の少なくとも一部の波長の光を遮断する蛍光透過領域を有する励起光カットフィルター、または前記励起光カットフィルターを保持するためのフィルターホルダーに形成された散乱光透過部を、プラズモン散乱光が透過可能な位置に移動した状態で、前記誘電体を介して前記金属膜に励起光を照射するとともに、前記金属膜上から出射され、かつ前記散乱光透過部を透過したプラズモン散乱光の強度を検出して、プラズモン散乱光の強度が最大となるときの入射角である増強角を決定する工程と、前記励起光カットフィルターに配置された蛍光透過領域を蛍光が透過可能な位置に移動した状態で、前記金属膜に対する入射角が前記増強角となるように、前記誘電体を介して前記金属膜に励起光を照射するとともに、前記蛍光物質から放出され、かつ前記蛍光透過領域を透過した蛍光の強度を検出する工程と、を含む。
また、上記課題を解決するため、本発明の他の実施の形態に係る表面プラズモン共鳴蛍光分析方法は、被検出物質を標識する蛍光物質が、表面プラズモン共鳴に基づく局在場光により励起されて発した蛍光を検出して、前記被検出物質の存在またはその量を検出する表面プラズモン共鳴蛍光分析方法であって、前記被検出物質を、誘電体の一面上に配置された金属膜上に配置する工程と、蛍光を透過させ、励起光の少なくとも一部の波長の光を遮断する励起光カットフィルターを、プラズモン散乱光が透過可能となるように、前記金属膜表面の法線に対して傾斜させた状態で、前記誘電体を介して前記金属膜に励起光を照射するとともに、前記金属膜上から出射され、前記励起光カットフィルターを透過したプラズモン散乱光の強度を検出して、プラズモン散乱光の強度が最大となるときの入射角である増強角を決定する工程と、前記励起光カットフィルターを、励起光の少なくとも一部の波長の光を遮断する角度に配置した状態で、前記金属膜に対する入射角が前記増強角となるように、前記誘電体を介して前記金属膜に励起光を照射するとともに、前記蛍光物質から放出され、かつ前記励起光カットフィルターを透過した蛍光の強度を検出する工程と、を含む。
本発明によれば、SPFSを利用する被検出物質の検出において、励起光カットフィルターをプラズモン散乱光の光路から大きく退避させることなく、プラズモン散乱光が最大となる増強角を決定することができる。したがって、本発明によれば、高感度、高精度かつ高速に被検出物質の存在またはその量を検出することができる。また、本発明によれば、表面プラズモン共鳴蛍光分析装置の小型化および低コスト化を実現することもできる。
図1は、実施の形態1に係る表面プラズモン共鳴蛍光分析装置(SPFS装置)の構成を示す模式図である。 図2は、実施の形態1に係るSPFS装置の動作手順の一例を示すフローチャートである。 図3A,Bは、実施の形態1に係るSPFS装置において、プラズモン散乱光の検出および蛍光の検出を説明するための図である。 図4A,Bは、実施の形態2に係るSPFS装置において、プラズモン散乱光の検出および蛍光の検出を説明するための図である。 図5は、実施の形態2に係るSPFS装置の動作手順の一例を示すフローチャートである。 図6A,Bは、実施の形態3に係るSPFS装置において、プラズモン散乱光の検出および蛍光の検出を説明するための図である。 図7A,Bは、実施の形態4に係るSPFS装置において、プラズモン散乱光の検出および蛍光の検出を説明するための図である。 図8は、励起光カットフィルターを透過する波長と、透過率との関係を示すグラフである。 図9は、実施の形態4に係るSPFS装置の動作手順の一例を示すフローチャートである。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
[実施の形態1]
(SPFS装置の構成)
まず、本発明の実施の形態1に係る表面プラズモン共鳴蛍光分析装置(以下「SPFS装置」ともいう)について説明する。
SPFS装置は、誘電体と、誘電体の1面に形成された金属膜とを有する分析チップが装着された状態で使用される。金属膜上に被検出物質を含む検体を提供すると、被検出物質が捕捉体により捕捉される。このとき、被検出物質は蛍光物質で標識されていてもよいし、標識されていなくてもよい。捕捉された被検出物質が蛍光物質で標識されていない場合は、捕捉された被検出物質は、さらに蛍光物質で標識される。この状態で、表面に金属膜を有するプリズムに対して全反射条件となるように励起光を照射する。これにより、励起光および金属膜中の自由電子の相互作用(表面プラズモン共鳴)が生じ、局在場光が発生する。一般にこの局在場光は、「増強電場」または「増強されたエバネッセント光」とも呼ばれ、金属膜の表面近傍の物理量変動を測定することが可能である。この局在場光により、金属膜上に捕捉された被検出物質を標識する蛍光物質が選択的に励起され、蛍光物質から放出された蛍光が観察される。SPFS装置は、蛍光の光量を測定して、被検出物質の存在またはその量を検出する。
図1は、実施の形態1に係るSPFS装置100の構成を示す模式図である。図1に示されるように、SPFS装置100は、分析チップ10を着脱可能に保持するためのチップホルダー12と、分析チップ10に励起光αを照射するための励起光学系ユニット120と、分析チップ10から放出された光(プラズモン散乱光βおよび蛍光γ)を検出するための受光光学系ユニット140と、これらを制御する制御部160とを有する。SPFS装置100は、チップホルダー12に分析チップ10を装着した状態で使用される。そこで、分析チップ10について先に説明し、その後にSPFS装置100の各構成要素について説明する。
図1に示されるように、分析チップ10は、入射面21、成膜面22および出射面23を有する誘電体20と、成膜面22に形成された金属膜30と、成膜面22または金属膜30上に配置された流路蓋40とを有する。通常、分析チップ10は、分析のたびに交換される。
誘電体20は、励起光αに対して透明な部材(プリズム)からなる。誘電体20は、入射面21、成膜面22および出射面23を有する。入射面21は、励起光学系ユニット120からの励起光αを誘電体20の内部に入射させる。成膜面22の上には、金属膜30が形成される。誘電体20の内部に入射した励起光αは、金属膜30で反射する。より具体的には、誘電体20と金属膜30との界面(成膜面22)で反射する。出射面23は、金属膜30で反射した励起光αを誘電体20の外部に出射させる。誘電体20の形状は、特に限定されない。本実施の形態では、誘電体20の形状は、台形を底面とする柱体である。台形の一方の底辺に対応する面が成膜面22であり、一方の脚に対応する面が入射面21であり、他方の脚に対応する面が出射面23である。底面となる台形は、等脚台形であることが好ましい。これにより、入射面21と出射面23とが対称になり、励起光αのS波成分が誘電体20内に滞留しにくくなる。入射面21は、励起光αが励起光学系ユニット120に戻らないように形成される。励起光αが励起光源であるレーザーダイオードに戻ると、レーザーダイオードの励起状態が乱れてしまい、励起光αの波長や出力が変動してしまうからである。そこで、理想的な増強角を中心とする走査範囲において、励起光αが入射面21に垂直に入射しないように、入射面21の角度が設定される。たとえば、入射面21と成膜面22との角度および成膜面22と出射面23との角度は、いずれも約80°である。誘電体20の材料の例には、樹脂およびガラスが含まれる。誘電体20の材料は、好ましくは、屈折率が1.4〜1.6であり、かつ複屈折が小さい樹脂である。
金属膜30は、誘電体20の成膜面22上に形成されている。金属膜30を設けることで、成膜面22に全反射条件で入射した励起光αの光子と、金属膜30中の自由電子との間で相互作用(表面プラズモン共鳴;SPR)が生じ、金属膜30の表面上に局在場光を生じさせることができる。金属膜30の素材は、表面プラズモン共鳴を生じさせる金属であれば特に限定されない。金属膜30の素材の例には、金、銀、銅、アルミ、これらの合金が含まれる。本実施の形態では、金属膜30は、金薄膜である。金属膜30の形成方法は、特に限定されない。金属膜30の形成方法の例には、スパッタリング、蒸着、メッキが含まれる。金属膜30の厚みは、特に限定されないが、30〜70nmの範囲内が好ましい。
また、特に図示しないが、金属膜30の誘電体20と対向しない面には、被検出物質を捕捉するための捕捉体が固定されていてもよい。捕捉体を固定することで、被検出物質を選択的に検出することが可能となる。本実施の形態では、金属膜30上の所定の領域に、捕捉体が均一に固定されている。捕捉体の種類は、被検出物質を捕捉することができれば特に限定されない。たとえば、捕捉体は、被検出物質に特異的な抗体またはその断片である。
流路蓋40は、金属膜30の誘電体20と対向しない面上に、流路41を挟んで配置されている。金属膜30が誘電体20の成膜面22の一部にのみ形成されている場合は、流路蓋40は、流路41を挟んで成膜面22上に配置されていてもよい。流路蓋40は、金属膜30(および誘電体20)と共に、検体や蛍光標識液、洗浄液などの液体が流れる流路41を形成する。捕捉体は、流路41内に露出している。流路41の両端は、流路蓋40の上面に形成された注入口および排出口(いずれも図示省略)とそれぞれ接続されている。流路41内へ液体が注入されると、流路41内において、これらの液体は捕捉体に接触する。流路蓋40は、金属膜30の誘電体20と対向しない面およびその近傍から放出された光(プラズモン散乱光βおよび蛍光γ)に対して透明な材料からなる。流路蓋40の材料の例には、樹脂が含まれる。これらの光を受光光学系ユニット140に導くことができれば、流路蓋40の一部は、不透明な材料で形成されていてもよい。流路蓋40は、例えば、両面テープまたは接着剤による接着や、レーザー溶着、超音波溶着、クランプ部材を用いた圧着などにより金属膜30または誘電体20に接合されている。
図1に示されるように、誘電体20へ導かれた励起光αは、入射面21から誘電体20内に入射する。誘電体20内に入射した励起光αは、誘電体20と金属膜30との界面(成膜面22)に全反射角度(表面プラズモン共鳴が生じる角度)となるように入射する。界面からの反射光は、出射面23から誘電体20外に出射される(図示省略)。一方、表面プラズモン共鳴が生じる角度で励起光αが界面に入射することで、金属膜30およびその近傍からは、プラズモン散乱光βおよび/または蛍光γが、受光光学系ユニット140の方向へ出射される。
次に、SPFS装置100の各構成要素について説明する。前述のとおり、SPFS装置100は、チップホルダー12、励起光学系ユニット120、受光光学系ユニット140および制御部160を有する。
チップホルダー12は、所定の位置で分析チップ10を保持する。分析チップ10は、チップホルダー12に保持された状態で、励起光学系ユニット120からの励起光αを照射される。このとき、金属膜30の誘電体20と対向しない面およびその近傍からは、励起光αと同一波長のプラズモン散乱光βや蛍光物質から放出された蛍光γなどが上方に放出される。また、励起光αは、誘電体20と金属膜30との界面で反射して、誘電体20の外部に出射される(図示省略)。
励起光学系ユニット120は、励起光αを出射する光源ユニット121と、誘電体20と金属膜30との界面(成膜面22)に対する励起光αの入射角を調整する角度調整部122を有する。
光源ユニット121は、励起光源としてレーザーダイオード(以下「LD」と略記する)を有し、チップホルダー12に保持された分析チップ10の入射面21に向けて励起光α(シングルモードレーザー光)を出射する。より具体的には、光源ユニット121は、分析チップ10の誘電体20と金属膜30との界面(成膜面22)に対して励起光αが全反射角度となるように、界面に対するP波のみを入射面21に向けて出射する。たとえば、光源ユニット121は、LDユニット、整波器および整形光学系(いずれも図示省略)を有する。
LDユニットは、コリメートされ、かつ波長および光量が一定の励起光αを、誘電体20と金属膜30との界面(成膜面22)における照射スポットの形状が略円形となるように出射する。LDユニットは、励起光源としてのLDと、LDから出射された励起光αをコリメートするコリメーターと、励起光αの光量を一定にするための温度調整回路とを有する。LDから出射される励起光αは、コリメートされてもその輪郭形状が扁平である。このため、界面(成膜面22)における照射スポットの形状が略円形となるように、LDは所定の姿勢で保持されるか、または後述の整形光学系に所定形状のスリットが挿入される。また、LDから出射される励起光αの波長および光量は、温度によって変化する。このため、温度調整回路は、コリメートされた後の励起光αから分岐させた光の光量をフォトダイオードなどにより監視し、励起光αの波長および光量が一定となるようにヒーターやペルチェ素子などを用いてLDの温度を調整する。
整波器は、バンドパスフィルター(以下「BPF」と略記する)および直線偏光フィルター(以下「LP」と略記する)を含み、LDユニットから出射された励起光αを整波する。LDユニットからの励起光αは、若干の波長分布幅を有しているため、BPFは、LDユニットからの励起光αを中心波長のみの狭帯域光にする。また、LDユニットからの励起光αは、完全な直線偏光ではないため、LPは、LDユニットからの励起光αを完全な直線偏光の光にする。整波器は、金属膜30にP波成分が入射するように励起光αの偏光方向を調整する半波長板を含んでいてもよい。
整形光学系は、誘電体20と金属膜30との界面(成膜面22)における照射スポットの形状が所定サイズの円形となるように、励起光αのビーム径や輪郭形状などを調整する。整形光学系から出射された励起光αは、分析チップ10の誘電体20に照射される。整形光学系は、例えばスリットやズーム手段などである。
なお、光源ユニット121に含まれる光源の種類は、特に限定されず、LDでなくてもよい。光源の例には、発光ダイオード、水銀灯、その他のレーザー光源が含まれる。光源から出射される光がビームでない場合は、光源から出射される光は、レンズや鏡、スリットなどによりビームに変換される。また、光源から出射される光が単色光でない場合は、光源から出射される光は、回折格子などにより単色光に変換される。さらに、光源から出射される光が直線偏光でない場合は、光源から出射される光は、偏光子などにより直線偏光の光に変換される。
角度調整部122は、金属膜30(誘電体20と金属膜30との界面(成膜面22))への励起光αの入射角を調整する。角度調整部122は、励起光αを誘電体20を介して金属膜30(成膜面22)の所定の位置に所定の入射角で照射するために、励起光αの光軸とチップホルダー12とを相対的に回転させる。本実施の形態では、角度調整部122は、光源ユニット121を励起光αの光軸と直交する軸を中心として回転させる。このとき、入射角を走査しても金属膜30(成膜面22)上での照射位置がほとんど移動しないように、回転軸の位置を設定する。たとえば、回転中心の位置を、入射角の走査範囲の両端における2つの励起光αの光軸の交点近傍(成膜面22上の照射位置と入射面21との間)に設定することで、照射位置のズレを極小化することができる。
受光光学系ユニット(受光光学系)140は、チップホルダー12に保持された分析チップ10の金属膜30の誘電体20と対向しない面に対向するように配置されている。受光光学系ユニット140は、金属膜30上から出射される光(プラズモン散乱光βまたは蛍光γ)を検出する。受光光学系ユニット140は、第1レンズ141、絞り142、フィルターホルダー143、励起光カットフィルター144、第2レンズ145、光センサー146および透過調整部147を有する。第1レンズ141、絞り142、フィルターホルダー143、励起光カットフィルター144、第2レンズ145および光センサー146は、金属膜30の表面と対向するように、金属膜30側からこの順番で配置されている。
第1レンズ141および第2レンズ145は、迷光の影響を受けにくい共役光学系を構成する。第1レンズ141と第2レンズ145との間を進行する光は、略平行光となる。第1レンズ141および第2レンズ145は、金属膜30上から放出される蛍光γを光センサー146の受光面上に結像させる。
絞り142は、第1レンズ141およびフィルターホルダー143の間に配置されている。絞り142は、絞り孔151を介して、第1レンズ141によりコリメートされた光(プラズモン散乱光βおよび/または蛍光γ)の少なくとも一部を透過させる。絞り142を透過した光は、励起光カットフィルター144の蛍光透過領域156に到達する。ここで、「蛍光透過領域」とは、蛍光γの検出時において、絞り142(または第1貫通孔152)によって制御された蛍光γが透過する励起光カットフィルター144の一部の領域を意味する。絞り孔151の平面視形状は、特に限定されない。蛍光透過領域156の平面視形状は、絞り142の絞り孔151の平面視形状と同じである。
フィルターホルダー143は、励起光カットフィルター144を保持しており、絞り142および第2レンズ145の間に配置されている。フィルターホルダー143の形状は、励起光カットフィルター144を保持することができれば、特に限定されない。フィルターホルダー143の形状には、励起光カットフィルター144を下側から保持する形状、励起光カットフィルター144の外縁部を把持する形状などが含まれる。本実施の形態では、フィルターホルダー143は、励起光カットフィルター144より大きく形成されており、励起光カットフィルター144を下側から保持する。
フィルターホルダー143は、第1貫通孔152および第2貫通孔153を有する。第1貫通孔152は、フィルターホルダー143の中央部分に配置されている。本実施の形態では、第1貫通孔152は、絞り142の絞り孔151より大きく形成されている。第1貫通孔152は、絞り142で絞られた光(プラズモン散乱光βおよび/または蛍光γ)を透過させる。第1貫通孔152を透過した光は、励起光カットフィルター144の裏面に到達する。第2貫通孔153は、励起光カットフィルター144を避けるようにフィルターホルダー143に配置されている(図1参照)。詳細は後述するが、第2貫通孔153は、蛍光透過領域156の端部から蛍光透過領域156の直径より短い位置に配置されている。第2貫通孔153は、プラズモン散乱光βを透過させる散乱光透過部として機能し、後述の増強角の決定時に用いられる。第2貫通孔(散乱光透過部)153を透過した光は、第2レンズ145を介して光センサー146に到達する。なお、散乱光透過部153は、プラズモン散乱光βを透過させることができれば、蛍光γを透過させてもよい。散乱光透過部153を平面視したときの面積は、特に限定されないが、蛍光透過領域156を平面視したときの面積の1/1000以下であることが好ましい。ここで、「平面視」とは、金属膜30から見た場合のことを意味する。
励起光カットフィルター144は、絞り142および第2レンズ145の間に配置されている。励起光カットフィルター144は、蛍光透過領域156を含む。蛍光透過領域156は、金属膜30上から出射された蛍光を透過させ、励起光の少なくとも一部の波長の光を遮断する。励起光カットフィルター144は、励起光αの波長の光(プラズモン散乱光β)を反射または吸収する一方で蛍光γを透過させることで、光センサー146に蛍光γの波長以外の光が到達することを防ぐ。すなわち、励起光カットフィルター144は、光センサー146に到達する光からノイズ成分を除去し、微弱な蛍光γの検出精度および感度の向上に寄与する。
励起光カットフィルター144は、蛍光成分のみを光センサー146に導き、高いS/N比で当該蛍光成分を検出するために、励起光成分(プラズモン散乱光β)を除去する。励起光カットフィルター144の例には、励起光反射フィルター、短波長カットフィルターおよびバンドパスフィルターが含まれる。励起光カットフィルター144は、例えば、所定の光成分を反射することで除去する多層膜からなるフィルターであるが、所定の光成分を一般的には吸収することで除去する色ガラスフィルターであってもよい。
光センサー146は、金属膜30上から出射される蛍光γまたはプラズモン散乱光βを検出する。たとえば、光センサー146は、感度およびSN比が高い光電子増倍管である。光センサー146は、アバランシェ・フォトダイオード(APD)などであってもよい。なお、金属膜30の一方の面(誘電体20と対向する面)における励起光αの照射スポットの大きさは、金属膜30の他方の面(第1レンズ141と対向する面)における光センサー146による測定領域の大きさよりも小さくなるように調整される。このようにすることで、誘電体20の各パラメータの誤差により照射スポットがわずかに位置ずれした場合であっても、照射スポットが測定領域から外れることを防止できる。
透過調整部147は、光センサー146がプラズモン散乱光βを検出する時には、散乱光透過部153を受光光学系ユニット140内の光路上に移動させ、光センサー146が蛍光γを検出する時には、蛍光透過領域156を受光光学系ユニット140の光路内に移動させると同時に、散乱光透過部153を受光光学系ユニット140内の光路外に移動させる。透過調整部147は、フィルターホルダー143を支持するステージ154と、ステージ154を介してフィルターホルダー143(散乱光透過部153)を移動させる駆動源となるモーター155と、を有する。詳細は後述するが、透過調整部147は、散乱光透過部153を受光光学系ユニット140の光路の内部または外部に移動させることで、フィルターホルダー143および励起光カットフィルター144を大きく移動させることなく、増強角を求めることができる。
制御部160は、各駆動部の制御や、光センサー146における受光量の定量化などを一元的に行う。本実施の形態では、制御部160は、光源ユニット121を制御する光源制御部161と、光センサー146を制御する光センサー制御部162と、モーター155を制御するモーター制御部163と、制御処理部164とを有する。制御処理部164は、光源制御部161、光センサー制御部162およびモーター制御部163を包括的に制御して、SPFS装置100全体の動作を制御する。制御部160は、例えば、ソフトウェアを実行するコンピュータである。後述するように、制御部160(制御処理部164)は、光センサー146によるプラズモン散乱光βの測定結果に基づいて、蛍光測定時の金属膜30(成膜面22)に対する励起光αの入射角を制御する。
次に、SPFS装置100の検出動作について説明する。図2は、SPFS装置100の動作手順の一例を示すフローチャートである。図3A,Bは、プラズモン散乱光の検出および蛍光の検出を説明するための図である。図3Aは、プラズモン散乱光の検出を説明するための図であり、図3Bは、蛍光の検出を説明するための図である。
まず、測定の準備をする(工程S10)。具体的には、SPFS装置100の所定の位置に分析チップ10を設置する。また、分析チップ10の流路41内に保湿剤が存在する場合は、捕捉体が適切に被検出物質を捕捉できるように、流路41内を洗浄して保湿剤を除去する。
次いで、検体中の被検出物質と捕捉体とを反応させる(1次反応、工程S20)。具体的には、流路41内に検体を注入して、検体と捕捉体とを接触させる。検体中に被検出物質が存在する場合は、被検出物質の少なくとも一部は捕捉体により捕捉される。この後、流路41内を緩衝液などで洗浄して、捕捉体に捕捉されなかった物質を除去する。検体の種類は、特に限定されない。検体の例には、血液や血清、血漿、尿、鼻孔液、唾液、精液などの体液およびその希釈液が含まれる。
次いで、図3Aに示されるように、制御処理部164は、フィルターホルダー143を移動させて、散乱光透過部153を受光光学系ユニット140内の光路上に配置する(工程S30)。そして、励起光αを金属膜30(成膜面22)の所定の位置に照射しながら、金属膜30(成膜面22)に対する励起光αの入射角を走査して、最適な入射角を決定する(工程S40)。そして、制御処理部164は、光源ユニット121および角度調整部122を制御して、励起光αを金属膜30(成膜面22)の所定の位置に照射しながら、金属膜30(成膜面22)に対する励起光αの入射角を走査する。また、制御処理部164は、光センサー146が金属膜30上(金属膜30表面およびその近傍)からのプラズモン散乱光βを検出するように、光センサー制御部162を制御する。金属膜上(金属膜30表面およびその近傍)からのプラズモン散乱光βは、第1レンズ141によりコリメートされ、散乱光透過部153を介して光センサー146に到達する。これにより、制御処理部164は、励起光αの入射角とプラズモン散乱光βの強度との関係を含むデータを得る。そして、制御処理部164は、データを解析して、プラズモン散乱光βの強度が最大となる入射角(増強角)を決定する。なお、増強角は、基本的には、誘電体20の素材および形状、金属膜30の厚み、流路41内の液体の屈折率などにより決まるが、流路41内の蛍光物質の種類および量、誘電体20の形状誤差などの各種要因によりわずかに変動する。このため、分析を行うたびに増強角を決定することが好ましい。増強角は、0.1°度程度のオーダーで決定される。
次いで、金属膜30(成膜面22)に対する励起光αの入射角を、前の工程で決定した増強角に設定する(工程S50)。具体的には、制御処理部164は、角度調整部122を制御して、金属膜30(成膜面22)に対する励起光αの入射角を増強角に設定する。以後の工程では、金属膜30(成膜面22)に対する励起光αの入射角は、増強角のままである。
次いで、図3Bに示されるように、制御処理部164は、フィルターホルダー143を移動させて、蛍光透過領域156を受光光学系ユニット140の光路内に配置するとともに、散乱光透過部153を受光光学系ユニット140内の光路外に配置する(工程S60)。そして、励起光αを金属膜30(成膜面22)に照射して、蛍光γと同じ波長の光の強度(光学ブランク値)を測定する(工程S70)。具体的には、制御処理部164は、光源制御部161を制御して、光源ユニット121に励起光αを出射させる。同時に、制御処理部164は、光センサー146が蛍光γと同じ波長の光の強度を検出するように、光センサー制御部162を制御する。このとき、励起光カットフィルター144は、プラズモン散乱光βを透過させない。よって、光センサー146は、正確にノイズとなる光の強度(光学ブランク値)を測定することができる。測定値は、制御処理部164に送信され、光学ブランク値として記録される。
次いで、捕捉体に捕捉された被検出物質を蛍光物質で標識する(2次反応、工程S80)。具体的には、流路41内に蛍光標識液を注入する。蛍光標識液は、例えば、蛍光物質で標識された抗体(2次抗体)を含む緩衝液である。蛍光標識液が流路41に注入されると、蛍光標識液が被検出物質に接触し、被検出物質が蛍光物質で標識される。この後、流路41内を緩衝液などで洗浄し、遊離の蛍光物質などを除去する。
最後に、励起光αを金属膜30(成膜面22)に照射して、金属膜30(金属膜30表面およびその近傍)上から放出される蛍光γの強度を測定する(工程S90)。具体的には、制御処理部164は、光源制御部161を制御して、光源ユニット121に励起光αを出射させる。同時に、制御処理部164は、光センサー146が金属膜(金属膜30およびその近傍)上から放出される蛍光γを検出するように、光センサー制御部162を制御する。このとき、励起光カットフィルター144はプラズモン散乱光βを透過させないため、蛍光γのみが光センサー146に検出される。制御処理部164は、測定値から光学ブランク値を引き、被検出物質の量に相関する蛍光強度を算出する。蛍光強度は、必要に応じて、被検出物質の量や濃度などに換算される。
以上の手順により、蛍光γを検出用の蛍光透過領域156を有する励起光カットフィルターの近傍のフィルターホルダー143に、プラズモン散乱光βを検出用の散乱光透過部153が配置されているため、励起光カットフィルター144を大きく移動させることなく、検体中の被検出物質の存在または被検出物質の量を検出することができる。
以上のように、本実施の形態に係るSPFS装置100では、金属膜30(成膜面22)に対する励起光αの最適な入射角(増強角)を決定する際にも、励起光カットフィルター144を受光光学系ユニット140の光路から大きく退避させる必要がない。したがって、本実施の形態に係るSPFS装置100は、従来のSPFS装置(特許文献2参照)のように励起光カットフィルターを蛍光の光路から完全に待避する必要がなく、小型化を実現することができる。また、本実施の形態に係るSPFS装置100は、被検出物質の存在または被検出物質の量を高感度かつ高精度に検出することができる。
[実施の形態2]
実施の形態2に係るSPFS装置は、実施の形態1に係るSPFS装置100と同様に、チップホルダー12、励起光学系ユニット120、受光光学系ユニット240および制御部160を有する。実施の形態2に係るSPFS装置は、受光光学系ユニット240の構成のみが実施の形態1に係るSPFS装置100と異なる。そこで、本実施の形態では、受光光学系ユニット240についてのみ説明する。
図4A,Bは、実施の形態2に係るSPFS装置において、プラズモン散乱光βの検出および蛍光γの検出を説明するための図である。図4Aは、プラズモン散乱光βの検出を説明するための図であり、図4Bは、蛍光γの検出を説明するための図である。
図4に示されるように、受光光学系ユニット240は、第1レンズ141、絞り142、フィルターホルダー143、励起光カットフィルター144、第2レンズ145、光センサー146および透過調整部247を有する。実施の形態2に係る受光光学系ユニット240における第1レンズ141、絞り142、フィルターホルダー143、励起光カットフィルター144、第2レンズ145および光センサー146は、実施の形態1に係る受光光学系ユニット140の各要素とそれぞれ同じである。
透過調整部247は、散乱光透過部153に向かうプラズモン散乱光βを遮蔽する。透過調整部147は、電磁シャッターまたは液晶シャッターである。本実施の形態では、透過調整部247は、電磁シャッターである。電磁シャッター(透過調整部)247は、シャッター本体248と、シャッター本体248を透過状態および遮蔽状態とするための電源249とを有する。ここで、「透過状態」とは、散乱光透過部153の少なくとも一部が開放されており、プラズモン散乱光βが散乱光透過部153を透過できる状態を意味する(図4A参照)。また、「遮蔽状態」とは、シャッター本体248が散乱光透過部153全体を覆っており、プラズモン散乱光βが散乱光透過部153を透過できない状態を意味する(図4B参照)。このように、透過調整部247が散乱光透過部153を透過状態または遮蔽状態とすることで、プラズモン散乱光βの検出または蛍光γの検出を簡単に切り替えることができる。
次に、実施の形態2に係るSPFS装置の検出動作について説明する。図5は、SPFS装置の動作手順の一例を示すフローチャートである。
まず、測定の準備をする(工程S10)。次いで、検体中の被検出物質と捕捉体とを反応させる(1次反応、工程S20)。
次いで、図4Aに示されるように、制御処理部164は、電磁シャッター247を開放し、プラズモン散乱光βを透過状態にする(工程S230)。そして、励起光αを金属膜30(成膜面22)の所定の位置に照射しながら、金属膜30(成膜面22)に対する励起光αの入射角を走査して、最適な入射角を決定する(工程S40)。
次いで、金属膜30(成膜面22)に対する励起光αの入射角を、前の工程で決定した増強角に設定する(工程S50)。以後の工程では、金属膜30(成膜面22)に対する励起光αの入射角は、増強角のままである。
次いで、図4Bに示されるように、制御処理部164は、電磁シャッター247を閉じて、プラズモン散乱光βを遮蔽状態とする(工程S260)。そして、励起光αを金属膜30(成膜面22)に照射して、蛍光γと同じ波長の光の強度(光学ブランク値)を測定する(工程S70)。
次いで、捕捉体に捕捉された被検出物質を蛍光物質で標識する(2次反応、工程S80)。最後に、励起光αを金属膜30(成膜面22)に照射して、金属膜30(金属膜30表面およびその近傍)上から放出される蛍光γの強度を測定する(工程S90)。
以上の手順により、励起光カットフィルター144を移動させることなく、検体中の被検出物質の存在または被検出物質の量を検出することができる。
以上のように、本実施の形態に係るSPFS装置では、励起光カットフィルター144を受光光学系ユニット240の光路から移動させる必要がない。したがって、本実施の形態に係るSPFS装置は、従来のSPFS装置(特許文献2参照)のように励起光カットフィルターを待避させるために水平方向に移動する必要がなく、小型化を実現することができる。また、被検出物質の存在または被検出物質の量を高感度かつ高精度に検出することができる。
[実施の形態3]
実施の形態3に係るSPFS装置は、実施の形態1に係るSPFS装置100および実施の形態2に係るSPFS装置と同様に、チップホルダー12、励起光学系ユニット120、受光光学系ユニット340および制御部160を有する。実施の形態3に係るSPFS装置は、受光光学系ユニット340の構成のみが実施の形態1に係るSPFS装置100および実施の形態2に係るSPFS装置と異なる。そこで、本実施の形態では、受光光学系ユニット340についてのみ説明する。
図6A,Bは、実施の形態3に係るSPFS装置において、プラズモン散乱光βの検出および蛍光γの検出を説明するための図である。図6Aは、プラズモン散乱光βの検出を説明するための図であり、図6Bは、蛍光γの検出を説明するための図である。
図6A,Bに示されるように、受光光学系ユニット340は、第1レンズ141、絞り142、フィルターホルダー343、励起光カットフィルター344、第2レンズ145、光センサー146および透過調整部147を有する。実施の形態3に係る受光光学系ユニット340における第1レンズ141、絞り142、第2レンズ145および光センサー146は、実施の形態1に係る受光光学系ユニット140における各要素とそれぞれ同じである。
本実施の形態では、フィルターホルダー343は、第3貫通孔352を有する。第3貫通孔352は、フィルターホルダー343の中央部分に配置されている。すなわち、本実施の形態では、フィルターホルダー343は、1つの貫通孔のみ形成されている。第3貫通孔352は、実施の形態1に係るフィルターホルダー143に形成された第1貫通孔152より大きく形成されている。したがって、本実施の形態に係るフィルターホルダー343は、実施の形態1に係るフィルターホルダー143と比較して、さらに外縁部で励起光カットフィルター344を保持している。
励起光カットフィルター344は、蛍光γを透過させるための蛍光透過領域156と、プラズモン散乱光βを透過させるための散乱光透過部153とを有する。散乱光透過部153は、蛍光透過領域156を避けて配置されている。上述したように、励起光カットフィルター344は、例えば、片面または両面が誘電体多層膜でコートされた透明基板を使用することができる。よって、散乱光透過部153は、散乱光透過部153が形成されるべき領域を予めマスキングした後に、誘電体多層膜を形成し、最後にマスキングを剥がすことで容易に成形することができる。また、散乱光透過部153を平面視したときの面積は、蛍光透過領域156を平面視したときの面積の1/1000以下であることが好ましい。
次に、実施の形態3に係るSPFS装置の検出動作について説明する。なお、フローチャートは、実施の形態1に係るSPFS装置100と同様であるため省略する。
まず、測定の準備をする(工程S10)。次いで、検体中の被検出物質と捕捉体とを反応させる(1次反応、工程S20)。次いで、図6Aに示されるように、制御処理部164は、フィルターホルダー343を移動させて、散乱光透過部153を受光光学系ユニット340内の光路上に配置する(工程S30)。そして、励起光αを金属膜30(成膜面22)の所定の位置に照射しながら、金属膜30(成膜面22)に対する励起光αの入射角を走査して、最適な入射角を決定する(工程S40)。次いで、金属膜30(成膜面22)に対する励起光αの入射角を、前の工程で決定した増強角に設定する(工程S50)。次いで、図6Bに示されるように、制御処理部164は、フィルターホルダー343を移動させて、蛍光透過領域156を受光光学系ユニット340の光路内に配置するとともに、散乱光透過部153を受光光学系ユニット340内の光路外に配置する(工程S60)。そして、励起光αを金属膜30(成膜面22)に照射して、蛍光γと同じ波長の光の強度(光学ブランク値)を測定する(工程S70)。次いで、捕捉体に捕捉された被検出物質を蛍光物質で標識する(2次反応、工程S80)。最後に、励起光αを金属膜30(成膜面22)に照射して、金属膜30(金属膜30表面およびその近傍)上から放出される蛍光γの強度を測定する(工程S90)。
以上の手順により、実施の形態1に係るSPFS装置100と同様に、励起光カットフィルター344を大きく移動させることなく、検体中の被検出物質の存在または被検出物質の量を検出することができる。
以上のように、本実施の形態に係るSPFS装置では、金属膜30(成膜面22)に対する励起光αの最適な入射角(増強角)を決定する際にも、実施の形態1に係るSPFS装置100と比較して、励起光カットフィルター144を受光光学系の光路から大きく退避させる必要がない。
なお、特に図示しないが、励起光カットフィルター344において、散乱光透過部153は、蛍光透過領域156内に配置されていてもよい。この場合も、散乱光透過部153の大きさは、蛍光透過領域156の大きさの1/1000以下であることが好ましい。このように、散乱光透過部153の大きさが蛍光透過領域156の大きさと比較して、著しく小さいため、蛍光γの検出をプラズモン散乱光βが阻害することがない。また、プラズモン散乱光βの検出と、蛍光γの検出との間において、励起光カットフィルター344を移動する必要がないため、さらに装置を小型化することができる。
[実施の形態4]
実施の形態4に係るSPFS装置は、上述のSPFS装置と同様に、チップホルダー12、励起光学系ユニット120、受光光学系ユニット440および制御部160を有する。実施の形態4に係るSPFS装置は、受光光学系ユニット440の構成のみが実施の形態3に係るSPFS装置と異なる。そこで、本実施の形態では、受光光学系ユニット440についてのみ説明する。
図7A,Bは、実施の形態4に係るSPFS装置において、プラズモン散乱光βの検出および蛍光γの検出を説明するための図である。図7Aは、プラズモン散乱光βの検出を説明するための図であり、図7Bは、蛍光γの検出を説明するための図である。
図7A,Bに示されるように、受光光学系ユニット440は、第1レンズ141、絞り142、フィルターホルダー143、励起光カットフィルター144、第2レンズ145、光センサー146および透過調整部447を有する。実施の形態4に係る受光光学系ユニット440における第1レンズ141、絞り142、フィルターホルダー343、第2レンズ145および光センサー146は、実施の形態1に係る受光光学系ユニット140における各要素とそれぞれ同じである。
本実施の形態では、フィルターホルダー343は、第4貫通孔452を有する。第4貫通孔452は、励起光カットフィルター144の外形とほぼ同じ大きさに、フィルターホルダー343の中央部分に形成されている。
透過調整部447は、フィルターホルダー343を介して励起光カットフィルター144を、蛍光γまたはプラズモン散乱光βの光軸に直交する方向を回転軸として、回転自在のθステージ448と、θステージ448をθ回転させるためのθ回転機構449とを有する。
次に、励起光カットフィルター144を上記の回転軸を中心にθ回転させることによるプラズモン散乱光βの検出について説明する。図8は、励起光カットフィルター144を透過する波長と、励起光カットフィルター144の透過率と、の関係を示すグラフである。図8の実線は、励起光カットフィルター144の回転角度が0°の場合を示している。図8の破線は、励起光カットフィルター144の回転角度が15°の場合を示している。図8の一点鎖線は、励起光カットフィルター144の回転角度が20°の場合を示している。ここでは、652〜672nmの範囲内に透過波長帯を有する励起光カットフィルター144を例に挙げて説明する。また、励起光の波長は635nmとした。
図8に示されるように、上述した多層膜を有する励起光カットフィルター144を傾斜させると、励起光カットフィルター144を透過する光の波長が短波長側にシフトすることがわかる。すなわち、励起光カットフィルター144(多層膜)を傾斜させることにより、プラズモン散乱光βは、励起光カットフィルター144を透過することができることがわかる。具体的には、図8の実線に示されるように、励起光カットフィルター144の回転角度(入射角)が0°の場合、励起光αが十分に遮蔽されていることがわかる。一方、図8の一点鎖線に示されるように、励起光カットフィルター144の回転角度(入射角)が20°の場合、635nmの波長の光は、励起光カットフィルター144を20%程度透過することがわかる。よって、励起光カットフィルター144の傾斜角度を調整することにより、プラズモン散乱光βの検出および蛍光γの検出を切り替えることができることがわかる。
次に、実施の形態4に係るSPFS装置の検出動作について説明する。図9は、実施の形態4に係るSPFS装置の動作手順の一例を示すフローチャートである。
まず、測定の準備をする(工程S10)。次いで、検体中の被検出物質と捕捉体とを反応させる(1次反応、工程S20)。
次いで、図7Aに示されるように、制御処理部164は、フィルターホルダー343をθ回転させることで、励起光カットフィルター144(多層膜)を所定の角度に傾斜させる(工程S430)。そして、励起光αを金属膜30(成膜面22)の所定の位置に照射しながら、金属膜30(成膜面22)に対する励起光αの入射角を走査して、最適な入射角を決定する(工程S40)。
次いで、金属膜30(成膜面22)に対する励起光αの入射角を、前の工程で決定した増強角に設定する(工程S50)。以後の工程では、金属膜30(成膜面22)に対する励起光αの入射角は、増強角のままである。
次いで、図7Bに示されるように、制御処理部164は、フィルターホルダー343を逆方向にθ回転させることで、励起光カットフィルター144をもとの傾斜に戻す(工程S460)。そして、励起光αを金属膜30(成膜面22)に照射して、蛍光γと同じ波長の光の強度(光学ブランク値)を測定する(工程S70)。
次いで、捕捉体に捕捉された被検出物質を蛍光物質で標識する(2次反応、工程S80)。最後に、励起光αを金属膜30(成膜面22)に照射して、金属膜30(金属膜30表面およびその近傍)上から放出される蛍光γの強度を測定する(工程S90)。
以上の手順により、励起光カットフィルター144を平面方向に移動させることなく、検体中の被検出物質の存在または被検出物質の量を検出することができる。
以上のように、本実施の形態に係るSPFS装置では、実施の形態2に係るSPFS装置と同様の効果を得ることができる。
本出願は、2014年2月5日出願の特願2014−020356に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
本発明に係る表面プラズモン共鳴蛍光分析装置および表面プラズモン共鳴蛍光分析方法は、被検出物質を高い信頼性で測定することができるため、例えば臨床検査などに有用である。
10 分析チップ
12 チップホルダー
20 誘電体
21 入射面
22 成膜面
23 出射面
30 金属膜
40 流路蓋
41 流路
100 表面プラズモン共鳴蛍光分析装置(SPFS装置)
120 励起光学系ユニット
121 光源ユニット
122 角度調整部
140,240,340,440 受光光学系ユニット
141 第1レンズ
142 絞り
143,343 フィルターホルダー
144,344 励起光カットフィルター
145 第2レンズ
146 光センサー
147,247,447 透過調整部
151 絞り孔
152 第1貫通孔
153 第2貫通孔(散乱光透過部)
154,448 ステージ
155 モーター
156 蛍光透過領域
160 制御部
161 光源制御部
162 光センサー制御部
163 モーター制御部
164 制御処理部
248 シャッター本体
249 電源
352 第3貫通孔
449 回転機構
452 第4貫通孔

Claims (14)

  1. 金属膜を一面に有する誘電体を含む分析チップが装着され、前記誘電体を介して前記金属膜に励起光を照射することで、前記金属膜上の被検出物質を標識する蛍光物質を励起させ、前記蛍光物質から放出された蛍光を検出することで、被検出物質の存在またはその量を検出する表面プラズモン共鳴蛍光分析装置であって、
    前記分析チップを着脱可能に保持するチップホルダーと、
    励起光を出射する光源と、
    前記誘電体を介して前記金属膜に所定の入射角で励起光を照射するために、前記金属膜に対する励起光の入射角を調整する角度調整部と、
    前記金属膜の前記誘電体と対向しない面の近傍から出射される光を検出する光センサーと、
    前記金属膜の近傍から出射された光を前記光センサーに導く受光光学系と、
    前記受光光学系内に配置され、前記金属膜上から出射された蛍光を透過させ、励起光の少なくとも一部の波長の光を遮断する蛍光透過領域を含む、励起光カットフィルターと、
    前記励起光カットフィルターを保持するフィルターホルダーと、
    前記励起光カットフィルターまたは前記フィルターホルダーに配置され、前記金属膜上から出射されたプラズモン散乱光を透過させる散乱光透過部と、
    前記散乱光透過部を介するプラズモン散乱光の透過の可否を調整する透過調整部と、
    を有し、
    前記散乱光透過部を平面視したときの面積は、前記励起光カットフィルターの蛍光透過領域を平面視したときの面積より小さい、
    表面プラズモン共鳴蛍光分析装置。
  2. 前記角度調整部および前記透過調整部を制御する制御部をさらに有し、
    前記制御部は、前記透過調整部により前記散乱光透過部を介してプラズモン散乱光を透過させ、前記光センサーによる前記プラズモン散乱光の検出結果に基づいて、前記角度調整部による前記金属膜に対する励起光の入射角を制御する、
    請求項1に記載の表面プラズモン共鳴蛍光分析装置。
  3. 前記透過調整部は、前記光センサーがプラズモン散乱光を検出する時には、前記散乱光透過部を前記受光光学系内の光路上に移動させ、前記光センサーが蛍光を検出する時には、前記散乱光透過部を前記受光光学系内の光路外に移動させる、請求項1または請求項2に記載の表面プラズモン共鳴蛍光分析装置。
  4. 前記散乱光透過部を平面視したときの面積は、前記蛍光透過領域を平面視したときの1/1000以下の面積である、請求項1〜3のいずれか一項に記載の表面プラズモン共鳴蛍光分析装置。
  5. 前記透過調整部は、前記散乱光透過部に向かうプラズモン散乱光を遮蔽する、請求項1、2、4のいずれか一項に記載の表面プラズモン共鳴蛍光分析装置。
  6. 前記透過調整部は、電磁シャッターである、請求項5に記載の表面プラズモン共鳴蛍光分析装置。
  7. 前記透過調整部は、液晶シャッターである、請求項5に記載の表面プラズモン共鳴蛍光分析装置。
  8. 前記散乱光透過部は、前記フィルターホルダーに配置されている、請求項1〜7のいずれか一項に記載の表面プラズモン共鳴蛍光分析装置。
  9. 前記散乱光透過部は、前記蛍光透過領域を避けて前記励起光カットフィルターに配置されている、請求項1〜7のいずれか一項に記載の表面プラズモン共鳴蛍光分析装置。
  10. 前記散乱光透過部は、前記励起光カットフィルターの前記蛍光透過領域内に配置されている、請求項1、2、4〜7のいずれか一項に記載の表面プラズモン共鳴蛍光分析装置。
  11. 前記散乱光透過部の中心軸は、前記励起光カットフィルターに到達した光の光軸に沿って配置されている、請求項1〜10のいずれか一項に記載の表面プラズモン共鳴蛍光分析装置。
  12. 被検出物質を標識する蛍光物質が、表面プラズモン共鳴に基づく局在場光により励起されて発した蛍光を検出して、前記被検出物質の存在またはその量を検出する表面プラズモン共鳴蛍光分析方法であって、
    前記被検出物質を、誘電体の一面上に配置された金属膜上に配置する工程と、
    蛍光を透過させ、励起光の少なくとも一部の波長の光を遮断する蛍光透過領域を有する励起光カットフィルター、または前記励起光カットフィルターを保持するためのフィルターホルダーに形成された散乱光透過部を、プラズモン散乱光が透過可能な位置に移動した状態で、前記誘電体を介して前記金属膜に励起光を照射するとともに、前記金属膜上から出射され、かつ前記散乱光透過部を透過したプラズモン散乱光の強度を検出して、プラズモン散乱光の強度が最大となるときの入射角である増強角を決定する工程と、
    前記励起光カットフィルターに配置された蛍光透過領域を蛍光が透過可能な位置に移動した状態で、前記金属膜に対する入射角が前記増強角となるように、前記誘電体を介して前記金属膜に励起光を照射するとともに、前記蛍光物質から放出され、かつ前記蛍光透過領域を透過した蛍光の強度を検出する工程と、
    を含む、表面プラズモン共鳴蛍光分析方法。
  13. 金属膜を一面に有する誘電体を含む分析チップが装着され、前記誘電体を介して前記金属膜に励起光を照射することで、前記金属膜上の被検出物質を標識する蛍光物質を励起させ、前記蛍光物質から放出された蛍光を検出することで、被検出物質の存在またはその量を検出する表面プラズモン共鳴蛍光分析装置であって、
    前記分析チップを着脱可能に保持するチップホルダーと、
    励起光を出射する光源と、
    前記誘電体を介して前記金属膜に所定の入射角で励起光を照射するために、前記金属膜に対する励起光の入射角を調整する角度調整部と、
    前記金属膜の前記誘電体と対向しない面の近傍から出射される光を検出する光センサーと、
    前記金属膜の近傍から出射された光を前記光センサーに導く受光光学系と、
    前記受光光学系内に配置され、前記金属膜上から出射された蛍光を透過させ、励起光の少なくとも一部の波長の光を遮断する励起光カットフィルターと、
    前記金属膜上から出射されたプラズモン散乱光が透過可能となるように、前記励起光カットフィルターを前記金属膜表面の法線に対して傾斜させる透過調整部と、を有する、
    表面プラズモン共鳴蛍光分析装置。
  14. 被検出物質を標識する蛍光物質が、表面プラズモン共鳴に基づく局在場光により励起されて発した蛍光を検出して、前記被検出物質の存在またはその量を検出する表面プラズモン共鳴蛍光分析方法であって、
    前記被検出物質を、誘電体の一面上に配置された金属膜上に配置する工程と、
    蛍光を透過させ、励起光の少なくとも一部の波長の光を遮断する励起光カットフィルターを、プラズモン散乱光が透過可能となるように、前記金属膜表面の法線に対して傾斜させた状態で、前記誘電体を介して前記金属膜に励起光を照射するとともに、前記金属膜上から出射され、前記励起光カットフィルターを透過したプラズモン散乱光の強度を検出して、プラズモン散乱光の強度が最大となるときの入射角である増強角を決定する工程と、
    前記励起光カットフィルターを、励起光の少なくとも一部の波長の光を遮断する角度に配置した状態で、前記金属膜に対する入射角が前記増強角となるように、前記誘電体を介して前記金属膜に励起光を照射するとともに、前記蛍光物質から放出され、かつ前記励起光カットフィルターを透過した蛍光の強度を検出する工程と、
    を含む、表面プラズモン共鳴蛍光分析方法。
JP2015561008A 2014-02-05 2015-02-04 表面プラズモン共鳴蛍光分析装置および表面プラズモン共鳴蛍光分析方法 Active JP6536413B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014020356 2014-02-05
JP2014020356 2014-02-05
PCT/JP2015/053102 WO2015119154A1 (ja) 2014-02-05 2015-02-04 表面プラズモン共鳴蛍光分析装置および表面プラズモン共鳴蛍光分析方法

Publications (2)

Publication Number Publication Date
JPWO2015119154A1 true JPWO2015119154A1 (ja) 2017-03-23
JP6536413B2 JP6536413B2 (ja) 2019-07-03

Family

ID=53777958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015561008A Active JP6536413B2 (ja) 2014-02-05 2015-02-04 表面プラズモン共鳴蛍光分析装置および表面プラズモン共鳴蛍光分析方法

Country Status (4)

Country Link
US (2) US10451555B2 (ja)
EP (1) EP3104168B1 (ja)
JP (1) JP6536413B2 (ja)
WO (1) WO2015119154A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6638343B2 (ja) * 2015-11-13 2020-01-29 コニカミノルタ株式会社 センサーチップおよびこのセンサーチップを備えた光学式検体検出システム
US20180313756A1 (en) * 2015-11-13 2018-11-01 Konica Minolta, Inc. Method for surface plasmon resonance fluorescence analysis and device for surface plasmon resonance fluorescence analysis
JP6760384B2 (ja) * 2016-09-14 2020-09-23 コニカミノルタ株式会社 測定方法
US10520436B2 (en) * 2016-11-29 2019-12-31 Caduceus Biotechnology Inc. Dynamic focusing confocal optical scanning system
JP7125936B2 (ja) 2017-07-11 2022-08-25 浜松ホトニクス株式会社 試料観察装置及び試料観察方法
US10845306B2 (en) * 2017-08-21 2020-11-24 Saudi Arabian Oil Company Determining composition of a sample
US10845307B2 (en) * 2017-08-21 2020-11-24 Saudi Arabian Oil Company Determining composition of a sample
WO2020036010A1 (ja) * 2018-08-13 2020-02-20 コニカミノルタ株式会社 表面プラズモン共鳴蛍光分析装置及び表面プラズモン共鳴蛍光分析方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045687A1 (en) * 1997-04-04 1998-10-15 Kairos Scientific Inc. Optical instrument having a variable optical filter
JPH10307141A (ja) * 1997-04-14 1998-11-17 Boehringer Mannheim Gmbh プラズモン共鳴および蛍光検出を用いた生体分子相互作用の同時検出法
US20110189787A1 (en) * 2008-07-15 2011-08-04 Graves Pierre R Spectrometer and method of operating a spectrometer
WO2012042805A1 (ja) * 2010-09-30 2012-04-05 コニカミノルタホールディングス株式会社 表面プラズモン共鳴蛍光分析装置及び表面プラズモン共鳴蛍光分析方法
JP2012088248A (ja) * 2010-10-21 2012-05-10 Konica Minolta Holdings Inc 表面プラズモン共鳴蛍光分析装置及び表面プラズモン共鳴蛍光分析方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011166753A (ja) 2010-01-15 2011-08-25 Panasonic Corp 撮像装置
US9464988B2 (en) 2010-06-04 2016-10-11 Konica Minolta, Inc. Surface plasmon resonance fluorescence measurement device and surface plasmon resonance fluorescence measurement method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045687A1 (en) * 1997-04-04 1998-10-15 Kairos Scientific Inc. Optical instrument having a variable optical filter
JPH10307141A (ja) * 1997-04-14 1998-11-17 Boehringer Mannheim Gmbh プラズモン共鳴および蛍光検出を用いた生体分子相互作用の同時検出法
US6194223B1 (en) * 1997-04-14 2001-02-27 Roche Diagnostics Gmbh Method for the simultaneous determination of biomolecular interactions by means of plasmon resonance and fluoresence detection
US20110189787A1 (en) * 2008-07-15 2011-08-04 Graves Pierre R Spectrometer and method of operating a spectrometer
WO2012042805A1 (ja) * 2010-09-30 2012-04-05 コニカミノルタホールディングス株式会社 表面プラズモン共鳴蛍光分析装置及び表面プラズモン共鳴蛍光分析方法
US20130175457A1 (en) * 2010-09-30 2013-07-11 Konica Minolta Holdings, Inc. Surface plasmon resonance fluorescence analysis device and surface plasmon resonance fluorescence analysis method
JP2012088248A (ja) * 2010-10-21 2012-05-10 Konica Minolta Holdings Inc 表面プラズモン共鳴蛍光分析装置及び表面プラズモン共鳴蛍光分析方法

Also Published As

Publication number Publication date
JP6536413B2 (ja) 2019-07-03
WO2015119154A1 (ja) 2015-08-13
EP3104168A4 (en) 2017-10-11
US10451555B2 (en) 2019-10-22
US20200003688A1 (en) 2020-01-02
US20160356717A1 (en) 2016-12-08
EP3104168B1 (en) 2019-01-16
EP3104168A1 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
WO2015119154A1 (ja) 表面プラズモン共鳴蛍光分析装置および表面プラズモン共鳴蛍光分析方法
JP6369533B2 (ja) 測定方法および測定装置
JP6337905B2 (ja) 表面プラズモン共鳴蛍光分析方法および表面プラズモン共鳴蛍光分析装置
JP6635168B2 (ja) 表面プラズモン共鳴蛍光分析方法
JP6587024B2 (ja) 検出方法および検出装置
JP6421821B2 (ja) 検出装置
JP6791248B2 (ja) 検出方法および検出装置
JP7292285B2 (ja) 表面プラズモン共鳴蛍光分析装置及び表面プラズモン共鳴蛍光分析方法
JP6954116B2 (ja) 測定方法、測定装置および測定チップ
JP6702046B2 (ja) 検出方法および検出装置
JP7405846B2 (ja) 測定方法および測定装置
JP6673336B2 (ja) 検出装置
JP6221785B2 (ja) 検出装置および検出方法
WO2016147774A1 (ja) 測定方法および測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190520

R150 Certificate of patent or registration of utility model

Ref document number: 6536413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250