JPWO2015118836A1 - Resin composition containing polyimide precursor, method for producing cured film, and electronic component - Google Patents

Resin composition containing polyimide precursor, method for producing cured film, and electronic component Download PDF

Info

Publication number
JPWO2015118836A1
JPWO2015118836A1 JP2015561208A JP2015561208A JPWO2015118836A1 JP WO2015118836 A1 JPWO2015118836 A1 JP WO2015118836A1 JP 2015561208 A JP2015561208 A JP 2015561208A JP 2015561208 A JP2015561208 A JP 2015561208A JP WO2015118836 A1 JPWO2015118836 A1 JP WO2015118836A1
Authority
JP
Japan
Prior art keywords
resin composition
group
formula
component
cured film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015561208A
Other languages
Japanese (ja)
Inventor
敬司 小野
敬司 小野
榎本 哲也
哲也 榎本
匡之 大江
匡之 大江
ケイ子 鈴木
ケイ子 鈴木
和也 副島
和也 副島
越晴 鈴木
越晴 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HD MicroSystems Ltd
Original Assignee
Hitachi Chemical DuPont Microsystems Ltd
HD MicroSystems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical DuPont Microsystems Ltd, HD MicroSystems Ltd filed Critical Hitachi Chemical DuPont Microsystems Ltd
Publication of JPWO2015118836A1 publication Critical patent/JPWO2015118836A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/1053Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials For Photolithography (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(a)下記式(1)で表される構造単位を有するポリイミド前駆体及び(b)エチレン性不飽和基及びイソシアヌル環構造を有する光重合性化合物を含む樹脂組成物。但し、式(1)中、R1は4価の有機基であり、R2は2価の有機基である。R3及びR4は各々独立に水素原子、炭素数1〜20のアルキル基、炭素数3〜20のシクロアルキル基、又は炭素炭素不飽和二重結合を有する1価の有機基である。(A) A resin composition comprising a polyimide precursor having a structural unit represented by the following formula (1) and (b) a photopolymerizable compound having an ethylenically unsaturated group and an isocyanuric ring structure. However, in Formula (1), R1 is a tetravalent organic group and R2 is a divalent organic group. R3 and R4 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or a monovalent organic group having a carbon-carbon unsaturated double bond.

Description

本発明は、ポリイミド前駆体を含む樹脂組成物、それを用いた硬化膜の製造方法及び電子部品に関する。   The present invention relates to a resin composition containing a polyimide precursor, a method for producing a cured film using the resin composition, and an electronic component.

半導体集積回路の微細化に伴い、誘電率を低減するためのlow−k層と呼ばれる層間絶縁膜が必要とされている。low−k層は空孔構造を有するため、機械的強度が低下するという課題がある。この様な機械的強度の弱い層間絶縁膜を保護するために、ポリイミド樹脂から形成される硬化膜が用いられる。この硬化膜には、厚膜形成性(例えば5μm以上)や高弾性率化(例えば4GPa以上)といった特性が求められている。しかし、厚膜化及び高弾性率化に伴い、硬化後の応力が増大し、半導体ウエハの反りが大きくなって、搬送やウエハ固定の際に不具合が生じる場合があった。   With the miniaturization of semiconductor integrated circuits, an interlayer insulating film called a low-k layer for reducing the dielectric constant is required. Since the low-k layer has a pore structure, there is a problem that the mechanical strength is lowered. In order to protect such an interlayer insulating film having a low mechanical strength, a cured film formed of a polyimide resin is used. This cured film is required to have characteristics such as thick film formability (for example, 5 μm or more) and high elastic modulus (for example, 4 GPa or more). However, as the film thickness and the elastic modulus increase, the stress after curing increases and the warpage of the semiconductor wafer increases, which may cause problems during transportation and wafer fixing.

ポリイミド樹脂から形成される硬化膜を低応力化する方法として、例えば、酸成分に特定の官能基を有するフタル酸化合物を共重縮合させたポリアミドを用いる方法(例えば特許文献1)が挙げられる。しかしながら、近年は低温での硬化が求められており、前記ポリアミドを低温硬化させた場合には、充分な性能を有する硬化膜を得る点では改善の余地があった。   As a method for reducing the stress of a cured film formed from a polyimide resin, for example, there is a method using a polyamide obtained by copolycondensation of a phthalic acid compound having a specific functional group as an acid component (for example, Patent Document 1). However, in recent years, curing at a low temperature has been demanded, and when the polyamide is cured at a low temperature, there is room for improvement in terms of obtaining a cured film having sufficient performance.

国際公開WO2006/008991号公報International Publication WO2006 / 008991

また、低応力化するために、i線透過率が高いフッ素を含有するポリイミド前駆体が検討されている。しかしながら、本発明者らの検討の結果、これらのポリイミド前駆体を含む樹脂組成物を加熱硬化後に得られる硬化膜は、レジストプロセス中に用いられる有機溶剤を吸収しやすく、膨潤してしまうことが判明した。ここでいう膨潤とは、ポリイミド硬化膜を一定温度(例えば70℃)のN−メチルピロリドンに一定時間(例えば20分間)浸漬したときに、硬化膜が溶媒を吸収し、体積が膨張する現象である。
本発明の目的は、300℃以下の低温で硬化した場合であっても低応力及び低膨潤な硬化膜が得られる樹脂組成物を提供することである。
In order to reduce the stress, a polyimide precursor containing fluorine having a high i-line transmittance has been studied. However, as a result of the study by the present inventors, a cured film obtained after heat curing a resin composition containing these polyimide precursors can easily absorb the organic solvent used during the resist process and swell. found. The swelling referred to here is a phenomenon in which when the polyimide cured film is immersed in N-methylpyrrolidone at a constant temperature (for example, 70 ° C.) for a certain time (for example, 20 minutes), the cured film absorbs the solvent and the volume expands. is there.
An object of the present invention is to provide a resin composition capable of obtaining a cured film having low stress and low swelling even when cured at a low temperature of 300 ° C. or lower.

本発明によれば、以下の樹脂組成物が提供される。
1.下記(a)成分及び(b)成分を含む樹脂組成物。
(a)下記式(1)で表される構造単位を有するポリイミド前駆体、

Figure 2015118836
(式中、Rは4価の有機基であり、Rは2価の有機基である。R及びRは各々独立に水素原子、炭素数1〜20のアルキル基、炭素数3〜20のシクロアルキル基、又は炭素炭素不飽和二重結合を有する1価の有機基である。)
(b)エチレン性不飽和基及びイソシアヌル環構造を有する光重合性化合物
2.前記式(1)のRが、下記式(2)で表わされる2価の有機基である1に記載の樹脂組成物。
Figure 2015118836
(式中、R〜R12は各々独立に水素原子、フッ素原子、又は1価の有機基であり、R〜R12の少なくとも1つはフッ素原子、メチル基又はトリフルオロメチル基である。)3.前記式(1)のRが、下記式(3)で表わされる2価の有機基である1又は2に記載の樹脂組成物。
Figure 2015118836
(式中、R13及びR14は各々独立にフッ素原子又はトリフルオロメチル基である。)
4.前記光重合性化合物が、下記式(4)で表される構造を含む1〜3のいずれかに記載の樹脂組成物。
Figure 2015118836
(式中、R24は、水素原子又はメチル基であり、Xはアルキレン基であり、nは1〜25の整数である。)
5.前記光重合性化合物が、下記式(5)で表される化合物である4に記載の樹脂組成物。
Figure 2015118836
(式中、R21〜R23は各々独立に1価の有機基であり、少なくとも1つは前記式(4)で表される基である。)
6.前記(b)成分が前記(a)成分100質量部に対して0.01〜50質量部含まれる1〜5のいずれかに記載の樹脂組成物。
7.(c)成分として、活性光線照射によりラジカルを発生する化合物をさらに含む1〜6のいずれかに記載の樹脂組成物。
8.前記活性光線照射によりラジカルを発生する化合物が、オキシムエステル化合物である7に記載の樹脂組成物。
9.(e)成分として、(b)成分以外の光重合性化合物をさらに含む1〜8のいずれかに記載の樹脂組成物。
10.前記光重合性化合物が、(メタ)アクリル化合物である9に記載の樹脂組成物。
11.1〜10のいずれかに記載の樹脂組成物を基板上に塗布し乾燥して塗膜を形成する工程と、前記塗膜を加熱処理する工程とを含む、硬化膜の製造方法。
12.1〜10のいずれかに記載の樹脂組成物を基板上に塗布し乾燥して塗膜を形成する工程と、前記塗膜に活性光線を照射後、現像してパターン樹脂膜を得る工程と、前記パターン樹脂膜を加熱処理する工程とを含む、パターン硬化膜の製造方法。
13.11に記載の硬化膜の製造方法から得られる硬化膜。
14.12に記載のパターン硬化膜の製造方法から得られるパターン硬化膜。
15.13に記載の硬化膜又は14に記載のパターン硬化膜をを有する電子部品。According to the present invention, the following resin composition is provided.
1. The resin composition containing the following (a) component and (b) component.
(A) a polyimide precursor having a structural unit represented by the following formula (1),
Figure 2015118836
(In the formula, R 1 is a tetravalent organic group, R 2 is a divalent organic group. R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a carbon number of 3; ˜20 cycloalkyl groups or monovalent organic groups having a carbon-carbon unsaturated double bond.)
(B) a photopolymerizable compound having an ethylenically unsaturated group and an isocyanuric ring structure; 2. The resin composition according to 1, wherein R 2 in the formula (1) is a divalent organic group represented by the following formula (2).
Figure 2015118836
(In the formula, R 5 to R 12 are each independently a hydrogen atom, a fluorine atom, or a monovalent organic group, and at least one of R 5 to R 12 is a fluorine atom, a methyl group, or a trifluoromethyl group. .) 3. 3. The resin composition according to 1 or 2, wherein R 2 in the formula (1) is a divalent organic group represented by the following formula (3).
Figure 2015118836
(In the formula, R 13 and R 14 are each independently a fluorine atom or a trifluoromethyl group.)
4). The resin composition in any one of 1-3 in which the said photopolymerizable compound contains the structure represented by following formula (4).
Figure 2015118836
(In the formula, R 24 is a hydrogen atom or a methyl group, X is an alkylene group, and n is an integer of 1 to 25.)
5). 5. The resin composition according to 4, wherein the photopolymerizable compound is a compound represented by the following formula (5).
Figure 2015118836
(In the formula, R 21 to R 23 are each independently a monovalent organic group, and at least one is a group represented by the formula (4).)
6). The resin composition according to any one of 1 to 5, wherein the component (b) is contained in an amount of 0.01 to 50 parts by mass with respect to 100 parts by mass of the component (a).
7). (C) The resin composition in any one of 1-6 which further contains the compound which generate | occur | produces a radical by irradiation with actinic light as a component.
8). 8. The resin composition according to 7, wherein the compound that generates radicals upon irradiation with actinic rays is an oxime ester compound.
9. (E) The resin composition in any one of 1-8 which further contains photopolymerizable compounds other than (b) component as a component.
10. 10. The resin composition according to 9, wherein the photopolymerizable compound is a (meth) acrylic compound.
The manufacturing method of a cured film including the process of apply | coating the resin composition in any one of 11.1-10 on a board | substrate, drying and forming a coating film, and the process of heat-processing the said coating film.
A step of applying the resin composition according to any one of 12.1 to 10 on a substrate and drying to form a coating film, and a step of irradiating the coating film with actinic rays and developing to obtain a patterned resin film And a step of heat-treating the patterned resin film.
A cured film obtained from the method for producing a cured film according to 13.11.
The pattern cured film obtained from the manufacturing method of the pattern cured film as described in 14.12.
15. An electronic component having the cured film according to 15.13 or the pattern cured film according to 14.

本発明によれば、300℃以下の低温で硬化した場合であっても低応力及び低膨潤な硬化膜が得られる樹脂組成物が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where it hardens | cures at the low temperature of 300 degrees C or less, the resin composition from which the cured film with a low stress and a low swelling is obtained can be provided.

本発明の樹脂組成物を用いて製造した電子部品(半導体装置)の一実施形態の概略断面図である。It is a schematic sectional drawing of one Embodiment of the electronic component (semiconductor device) manufactured using the resin composition of this invention.

以下に、本発明にかかる樹脂組成物及び該樹脂組成物を用いた硬化膜の製造方法について説明する。尚、この実施の形態により本発明が限定されるものではない。   Below, the resin composition concerning this invention and the manufacturing method of the cured film using this resin composition are demonstrated. In addition, this invention is not limited by this embodiment.

本発明の樹脂組成物は、下記(a)成分及び(b)成分を含む。
[(a)成分]
下記式(1)で表される構造単位を有するポリイミド前駆体

Figure 2015118836
(式(1)中、Rは4価の有機基であり、Rは2価の有機基である。R及びRは各々独立に水素原子、炭素数1〜20のアルキル基、炭素数3〜20のシクロアルキル基、又は炭素炭素不飽和二重結合を有する1価の有機基である。)
[(b)成分]
エチレン性不飽和基及びイソシアヌル環構造を有する光重合性化合物The resin composition of this invention contains the following (a) component and (b) component.
[(A) component]
Polyimide precursor having a structural unit represented by the following formula (1)
Figure 2015118836
(In Formula (1), R 1 is a tetravalent organic group, R 2 is a divalent organic group. R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, It is a C3-C20 cycloalkyl group or a monovalent organic group having a carbon-carbon unsaturated double bond.)
[Component (b)]
Photopolymerizable compound having ethylenically unsaturated group and isocyanuric ring structure

従来は、370℃程度の高温でポリイミド前駆体の加熱硬化が行われていたが、本発明の樹脂組成物は、(a)成分と(b)成分の両方を含むことで、300℃以下の低温で硬化した場合であっても、応力が低くかつ膨潤が発生しにくい硬化膜が得られる。(a)成分を用いなかった場合、例えばポリベンゾオキサゾール前駆体を用いた場合は、(b)成分を併用しても、応力及び膨潤に対する効果が低い。
以下、本発明の樹脂組成物の各成分について説明する。
Conventionally, the polyimide precursor was heat-cured at a high temperature of about 370 ° C., but the resin composition of the present invention contains both the component (a) and the component (b), so that the temperature is 300 ° C. or less. Even when cured at a low temperature, a cured film having low stress and less likely to swell can be obtained. When the component (a) is not used, for example, when a polybenzoxazole precursor is used, the effect on stress and swelling is low even when the component (b) is used in combination.
Hereinafter, each component of the resin composition of this invention is demonstrated.

(a)成分:下記式(1)で表される構造単位を有するポリイミド前駆体
式(1)中のRは、原料として用いられるテトラカルボン酸又はその二無水物に由来する構造である。硬化膜の応力、i線透過率の観点からは、Rは、下記式(2a)〜(2e)で表される基のいずれかであることが好ましい。

Figure 2015118836
(式(2d)中、X及びYは、各々独立に結合するベンゼン環と共役しない2価の基又は単結合を示す。式(2e)中、Zはエーテル結合(−O−)又はスルフィド結合(−S−)である。)(A) Component: Polyimide precursor having a structural unit represented by the following formula (1) R 1 in formula (1) is a structure derived from a tetracarboxylic acid used as a raw material or a dianhydride thereof. From the viewpoint of the stress of the cured film and the i-line transmittance, R 1 is preferably any one of groups represented by the following formulas (2a) to (2e).
Figure 2015118836
(In the formula (2d), X and Y each represent a divalent group or a single bond that is not conjugated to an independently bonded benzene ring. In the formula (2e), Z represents an ether bond (—O—) or a sulfide bond. (-S-).)

式(2d)のX及びYの「結合するベンゼン環と共役しない2価の基」は、例えば、−O−、−S−、又は下記式で表わされる2価の基である。

Figure 2015118836
(式中、R12は炭素原子又は珪素原子である。
13は、各々独立に水素原子、又は、フッ素原子等のハロゲン原子である。)
これらの中でも、Rはピロメリット酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物又は3,3’,4,4’−ビフェニルテトラカルボン酸二無水物に由来する構造がより好ましい。これらは単独又は2種類以上を組み合わせて用いることができる。The “divalent group that is not conjugated with the benzene ring to be bonded” of X and Y in the formula (2d) is, for example, —O—, —S—, or a divalent group represented by the following formula.
Figure 2015118836
(Wherein R 12 represents a carbon atom or a silicon atom.
R 13 is each independently a hydrogen atom or a halogen atom such as a fluorine atom. )
Among these, R 1 is derived from pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride or 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride. A structure is more preferable. These can be used alone or in combination of two or more.

硬化膜の応力、i線透過率を低下させない範囲において、Rの原料は3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,3,5,6−ピリジンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、m−ターフェニル−3,3’,4,4’−テトラカルボン酸二無水物、p−ターフェニル−3,3’,4,4’−テトラカルボン酸二無水物、1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス{4’−(2,3−ジカルボキシフェノキシ)フェニル}プロパン二無水物、2,2−ビス{4’−(3,4−ジカルボキシフェノキシ)フェニル}プロパン二無水物、1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス{4’−(2,3−ジカルボキシフェノキシ)フェニル}プロパン二無水物、1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス{4’−(3,4−ジカルボキシフェノキシ)フェニル}プロパン二無水物、4,4’−オキシジフタル酸二無水物、4,4’−スルホニルジフタル酸二無水物等と組み合わせて用いてもよい。As long as the stress of the cured film and the i-line transmittance are not lowered, the raw material of R 1 is 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic acid Dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride M-terphenyl-3,3 ′, 4,4′-tetracarboxylic dianhydride, p-terphenyl-3,3 ′, 4,4′-tetracarboxylic dianhydride, 1,1, 1,3,3,3-hexafluoro-2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 1,1,1,3,3,3-hexafluoro-2,2-bis (3,4-Dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis {4 ′-(2,3-dicarboxyphenoxy) ) Phenyl} propane dianhydride, 2,2-bis {4 ′-(3,4-dicarboxyphenoxy) phenyl} propane dianhydride, 1,1,1,3,3,3-hexafluoro-2, 2-bis {4 '-(2,3-dicarboxyphenoxy) phenyl} propane dianhydride, 1,1,1,3,3,3-hexafluoro-2,2-bis {4'-(3 4-Dicarboxyphenoxy) phenyl} propane dianhydride, 4,4′-oxydiphthalic dianhydride, 4,4′-sulfonyldiphthalic dianhydride and the like may be used.

式(1)中のRは原料として用いるジアミンに由来する構造である。(a)成分において、式(1)中のRが、下記式(2)で表わされる2価の有機基であることが好ましい。

Figure 2015118836
(式(2)中、R〜R12は各々独立に水素原子、フッ素原子、又は1価の有機基であり、R〜R12の少なくとも1つはフッ素原子、メチル基又はトリフルオロメチル基である。)R 2 in the formula (1) is a structure derived from a diamine used as a raw material. In the component (a), R 2 in the formula (1) is preferably a divalent organic group represented by the following formula (2).
Figure 2015118836
(In formula (2), R 5 to R 12 are each independently a hydrogen atom, a fluorine atom, or a monovalent organic group, and at least one of R 5 to R 12 is a fluorine atom, a methyl group, or trifluoromethyl. Group.)

〜R12の1価の有機基としては、例えば炭素数1〜10(好ましくは炭素数1〜6)のアルキル基、炭素数1〜10(好ましくは炭素数1〜6)のフルオロアルキル基が挙げられる。Examples of the monovalent organic group represented by R 5 to R 12 include an alkyl group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms) and a fluoroalkyl having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms). Groups.

(a)成分において、式(1)中のRが、下記式(3)で表わされる2価の有機基であることがより好ましい。低温硬化時における膨潤現象は、i線透過率が高いフッ素を含有するポリイミド前駆体を用いた際に生じやすい傾向がある。

Figure 2015118836
(式(3)中、R13及びR14は各々独立にフッ素原子又はトリフルオロメチル基である。)In the component (a), R 2 in the formula (1) is more preferably a divalent organic group represented by the following formula (3). The swelling phenomenon at low temperature curing tends to occur easily when a polyimide precursor containing fluorine having a high i-line transmittance is used.
Figure 2015118836
(In Formula (3), R 13 and R 14 are each independently a fluorine atom or a trifluoromethyl group.)

(a)成分中、式(1)中のRが式(3)で表される構造単位である割合は、1〜100mol%であることが好ましく、10〜100mol%であることがより好ましく、30〜100mol%であることがさらに好ましい。In the component (a), the ratio in which R 2 in the formula (1) is a structural unit represented by the formula (3) is preferably 1 to 100 mol%, and more preferably 10 to 100 mol%. More preferably, it is 30-100 mol%.

式(2)又は(3)で表される構造としては、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル、2,2’−ビス(フルオロ)−4,4’−ジアミノビフェニル、4,4’−ジアミノオクタフルオロビフェニルが挙げられる。これらは単独で又は2種類以上を組み合わせて用いることができる。   Examples of the structure represented by the formula (2) or (3) include 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl, 2,2′-bis (fluoro) -4,4 ′. -Diaminobiphenyl, 4,4'-diaminooctafluorobiphenyl. These can be used alone or in combination of two or more.

また、式(2)、(3)以外の構造を与えるジアミン化合物を用いることもできる。例えば、p−フェニレンジアミン、m−フェニレンジアミン、p−キシリレンジアミン、m−キシリレンジアミン、1,5−ジアミノナフタレン、ベンジジン、4,4’−(又は3,4’−、3,3’−、2,4’−、2,2’−)ジアミノジフェニルエーテル、4,4’−(又は3,4’−、3,3’−、2,4’−、2,2’−)ジアミノジフェニルスルフォン、4,4’−(又は3,4’−、3,3’−、2,4’−、2,2’−)ジアミノジフェニルスルフィド、o−トリジン、o−トリジンスルホン、4,4’−メチレン−ビス(2,6−ジエチルアニリン)、4,4’−メチレン−ビス(2,6−ジイソプロピルアニリン)、2,4−ジアミノメシチレン、1,5−ジアミノナフタレン、4,4’−ベンゾフェノンジアミン、ビス−{4−(4’−アミノフェノキシ)フェニル}スルホン、2,2−ビス{4−(4’−アミノフェノキシ)フェニル}プロパン、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、3,3’,5,5’−テトラメチル−4,4’−ジアミノジフェニルメタン、ビス{4−(3’−アミノフェノキシ)フェニル}スルホン、2,2−ビス(4−アミノフェニル)プロパン、ジアミノポリシロキサン等が挙げられる。これらは単独で又は2種類以上を組み合わせて用いることができる。   Moreover, the diamine compound which gives structures other than Formula (2) and (3) can also be used. For example, p-phenylenediamine, m-phenylenediamine, p-xylylenediamine, m-xylylenediamine, 1,5-diaminonaphthalene, benzidine, 4,4 ′-(or 3,4′-, 3,3 ′ -, 2,4'-, 2,2 '-) diaminodiphenyl ether, 4,4'- (or 3,4'-, 3,3'-, 2,4'-, 2,2'-) diaminodiphenyl Sulfone, 4,4 ′-(or 3,4′-, 3,3′-, 2,4′-, 2,2 ′-) diaminodiphenyl sulfide, o-tolidine, o-tolidine sulfone, 4,4 ′ -Methylene-bis (2,6-diethylaniline), 4,4'-methylene-bis (2,6-diisopropylaniline), 2,4-diaminomesitylene, 1,5-diaminonaphthalene, 4,4'-benzophenone Diamine, bi -{4- (4'-aminophenoxy) phenyl} sulfone, 2,2-bis {4- (4'-aminophenoxy) phenyl} propane, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3 , 3 ′, 5,5′-tetramethyl-4,4′-diaminodiphenylmethane, bis {4- (3′-aminophenoxy) phenyl} sulfone, 2,2-bis (4-aminophenyl) propane, diaminopoly Examples thereof include siloxane. These can be used alone or in combination of two or more.

式(1)中のR及びRは、各々独立に水素原子、炭素数1〜20(好ましくは炭素数1〜10、より好ましくは炭素数1〜6)のアルキル基、炭素数3〜20(好ましくは炭素数5〜15、より好ましくは炭素数6〜12)のシクロアルキル基、又は炭素炭素不飽和二重結合を有する1価の有機基である。R 3 and R 4 in Formula (1) are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms (preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms), and 3 to 3 carbon atoms. A cycloalkyl group having 20 (preferably 5 to 15 carbon atoms, more preferably 6 to 12 carbon atoms), or a monovalent organic group having a carbon-carbon unsaturated double bond.

炭素数1〜20のアルキル基としてはメチル基、エチル基、n−プロピル基、2−プロピル基、n−ブチル基等が挙げられる。炭素数3〜20のシクロアルキル基としてはシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基等が挙げられる。
炭素炭素不飽和二重結合を有する1価の有機基としては、例えば、(メタ)アクリル基を有する有機基が挙げられる。具体的には、アルキル基の炭素数が1〜10の(メタ)アクリロキシアルキル基が挙げられる。なお、「(メタ)アクリル」とは「メタクリル」又は「アクリル」を表し、「(メタ)アクリロキシ」とは「メタクリロキシ」又は「アクリロキシ」を表し、「(メタ)アクリレート」は「メタクリレート」又は「アクリレート」を表す。
アルキル基の炭素数が1〜10の(メタ)アクリロキシアルキル基としては、(メタ)アクリロキシエチル基、(メタ)アクリロキシプロピル基、(メタ)アクリロキシブチル基等が挙げられる。
Examples of the alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, an n-propyl group, a 2-propyl group, and an n-butyl group. Examples of the cycloalkyl group having 3 to 20 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and an adamantyl group.
Examples of the monovalent organic group having a carbon-carbon unsaturated double bond include an organic group having a (meth) acryl group. Specific examples include (meth) acryloxyalkyl groups having 1 to 10 carbon atoms in the alkyl group. “(Meth) acryl” means “methacryl” or “acryl”, “(meth) acryloxy” means “methacryloxy” or “acryloxy”, and “(meth) acrylate” means “methacrylate” or “ Acrylate ".
Examples of the (meth) acryloxyalkyl group having 1 to 10 carbon atoms in the alkyl group include (meth) acryloxyethyl group, (meth) acryloxypropyl group, (meth) acryloxybutyl group and the like.

及びRの少なくとも一方が、炭素炭素不飽和二重結合を有する1価の有機基の場合は、活性光線照射によってラジカルを発生する化合物と組み合わせることで、ラジカル重合による分子鎖間の架橋が可能となる感光性樹脂組成物となる。When at least one of R 3 and R 4 is a monovalent organic group having a carbon-carbon unsaturated double bond, it is combined with a compound that generates radicals upon irradiation with actinic rays, thereby crosslinking between molecular chains by radical polymerization. It becomes the photosensitive resin composition which becomes possible.

本発明の(a)成分は、テトラカルボン酸二無水物とジアミンを付加重合させて合成することができる。また、式(5)で表されるテトラカルボン酸二無水物をジエステル誘導体にした後、式(6)で表される酸塩化物に変換し、式(7)で表されるジアミンと反応させることによって合成することができる。合成方法は公知の手法から選択できる。

Figure 2015118836
(式(5)、(6)及び(7)中、R〜Rは式(1)と同じである。)The component (a) of the present invention can be synthesized by addition polymerization of tetracarboxylic dianhydride and diamine. Moreover, after making the tetracarboxylic dianhydride represented by Formula (5) into a diester derivative, it converts into the acid chloride represented by Formula (6), and makes it react with the diamine represented by Formula (7). Can be synthesized. The synthesis method can be selected from known methods.
Figure 2015118836
(In formulas (5), (6) and (7), R 1 to R 4 are the same as in formula (1).)

(a)成分であるポリイミド前駆体の分子量は、ポリスチレン換算での重量平均分子量が10000〜100000であることが好ましく、15000〜100000であることがより好ましく、20000〜85000であることがさらに好ましい。重量平均分子量が10000より大きいと、硬化後の応力を充分に低下することができる。また、100000より小さいと、溶剤への溶解性を向上よりでき、溶液の粘度が減少して取り扱い性が向上する。尚、重量平均分子量は、ゲルパーミエーションクロマトグラフィー法によって測定することができ、標準ポリスチレン検量線を用いて換算することによって求めることができる。   As for the molecular weight of the polyimide precursor as component (a), the weight average molecular weight in terms of polystyrene is preferably 10,000 to 100,000, more preferably 15,000 to 100,000, and still more preferably 20,000 to 85,000. When the weight average molecular weight is greater than 10,000, the stress after curing can be sufficiently reduced. On the other hand, if it is less than 100,000, the solubility in the solvent can be improved, the viscosity of the solution is reduced, and the handleability is improved. In addition, a weight average molecular weight can be measured by the gel permeation chromatography method, and can be calculated | required by converting using a standard polystyrene calibration curve.

(a)成分を合成する際のテトラカルボン酸二無水物とジアミンのモル比は通常1.0であるが、分子量や末端残基を制御する目的で、0.7〜1.3の範囲のモル比であってもよい。モル比が0.7以下もしくは1.3以上の場合、得られるポリイミド前駆体の分子量が小さくなり、硬化後の低応力性が充分に発現しない恐れがある。   The molar ratio of tetracarboxylic dianhydride and diamine when synthesizing the component (a) is usually 1.0, but in the range of 0.7 to 1.3 for the purpose of controlling the molecular weight and terminal residue. It may be a molar ratio. When the molar ratio is 0.7 or less or 1.3 or more, the molecular weight of the obtained polyimide precursor becomes small, and the low stress property after curing may not be sufficiently exhibited.

本発明の(a)成分であるポリイミド前駆体を加熱処理してイミド化を進行させてポリイミドに変換する加熱温度としては、80〜300℃が好ましく、100〜300℃がより好ましく、200〜300℃であることがさらに好ましい。80℃未満ではイミド化が充分進行せず、耐熱性が低下する恐れがあり、300℃より高い温度で行うと、半導体素子へダメージを与えてしまう恐れがある。   As heating temperature which heat-processes the polyimide precursor which is (a) component of this invention, advances imidation, and converts it into a polyimide, 80-300 degreeC is preferable, 100-300 degreeC is more preferable, 200-300 More preferably, the temperature is C. If it is less than 80 ° C., imidization does not proceed sufficiently and the heat resistance may be lowered, and if it is performed at a temperature higher than 300 ° C., the semiconductor element may be damaged.

式(1)で表されるポリイミド前駆体を基材に塗布し、加熱硬化して得られる硬化膜の残留応力は、硬化膜の膜厚が10μmの場合において、30MPa以下であることが好ましく、27MPa以下であることがより好ましく、25MPa以下であることがさらに好ましい。残留応力が30MPa以下であれば、硬化後の膜厚が10μmとなるように膜を形成した場合に、ウエハの反りをより充分抑制することができ、ウエハの搬送や吸着固定において生じる不具合をより抑制することができる。   The residual stress of the cured film obtained by applying the polyimide precursor represented by the formula (1) to the substrate and heat-curing is preferably 30 MPa or less when the thickness of the cured film is 10 μm. The pressure is more preferably 27 MPa or less, and further preferably 25 MPa or less. If the residual stress is 30 MPa or less, when the film is formed so that the film thickness after curing is 10 μm, the warpage of the wafer can be more sufficiently suppressed, and the problems caused in the conveyance and suction fixation of the wafer can be further reduced. Can be suppressed.

尚、残留応力は薄膜ストレス測定装置FLX−2320(KLA Tencor社製)を用いて、ウエハの反り量を測定後、応力に換算する方法により測定することができる。   The residual stress can be measured by a method of converting the amount of warpage of the wafer into a stress after measuring the amount of warpage of the wafer using a thin film stress measuring apparatus FLX-2320 (manufactured by KLA Tencor).

本発明において得られる硬化膜を、硬化後の膜厚が10μmとなるように形成するためには、上述の樹脂組成物を基板上に塗布し乾燥して塗膜を形成する工程後に、塗膜の厚さが20μm程度である必要がある。よって、活性光線照射によってラジカルを発生する化合物と組み合わせて感光性樹脂組成物とする場合には、樹脂組成物のi線透過率が高いほど好ましい。   In order to form the cured film obtained in the present invention so that the film thickness after curing is 10 μm, the above-mentioned resin composition is applied onto a substrate and dried to form a coated film, Needs to be about 20 μm thick. Therefore, when combining with the compound which generate | occur | produces a radical by actinic-light irradiation and it is set as the photosensitive resin composition, it is so preferable that i line | wire transmittance of a resin composition is high.

具体的には、膜厚20μmにおいて、i線透過率が5%以上であることが好ましく、8%以上であることがより好ましく、15%以上であることがさらに好ましい。5%未満であると、i線が深部まで到達せず、ラジカルが充分に発生しないために、現像時に膜の基板側から樹脂が染み出てくる等、感光特性が低下する恐れがある。   Specifically, when the film thickness is 20 μm, the i-line transmittance is preferably 5% or more, more preferably 8% or more, and further preferably 15% or more. If it is less than 5%, the i-line does not reach the deep part, and radicals are not generated sufficiently. Therefore, there is a possibility that the photosensitive characteristics may be deteriorated, for example, the resin oozes out from the substrate side of the film during development.

尚、i線透過率はU−3310spctrophotometer(HITACHI社製)を用いて、透過UVスペクトルから測定することができる。   The i-line transmittance can be measured from a transmitted UV spectrum using U-3310 spcphotometer (manufactured by HITACHI).

(b)成分:エチレン性不飽和基及びイソシアヌル環構造を有する光重合性化合物
本発明の樹脂組成物は、(b)成分としてエチレン性不飽和基及びイソシアヌル環構造を有する光重合性化合物を含む。前記光重合性化合物は架橋剤として機能し、硬化後も膜中に残存することで、ポリイミド硬化膜中に架橋構造を形成し、膨潤を抑制することができると考えられる。また、光重合性化合物は、ポリイミド硬化膜の配向性を向上する機能を有し、硬化後の残膜率を向上することもできる。
尚、ポリイミド硬化膜の膨潤を抑制する添加剤としてアルミキレート化合物があるが、例えば300℃以下の低温硬化においては、アルミキレート化合物の添加では充分な効果が得られない。上記(b)成分を用いることにより、300℃以下の低温硬化であっても充分な膨潤抑制効果が得られる。
(B) Component: Photopolymerizable compound having an ethylenically unsaturated group and an isocyanuric ring structure The resin composition of the present invention includes a photopolymerizable compound having an ethylenically unsaturated group and an isocyanuric ring structure as the component (b). . It is considered that the photopolymerizable compound functions as a crosslinking agent and remains in the film after curing, thereby forming a crosslinked structure in the cured polyimide film and suppressing swelling. Moreover, a photopolymerizable compound has a function which improves the orientation of a polyimide cured film, and can also improve the residual film rate after hardening.
In addition, although there exists an aluminum chelate compound as an additive which suppresses the swelling of a polyimide cured film, for example, in a low temperature curing of 300 ° C. or less, a sufficient effect cannot be obtained by adding an aluminum chelate compound. By using the component (b), a sufficient swelling suppressing effect can be obtained even at low temperature curing of 300 ° C. or lower.

上記光重合性化合物としては、トリアリルイソシアヌレート、トリアリルイソシアヌレートプレポリマー、及び下記式(4)で表される構造を有する化合物が好ましい。

Figure 2015118836
(式(4)中、R24は、水素原子又はメチル基であり、Xはアルキレン基であり、nは1〜25の整数である。)As the photopolymerizable compound, triallyl isocyanurate, triallyl isocyanurate prepolymer, and a compound having a structure represented by the following formula (4) are preferable.
Figure 2015118836
(In formula (4), R 24 is a hydrogen atom or a methyl group, X is an alkylene group, and n is an integer of 1 to 25.)

式(4)で表される構造を有する化合物は、好ましくは下記式(5)で表される化合物である。

Figure 2015118836
(式(5)中、R21〜R23は各々独立に1価の有機基であり、少なくとも1つは前記式(4)で表される基である。)The compound having a structure represented by the formula (4) is preferably a compound represented by the following formula (5).
Figure 2015118836
(In Formula (5), R 21 to R 23 are each independently a monovalent organic group, and at least one is a group represented by Formula (4).)

式(4)で表される構造を有する化合物として、下記式(6)で表される化合物も使用できる。

Figure 2015118836
(式(6)中、R21〜R23は各々独立に1価の有機基であり、少なくとも1つは下記式(9)で表される基である。)
Figure 2015118836
(式(9)中、R24は、水素原子又はメチル基であり、Xは、アルキレン基であり、Yは、アルキレン基であり、nは、1〜25の整数であり、mは、1〜14の整数である。)As the compound having a structure represented by the formula (4), a compound represented by the following formula (6) can also be used.
Figure 2015118836
(In formula (6), R 21 to R 23 are each independently a monovalent organic group, and at least one is a group represented by the following formula (9).)
Figure 2015118836
(In Formula (9), R 24 is a hydrogen atom or a methyl group, X is an alkylene group, Y is an alkylene group, n is an integer of 1 to 25, and m is 1; It is an integer of ~ 14.)

式(5)及び(6)の1価の有機基としては、炭素数1〜15のアルキル基、グリシジル基、ビニル基等が挙げられる。炭素数1〜15のアルキル基は、例えば2,3‐ジブロモプロピル基のようにハロゲン原子を有していてもよい。   Examples of the monovalent organic group of the formulas (5) and (6) include an alkyl group having 1 to 15 carbon atoms, a glycidyl group, and a vinyl group. The alkyl group having 1 to 15 carbon atoms may have a halogen atom such as a 2,3-dibromopropyl group.

式(4)及び(9)のX及びYのアルキレン基の炭素数としては特に制限はないが、炭素数2〜7のアルキレン基であることが好ましく、炭素数2〜4のアルキレン基であることがより好ましく、エチレン基又はプロピレン基であることがさらに好ましい。   Although there is no restriction | limiting in particular as carbon number of the alkylene group of X and Y of Formula (4) and (9), It is preferable that it is a C2-C7 alkylene group, and it is a C2-C4 alkylene group. More preferred is an ethylene group or a propylene group.

式(4)及び式(9)のnは、1〜25の整数であり、1〜20の整数であることが好ましく1〜15の整数がより好ましい。
式(9)中のmは、1〜14の整数であり、1〜6の整数であることが好ましく6の整数であることがより好ましい。
N of Formula (4) and Formula (9) is an integer of 1-25, it is preferable that it is an integer of 1-20, and the integer of 1-15 is more preferable.
M in the formula (9) is an integer of 1 to 14, preferably an integer of 1 to 6, and more preferably an integer of 6.

(b)成分である光重合性化合物の具体例としては下記式(10)で表される化合物が挙げられ、前記化合物は、A−9300(新中村化学工業株式会社製)として商業的に入手可能である。

Figure 2015118836
Specific examples of the photopolymerizable compound as component (b) include a compound represented by the following formula (10), and the compound is commercially available as A-9300 (manufactured by Shin-Nakamura Chemical Co., Ltd.). Is possible.
Figure 2015118836

本発明の樹脂組成物の(b)成分の含有量は、膨潤抑制性及び膜物性の観点から、(a)成分100重量部に対して1〜50質量部が好ましく、1〜30質量部がより好ましく、5〜20質量部がさらに好ましい。
(b)成分の含有量を(a)成分100重量部に対して1質量部以上とすることにより硬化膜の有機溶剤による膨潤を抑制することができ、(a)成分100重量部に対して50質量部以下とすることにより硬化膜の伸びの低下を抑えることができる。
The content of the component (b) of the resin composition of the present invention is preferably 1 to 50 parts by weight, and 1 to 30 parts by weight with respect to 100 parts by weight of the component (a) from the viewpoint of swelling suppression and film properties. More preferred is 5 to 20 parts by mass.
(B) By making content of a component into 1 mass part or more with respect to 100 weight part of (a) component, the swelling by the organic solvent of a cured film can be suppressed, and with respect to 100 weight part of (a) component By making it 50 parts by mass or less, it is possible to suppress a decrease in elongation of the cured film.

(c)成分:活性光線によりラジカルを発生する化合物
本発明の樹脂組成物は、(c)成分として活性光線によりラジカルを発生する化合物を含有することが好ましい。
(a)成分のポリイミド前駆体の式(1)中のR及び又はRの少なくとも一部が、炭素炭素不飽和二重結合を有する1価の有機基である場合に、樹脂組成物が(c)成分を含むことによって、本発明の樹脂組成物を感光性樹脂組成物とすることができる。
Component (c): Compound that generates radicals by actinic rays The resin composition of the present invention preferably contains a compound that generates radicals by actinic rays as component (c).
When at least part of R 3 and / or R 4 in the formula (1) of the component (a) polyimide precursor is a monovalent organic group having a carbon-carbon unsaturated double bond, the resin composition is (C) By containing a component, the resin composition of this invention can be made into the photosensitive resin composition.

(c)成分としては、例えば、後述するオキシムエステル化合物、ベンゾフェノン、N,N’−テトラメチル−4,4’−ジアミノベンゾフェノン(ミヒラーケトン)等のN,N’−テトラアルキル−4,4’−ジアミノベンゾフェノン;
2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン−1、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノ−プロパノン−1等の芳香族ケトン;
アルキルアントラキノン等の芳香環と縮環したキノン類;ベンゾインアルキルエーテル等のベンゾインエーテル化合物、ベンゾイン、アルキルベンゾイン等のベンゾイン化合物;ベンジルジメチルケタール等のベンジル誘導体が挙げられる。これらは1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
これらの中でも、感度に優れ、良好なパターンを与えるため、オキシムエステル化合物が好ましい。
Examples of the component (c) include N, N′-tetraalkyl-4,4′-, such as an oxime ester compound, benzophenone, and N, N′-tetramethyl-4,4′-diaminobenzophenone (Michler ketone) described later. Diaminobenzophenone;
Aromatic ketones such as 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1;
Examples include quinones fused with an aromatic ring such as alkylanthraquinone; benzoin ether compounds such as benzoin alkyl ether; benzoin compounds such as benzoin and alkylbenzoin; and benzyl derivatives such as benzyldimethyl ketal. These may be used individually by 1 type and may be used in combination of 2 or more type.
Among these, an oxime ester compound is preferable because it is excellent in sensitivity and gives a good pattern.

オキシムエステル化合物は、下記式(9)で表される化合物、下記式(10)で表される化合物又は下記式(11)で表される化合物であることが好ましい。   The oxime ester compound is preferably a compound represented by the following formula (9), a compound represented by the following formula (10), or a compound represented by the following formula (11).

Figure 2015118836
(式(9)中、R及びRは、それぞれ炭素数1〜12のアルキル基、炭素数4〜10のシクロアルキル基、フェニル基又はトリル基を示し、炭素数1〜8のアルキル基、炭素数4〜6のシクロアルキル基、フェニル基又はトリル基であることが好ましく、炭素数1〜4のアルキル基、炭素数4〜6のシクロアルキル基、フェニル基又はトリル基であることがより好ましく、メチル基、シクロペンチル基、フェニル基又はトリル基であることがさらに好ましい。
は、H、OH、COOH、O(CH)OH、O(CHOH、COO(CH)OH又はCOO(CHOHを示し、H、O(CH)OH、O(CHOH、COO(CH)OH又はCOO(CHOHであることが好ましく、H、O(CHOH又はCOO(CHOHであることがより好ましい。)
Figure 2015118836
(In the formula (9), R and R 1 each represent an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, a phenyl group or a tolyl group, and an alkyl group having 1 to 8 carbon atoms, It is preferably a cycloalkyl group having 4 to 6 carbon atoms, a phenyl group or a tolyl group, more preferably an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 4 to 6 carbon atoms, a phenyl group or a tolyl group. A methyl group, a cyclopentyl group, a phenyl group, or a tolyl group is more preferable.
R 2 represents H, OH, COOH, O (CH 2 ) OH, O (CH 2 ) 2 OH, COO (CH 2 ) OH or COO (CH 2 ) 2 OH, and H, O (CH 2 ) OH O (CH 2 ) 2 OH, COO (CH 2 ) OH or COO (CH 2 ) 2 OH is preferred, and H, O (CH 2 ) 2 OH or COO (CH 2 ) 2 OH is preferred. More preferred. )

Figure 2015118836
(式(10)中、Rは、それぞれ炭素数1〜6のアルキル基を示し、プロピル基であることが好ましい。
は、NO又はArCO(ここで、Arは置換もしくは無置換のアリール基を示す。)を示し、Arとしては、トリル基が好ましい。
及びRは、それぞれ炭素数1〜12のアルキル基、フェニル基、又はトリル基を示し、メチル基、フェニル基又はトリル基であることが好ましい。)
Figure 2015118836
(In Formula (10), R < 3 > shows a C1-C6 alkyl group, respectively, and it is preferable that it is a propyl group.
R 4 represents NO 2 or ArCO (where Ar represents a substituted or unsubstituted aryl group), and Ar is preferably a tolyl group.
R 5 and R 6 each represent an alkyl group having 1 to 12 carbon atoms, a phenyl group, or a tolyl group, and is preferably a methyl group, a phenyl group, or a tolyl group. )

Figure 2015118836
(式(11)中、Rは、炭素数1〜6のアルキル基を示し、エチル基であることが好ましい。
はアセタール結合を有する有機基であり、後述する式(11−1)に示す化合物が有するRに対応する置換基であることが好ましい。また、Rが置換してるベンゼン環は、さらに置換基を有してもよい。
及びR10は、それぞれ炭素数1〜12のアルキル基、フェニル基又はトリル基を示し、メチル基、フェニル基又はトリル基であることが好ましく、メチル基であることがより好ましい。)
Figure 2015118836
(In formula (11), R 7 represents an alkyl group having 1 to 6 carbon atoms, and is preferably an ethyl group.
R 8 is an organic group having an acetal bond, and is preferably a substituent corresponding to R 8 included in the compound represented by formula (11-1) described later. In addition, the benzene ring substituted by R 8 may further have a substituent.
R 9 and R 10 each represent an alkyl group having 1 to 12 carbon atoms, a phenyl group, or a tolyl group, preferably a methyl group, a phenyl group, or a tolyl group, and more preferably a methyl group. )

上記式(9)で表される化合物としては、例えば、下記式(9−1)で表される化合物及び下記式(9−2)で表される化合物が挙げられる。これらのうち、下記式(9−1)で表される化合物はIRGACURE OXE−01(BASF株式会社製、商品名)として入手可能である。

Figure 2015118836
Examples of the compound represented by the formula (9) include a compound represented by the following formula (9-1) and a compound represented by the following formula (9-2). Among these, the compound represented by the following formula (9-1) is available as IRGACURE OXE-01 (trade name, manufactured by BASF Corporation).
Figure 2015118836

上記式(10)で表される化合物としては、例えば、下記式(10−1)で表される化合物が挙げられる。この化合物は、DFI−091(ダイトーケミックス株式会社製、商品名)として入手可能である。

Figure 2015118836
Examples of the compound represented by the formula (10) include a compound represented by the following formula (10-1). This compound is available as DFI-091 (trade name, manufactured by Daito Chemix Co., Ltd.).
Figure 2015118836

上記式(11)で表される化合物としては、例えば、下記式(11−1)で表される化合物が挙げられる。アデカオプトマーN−1919(株式会社ADEKA製、商品名)として入手可能である。

Figure 2015118836
Examples of the compound represented by the formula (11) include a compound represented by the following formula (11-1). It is available as Adekaoptomer N-1919 (manufactured by ADEKA, trade name).
Figure 2015118836

その他のオキシムエステル化合物としては、下記化合物を用いることが好ましい。

Figure 2015118836
As other oxime ester compounds, the following compounds are preferably used.
Figure 2015118836

また、(c)成分として、以下の化合物を用いることもできる。

Figure 2015118836
Moreover, the following compounds can also be used as the component (c).
Figure 2015118836

(c)成分を含有する場合の含有量としては、(a)成分100質量部に対して、0.01〜30質量部であることが好ましく、0.05〜15質量部であることがより好ましく、0.1〜10質量部であることがさらに好ましい。配合量が0.01質量部以上であれば、露光部の架橋が充分し、より感光特性が良好となり、30質量部以下であることより硬化膜の耐熱性が向上する傾向がある。   (C) As content in the case of containing a component, it is preferable that it is 0.01-30 mass parts with respect to 100 mass parts of (a) component, and it is more preferable that it is 0.05-15 mass parts. Preferably, it is 0.1-10 mass parts. If the blending amount is 0.01 parts by mass or more, the exposed part is sufficiently cross-linked, the photosensitivity becomes more favorable, and the heat resistance of the cured film tends to be improved by being 30 parts by mass or less.

(d)成分:溶剤
本発明の樹脂組成物は、(d)成分として溶剤を含んでもよい。
(d)成分である溶剤としては、ポリイミド前駆体を完全に溶解する極性溶剤が好ましく、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、ヘキサメチルリン酸トリアミド、γ−ブチロラクトン、δ−バレロラクトン、γ−バレロラクトン、シクロヘキサノン、シクロペンタノン、プロピレングリコールモノメチルエーテルアセテート、プロピレンカーボネート、乳酸エチル、1,3−ジメチル−2−イミダゾリジノン等が挙げられる。
これら溶剤は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(D) Component: Solvent The resin composition of the present invention may contain a solvent as the (d) component.
The solvent as component (d) is preferably a polar solvent that completely dissolves the polyimide precursor. N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, tetramethyl Urea, hexamethylphosphoric triamide, γ-butyrolactone, δ-valerolactone, γ-valerolactone, cyclohexanone, cyclopentanone, propylene glycol monomethyl ether acetate, propylene carbonate, ethyl lactate, 1,3-dimethyl-2-imidazolide Non etc. are mentioned.
These solvents may be used alone or in combination of two or more.

本発明の樹脂組成物の(d)成分の含有量は、(a)成分100重量部に対して50〜500質量部が好ましく、80〜400質量部がより好ましく、100〜300質量部がさらに好ましい。   The content of the component (d) in the resin composition of the present invention is preferably 50 to 500 parts by weight, more preferably 80 to 400 parts by weight, and further 100 to 300 parts by weight with respect to 100 parts by weight of the component (a). preferable.

(e)成分:(b)成分以外の光重合性化合物
本発明の樹脂組成物は、(e)成分として(b)成分以外の光重合性化合物を含んでもよい。前記光重合性化合物としては、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、スチレン、ジビニルベンゼン、4−ビニルトルエン、4−ビニルピリジン、N−ビニルピロリドン、2−ヒドロキシエチル(メタ)クリレート、1,3−(メタ)アクリロイルオキシ−2−ヒドロキシプロパン、メチレンビスアクリルアミド、N,N−ジメチルアクリルアミド、N−メチロールアクリルアミド等が挙げられる。これらは単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
(E) Component: Photopolymerizable Compound Other than Component (b) The resin composition of the present invention may contain a photopolymerizable compound other than the component (b) as the component (e). Examples of the photopolymerizable compound include diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, and trimethylolpropane tri (meth) acrylate. 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, styrene, divinylbenzene, 4-vinyltoluene 4-vinylpyridine, N-vinylpyrrolidone, 2-hydroxyethyl (meth) acrylate, 1,3- (meth) acryloyloxy-2-hydroxypropane, methylenebisacrylamide, , N- dimethyl acrylamide, N- methylol acrylamide. These may be used alone or in combination of two or more.

光重合性化合物を含有する場合の配合量は、(a)成分100質量部に対して、1〜100質量部とすることが好ましく、10〜75質量部とすることがより好ましく、30〜50質量部とすることがさらに好ましい。配合量が1質量部以上であれば、より良好な感光特性を付与することができ、100質量部以下であれば、より硬化膜の耐熱性を向上することができる。   In the case of containing a photopolymerizable compound, the blending amount is preferably 1 to 100 parts by weight, more preferably 10 to 75 parts by weight, and more preferably 30 to 50 parts per 100 parts by weight of component (a). It is more preferable to set it as a mass part. If the blending amount is 1 part by mass or more, better photosensitive characteristics can be imparted, and if it is 100 parts by mass or less, the heat resistance of the cured film can be further improved.

上記(a)〜(e)成分の他に、本発明の樹脂組成物は、良好な保存安定性を確保するために、ラジカル重合禁止剤又はラジカル重合抑制剤を含んでもよい。
具体的には、p−メトキシフェノール、ジフェニル−p−ベンゾキノン、ベンゾキノン、ハイドロキノン、ピロガロール、フェノチアジン、レゾルシノール、オルトジニトロベンゼン、パラジニトロベンゼン、メタジニトロベンゼン、フェナントラキノン、N−フェニル−2−ナフチルアミン、クペロン、2,5−トルキノン、タンニン酸、パラベンジルアミノフェノール、ニトロソアミン化合物等が挙げられる。これらは単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
In addition to the above components (a) to (e), the resin composition of the present invention may contain a radical polymerization inhibitor or a radical polymerization inhibitor in order to ensure good storage stability.
Specifically, p-methoxyphenol, diphenyl-p-benzoquinone, benzoquinone, hydroquinone, pyrogallol, phenothiazine, resorcinol, orthodinitrobenzene, paradinitrobenzene, metadinitrobenzene, phenanthraquinone, N-phenyl-2-naphthylamine, cuperone 2,5-toluquinone, tannic acid, parabenzylaminophenol, nitrosamine compounds and the like. These may be used alone or in combination of two or more.

樹脂組成物がラジカル重合禁止剤又はラジカル重合抑制剤を含有する場合の含有量としては、(a)成分100質量部に対して、0.01〜30質量部であることが好ましく、0.01〜10質量部であることがより好ましく、0.05〜5質量部であることがさらに好ましい。配合量が0.01質量部以上であればより保存安定性が良好となり、30質量部以下であれば、より硬化膜の耐熱性を向上することができる。   As content when a resin composition contains a radical polymerization inhibitor or a radical polymerization inhibitor, it is preferable that it is 0.01-30 mass parts with respect to 100 mass parts of (a) component, More preferably, it is 10-10 mass parts, More preferably, it is 0.05-5 mass parts. If the blending amount is 0.01 parts by mass or more, the storage stability becomes better, and if it is 30 parts by mass or less, the heat resistance of the cured film can be further improved.

本発明の樹脂組成物は、硬化後のシリコン基板等への密着性をより向上させるために、有機シラン化合物をさらに含んでいてもよい。
上記有機シラン化合物としては、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−(メタ)アクリロキシプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−イソシアネートプロピルトリエトキシシラン、ビス(2−ヒドロキシエチル)−3−アミノプロピルトリエトキシシラン、トリエトキシシリルプロピルエチルカルバメート、3−(トリエトキシシリル)プロピルコハク酸無水物、フェニルトリエトキシシラン、フェニルトリメトキシシラン、N―フェニル−3−アミノプロピルトリメトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチルブチリデン)プロピルアミン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。
有機シラン化合物の含有量は、所望の効果が得られるように適宜調整すればよい。
The resin composition of the present invention may further contain an organosilane compound in order to further improve the adhesion to a cured silicon substrate or the like.
Examples of the organic silane compound include γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and γ-glycidoxypropyltri Methoxysilane, γ- (meth) acryloxypropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, bis (2-hydroxyethyl) -3-amino Propyltriethoxysilane, triethoxysilylpropylethylcarbamate, 3- (triethoxysilyl) propylsuccinic anhydride, phenyltriethoxysilane, phenyltrimethoxysilane, N-phenyl-3-amino Examples include propyltrimethoxysilane, 3-triethoxysilyl-N- (1,3-dimethylbutylidene) propylamine, and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
What is necessary is just to adjust suitably content of an organosilane compound so that a desired effect may be acquired.

<硬化膜及びパターン硬化膜の製造方法>
本発明の組成物を基材に塗布し、加熱硬化して得られる硬化膜の残留応力は、硬化膜の膜厚が10μmの場合において、30MPa以下であることが好ましく、27MPa以下であることがより好ましく、25MPa以下であることがさらに好ましい。残留応力が30MPa以下であれば、硬化後の膜厚が10μmとなるように膜を形成した場合に、ウエハの反りをより充分抑制することができ、ウエハの搬送や吸着固定において生じる不具合をより抑制することができる。
<Method for producing cured film and patterned cured film>
The residual stress of the cured film obtained by applying the composition of the present invention to a substrate and heat-curing is preferably 30 MPa or less, and preferably 27 MPa or less when the thickness of the cured film is 10 μm. More preferably, it is more preferably 25 MPa or less. If the residual stress is 30 MPa or less, when the film is formed so that the film thickness after curing is 10 μm, the warpage of the wafer can be more sufficiently suppressed, and the problems caused in the conveyance and suction fixation of the wafer can be further reduced. Can be suppressed.

尚、残留応力は薄膜ストレス測定装置FLX−2320(KLA Tencor社製)を用いて、ウエハの反り量を測定後、応力に換算する方法により測定することができる。   The residual stress can be measured by a method of converting the amount of warpage of the wafer into a stress after measuring the amount of warpage of the wafer using a thin film stress measuring apparatus FLX-2320 (manufactured by KLA Tencor).

本発明のパターン硬化膜は、上述の樹脂組成物から形成されるパターン硬化膜である。本発明のパターン硬化膜は上述の樹脂組成物が(c)成分を含有するときに形成される。   The pattern cured film of this invention is a pattern cured film formed from the above-mentioned resin composition. The pattern cured film of this invention is formed when the above-mentioned resin composition contains (c) component.

また、本発明のパターン硬化膜の製造方法は、上述の樹脂組成物を基板上に塗布し乾燥して塗膜を形成する工程と、前記塗膜に活性光線を照射後、現像してパターン樹脂膜を得る工程と、前記パターン樹脂膜を加熱処理する工程とを含む。   Further, the method for producing a cured pattern film of the present invention includes a step of applying the above resin composition onto a substrate and drying to form a coating film, and irradiating the coating film with actinic rays, followed by development to form a pattern resin. A step of obtaining a film, and a step of heat-treating the patterned resin film.

以下、まずパターン硬化膜の製造方法の各工程について説明する。
本発明のパターン硬化膜の製造方法は、上述の樹脂組成物を基板上に塗布し乾燥して塗膜を形成する工程を含む。樹脂組成物を基材上に塗布する方法としては、浸漬法、スプレー法、スクリーン印刷法、スピンコート法等が挙げられる。基材としては、シリコンウエハ、金属基板、セラミック基板等が挙げられる。本発明の樹脂組成物は、低応力の硬化膜を形成可能であるので、12インチ以上の大口径のシリコンウエハに好適に用いることができる。
Hereinafter, each process of the manufacturing method of a pattern cured film is demonstrated first.
The manufacturing method of the pattern cured film of this invention includes the process of apply | coating the above-mentioned resin composition on a board | substrate, and drying and forming a coating film. Examples of the method for applying the resin composition on the substrate include dipping, spraying, screen printing, and spin coating. Examples of the substrate include a silicon wafer, a metal substrate, and a ceramic substrate. Since the resin composition of the present invention can form a low-stress cured film, it can be suitably used for a silicon wafer having a large diameter of 12 inches or more.

乾燥工程では、溶剤を加熱除去することによって、粘着性の無い塗膜を形成することができる。乾燥工程は、DATAPLATE(Digital Hotplate、PMC社製)等の装置を用いることができ、乾燥温度としては90〜130℃が好ましく、乾燥時間としては100〜400秒が好ましい。   In the drying step, a solvent-free coating can be formed by removing the solvent by heating. For the drying step, an apparatus such as DATAPLATE (Digital Hotplate, manufactured by PMC) can be used, the drying temperature is preferably 90 to 130 ° C., and the drying time is preferably 100 to 400 seconds.

本発明のパターン硬化膜の製造方法は、前記工程で形成した塗膜に活性光線を照射後、現像してパターン樹脂膜を得る工程を含む。これにより所望のパターンが形成された樹脂膜を得ることができる。本発明の樹脂組成物はi線露光用に好適であるが、照射する活性光線としては、紫外線、遠紫外線、可視光線、電子線、X線等を用いることができる。   The manufacturing method of the pattern cured film of this invention includes the process of developing after irradiating the actinic ray to the coating film formed at the said process, and obtaining a pattern resin film. Thereby, a resin film on which a desired pattern is formed can be obtained. Although the resin composition of the present invention is suitable for i-line exposure, ultraviolet rays, far ultraviolet rays, visible rays, electron beams, X-rays, and the like can be used as the active rays to be irradiated.

現像液としては、特に制限はないが、1,1,1−トリクロロエタン等の難燃性溶媒、炭酸ナトリウム水溶液、テトラメチルアンモニウムハイドロオキサイド水溶液等のアルカリ水溶液、N,N−ジメチルホルムアミド、ジメチルスルホキシド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、シクロペンタノン、γ−ブチロラクトン、酢酸エステル類等の良溶媒、これら良溶媒と低級アルコール、水、芳香族炭化水素等の貧溶媒との混合溶媒等が用いられる。現像後は必要に応じて貧溶媒等でリンス洗浄を行う。   The developer is not particularly limited, but is a flame retardant solvent such as 1,1,1-trichloroethane, an aqueous alkali solution such as an aqueous sodium carbonate solution and an aqueous tetramethylammonium hydroxide solution, N, N-dimethylformamide, dimethyl sulfoxide, Good solvents such as N, N-dimethylacetamide, N-methyl-2-pyrrolidone, cyclopentanone, γ-butyrolactone, acetates, etc., and these good solvents and poor solvents such as lower alcohols, water, and aromatic hydrocarbons A mixed solvent or the like is used. After development, rinsing with a poor solvent is performed as necessary.

本発明のパターン硬化膜の製造方法は、パターン樹脂膜を加熱処理する工程を含む。
この加熱処理は縦型拡散炉(光洋リンドバーク製)等の装置を用いることができ、加熱温度80〜300℃で行なうことが好ましく、加熱時間は5〜300分間であることが好ましい。この工程によって、樹脂組成物中のポリイミド前駆体のイミド化を進行させてポリイミド樹脂を含有するパターン硬化膜を得ることができる。
The manufacturing method of the pattern cured film of this invention includes the process of heat-processing a pattern resin film.
This heat treatment can be performed using an apparatus such as a vertical diffusion furnace (manufactured by Koyo Lindberg), and is preferably performed at a heating temperature of 80 to 300 ° C., and the heating time is preferably 5 to 300 minutes. By this step, imidation of the polyimide precursor in the resin composition can be advanced to obtain a patterned cured film containing a polyimide resin.

また、本発明の硬化膜は、上述の樹脂組成物から形成される硬化膜である。つまり、本発明の硬化膜はパターン形成されていない硬化膜であってもよい。
このようにして得られた本発明の硬化膜又はパターン硬化膜は、半導体装置の表面保護層、層間絶縁層、再配線層等として用いることができる。
Moreover, the cured film of this invention is a cured film formed from the above-mentioned resin composition. That is, the cured film of the present invention may be a cured film that is not patterned.
The cured film or patterned cured film of the present invention thus obtained can be used as a surface protective layer, an interlayer insulating layer, a rewiring layer or the like of a semiconductor device.

図1は、本発明の一実施形態である再配線構造を有する半導体装置の概略断面図である。
本実施形態の半導体装置は、多層配線構造を有している。層間絶縁層(層間絶縁膜)1の上にはA1配線層2が形成され、その上部にはさらに絶縁層(絶縁膜)3(例えばP−SiN層)が形成され、さらに素子の表面保護層(表面保護膜)4が形成されている。配線層2のパット部5からは再配線層6が形成され、外部接続端子であるハンダ、金等で形成された導電性ボール7との接続部分である、コア8の上部まで伸びている。さらに表面保護層4の上には、カバーコート層9が形成されている。再配線層6は、バリアメタル10を介して導電性ボール7に接続されているが、この導電性ボール7を保持するためには、カラー11が設けられている。このような構造のパッケージを実装する際には、さらに応力を緩和するために、アンダーフィル12を介することもある。
FIG. 1 is a schematic cross-sectional view of a semiconductor device having a rewiring structure according to an embodiment of the present invention.
The semiconductor device of this embodiment has a multilayer wiring structure. An A1 wiring layer 2 is formed on the interlayer insulating layer (interlayer insulating film) 1, and an insulating layer (insulating film) 3 (for example, a P-SiN layer) is further formed on the A1 wiring layer 2. A (surface protective film) 4 is formed. A rewiring layer 6 is formed from the pad portion 5 of the wiring layer 2 and extends to an upper portion of the core 8 which is a connection portion with a conductive ball 7 formed of solder, gold or the like as an external connection terminal. Further, a cover coat layer 9 is formed on the surface protective layer 4. The rewiring layer 6 is connected to the conductive ball 7 through the barrier metal 10, and a collar 11 is provided to hold the conductive ball 7. When a package having such a structure is mounted, an underfill 12 may be interposed in order to further relieve stress.

本発明の硬化膜又はパターン硬化膜は、上記実施形態のカバーコート材、再配線用コア材、半田等のボール用カラー材、アンダーフィル材等に使用することができる。   The cured film or pattern cured film of the present invention can be used for the cover coating material, the core material for rewiring, the color material for balls such as solder, the underfill material, and the like.

本発明の電子部品は、本発明の硬化膜又はパターン硬化膜を用いたカバーコート、再配線用コア、半田等のボール用カラー、フリップチップ等で用いられるアンダーフィル等を有すること以外は特に制限されず、様々な構造をとることができる。   The electronic component of the present invention is particularly limited except that it has a cover coat using the cured film or pattern cured film of the present invention, a core for rewiring, a ball collar such as solder, an underfill used in flip chips, etc. Instead, it can take various structures.

以下、実施例により本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

合成例1(ピロメリット酸−ヒドロキシエチルメタクリレートジエステルの合成)
0.5リットルのポリ瓶中に、160℃の乾燥機で24時間乾燥させたピロメリット酸二無水物43.624g(200mmol)とメタクリル酸2−ヒドロキシエチル54.919g(401mmol)とハイドロキノン0.220gをN−メチルピロリドン394gに溶解し、1,8−ジアザビシクロウンデセンを触媒量添加後、室温下(25℃)で24時間撹拌し、エステル化を行うことで、ピロメリット酸−ヒドロキシエチルメタクリレートジエステル溶液を得た。この溶液をPMDA(HEMA)溶液とする。
Synthesis Example 1 (Synthesis of pyromellitic acid-hydroxyethyl methacrylate diester)
In a 0.5 liter plastic bottle, pyromellitic dianhydride 43.624 g (200 mmol), 2-hydroxyethyl methacrylate 54.919 g (401 mmol) and hydroquinone 0. 220 g is dissolved in 394 g of N-methylpyrrolidone, and after adding a catalytic amount of 1,8-diazabicycloundecene, the mixture is stirred at room temperature (25 ° C.) for 24 hours to perform esterification, whereby pyromellitic acid-hydroxy An ethyl methacrylate diester solution was obtained. This solution is designated as PMDA (HEMA) solution.

合成例2(4,4’−オキシジフタル酸ジエステルの合成)
0.5リットルのポリ瓶中に、160℃の乾燥機で24時間乾燥させた4,4’−オキシジフタル酸49.634g(160mmol)とメタクリル酸2−ヒドロキシエチル44.976g(328mmol)とハイドロキノン0.176gをN−メチルピロリドン378gに溶解し、1,8−ジアザビシクロウンデセンを触媒量添加後、室温下(25℃)で48時間撹拌し、エステル化を行い、4,4’−オキシジフタル酸−ヒドロキシエチルメタクリレートジエステル溶液を得た。この溶液をODPA(HEMA)溶液とする。
Synthesis Example 2 (Synthesis of 4,4′-oxydiphthalic acid diester)
49.634 g (160 mmol) of 4,4′-oxydiphthalic acid, 44.976 g (328 mmol) of 2-hydroxyethyl methacrylate and hydroquinone 0 which were dried in a dryer of 160 ° C. for 24 hours in a 0.5 liter plastic bottle. 176 g was dissolved in 378 g of N-methylpyrrolidone, and after adding a catalytic amount of 1,8-diazabicycloundecene, the mixture was stirred at room temperature (25 ° C.) for 48 hours to perform esterification, and 4,4′-oxydiphthalate. An acid-hydroxyethyl methacrylate diester solution was obtained. This solution is defined as an ODPA (HEMA) solution.

合成例3(ポリマー1の合成)
撹拌機、温度計を備えた0.5リットルのフラスコ中に合成例1で得られたPMDA(HEMA)溶液195.564gと合成例2で得られたODPA(HEMA)溶液58.652gを入れ、その後、氷冷下で塩化チオニル25.9g(217.8mmol)を反応溶液温度が10度以下を保つように滴下漏斗を用いて滴下した。塩化チオニルの滴下が終了した後、氷冷下で2時間反応を行いPMDA(HEMA)とODPA(HEMA)の酸クロリドの溶液を得た。次いで、滴下漏斗を用いて、2,2’−ビス(トリフルオロメチル)ベンジジン31.696g(99.0mmol)、ピリジン34.457g(435.6mmol)、ハイドロキノン0.076g(0.693mmol)のN−メチルピロリドン90.211g溶液を氷冷化で反応溶液の温度が10℃を超えないように注意しながら滴下した。この反応液を蒸留水に滴下し、沈殿物をろ別して集め、減圧乾燥することによってポリアミド酸エステルを得た。標準ポリスチレン換算により求めた重量平均分子量は34,000であった。これをポリマー1とする。1gのポリマー1をN−メチルピロリドン1.5gに溶解させ、ガラス基板上にスピンコートで塗布し、100℃のホットプレート上で180秒加熱し溶剤を揮発させて厚さ20μmの塗膜を形成した。この時、得られた塗膜のi線透過率は30%であった。
Synthesis Example 3 (Synthesis of Polymer 1)
In a 0.5 liter flask equipped with a stirrer and a thermometer, 195.564 g of the PMDA (HEMA) solution obtained in Synthesis Example 1 and 58.652 g of the ODPA (HEMA) solution obtained in Synthesis Example 2 were placed. Thereafter, 25.9 g (217.8 mmol) of thionyl chloride was added dropwise by using a dropping funnel so as to keep the reaction solution temperature at 10 ° C. or lower under ice cooling. After the addition of thionyl chloride was completed, the reaction was carried out for 2 hours under ice cooling to obtain a solution of PMDA (HEMA) and ODPA (HEMA) acid chloride. Then, using a dropping funnel, 31.696 g (99.0 mmol) of 2,2′-bis (trifluoromethyl) benzidine, 34.457 g (435.6 mmol) of pyridine, 0.076 g (0.693 mmol) of hydroquinone -A solution of 90.211 g of methylpyrrolidone was added dropwise while cooling with ice so that the temperature of the reaction solution did not exceed 10 ° C. The reaction solution was dropped into distilled water, and the precipitate was collected by filtration and dried under reduced pressure to obtain a polyamic acid ester. The weight average molecular weight determined by standard polystyrene conversion was 34,000. This is polymer 1. 1 g of polymer 1 is dissolved in 1.5 g of N-methylpyrrolidone, applied onto a glass substrate by spin coating, heated on a hot plate at 100 ° C. for 180 seconds to volatilize the solvent, and a 20 μm thick coating film is formed. did. At this time, the i-line transmittance of the obtained coating film was 30%.

ポリマー1のGPC法標準ポリスチレン換算により求めた重量平均分子量の測定条件は以下の通りであり、ポリマー0.5mgに対して溶媒[THF/DMF=1/1(容積比)]1mLの溶液を用いて測定した。   The measurement conditions of the weight average molecular weight calculated | required by GPC method standard polystyrene conversion of the polymer 1 are as follows, The solvent [THF / DMF = 1/1 (volume ratio)] 1mL solution was used with respect to 0.5 mg of polymers. Measured.

測定装置:検出器 株式会社日立製作所製L4000UV
ポンプ:株式会社日立製作所製L6000
株式会社島津製作所製C−R4A Chromatopac
測定条件:カラムGelpack GL−S300MDT−5x2本
溶離液:THF/DMF=1/1(容積比)
LiBr(0.03mol/L)、H3PO4(0.06mol/L)
流速:1.0mL/min、検出器:UV270nm
ポリマー1のi線透過率はU−3310 Spectrophotometer(HITACHI社製)を用いて測定した。
Measuring device: Detector L4000UV manufactured by Hitachi, Ltd.
Pump: Hitachi Ltd. L6000
C-R4A Chromatopac made by Shimadzu Corporation
Measurement conditions: Column Gelpack GL-S300MDT-5 × 2 Eluent: THF / DMF = 1/1 (volume ratio)
LiBr (0.03 mol / L), H3PO4 (0.06 mol / L)
Flow rate: 1.0 mL / min, detector: UV 270 nm
The i-line transmittance of polymer 1 was measured using U-3310 Spectrophotometer (manufactured by HITACHI).

実施例1−6及び比較例1−4
(a)、(b)、(c)、(e)の各成分を、表1に示す配合でN−メチルピロリドンに溶解して、樹脂組成物を調製し、下記の方法で解像度、残留応力及び膨潤率を評価した。結果を表1に示す。
尚、表1において、(b)及び(c)成分の各欄における括弧内の数字は、(a)成分100質量部に対する添加量(質量部)を示す。また、溶剤はN−メチルピロリドンを用い、使用量は、いずれも(a)成分100質量部に対して1.5倍(150質量部)で用いた。
Example 1-6 and Comparative Example 1-4
Each component of (a), (b), (c), and (e) was dissolved in N-methylpyrrolidone with the formulation shown in Table 1 to prepare a resin composition. And the swelling rate was evaluated. The results are shown in Table 1.
In Table 1, the numbers in parentheses in each column of the components (b) and (c) indicate the amount (parts by mass) added to 100 parts by mass of the component (a). Further, N-methylpyrrolidone was used as the solvent, and the amount used was 1.5 times (150 parts by mass) with respect to 100 parts by mass of component (a).

(感光特性(解像度)の評価)
6インチシリコンウエハ上に調製した前記樹脂組成物をスピンコート法によって塗布し、100℃のホットプレート上で3分間加熱し、溶剤を揮発させ、膜厚10μmの塗膜を得た。この塗膜をγ‐ブチロラクトン:酢酸ブチル=7:3の混合溶媒に浸漬して完全に溶解するまでの時間の2倍を現像時間として設定した。同様の方法で得られた塗膜にフォトマスクを介して、i線ステッパーFPA−3000iW(キヤノン株式会社製)を用いて、i線換算で300mJ/cm露光を行い、ウエハをγ‐ブチロラクトン:酢酸ブチル=7:3に浸漬してパドル現像した後、シクロペンタノンでリンス洗浄を行った。解像できたラインアンドスペースパターンのマスク寸法の最小値を解像度として評価した。
(Evaluation of photosensitive characteristics (resolution))
The resin composition prepared on a 6-inch silicon wafer was applied by spin coating, heated on a hot plate at 100 ° C. for 3 minutes to evaporate the solvent, and a coating film having a thickness of 10 μm was obtained. The development time was set twice as long as the coating film was immersed in a mixed solvent of γ-butyrolactone: butyl acetate = 7: 3 and completely dissolved. An i-line stepper FPA-3000iW (manufactured by Canon Inc.) is used to expose the coated film obtained in the same manner through a photomask to 300 mJ / cm 2 in terms of i-line, and the wafer is subjected to γ-butyrolactone: After dipping in butyl acetate = 7: 3 for paddle development, rinsing with cyclopentanone was performed. The minimum mask dimension of the line and space pattern that could be resolved was evaluated as the resolution.

(残留応力の測定)
得られた樹脂組成物を、6インチシリコンウエハ上にスピンコート法によって塗布し、100℃のホットプレート上で3分間加熱し、溶剤を揮発させ硬化後膜厚が10μmとなる塗膜を得た。これを、縦型拡散炉(光洋リンドバーク製)を用いて、窒素雰囲気下、270℃で4時間加熱硬化して、ポリイミド膜を得た。硬化後のポリイミド膜の残留応力は薄膜ストレス測定装置FLX−2320(KLATencor社製)を用いて室温において測定した。
(Measurement of residual stress)
The obtained resin composition was applied onto a 6-inch silicon wafer by spin coating, heated on a hot plate at 100 ° C. for 3 minutes, and the solvent was evaporated to obtain a coating film having a thickness of 10 μm after curing. . This was heat-cured at 270 ° C. for 4 hours in a nitrogen atmosphere using a vertical diffusion furnace (manufactured by Koyo Lindberg) to obtain a polyimide film. The residual stress of the cured polyimide film was measured at room temperature using a thin film stress measuring apparatus FLX-2320 (manufactured by KLA Tencor).

(膨潤率の測定)
得られた樹脂組成物を、6インチシリコンウエハ上にスピンコート法によって塗布し、100℃のホットプレート上で3分間加熱し、溶剤を揮発させ硬化後膜厚が10μmとなる塗膜を得た。これを、縦型拡散炉(光洋リンドバーク製)を用いて、窒素雰囲気下、270℃で4時間加熱硬化して、ポリイミド膜を得た。基板上に作製されたポリイミド膜を70℃のN−メチルピロリドンに浸漬し、20分加熱を行った。N−メチルピロリドンに浸漬したサンプルを蒸留水ですすいだ後、膜厚を測定した。N−メチルピロリドン浸漬前後の膜厚変化から、膨潤率(%)を算出した。
(Measurement of swelling rate)
The obtained resin composition was applied onto a 6-inch silicon wafer by spin coating, heated on a hot plate at 100 ° C. for 3 minutes, and the solvent was evaporated to obtain a coating film having a thickness of 10 μm after curing. . This was heat-cured at 270 ° C. for 4 hours in a nitrogen atmosphere using a vertical diffusion furnace (manufactured by Koyo Lindberg) to obtain a polyimide film. The polyimide film produced on the substrate was immersed in N-methylpyrrolidone at 70 ° C. and heated for 20 minutes. The sample immersed in N-methylpyrrolidone was rinsed with distilled water, and the film thickness was measured. The swelling ratio (%) was calculated from the change in film thickness before and after immersion in N-methylpyrrolidone.

Figure 2015118836
Figure 2015118836

表1において(b)成分は以下のとおりである。
A9300(エトキシ化イソシアヌル酸トリアクリレート、新中村化学株式会社製、商品名)
In Table 1, the component (b) is as follows.
A9300 (ethoxylated isocyanuric acid triacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd., trade name)

表1において(c)成分は下記の化合物である。
C1:1,2−オクタンジオン,1−[4−(フェニルチオ)フェニル−,2−(o−ベンゾイルオキシム)](BASF株式会社製、商品名「IRGACURE OXE−01」)
C2:アデカクルーズNCI−930(株式会社ADEKA製、商品名)
In Table 1, component (c) is the following compound.
C1: 1,2-octanedione, 1- [4- (phenylthio) phenyl-, 2- (o-benzoyloxime)] (trade name “IRGACURE OXE-01” manufactured by BASF Corporation)
C2: Adeka Cruise NCI-930 (made by ADEKA, trade name)

表1において(e)成分は、テトラエチレングリコールジメタクリレートである。
また、アルミキレートA(w)は、アルミニウムトリスアセチルアセトネート(川研ファインケミカル社製)である。
In Table 1, component (e) is tetraethylene glycol dimethacrylate.
Aluminum chelate A (w) is aluminum trisacetylacetonate (manufactured by Kawaken Fine Chemical Co., Ltd.).

実施例では、フッ素を含有する剛直なポリイミドにイソシアヌル骨格を有する化合物を添加することで、30MPa以下の低い応力を保ったまま、膨潤率が10%以下となっている。一方、比較例では、組成物がイソシアヌル骨格を有する化合物を含まない場合、フッ素含有ポリイミドは20%以上の大きな膨潤率となっている。また、比較例3及び4では、アルミキレート化合物を添加したが、硬化温度が低いため、薬液耐性改善効果は得られなかった。   In the examples, by adding a compound having an isocyanuric skeleton to rigid polyimide containing fluorine, the swelling rate is 10% or less while maintaining a low stress of 30 MPa or less. On the other hand, in the comparative example, when the composition does not contain a compound having an isocyanuric skeleton, the fluorine-containing polyimide has a large swelling ratio of 20% or more. In Comparative Examples 3 and 4, an aluminum chelate compound was added, but since the curing temperature was low, the effect of improving chemical resistance was not obtained.

本発明の樹脂組成物は、半導体装置等の電子部品を形成する、カバーコート材、再配線用コア材、ハンダ等のボール用カラー材、アンダーフィル材等、いわゆるパッケージ用途に使用することができる。   The resin composition of the present invention can be used for so-called package applications such as cover coat materials, core materials for rewiring, color materials for balls such as solder, underfill materials, etc., which form electronic parts such as semiconductor devices. .

上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
この明細書に記載の文献及び本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。
Although several embodiments and / or examples of the present invention have been described in detail above, those skilled in the art will appreciate that these exemplary embodiments and / or embodiments are substantially without departing from the novel teachings and advantages of the present invention. It is easy to make many changes to the embodiment. Accordingly, many of these modifications are within the scope of the present invention.
The contents of the documents described in this specification and the specification of the Japanese application that is the basis of Paris priority of the present application are all incorporated herein.

Claims (15)

下記(a)成分及び(b)成分を含む樹脂組成物。
(a)下記式(1)で表される構造単位を有するポリイミド前駆体、
Figure 2015118836
(式中、Rは4価の有機基であり、Rは2価の有機基である。R及びRは各々独立に水素原子、炭素数1〜20のアルキル基、炭素数3〜20のシクロアルキル基、又は炭素炭素不飽和二重結合を有する1価の有機基である。)
(b)エチレン性不飽和基及びイソシアヌル環構造を有する光重合性化合物
The resin composition containing the following (a) component and (b) component.
(A) a polyimide precursor having a structural unit represented by the following formula (1),
Figure 2015118836
(In the formula, R 1 is a tetravalent organic group, R 2 is a divalent organic group. R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a carbon number of 3; ˜20 cycloalkyl groups or monovalent organic groups having a carbon-carbon unsaturated double bond.)
(B) Photopolymerizable compound having an ethylenically unsaturated group and an isocyanuric ring structure
前記式(1)のRが、下記式(2)で表わされる2価の有機基である請求項1に記載の樹脂組成物。
Figure 2015118836
(式中、R〜R12は各々独立に水素原子、フッ素原子、又は1価の有機基であり、R〜R12の少なくとも1つはフッ素原子、メチル基又はトリフルオロメチル基である。)
The resin composition according to claim 1, wherein R 2 in the formula (1) is a divalent organic group represented by the following formula (2).
Figure 2015118836
(In the formula, R 5 to R 12 are each independently a hydrogen atom, a fluorine atom, or a monovalent organic group, and at least one of R 5 to R 12 is a fluorine atom, a methyl group, or a trifluoromethyl group. .)
前記式(1)のRが、下記式(3)で表わされる2価の有機基である請求項1又は2に記載の樹脂組成物。
Figure 2015118836
(式中、R13及びR14は各々独立にフッ素原子又はトリフルオロメチル基である。)
The resin composition according to claim 1, wherein R 2 in the formula (1) is a divalent organic group represented by the following formula (3).
Figure 2015118836
(In the formula, R 13 and R 14 are each independently a fluorine atom or a trifluoromethyl group.)
前記光重合性化合物が、下記式(4)で表される構造を含む請求項1〜3のいずれかに記載の樹脂組成物。
Figure 2015118836
(式中、R24は、水素原子又はメチル基であり、Xはアルキレン基であり、nは1〜25の整数である。)
The resin composition in any one of Claims 1-3 in which the said photopolymerizable compound contains the structure represented by following formula (4).
Figure 2015118836
(In the formula, R 24 is a hydrogen atom or a methyl group, X is an alkylene group, and n is an integer of 1 to 25.)
前記光重合性化合物が、下記式(5)で表される化合物である請求項4に記載の樹脂組成物。
Figure 2015118836
(式中、R21〜R23は各々独立に1価の有機基であり、少なくとも1つは前記式(4)で表される基である。)
The resin composition according to claim 4, wherein the photopolymerizable compound is a compound represented by the following formula (5).
Figure 2015118836
(In the formula, R 21 to R 23 are each independently a monovalent organic group, and at least one is a group represented by the formula (4).)
前記(b)成分が前記(a)成分100質量部に対して0.01〜50質量部含まれる請求項1〜5のいずれかに記載の樹脂組成物。   The resin composition according to any one of claims 1 to 5, wherein the component (b) is contained in an amount of 0.01 to 50 parts by mass with respect to 100 parts by mass of the component (a). (c)成分として、活性光線照射によりラジカルを発生する化合物をさらに含む請求項1〜6のいずれかに記載の樹脂組成物。   (C) The resin composition in any one of Claims 1-6 which further contains the compound which generate | occur | produces a radical by actinic ray irradiation as a component. 前記活性光線照射によりラジカルを発生する化合物が、オキシムエステル化合物である請求項7に記載の樹脂組成物。   The resin composition according to claim 7, wherein the compound that generates radicals upon irradiation with active light is an oxime ester compound. (e)成分として、(b)成分以外の光重合性化合物をさらに含む請求項1〜8のいずれかに記載の樹脂組成物。   The resin composition according to any one of claims 1 to 8, further comprising a photopolymerizable compound other than the component (b) as the component (e). 前記光重合性化合物が、(メタ)アクリル化合物である請求項9に記載の樹脂組成物。   The resin composition according to claim 9, wherein the photopolymerizable compound is a (meth) acrylic compound. 請求項1〜10のいずれかに記載の樹脂組成物を基板上に塗布し乾燥して塗膜を形成する工程と、前記塗膜を加熱処理する工程とを含む、硬化膜の製造方法。   The manufacturing method of a cured film including the process of apply | coating and drying the resin composition in any one of Claims 1-10 on a board | substrate, and the process of heat-processing the said coating film. 請求項1〜10のいずれかに記載の樹脂組成物を基板上に塗布し乾燥して塗膜を形成する工程と、前記塗膜に活性光線を照射後、現像してパターン樹脂膜を得る工程と、前記パターン樹脂膜を加熱処理する工程とを含む、パターン硬化膜の製造方法。   The process of apply | coating the resin composition in any one of Claims 1-10 on a board | substrate, and drying and forming a coating film, The process of developing after irradiating the said coating film with actinic light, and obtaining a pattern resin film And a step of heat-treating the patterned resin film. 請求項11に記載の硬化膜の製造方法から得られる硬化膜。   The cured film obtained from the manufacturing method of the cured film of Claim 11. 請求項12に記載のパターン硬化膜の製造方法から得られるパターン硬化膜。   The pattern cured film obtained from the manufacturing method of the pattern cured film of Claim 12. 請求項13に記載の硬化膜又は請求項14に記載のパターン硬化膜を有する電子部品。   An electronic component having the cured film according to claim 13 or the patterned cured film according to claim 14.
JP2015561208A 2014-02-10 2015-01-28 Resin composition containing polyimide precursor, method for producing cured film, and electronic component Pending JPWO2015118836A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014023519 2014-02-10
JP2014023519 2014-02-10
PCT/JP2015/000357 WO2015118836A1 (en) 2014-02-10 2015-01-28 Resin composition containing polyimide precursor, method for manufacturing cured film, and electronic component

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019201268A Division JP6888660B2 (en) 2014-02-10 2019-11-06 Resin composition containing polyimide precursor, method for manufacturing cured film and electronic components

Publications (1)

Publication Number Publication Date
JPWO2015118836A1 true JPWO2015118836A1 (en) 2017-03-23

Family

ID=53777651

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015561208A Pending JPWO2015118836A1 (en) 2014-02-10 2015-01-28 Resin composition containing polyimide precursor, method for producing cured film, and electronic component
JP2019201268A Active JP6888660B2 (en) 2014-02-10 2019-11-06 Resin composition containing polyimide precursor, method for manufacturing cured film and electronic components

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019201268A Active JP6888660B2 (en) 2014-02-10 2019-11-06 Resin composition containing polyimide precursor, method for manufacturing cured film and electronic components

Country Status (5)

Country Link
JP (2) JPWO2015118836A1 (en)
KR (1) KR20160124082A (en)
CN (1) CN106462065A (en)
TW (1) TW201533157A (en)
WO (1) WO2015118836A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6297757B2 (en) * 2015-08-21 2018-03-20 旭化成株式会社 Photosensitive resin composition, method for producing polyimide, and semiconductor device
JP6917187B2 (en) * 2016-05-10 2021-08-11 住友化学株式会社 Optical film and flexible devices using it
WO2020080216A1 (en) * 2018-10-19 2020-04-23 富士フイルム株式会社 Cured film production method, resin composition, cured film, laminate body production method, and semiconductor device manufacturing method
TW202212423A (en) * 2020-06-05 2022-04-01 日商富士軟片股份有限公司 Resin composition, production method therefor, and method for producing composition for pattern formation
WO2024070713A1 (en) * 2022-09-30 2024-04-04 富士フイルム株式会社 Resin composition, insulating film and method for producing interlayer insulating film for redistribution layers

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05216224A (en) * 1992-02-04 1993-08-27 Chisso Corp Photosensitive resin composition
JP2000338667A (en) * 1999-03-24 2000-12-08 Fujitsu Ltd Photosensitive high permitivity composition, pattern forming method for photosensitive high permitivity film comprising same and multilayer circuit board incorporating capacitor, produced using same
JP2007241195A (en) * 2006-03-13 2007-09-20 Asahi Kasei Electronics Co Ltd Photosensitive resin composition
WO2008123053A1 (en) * 2007-03-30 2008-10-16 Toray Industries, Inc. Positive photosensitive resin composition
JP2009251451A (en) * 2008-04-09 2009-10-29 Hitachi Chem Co Ltd Photosensitive resin composition and photosensitive element
WO2010010831A1 (en) * 2008-07-22 2010-01-28 株式会社カネカ Novel polyimide precursor composition and use thereof
JP2010097210A (en) * 2008-09-18 2010-04-30 Toray Ind Inc Photosensitive black resin composition, resin black matrix substrate, color filter substrate, and liquid crystal display
JP2011116848A (en) * 2009-12-02 2011-06-16 Kaneka Corp Novel polyimide precursor composition and use of the same
JP2011126922A (en) * 2009-12-15 2011-06-30 Kaneka Corp Novel resin composition and use thereof
JP2011164454A (en) * 2010-02-12 2011-08-25 Hitachi Chemical Dupont Microsystems Ltd Photosensitive resin composition and substrate for circuit formation using the same
JP2012514760A (en) * 2009-10-15 2012-06-28 エルジー・ケム・リミテッド Photosensitive resin composition and dry film containing the same
WO2013031736A1 (en) * 2011-08-30 2013-03-07 旭硝子株式会社 Negative photosensitive resin composition, partition wall, black matrix and optical element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4937745B2 (en) 2004-07-16 2012-05-23 旭化成イーマテリアルズ株式会社 polyamide

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05216224A (en) * 1992-02-04 1993-08-27 Chisso Corp Photosensitive resin composition
JP2000338667A (en) * 1999-03-24 2000-12-08 Fujitsu Ltd Photosensitive high permitivity composition, pattern forming method for photosensitive high permitivity film comprising same and multilayer circuit board incorporating capacitor, produced using same
JP2007241195A (en) * 2006-03-13 2007-09-20 Asahi Kasei Electronics Co Ltd Photosensitive resin composition
WO2008123053A1 (en) * 2007-03-30 2008-10-16 Toray Industries, Inc. Positive photosensitive resin composition
JP2009251451A (en) * 2008-04-09 2009-10-29 Hitachi Chem Co Ltd Photosensitive resin composition and photosensitive element
WO2010010831A1 (en) * 2008-07-22 2010-01-28 株式会社カネカ Novel polyimide precursor composition and use thereof
JP2010097210A (en) * 2008-09-18 2010-04-30 Toray Ind Inc Photosensitive black resin composition, resin black matrix substrate, color filter substrate, and liquid crystal display
JP2012514760A (en) * 2009-10-15 2012-06-28 エルジー・ケム・リミテッド Photosensitive resin composition and dry film containing the same
JP2011116848A (en) * 2009-12-02 2011-06-16 Kaneka Corp Novel polyimide precursor composition and use of the same
JP2011126922A (en) * 2009-12-15 2011-06-30 Kaneka Corp Novel resin composition and use thereof
JP2011164454A (en) * 2010-02-12 2011-08-25 Hitachi Chemical Dupont Microsystems Ltd Photosensitive resin composition and substrate for circuit formation using the same
WO2013031736A1 (en) * 2011-08-30 2013-03-07 旭硝子株式会社 Negative photosensitive resin composition, partition wall, black matrix and optical element

Also Published As

Publication number Publication date
CN106462065A (en) 2017-02-22
TW201533157A (en) 2015-09-01
JP6888660B2 (en) 2021-06-16
KR20160124082A (en) 2016-10-26
JP2020037699A (en) 2020-03-12
WO2015118836A1 (en) 2015-08-13

Similar Documents

Publication Publication Date Title
JP6879328B2 (en) Polyimide precursor, photosensitive resin composition containing the polyimide precursor, method for producing a pattern cured film using the polyimide precursor, and a semiconductor device.
JP6610643B2 (en) Polyimide precursor resin composition
JP6583258B2 (en) Resin composition, cured film and pattern cured film formed thereby, and method for producing the same
JP6888660B2 (en) Resin composition containing polyimide precursor, method for manufacturing cured film and electronic components
JP2015151405A (en) Resin composition containing polyimide precursor, manufacturing method of cured membrane and electronic component
JP6572770B2 (en) Resin composition containing polyimide precursor and method for producing cured film using the same
JP6164070B2 (en) POLYIMIDE PRECURSOR, RESIN COMPOSITION CONTAINING THE POLYIMIDE PRECURSOR, METHOD FOR PRODUCING PATTERN CURED FILM USING SAME, AND SEMICONDUCTOR DEVICE
JP6390165B2 (en) Polyimide precursor, photosensitive resin composition containing the polyimide precursor, pattern cured film manufacturing method using the same, and semiconductor device
JP2016199662A (en) Resin composition comprising polyimide precursor, method for producing cured film and patterned cured film using the same, and electronic component
JP6146005B2 (en) Polyimide precursor composition and cured film using the composition
JP6244871B2 (en) Polyimide precursor resin composition
JP2015147907A (en) Resin composition, method of producing cured film using resin composition and electronic component
WO2014097595A1 (en) Photosensitive resin composition, and cured-pattern-film manufacturing method and semiconductor device using said photosensitive resin composition
WO2018155547A1 (en) Photosensitive resin composition, cured pattern production method, cured product, interlayer insulating film, cover coat layer, surface protective layer, and electronic component
JP2014201696A (en) Polyimide precursor, photosensitive resin composition comprising the polyimide precursor, and method of producing patterned cured film using the same
JP6044324B2 (en) Polyimide precursor resin composition
JP2015224261A (en) Resin composition comprising polyimide precursor, cured film, and production method thereof
JP6390109B2 (en) Resin composition containing polyimide precursor, cured film and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190806