JPWO2015105055A1 - Work thickness measuring apparatus, measuring method, and work polishing apparatus - Google Patents

Work thickness measuring apparatus, measuring method, and work polishing apparatus Download PDF

Info

Publication number
JPWO2015105055A1
JPWO2015105055A1 JP2015556788A JP2015556788A JPWO2015105055A1 JP WO2015105055 A1 JPWO2015105055 A1 JP WO2015105055A1 JP 2015556788 A JP2015556788 A JP 2015556788A JP 2015556788 A JP2015556788 A JP 2015556788A JP WO2015105055 A1 JPWO2015105055 A1 JP WO2015105055A1
Authority
JP
Japan
Prior art keywords
workpiece
thickness
liquid
polishing
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015556788A
Other languages
Japanese (ja)
Other versions
JP6229737B2 (en
Inventor
史也 福原
史也 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Publication of JPWO2015105055A1 publication Critical patent/JPWO2015105055A1/en
Application granted granted Critical
Publication of JP6229737B2 publication Critical patent/JP6229737B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/27Work carriers
    • B24B37/28Work carriers for double side lapping of plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

本発明のワークの厚さ測定装置は、研磨後のワークの少なくとも一部を液体に浸す液体浸漬器と、対向して配置され、前記ワークの前記液体に浸された部分の表面までの距離を測定可能な2つ以上の測定器と、を備える。また、本発明のワークの厚さ測定方法は、研磨後のワークの少なくとも一部を液体に浸す工程と、前記ワークの少なくとも一部が前記液体に浸った状態で、前記ワークを挟んで対向して配置され、前記ワークの前記液体に浸された部分の表面までの距離を測定可能な2つ以上の測定器により、前記ワークの厚さを測定する工程と、を含む。本発明のワークの研磨装置は、上記測定装置又は測定方法により測定された、前記ワークの厚さの情報を受け取る受信部と、前記ワークの厚さの情報に基づいて、研磨レシピの切り替え又は研磨条件のパラメータの補正を行う演算部と、を備える。The workpiece thickness measuring device of the present invention is disposed opposite to a liquid immersion device that immerses at least a part of the polished workpiece in a liquid, and determines the distance to the surface of the portion of the workpiece immersed in the liquid. Two or more measuring instruments capable of being measured. Further, the method for measuring the thickness of the workpiece of the present invention includes a step of immersing at least a part of the workpiece after polishing in a liquid, and a state in which at least a part of the workpiece is immersed in the liquid and sandwiching the workpiece. And measuring the thickness of the workpiece with two or more measuring devices that can measure the distance to the surface of the part of the workpiece immersed in the liquid. The workpiece polishing apparatus according to the present invention includes a receiving unit that receives information on the thickness of the workpiece measured by the measurement apparatus or the measurement method, and switching or polishing of a polishing recipe based on the information on the thickness of the workpiece. A calculation unit that corrects the parameter of the condition.

Description

本発明は、ワークの厚さ測定装置、測定方法、及びワークの研磨装置に関するものであり、特にワークが濡れた状態で該ワークの厚さを測定することができるワークの厚さ測定装置及び測定方法、並びに、該測定装置及び測定方法による測定結果を用いるワークの研磨装置に関するものである。   The present invention relates to a workpiece thickness measuring apparatus, a measuring method, and a workpiece polishing apparatus, and in particular, a workpiece thickness measuring apparatus and measurement capable of measuring the thickness of the workpiece when the workpiece is wet. The present invention relates to a method, and a workpiece polishing apparatus using a measurement result by the measurement apparatus and the measurement method.

従来、研磨に供するワークの典型例であるシリコンウェーハの製造プロセスにおいて、ウェーハを所定の厚さに仕上げるための片面研磨(仕上げ研磨)が行われており、また、特に高い平坦度が要求される径300mm以上のウェーハでは、ウェーハの表裏面を同時に研磨する両面研磨工程が一般的に採用されている。   Conventionally, in a manufacturing process of a silicon wafer which is a typical example of a workpiece to be polished, single-side polishing (finish polishing) for finishing the wafer to a predetermined thickness has been performed, and particularly high flatness is required. For a wafer having a diameter of 300 mm or more, a double-side polishing process is generally adopted in which the front and back surfaces of the wafer are simultaneously polished.

このような研磨では、研磨副資材の交換時期や、装置の停止のタイミングのずれなど、研磨環境による影響を大きく受けてしまい、研磨の取代量の変化を正確に把握できないことから研磨時間を適正に設定することができず、平坦度やLPD(Light Point Defects)の密度にばらつきが生じるという問題があった。   Such polishing is greatly affected by the polishing environment, such as the timing of replacement of polishing sub-materials and the timing of equipment stoppage, and it is not possible to accurately grasp changes in the amount of polishing stock removal. There is a problem that the flatness and the density of LPD (Light Point Defects) vary.

これに対し、研磨後のウェーハの厚さを測定し、研磨の取代量の変化を把握して、この変化を研磨装置にフィードバックし、研磨レシピの切り替え又は研磨条件のパラメータの補正を行う手法が提案されている(例えば、特許文献1参照)。   On the other hand, there is a method to measure the thickness of the wafer after polishing, grasp the change in the polishing allowance, feed back this change to the polishing apparatus, and switch the polishing recipe or correct the parameters of the polishing conditions. It has been proposed (see, for example, Patent Document 1).

特開2003−68689号公報JP 2003-68689 A

しかしながら、研磨工程においては、研磨スラリーや研削水などを用いて研磨を行うため、研磨後にはウェーハが濡れた状態であり、従って、特許文献1の手法では、ウェーハの厚さを正確に測定するためにウェーハが乾燥するのを待つ必要があった。   However, since polishing is performed using polishing slurry or grinding water in the polishing process, the wafer is in a wet state after polishing. Therefore, the method of Patent Document 1 accurately measures the thickness of the wafer. Therefore, it was necessary to wait for the wafer to dry.

従って、ウェーハの厚さを正確に測定することができるようになるまで、すなわち乾燥工程が終了するまでの数時間のタイムラグが生じるため、その間に処理されたウェーハは、研磨量を正確に制御できず、あるいは、研磨量を正確に制御するために乾燥工程が終了するまで次のウェーハの研磨を行わないでおく場合には研磨処理のスループットが低下するという問題があった。また、このような問題は、シリコンウェーハのみならず、同様の手法により研磨を行うワーク一般に生じうる問題であった。   Therefore, there is a time lag of several hours until the thickness of the wafer can be measured accurately, that is, until the drying process is completed, so that the wafer processed during that time can accurately control the polishing amount. If the next wafer is not polished until the drying process is completed in order to accurately control the polishing amount, there is a problem that the throughput of the polishing process decreases. Further, such a problem is a problem that can occur not only in a silicon wafer but also in general work that is polished by the same method.

本発明は、上記の問題を解決しようとするものであり、ワークが濡れた状態で該ワークの厚さを測定することのできる、ワークの厚さ測定装置及びワークの厚さ測定方法を提供することを目的とする。また、本発明は、スループットを確保しつつ、且つ、研磨量を適切に制御することができる、ワークの研磨装置を提供することを目的とする。   The present invention is intended to solve the above problem, and provides a workpiece thickness measuring apparatus and workpiece thickness measuring method capable of measuring the thickness of the workpiece while the workpiece is wet. For the purpose. Another object of the present invention is to provide a workpiece polishing apparatus capable of appropriately controlling the polishing amount while ensuring the throughput.

本発明の要旨構成は、以下の通りである。
本発明のワークの厚さ測定装置は、研磨後のワークの少なくとも一部を液体に浸す液体浸漬器と、対向して配置され、前記ワークの前記液体に浸された部分の表面までの距離を測定可能な2つ以上の測定器と、を備えることを特徴とするものである。
The gist configuration of the present invention is as follows.
The workpiece thickness measuring device of the present invention is disposed opposite to a liquid immersion device that immerses at least a part of the polished workpiece in a liquid, and determines the distance to the surface of the portion of the workpiece immersed in the liquid. And two or more measuring instruments capable of being measured.

また、本発明のワークの厚さ測定装置では、前記測定器を固定する支持部材をさらに備えることが好ましい。   In the workpiece thickness measuring apparatus of the present invention, it is preferable to further include a support member for fixing the measuring device.

さらに、本発明のワークの厚さ測定装置においては、前記測定器は、先端にキャップを備えることが好ましい。   Furthermore, in the workpiece thickness measuring apparatus of the present invention, it is preferable that the measuring device includes a cap at the tip.

加えて、本発明のワークの厚さ測定装置にあっては、前記液体浸漬器は、前記ワークを内部に収容可能な槽であることが好ましい。   In addition, in the workpiece thickness measuring apparatus of the present invention, it is preferable that the liquid immersion device is a tank capable of accommodating the workpiece therein.

また、本発明のワークの厚さ測定装置では、前記槽は、石英又は板ガラスでできていることが好ましい。   In the workpiece thickness measuring apparatus according to the present invention, the tank is preferably made of quartz or plate glass.

さらに、本発明のワークの厚さ測定装置においては、前記槽内に、前記測定器の少なくとも一部が挿入され、前記槽と前記測定器との間に隙間を有することが好ましい。   Furthermore, in the workpiece thickness measuring apparatus of the present invention, it is preferable that at least a part of the measuring instrument is inserted into the tank, and a gap is provided between the tank and the measuring instrument.

さらにまた、本発明のワークの厚さ測定装置にあっては、前記液体浸漬器は、前記ワークの少なくとも一部が前記液体に常に浸るように前記液体を供給可能な液体供給管であることが好ましい。   Furthermore, in the workpiece thickness measuring apparatus of the present invention, the liquid immersion device is a liquid supply pipe capable of supplying the liquid so that at least a part of the workpiece is always immersed in the liquid. preferable.

また、本発明のワークの厚さ測定装置では、前記液体供給管は、前記液体を供給する量を調整可能な液体供給量調整部を備えることが好ましい。   In the workpiece thickness measuring apparatus of the present invention, it is preferable that the liquid supply pipe includes a liquid supply amount adjusting unit capable of adjusting an amount of supplying the liquid.

さらに、本発明のワークの厚さ測定装置では、前記ワークの厚さの測定箇所に近接して前記ワークを挟んで対向して配置される液体導入管をさらに備え、前記測定器の少なくとも先端は、前記液体導入管内に挿入されることが好ましい。   Furthermore, in the workpiece thickness measuring device of the present invention, the workpiece thickness measuring device further includes a liquid introduction pipe disposed in close proximity to the workpiece thickness measurement location and sandwiching the workpiece, wherein at least the tip of the measuring instrument is It is preferable to be inserted into the liquid introduction tube.

ここで、本発明のワークの厚さ測定装置では、前記液体は、水であることが好ましい。   Here, in the workpiece thickness measuring apparatus of the present invention, the liquid is preferably water.

また、本発明のワークの厚さ測定装置では、前記測定器は、光学式の分光干渉型測定器であることが好ましい。   In the workpiece thickness measuring apparatus of the present invention, it is preferable that the measuring instrument is an optical spectral interference measuring instrument.

さらに、本発明のワークの厚さ測定装置では、前記ワークの厚さの測定時に、前記槽の変形量が50nm以下であることが好ましい。
ここで、「槽の変形量」は、上記2つの測定器が対向する線上の点における変形量をいい、測定時間の間における最大変位をいうものとする。
Furthermore, in the workpiece thickness measuring apparatus of the present invention, it is preferable that the deformation amount of the tank is 50 nm or less when measuring the thickness of the workpiece.
Here, “the amount of deformation of the tank” refers to the amount of deformation at a point on the line where the two measuring devices face each other, and refers to the maximum displacement during the measurement time.

また、本発明のワークの厚さ測定装置では、前記槽に補強板を配置してなることが好ましい。   In the workpiece thickness measuring apparatus of the present invention, it is preferable that a reinforcing plate is disposed in the tank.

さらに、本発明のワークの厚さ測定装置では、前記槽は、排液体部と、前記排液体部からの排液体量を測定する排液体量測定器と、測定した排液体量に基づいて排液体量を調整する制御部と、を有することが好ましい。   Furthermore, in the workpiece thickness measuring apparatus according to the present invention, the tank includes a drainage portion, a drainage amount measuring device for measuring a drainage amount from the drainage portion, and a drainage amount based on the measured drainage amount. And a controller for adjusting the amount of liquid.

ここで、本発明のワークの厚さ測定方法は、研磨後のワークの少なくとも一部を液体に浸す工程と、前記ワークの少なくとも一部が前記液体に浸った状態で、前記ワークを挟んで対向して配置され、前記ワークの前記液体に浸された部分の表面までの距離を測定可能な2つ以上の測定器により、前記ワークの厚さを測定する工程と、を含むことを特徴とする。   Here, the method for measuring the thickness of the workpiece of the present invention includes a step of immersing at least a part of the workpiece after polishing in a liquid, and a state in which at least a part of the workpiece is immersed in the liquid and sandwiching the workpiece And measuring the thickness of the workpiece with two or more measuring devices that can measure the distance to the surface of the part of the workpiece immersed in the liquid. .

また、本発明の一の態様によるワークの研磨装置は、上記のワークの厚さ測定装置により測定された、前記ワークの厚さの情報を受け取る受信部と、前記ワークの厚さの情報に基づいて、研磨レシピの切り替え又は研磨条件のパラメータの補正を行う演算部と、を備えることを特徴とするものである。   A workpiece polishing apparatus according to an aspect of the present invention is based on the workpiece thickness information measured by the workpiece thickness measuring device and the workpiece thickness information. And an arithmetic unit that switches a polishing recipe or corrects a parameter of a polishing condition.

さらに、本発明の別の態様によるワークの研磨装置は、上記のワークの厚さ測定方法により測定された、前記ワークの厚さの情報を受け取る受信部と、前記ワークの厚さの情報に基づいて、研磨レシピの切り替え又は研磨条件のパラメータの補正を行う演算部と、を備えることを特徴とするものである。   Furthermore, a workpiece polishing apparatus according to another aspect of the present invention is based on a receiving unit that receives the workpiece thickness information measured by the workpiece thickness measuring method, and the workpiece thickness information. And an arithmetic unit that switches a polishing recipe or corrects a parameter of a polishing condition.

本発明によれば、ワークが濡れた状態で該ワークの厚さを測定することのできる、ワークの厚さ測定装置及びワークの厚さ測定方法を提供することができる。また、本発明によれば、スループットを確保しつつ、且つ、研磨量を適切に制御することができる、ワークの研磨装置を提供することができる。   According to the present invention, it is possible to provide a workpiece thickness measuring device and a workpiece thickness measuring method capable of measuring the thickness of the workpiece while the workpiece is wet. Further, according to the present invention, it is possible to provide a workpiece polishing apparatus capable of appropriately controlling the polishing amount while ensuring the throughput.

(a)本発明の第1の実施形態にかかるワークの厚さ測定装置の概略斜視図である。(b)本発明の第1の実施形態にかかるワークの厚さ測定装置の要部を示す図である。(A) It is a schematic perspective view of the workpiece thickness measuring apparatus concerning the 1st Embodiment of this invention. (B) It is a figure which shows the principal part of the thickness measuring apparatus of the workpiece | work concerning the 1st Embodiment of this invention. (a)本発明の第2の実施形態にかかるワークの厚さ測定装置の概略斜視図である。(b)本発明の第2の実施形態にかかるワークの厚さ測定装置の要部を示す図である。(A) It is a schematic perspective view of the workpiece thickness measuring apparatus concerning the 2nd Embodiment of this invention. (B) It is a figure which shows the principal part of the thickness measuring apparatus of the workpiece | work concerning the 2nd Embodiment of this invention. (a)本発明の第3の実施形態にかかるワークの厚さ測定装置の概略断面図である。(b)本発明の第3の実施形態にかかるワークの厚さ測定装置の要部を示す断面図である。(A) It is a schematic sectional drawing of the thickness measuring apparatus of the workpiece | work concerning the 3rd Embodiment of this invention. (B) It is sectional drawing which shows the principal part of the thickness measuring apparatus of the workpiece | work concerning the 3rd Embodiment of this invention. (a)本発明の第4の実施形態にかかるワークの厚さ測定装置の概略断面図である。(b)本発明の第4の実施形態にかかるワークの厚さ測定装置の要部を示す断面図である。(A) It is a schematic sectional drawing of the thickness measuring apparatus of the workpiece | work concerning the 4th Embodiment of this invention. (B) It is sectional drawing which shows the principal part of the thickness measuring apparatus of the workpiece | work concerning the 4th Embodiment of this invention.

以下、本発明の実施形態について図面を参照して詳細に例示説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(ワークの厚さ測定装置)
<第1の実施形態>
図1(a)は、本発明の第1の実施形態にかかるワークの厚さ測定装置の概略斜視図であり、図1(b)は、本発明の第1の実施形態にかかるワークの厚さ測定装置の要部を示す図である。図1(a)に示すように、このワークの厚さ測定装置1は、水(純水)を満たした水槽2を有している。この水槽2は、研磨後のワーク(本実施形態ではシリコンウェーハ)Wを収容可能であり、ウェーハW全体又は一部を水に浸すことのできる液体浸漬器である。
(Work thickness measuring device)
<First Embodiment>
FIG. 1A is a schematic perspective view of a workpiece thickness measuring apparatus according to the first embodiment of the present invention, and FIG. 1B is a workpiece thickness according to the first embodiment of the present invention. It is a figure which shows the principal part of a height measuring apparatus. As shown in FIG. 1A, the workpiece thickness measuring device 1 has a water tank 2 filled with water (pure water). This water tank 2 is a liquid immersion device that can accommodate a workpiece (a silicon wafer in this embodiment) W after polishing, and can immerse the entire wafer W or a part thereof in water.

また、図1(a)に示すように、このワークの厚さ測定装置1は、対向して配置され、ウェーハWの液体に浸された部分の表面までの距離を測定可能な2つ以上(図示例では2つ)の測定器3を備えている。すなわち、測定器3の一方は、該測定器3からウェーハWのおもて側の表面までの距離を測定することができ、他方は、該測定器3からウェーハWの裏側の表面までの距離を測定することができる。
そして、図1(a)に示すように、このワークの厚さ測定装置1では、測定器3を固定する支持部材4をさらに備えている。図示例では、支持部材4は、水槽2を取り囲むように配置された4つの支柱と支柱間を連結する剛性の高い4つの板状部材からなり、対向する2つの板状部材に測定器3が固定されることにより、対向する測定器3の間の距離が一定に保たれる。
これにより、測定器3は、ウェーハWの所定の位置における、ウェーハWのおもて側の表面までの距離及びウェーハWの裏側の表面までの距離を測定することによって、例えば図示しない演算ユニットにより、その所定の位置におけるウェーハWの厚さを求めることができる。
As shown in FIG. 1A, the workpiece thickness measuring apparatus 1 is arranged so as to be opposed to each other and can measure two or more distances to the surface of the portion immersed in the liquid of the wafer W ( Two measuring devices 3 are provided in the illustrated example. That is, one of the measuring devices 3 can measure the distance from the measuring device 3 to the front surface of the wafer W, and the other is the distance from the measuring device 3 to the back surface of the wafer W. Can be measured.
As shown in FIG. 1A, the workpiece thickness measuring apparatus 1 further includes a support member 4 that fixes the measuring device 3. In the illustrated example, the support member 4 is composed of four struts arranged so as to surround the water tank 2 and four rigid plate members that connect the struts, and the measuring device 3 is attached to the two opposing plate members. By being fixed, the distance between the measuring devices 3 facing each other is kept constant.
Thereby, the measuring device 3 measures the distance to the front surface of the wafer W and the distance to the back surface of the wafer W at a predetermined position of the wafer W, for example, by an arithmetic unit (not shown). The thickness of the wafer W at the predetermined position can be obtained.

ここで、図1(b)に示すように、水槽2には、水(純水)5が満たされ、全面がその水5に浸るように、かつ、対向する測定器3の間にウェーハWが配置されている。このウェーハWは、研磨後に研磨スラリーや研削液等で濡れた状態で、移送部(図示せず)を用いて水中に移送されたものである。
以下、第1の実施形態の作用効果について説明する。
Here, as shown in FIG. 1B, the water tank 2 is filled with water (pure water) 5 so that the entire surface is immersed in the water 5 and the wafer W is placed between the measuring instruments 3 facing each other. Is arranged. The wafer W is transferred into water using a transfer unit (not shown) in a state wetted with polishing slurry or grinding liquid after polishing.
Hereinafter, the operational effects of the first embodiment will be described.

本実施形態のワークの厚さ測定装置1によれば、まず、ウェーハWが濡れた状態で水中に移送され、ウェーハWが水中に浸った状態でウェーハWの厚さを測定することができる。従って、ウェーハWを乾燥させてからウェーハWの厚さを計測する場合と比べて、研磨処理のスループットを確保することができる。また、研磨前のウェーハWの厚さとの比較により研磨の取代量の変化を把握して、それを研磨装置にフィードバックして研磨レシピの変更や研磨条件のパラメータの補正を行うことにより、研磨装置による研磨量を適切に制御することができる。なお、研磨の取代量は、例えば、1枚のウェーハWで把握しても良いし、また例えば、複数枚のウェーハWを統計的にみて把握しても良い。よって、本実施形態による測定の結果を用いることにより、研磨後のウェーハWの平坦度(特に外周部の平坦度)やLPDの密度を改善することができる。さらに、研磨の取代量を管理することにより、使い捨ての研磨スラリーの使用量を適正化することができ、資材費を低減することもできる。   According to the workpiece thickness measuring apparatus 1 of the present embodiment, first, the wafer W is transferred into water in a wet state, and the thickness of the wafer W can be measured in a state in which the wafer W is immersed in water. Therefore, the throughput of the polishing process can be ensured as compared with the case where the thickness of the wafer W is measured after the wafer W is dried. In addition, by grasping the change in the amount of machining allowance by comparing with the thickness of the wafer W before polishing, and feeding it back to the polishing apparatus, the polishing recipe is changed and the parameters of the polishing conditions are corrected. The amount of polishing by can be controlled appropriately. The amount of machining allowance for polishing may be grasped by, for example, one wafer W, or may be grasped by, for example, statistically viewing a plurality of wafers W. Therefore, by using the measurement result according to the present embodiment, the flatness of the wafer W after polishing (particularly the flatness of the outer peripheral portion) and the density of the LPD can be improved. Furthermore, by managing the amount of polishing stock removal, it is possible to optimize the amount of disposable polishing slurry used and to reduce material costs.

なお、ウェーハWを図示しない移送部によりウェーハWの径方向に移動させることにより、ウェーハWのある直径範囲における全ての面内のウェーハWの厚さを測定することができる。この場合、水槽2は、ウェーハWの移動範囲も含めた大きな容積のものとすることが好ましい。一方で、ウェーハWの半径範囲で厚さを測定してもよい。あるいは、測定器3を移動させてウェーハWの任意の位置での厚さを測定することもできる。この場合は、対向する測定器3間の距離は一定に保つようにしながら、該測定器3を移動させる。
また、移送部にウェーハWを回転させる機構を設けることにより、ウェーハWの任意の位置での厚さ測定、任意の方向の半径範囲又は直径範囲での厚さ測定、及びウェーハWの円周方向に沿った面内の厚さ測定をすることもできる。
In addition, by moving the wafer W in the radial direction of the wafer W by a transfer unit (not shown), it is possible to measure the thickness of the wafer W in all the surfaces within a certain diameter range of the wafer W. In this case, it is preferable that the water tank 2 has a large volume including the moving range of the wafer W. On the other hand, the thickness may be measured in the radius range of the wafer W. Alternatively, the thickness of the wafer W at an arbitrary position can be measured by moving the measuring device 3. In this case, the measuring instrument 3 is moved while keeping the distance between the opposing measuring instruments 3 constant.
Further, by providing a mechanism for rotating the wafer W in the transfer section, the thickness measurement at an arbitrary position of the wafer W, the thickness measurement at a radius range or a diameter range in an arbitrary direction, and the circumferential direction of the wafer W It is also possible to measure the in-plane thickness along.

さらに、本実施形態では、対向する2つの測定器3を用いてウェーハWの表面までの距離からウェーハWの厚さを算出している。例えば、ウェーハWの片側からレーザ等を照射して表裏面の反射光の干渉によりウェーハWの厚さを測定する方法では、シリコン基板中の不純物濃度が高い場合に光が裏面まで透過せず、ウェーハの厚さが評価できない場合があるが、本実施形態では、ウェーハWの不純物濃度によらずにウェーハWの厚さを測定可能である。   Further, in the present embodiment, the thickness of the wafer W is calculated from the distance to the surface of the wafer W using the two measuring devices 3 facing each other. For example, in the method of measuring the thickness of the wafer W by interference of reflected light on the front and back surfaces by irradiating a laser or the like from one side of the wafer W, the light does not transmit to the back surface when the impurity concentration in the silicon substrate is high, Although the thickness of the wafer may not be evaluated, in this embodiment, the thickness of the wafer W can be measured regardless of the impurity concentration of the wafer W.

ここで、本発明にあっては、この実施形態のように、液体を水とすることが好ましく、純水とすることが特に好ましい。光を透過させ、かつ、ウェーハWや測定器3と化学的に反応しないからである。   Here, in the present invention, as in this embodiment, the liquid is preferably water and particularly preferably pure water. This is because light is transmitted and does not chemically react with the wafer W or the measuring device 3.

また、測定器3は、光学式の分光干渉型測定器とすることが好ましい。これにより、水などの液体を介しても、測定器3からウェーハWの表面までの距離を測定することができるからである。   The measuring device 3 is preferably an optical spectral interference measuring device. This is because the distance from the measuring device 3 to the surface of the wafer W can be measured through a liquid such as water.

ここで、図1(a)(b)に示す例では、測定器3は、水槽2の外側に配置しているため、水槽2は、光を透過させる材料でできていることが好ましい。
また、図1(a)(b)に示すように、水槽2に窪み2aを設けて、ウェーハWと測定器3との距離を近づけることにより、測定器3を高精度に使用することもできる。
Here, in the example shown in FIGS. 1A and 1B, the measuring device 3 is disposed outside the water tank 2, and therefore the water tank 2 is preferably made of a material that transmits light.
Further, as shown in FIGS. 1A and 1B, the measuring device 3 can be used with high accuracy by providing a recess 2 a in the water tank 2 and reducing the distance between the wafer W and the measuring device 3. .

さて、図1(a)(b)に示すように、水中部分と測定器3との間に空気層7が介在する場合に、ウェーハWの水中での移動等により水圧が変化すると、水槽2が変形し、空気層7と水中部分との距離の割合が変化し、光学的な見かけ上の距離に多少のずれが生じることが考えられる。本発明者は、これを抑制することで、より高精度にウェーハWの厚さを測定することができることを新たに見出した。   As shown in FIGS. 1 (a) and 1 (b), when an air layer 7 is interposed between the underwater portion and the measuring device 3, if the water pressure changes due to movement of the wafer W in water or the like, the water tank 2 Is deformed, the ratio of the distance between the air layer 7 and the underwater portion is changed, and it is considered that a slight deviation occurs in the optical apparent distance. The present inventor newly found out that the thickness of the wafer W can be measured with higher accuracy by suppressing this.

そこで、図1(a)(b)に示す実施形態では、水槽2は、石英又は板ガラスでできていることが好ましい。石英や板ガラスは、剛性が高い材料であるため水槽の変形を小さくすることができるからである。これにより、空気層7が介在することによる上記の不都合を回避することができるからである。
また、水槽2の剛性を高めるために、水槽2の厚さを厚くすることが好ましく、具体的には、8mm以上とすることが好ましく、10mm以上とすることがより好ましく、12mm以上とすることが特に好ましい。
Therefore, in the embodiment shown in FIGS. 1A and 1B, the water tank 2 is preferably made of quartz or plate glass. This is because quartz and plate glass are highly rigid materials, so that deformation of the water tank can be reduced. This is because the above inconvenience due to the presence of the air layer 7 can be avoided.
Further, in order to increase the rigidity of the water tank 2, it is preferable to increase the thickness of the water tank 2, specifically, it is preferably 8 mm or more, more preferably 10 mm or more, and more preferably 12 mm or more. Is particularly preferred.

さらに、本発明のワークの厚さ測定装置では、ワークの厚さの測定時に、槽の変形量が50nm以下であることが好ましい。より高精度にウェーハWの厚さを測定することができるからである。なお、槽の変形量は、特には限定しないが、キーエンス社製SI−F10等を用いて測定することができる。   Furthermore, in the workpiece thickness measuring apparatus of the present invention, it is preferable that the deformation amount of the tank is 50 nm or less when measuring the thickness of the workpiece. This is because the thickness of the wafer W can be measured with higher accuracy. In addition, although the deformation amount of a tank is not specifically limited, it can measure using SIENCE F10 by Keyence Corporation.

槽の変形量を50nm以下とするためには、具体的には、槽の、2つの測定器3が対向する線上の測定用の透過窓(図1(a)(b)に示す例では、水槽2の窪み2a)の周囲に補強材(図1(a)(b)に示す例では、補強板2b)を有することが好ましい。これにより、補強材により槽を補強して、槽の変形量を低減することができるからである。
ここで、補強効果を高めるためには、補強材は、少なくとも測定用の透過窓の上下左右を覆うものであることが好ましく、槽の側面全体を補強することがより一層好ましい。また、補強材の材質は、SUS等の金属を用いることが好ましい。
あるいは、槽自体を、測定用の透過窓の部分を除いて、SUS等の金属で構成することもできる。
In order to set the deformation amount of the tank to 50 nm or less, specifically, the measurement transmission window on the line where the two measuring devices 3 of the tank face each other (in the example shown in FIGS. 1A and 1B, It is preferable to have a reinforcing material (in the example shown in FIGS. 1A and 1B, the reinforcing plate 2b) around the recess 2a) of the water tank 2. This is because the tank can be reinforced with the reinforcing material and the deformation amount of the tank can be reduced.
Here, in order to enhance the reinforcing effect, the reinforcing material preferably covers at least the top, bottom, left and right of the transmission window for measurement, and it is even more preferable to reinforce the entire side surface of the tank. Further, it is preferable to use a metal such as SUS as the material of the reinforcing material.
Alternatively, the tank itself can be made of a metal such as SUS, except for the portion of the transmission window for measurement.

また、槽の変形量を50nm以下とするためには、槽内の液面の高さ(図1(a)(b)に示す例では、水槽2内の水面の高さ)が一定となるように調整することが好ましい。
具体的には、例えば、図1(a)(b)に示す例では、槽(この例では水槽2)に排液体部(この例では排水部)を設け、該排液体部(この例では排水部)からの排液体量(この例では排水量)を排液体量測定器(排水量測定器)により測定し、該測定した排液体量(排水量)に基づいて、制御部により、供給する液体の量(給水量)、及び/又は、ウェーハWを移動させる移送部の移動速度を制御して、排液体量(排水量)を調整することが好ましい。
Moreover, in order to make the deformation amount of the tank 50 nm or less, the height of the liquid level in the tank (in the example shown in FIGS. 1A and 1B, the height of the water surface in the water tank 2) is constant. It is preferable to adjust so that.
Specifically, for example, in the example shown in FIGS. 1A and 1B, a drainage part (drainage part in this example) is provided in a tank (water tank 2 in this example), and the drainage part (in this example) The amount of drained liquid from the drainage unit (in this example, the amount of drainage) is measured by a drainage amount measuring device (drainage amount measuring device), and based on the measured amount of drained liquid (drainage amount), the control unit It is preferable to adjust the amount of drained liquid (amount of drainage) by controlling the amount (water supply amount) and / or the moving speed of the transfer unit that moves the wafer W.

<第2の実施形態>
図2(a)は、本発明の第2の実施形態にかかるワークの厚さ測定装置の概略斜視図であり、図2(b)は、本発明の第2の実施形態にかかるワークの厚さ測定装置の要部を示す図である。
図2(a)(b)に示すように、この実施形態のワークの厚さ測定装置1は、水槽2内に、測定器3の先端が挿入され、水槽2と測定器3との間に隙間8を設けている点で、図1(a)(b)に示す実施形態と異なっている。そして、測定器3の先端にはキャップ6が設けられ、このキャップ6により金属製の測定器3が防水され、また、測定器3の先端とキャップ6との間に空気層7が形成される。
<Second Embodiment>
FIG. 2A is a schematic perspective view of a workpiece thickness measuring apparatus according to the second embodiment of the present invention, and FIG. 2B is a workpiece thickness according to the second embodiment of the present invention. It is a figure which shows the principal part of a height measuring apparatus.
As shown in FIGS. 2 (a) and 2 (b), in the workpiece thickness measuring apparatus 1 of this embodiment, the tip of the measuring instrument 3 is inserted into the water tank 2, and between the water tank 2 and the measuring instrument 3. It differs from the embodiment shown in FIGS. 1A and 1B in that a gap 8 is provided. A cap 6 is provided at the tip of the measuring device 3, and the metal measuring device 3 is waterproofed by the cap 6, and an air layer 7 is formed between the tip of the measuring device 3 and the cap 6. .

第2の実施形態によれば、まず、基本的な構成が第1の実施形態と同様であるため、上述した第1の実施形態と同様の作用効果を奏することができる。
また、第2の実施形態によれば、水槽2と測定器3との間に隙間8を設け、この隙間8から水槽2内の水5が漏れる構造となっているため、水圧の変動等により水槽2が変形した場合でも測定器3とは干渉せず、空気層7と水中部分との距離の割合が変化して光学的な見かけ上の距離が変化するのを抑制することができる。従って、本実施形態によれば、空気層7が介在することによる上記の不都合を回避することができる。また、第2の実施形態によれば、測定器3をウェーハWに近づけることができるため、測定精度の向上の利点を得ることができる。
なお、本実施形態では、水5が水槽2から漏れる構造であるため、水槽2内に供給する水の量を多くすることが好ましいが、水5の乱流が発生してウェーハWを振動させて測定誤差を生じさせることがないように、隙間8から漏れ出る量より若干多い程度に水5を供給することが好ましい。
According to the second embodiment, first, since the basic configuration is the same as that of the first embodiment, the same operational effects as those of the first embodiment described above can be achieved.
In addition, according to the second embodiment, the gap 8 is provided between the water tank 2 and the measuring instrument 3, and the water 5 in the water tank 2 leaks from the gap 8. Even when the water tank 2 is deformed, it does not interfere with the measuring device 3, and it is possible to suppress a change in the optical apparent distance due to a change in the ratio of the distance between the air layer 7 and the underwater portion. Therefore, according to the present embodiment, the above-described inconvenience due to the presence of the air layer 7 can be avoided. Further, according to the second embodiment, since the measuring device 3 can be brought close to the wafer W, an advantage of improvement in measurement accuracy can be obtained.
In the present embodiment, since the water 5 leaks from the water tank 2, it is preferable to increase the amount of water supplied into the water tank 2, but the turbulent flow of the water 5 occurs to vibrate the wafer W. Therefore, it is preferable to supply the water 5 to a degree slightly larger than the amount leaking from the gap 8 so as not to cause a measurement error.

<第3の実施形態>
図3(a)は、本発明の第3の実施形態にかかるワークの厚さ測定装置の概略断面図であり、図3(b)は、本発明の第3の実施形態にかかるワークの厚さ測定装置の要部を示す断面図である。
第3の実施形態は、空気層7と水中部分との光学的な見かけ上の距離の割合が変化する原因となる水槽2の変形をなくすために、水槽2自体を用いない例である。
<Third Embodiment>
FIG. 3A is a schematic cross-sectional view of a workpiece thickness measuring apparatus according to a third embodiment of the present invention, and FIG. 3B is a workpiece thickness according to the third embodiment of the present invention. It is sectional drawing which shows the principal part of a height measuring apparatus.
The third embodiment is an example in which the aquarium 2 itself is not used in order to eliminate the deformation of the aquarium 2 that causes the ratio of the optical apparent distance between the air layer 7 and the underwater portion to change.

ここで、液体供給管9は、水5を供給する量を調整可能な液体供給量調整部を備え、水5の供給量を多めに調整することにより、ウェーハWの厚さを測定する位置に水膜11を形成して、測定箇所が常に水5に浸った状態にすることができる。
また、水5は、例えば、図3(a)に示すように、円筒状の液体導入管10の一方の端部から液体導入管10内に導入され、液体導入管10内を流れる。
Here, the liquid supply pipe 9 includes a liquid supply amount adjustment unit capable of adjusting the amount of water 5 to be supplied, and adjusts the supply amount of water 5 to a position where the thickness of the wafer W is measured. The water film 11 can be formed so that the measurement location is always immersed in the water 5.
Further, for example, as shown in FIG. 3A, the water 5 is introduced into the liquid introduction tube 10 from one end of the cylindrical liquid introduction tube 10 and flows through the liquid introduction tube 10.

第3の実施形態によれば、まず、ウェーハWの少なくとも厚さを測定する箇所は、水に浸った状態となるため、先の第1及び第2の実施形態と同様に、ウェーハWが水中に浸った状態でウェーハWの厚さを測定することができ、ウェーハWを乾燥させてからウェーハWの厚さを計測する場合と比べて、研磨処理のスループットを確保することができる。また、研磨前のウェーハWの厚さとの比較により研磨の取代量の変化を把握して、それを研磨装置にフィードバックして研磨レシピの変更や研磨条件のパラメータの補正を行うことにより、研磨装置による研磨量を適切に制御することができる。本実施形態による測定結果を用いることにより、研磨後のウェーハWの平坦度(特に外周部の平坦度)やLPDの密度を改善することができる。さらに、研磨の取代量を管理することにより、使い捨ての研磨スラリーの使用量を適正化することができ、資材費を低減することもできる。   According to the third embodiment, first, at least a portion where the thickness of the wafer W is measured is immersed in water, so that the wafer W is underwater as in the first and second embodiments. The thickness of the wafer W can be measured in a state immersed in the wafer, and the throughput of the polishing process can be ensured as compared with the case where the thickness of the wafer W is measured after the wafer W is dried. In addition, by grasping the change in the amount of machining allowance by comparing with the thickness of the wafer W before polishing, and feeding it back to the polishing apparatus, the polishing recipe is changed and the parameters of the polishing conditions are corrected. The amount of polishing by can be controlled appropriately. By using the measurement result according to the present embodiment, the flatness of the wafer W after polishing (particularly the flatness of the outer peripheral portion) and the density of the LPD can be improved. Furthermore, by managing the amount of polishing stock removal, it is possible to optimize the amount of disposable polishing slurry used and to reduce material costs.

なお、第3の実施形態においても、ウェーハWを図示しない移送部によりウェーハWの径方向に移動させることにより、ウェーハWのある直径範囲における全ての面内のウェーハWの厚さを測定することができる。さらに、本実施形態によれば、第1及び第2の実施形態と同様に、ウェーハWの不純物濃度によらずにウェーハWの厚さを測定可能である。   Also in the third embodiment, the thickness of the wafer W in all the surfaces in a certain diameter range of the wafer W is measured by moving the wafer W in the radial direction of the wafer W by a transfer unit (not shown). Can do. Furthermore, according to the present embodiment, the thickness of the wafer W can be measured regardless of the impurity concentration of the wafer W, as in the first and second embodiments.

そして、第3の実施形態によれば、水槽2を用いないため、上述したような水槽2の変形によってウェーハWの厚さの測定に誤差を与えることもなく、従って、空気層7が介在することによる上記の不都合を回避することができる。また、測定器3をウェーハ3に近づけることにより測定器3の高精度な使用が可能となる。   According to the third embodiment, since the water tank 2 is not used, there is no error in the measurement of the thickness of the wafer W due to the deformation of the water tank 2 as described above, and therefore the air layer 7 is interposed. The above-mentioned inconvenience caused by this can be avoided. Further, the measuring device 3 can be used with high accuracy by bringing the measuring device 3 close to the wafer 3.

<第4の実施形態>
図4(a)は、本発明の第4の実施形態にかかるワークの厚さ測定装置の概略断面図であり、図4(b)は、本発明の第4の実施形態にかかるワークの厚さ測定装置の要部を示す断面図である。
第4の実施形態は、図4(a)に示すように、ウェーハWが、径方向が水平方向(重力に垂直な方向)となるように配置されるように、ウェーハWを挟んで、対向するように2つの測定器3が配置されている点で、第3の実施形態と異なっている。
第4の実施形態でも、第3の実施形態と同様の作用効果を奏することができる。
特に、第4の実施形態によれば、ウェーハWの上面に水膜11を保持することが容易である。なお、ウェーハWの下面にも高めの圧力で水を供給することにより、水膜11を保持することができる。
<Fourth Embodiment>
FIG. 4A is a schematic cross-sectional view of a workpiece thickness measuring apparatus according to the fourth embodiment of the present invention, and FIG. 4B is a workpiece thickness according to the fourth embodiment of the present invention. It is sectional drawing which shows the principal part of a height measuring apparatus.
In the fourth embodiment, as shown in FIG. 4A, the wafer W is opposed to the wafer W so that the radial direction is the horizontal direction (direction perpendicular to gravity). Thus, the second embodiment is different from the third embodiment in that two measuring devices 3 are arranged.
Also in the fourth embodiment, the same operational effects as in the third embodiment can be achieved.
In particular, according to the fourth embodiment, it is easy to hold the water film 11 on the upper surface of the wafer W. The water film 11 can be held by supplying water to the lower surface of the wafer W at a higher pressure.

(ワークの厚さ測定方法)
本発明の一実施形態によるワークの厚さ測定方法は、図1〜図4により説明したように、研磨後のウェーハWの少なくとも一部を純水などの液体に浸す工程を含む。ウェーハWを液体に浸す手法としては、例えば図1、図2に示したように、水槽2を用いて水槽2内にウェーハWを配置することもでき、あるいは、図3、図4に示したように、液体供給管9により例えば水圧を強くして、ウェーハWの一部に水膜11が形成されるようにしても良い。また、他の手法とすることもできる。
そして、ウェーハWの少なくとも一部が液体に浸った状態で、ウェーハWを挟んで対向して配置され、ウェーハWの表面までの距離を測定可能な2つ以上の測定器3により、ウェーハWの液体に浸された部分の厚さを測定する工程を含む。
(Work thickness measurement method)
As described with reference to FIGS. 1 to 4, the workpiece thickness measuring method according to the embodiment of the present invention includes a step of immersing at least a part of the polished wafer W in a liquid such as pure water. As a method for immersing the wafer W in the liquid, for example, as shown in FIGS. 1 and 2, the wafer W can be arranged in the water tank 2 using the water tank 2, or alternatively, as shown in FIGS. 3 and 4. Thus, for example, the water pressure may be increased by the liquid supply pipe 9 so that the water film 11 is formed on a part of the wafer W. Other methods can also be used.
Then, in a state where at least a part of the wafer W is immersed in the liquid, the wafer W is disposed by two or more measuring devices 3 which are arranged to face each other with the wafer W interposed therebetween and capable of measuring the distance to the surface of the wafer W. Measuring the thickness of the portion immersed in the liquid.

本実施形態のワークの厚さ測定方法によれば、ウェーハWが濡れた状態で該ウェーハWの厚さを測定することができ、ウェーハWを乾燥させてからウェーハWの厚さを計測する場合と比べて、研磨のバッチ処理のスループットを確保することができる。また、研磨前のウェーハWの厚さとの比較により研磨の取代量の変化を把握して、それを研磨装置にフィードバックして研磨レシピの変更や研磨条件のパラメータの補正を行うことにより、研磨装置による研磨量を適切に制御することができる。本実施形態の方法による測定結果を用いることにより、研磨後のウェーハWの平坦度(特に外周部の平坦度)やLPDの密度を改善することができる。さらに、研磨の取代量を管理することにより、使い捨ての研磨スラリーの使用量を適正化することができ、資材費を低減することもできる。   According to the workpiece thickness measurement method of the present embodiment, the thickness of the wafer W can be measured while the wafer W is wet, and the thickness of the wafer W is measured after the wafer W is dried. As compared with the above, it is possible to ensure the throughput of polishing batch processing. In addition, by grasping the change in the amount of machining allowance by comparing with the thickness of the wafer W before polishing, and feeding it back to the polishing apparatus, the polishing recipe is changed and the parameters of the polishing conditions are corrected. The amount of polishing by can be controlled appropriately. By using the measurement result obtained by the method of this embodiment, the flatness of the wafer W after polishing (particularly the flatness of the outer peripheral portion) and the density of the LPD can be improved. Furthermore, by managing the amount of polishing stock removal, it is possible to optimize the amount of disposable polishing slurry used and to reduce material costs.

(ワークの研磨装置)
本発明の一実施形態によるワークの研磨装置は、上述のワークの厚さ測定装置・測定方法により測定された、ウェーハWの厚さの情報を受け取る受信部(図示せず)と、受信部により受け取ったウェーハWの厚さの情報に基づいて、研磨レシピの切り替え又は研磨条件のパラメータの補正を行う演算部(図示せず)と、を備える。具体的には、演算部により、例えば研磨時間等を補正することができる。なお、研磨装置は、両面研磨装置であっても、片面研磨装置であっても良い。
本実施形態によるワークの研磨装置によれば、スループットを確保しつつ、且つ、研磨量を適切に制御することができる。従って、研磨後のワークの平坦度(特に外周部の平坦度)を向上させることができ、LPD等の欠陥の密度も低減することができる。
(Work polishing equipment)
A workpiece polishing apparatus according to an embodiment of the present invention includes a receiving unit (not shown) that receives information on the thickness of the wafer W measured by the above-described workpiece thickness measuring apparatus and measuring method, and a receiving unit. And an arithmetic unit (not shown) that performs polishing recipe switching or polishing parameter correction based on the received thickness information of the wafer W. Specifically, for example, the polishing time can be corrected by the calculation unit. The polishing apparatus may be a double-side polishing apparatus or a single-side polishing apparatus.
According to the workpiece polishing apparatus of the present embodiment, it is possible to appropriately control the polishing amount while ensuring the throughput. Therefore, the flatness of the workpiece after polishing (particularly the flatness of the outer peripheral portion) can be improved, and the density of defects such as LPD can also be reduced.

以上、本発明の実施形態について説明したが、本発明は、上記の実施形態に何ら限定されるものではない。また、以下において本発明の実施例について説明するが、本発明は、この実施例に何ら限定されるものではない。   As mentioned above, although embodiment of this invention was described, this invention is not limited to said embodiment at all. Moreover, although the Example of this invention is described below, this invention is not limited to this Example at all.

(実施例1)
ウェーハまでの距離を測定する2つの異なるタイプの測定器を用いて、研磨後のシリコンウェーハの厚さを測定する試験を行った。研磨は、一般的な片面研磨装置を用いた。以下の表1に示すように、シリコンウェーハは、径300mmのp−、p++の2種類の基板を用いた。さらに、水中でウェーハの表裏面での反射光の干渉を評価するタイプの測定器として、浜松ホトニクス社製Optical MicroGaugeを用い(従来例1)、本発明に用いることのできる、水中でウェーハの表面までの距離を測定可能な測定器として、キーエンス社製SI−F10を用いた(発明例1)。また、比較対象として、黒田社製ナノメトロを用いて、乾燥後にウェーハの厚さを測定した(比較例)。発明例1及び比較例については、図1に示すような、2つの測定器でウェーハを挟み込むタイプの装置を用いて測定を行った。一方で、従来例については、ウェーハの片側側のみに測定器を配置した。
以下、表1に評価結果を示す。
Example 1
Tests were performed to measure the thickness of the polished silicon wafer using two different types of measuring instruments that measure the distance to the wafer. For polishing, a general single-side polishing apparatus was used. As shown in Table 1 below, two types of substrates, p− and p ++, having a diameter of 300 mm were used for the silicon wafer. Furthermore, Hamamatsu Photonics Optical MicroGauge (conventional example 1) is used as a type of measuring device for evaluating interference of reflected light on the front and back surfaces of the wafer in water, and can be used in the present invention. SI-F10 manufactured by Keyence Corporation was used as a measuring instrument capable of measuring the distance up to (Invention Example 1). Moreover, the thickness of the wafer was measured after drying using Nano Metro made by Kuroda as a comparison object (Comparative Example). Inventive Example 1 and Comparative Example were measured using an apparatus of a type in which a wafer is sandwiched between two measuring instruments as shown in FIG. On the other hand, as for the conventional example, the measuring device is arranged only on one side of the wafer.
Table 1 shows the evaluation results.

Figure 2015105055
Figure 2015105055

表1に示すように、p-基板の厚さは、従来例1及び発明例1ともに精度良くウェーハの厚さを測定することができたが、p++基板の厚さは、従来例1では、測定自体ができなかった一方で、発明例1では、精度良くウェーハの厚さを測定することができたことがわかる。As shown in Table 1, p - the thickness of the substrate, the conventional example 1 and Inventive Example 1 were both able to measure the thickness of accurately wafer, the thickness of the p ++ substrate, prior art 1 Then, while the measurement itself could not be performed, it can be seen that the thickness of the wafer could be measured with high accuracy in Invention Example 1.

(実施例2)
次に、片面研磨後のウェーハの厚さを測定し、それを片面研磨装置にフィードバックして研磨時間を補正した際のSFQR(Site Front Least Square Range)を測定し、片面研磨前後のSFQRの差(ΔSFQR)を求めた。ここでは、上記の片面研磨装置は、測定されたウェーハの厚さの情報を受け取る受信部と、受信したウェーハの厚さの情報に基づいて、研磨時間の補正を行う演算部とを備え、その他の構成は、一般的な片面研磨装置と同様である。また、研磨に供したシリコンウェーハは、径300mmのp-型のシリコンウェーハとした。なお、SFQRとは、設定されたサイト内でデータを最小二乗法にて算出したサイト内平面を基準平面とし、この平面からの+側(すなわち、ウェーハの主表面を上に向け水平に置いた場合の上側)、−側(同下側)の各々の最大変位量の絶対値の和で表したサイト毎に評価された値のことである。実施例2においては、平坦度測定器(KLA−Tencor社製:WaferSight)を用い、26×8mm2のサイトサイズ内を測定した。
ここで、研磨装置の稼働状況によって研磨レートに変動があるため、一旦停止して再度立ち上げた後と連続稼働した時との2つの場合に分けてSFQRを評価した。評価結果を以下の表2に示す。表2において、発明例2は、上記のフィードバックを行った場合であり、従来例2は、上記のフィードバックを行わなかった場合である。また、表2でΔSFQRの符号が正である場合は、片面研磨後にSFQRが悪化していることを示す。なお、片面研磨後のウェーハの厚さの測定は、発明例1と同様に行ったものである。
(Example 2)
Next, the thickness of the wafer after single-side polishing is measured, SFQR (Site Front Last Square Range) when the polishing time is corrected by feeding it back to the single-side polishing apparatus, and the difference in SFQR before and after single-side polishing is measured. (ΔSFQR) was determined. Here, the single-side polishing apparatus includes a receiving unit that receives information on the measured thickness of the wafer, and a calculation unit that corrects the polishing time based on the received information on the thickness of the wafer. The configuration of is the same as that of a general single-side polishing apparatus. The silicon wafer subjected to polishing was a p type silicon wafer having a diameter of 300 mm. SFQR refers to the in-site plane calculated by the least-squares method within the set site as a reference plane, and is placed horizontally on the + side from this plane (that is, with the main surface of the wafer facing up). It is a value evaluated for each site expressed as the sum of absolute values of the maximum displacement amounts on the upper side and the lower side. In Example 2, the inside of a 26 × 8 mm 2 site size was measured using a flatness measuring device (manufactured by KLA-Tencor: WaferSight).
Here, since the polishing rate varies depending on the operation status of the polishing apparatus, the SFQR was evaluated in two cases, after being temporarily stopped and restarted and when continuously operating. The evaluation results are shown in Table 2 below. In Table 2, Invention Example 2 is a case where the above feedback is performed, and Conventional Example 2 is a case where the above feedback is not performed. In Table 2, when the sign of ΔSFQR is positive, it indicates that SFQR has deteriorated after single-side polishing. Note that the thickness of the wafer after single-side polishing was measured in the same manner as in Invention Example 1.

Figure 2015105055
Figure 2015105055

表2に示すように、従来例2では、研磨時間を一定にしたため、片面研磨装置を停止し再立ち上げした場合にΔSFQRが大きく、平坦度が低下していた。一方で、発明例2では、測定した研磨後のウェーハの厚さの情報を片面研磨装置にフィードバックして、研磨時間を調整したため(520sec)、停止再立ち上げ後でもΔSFQRが小さく、平坦度の低下が抑えられたことがわかる。   As shown in Table 2, in Conventional Example 2, since the polishing time was fixed, ΔSFQR was large and the flatness was low when the single-side polishing apparatus was stopped and restarted. On the other hand, in Invention Example 2, since the information on the measured thickness of the polished wafer is fed back to the single-side polishing apparatus and the polishing time is adjusted (520 sec), ΔSFQR is small and flatness is maintained even after restarting the stop. It can be seen that the decrease was suppressed.

(実施例3)
次に、片面研磨後のウェーハの厚さを測定し、それを片面研磨装置にフィードバックして研磨時間を補正した際のLPD密度を評価した。LPD密度の評価は、パーティクルカウンタ(KLA−Tencor社SP2)を用いた。ここでは、上記の片面研磨装置は、測定されたウェーハの厚さの情報を受け取る受信部と、受信したウェーハの厚さの情報に基づいて、研磨時間の補正を行う演算部とを備え、その他の構成は、一般的な片面研磨装置と同様である。また、研磨に供したシリコンウェーハは、径300mmのp-型のシリコンウェーハとした。研磨装置の稼働状況によって研磨レートに変動があるため、一旦停止して再度立ち上げた後と連続稼働した時との2つの場合に分けてLPD密度を評価した。評価結果を以下の表3に示す。表3において、発明例3は、上記のフィードバックを行った場合であり、従来例3は、上記のフィードバックを行わなかった場合である。なお、片面研磨後のウェーハの厚さを測定は、発明例1と同様に行ったものである。
(Example 3)
Next, the thickness of the wafer after single-side polishing was measured, and it was fed back to the single-side polishing apparatus to evaluate the LPD density when the polishing time was corrected. The LPD density was evaluated using a particle counter (KLA-Tencor SP2). Here, the single-side polishing apparatus includes a receiving unit that receives information on the measured thickness of the wafer, and a calculation unit that corrects the polishing time based on the received information on the thickness of the wafer. The configuration of is the same as that of a general single-side polishing apparatus. The silicon wafer subjected to polishing was a p type silicon wafer having a diameter of 300 mm. Since the polishing rate varies depending on the operation status of the polishing apparatus, the LPD density was evaluated in two cases: after stopping and restarting, and when continuously operating. The evaluation results are shown in Table 3 below. In Table 3, Invention Example 3 is a case where the above feedback is performed, and Conventional Example 3 is a case where the above feedback is not performed. The thickness of the wafer after single-side polishing was measured in the same manner as in Invention Example 1.

Figure 2015105055
Figure 2015105055

表3に示すように、従来例3では、研磨時間を一定にしたため、片面研磨装置を停止し再立ち上げした場合に、LPD密度が大きく欠陥が多く発生したが、発明例3では、測定した研磨後のウェーハの厚さの情報を片面研磨装置にフィードバックして、研磨時間を調整したため(520sec)、停止再立ち上げ後でもLPDの発生を抑制することができたことがわかる。また、研磨の取代量を管理することにより、使い捨ての研磨スラリーの使用量を適正化することができ、資材費を低減することができた。   As shown in Table 3, in the conventional example 3, since the polishing time was fixed, when the single-side polishing apparatus was stopped and restarted, the LPD density was large and many defects were generated. It can be seen that the information on the thickness of the wafer after polishing was fed back to the single-side polishing apparatus and the polishing time was adjusted (520 sec), so that the generation of LPD could be suppressed even after restarting. Moreover, by managing the amount of machining allowance for polishing, the amount of disposable polishing slurry used can be optimized, and material costs can be reduced.

(実施例4)
次に、水槽の材質や厚さを変えた場合のウェーハの厚さの測定誤差を及び水槽の変形量をモニタして評価した。研磨に供するシリコンウェーハとしては、径300mmのp++型の基板を用いた。研磨には、一般的な片面研磨装置を用いた。ここで、測定誤差は、キーエンス社製SI−F10を図1に示す装置に用いて測定を行った場合と、黒田社製ナノメトロを用いて、乾燥後にウェーハの厚さを測定した場合とで、10回の測定を行い、その測定結果の差の最大値を測定誤差とした。また、水槽の変形量は、キーエンス社製SI−F10を用いて測定時間の間モニタし、その間での最大変位を水槽の変形量とした。
以下の表4に評価結果を示す。なお、表4において、「測定の誤差」は、アクリル樹脂(厚さ8mm)の場合を100としたときの相対指数で表し、数値が小さい方が「測定の誤差」が小さいことを示す。なお、金属補強は、図1に示すように、SUS製の補強板を水槽に取り付けることにより行ったものであり、排水量制御は、排水量のモニタリングにより、給水量及びウェーハの移動速度を調整することにより行ったものである。
Example 4
Next, the measurement error of the wafer thickness when the material and thickness of the water tank were changed and the deformation amount of the water tank were monitored and evaluated. A p ++ type substrate having a diameter of 300 mm was used as a silicon wafer used for polishing. For polishing, a general single-side polishing apparatus was used. Here, the measurement error is when the measurement is performed using the Keyence SI-F10 in the apparatus shown in FIG. 1 and when the thickness of the wafer is measured after drying using the nanometer manufactured by Kuroda. Ten measurements were performed, and the maximum difference between the measurement results was defined as a measurement error. Moreover, the deformation amount of the water tank was monitored during measurement time using SI-F10 made by Keyence, and the maximum displacement during that time was defined as the deformation amount of the water tank.
The evaluation results are shown in Table 4 below. In Table 4, “measurement error” is expressed as a relative index when the case of acrylic resin (thickness 8 mm) is set to 100, and the smaller the value, the smaller the “measurement error”. As shown in FIG. 1, the metal reinforcement is performed by attaching a SUS reinforcing plate to the water tank, and the drainage amount control is to adjust the water supply amount and the wafer moving speed by monitoring the drainage amount. It was done by.

Figure 2015105055
Figure 2015105055

表4に示すように、石英を用いた場合、水槽の変形量を大幅に低減させ、これにより測定の誤差を大幅に改善することができたことがわかる。また、水槽の厚さを厚くするほど、水槽の変形量が小さくなり、測定の誤差も小さくなったことがわかる。
また、金属補強をすることにより、水槽の変形量がさらに小さくなり、測定の誤差もさらに小さくなったことがわかる。さらに、水の排水量を制御することにより、水槽の変形量がより一層小さくなり、測定の誤差もより一層小さくなったことがわかる。
As shown in Table 4, it is understood that when quartz is used, the amount of deformation of the water tank can be greatly reduced, thereby greatly improving the measurement error. It can also be seen that the thicker the water tank, the smaller the amount of deformation of the water tank and the smaller the measurement error.
It can also be seen that the metal reinforcement further reduced the amount of deformation of the water tank and further reduced the measurement error. Furthermore, it can be seen that by controlling the amount of drainage of water, the amount of deformation of the water tank is further reduced, and the measurement error is further reduced.

(実施例5)
次に、図2に示す水槽を用いた場合のウェーハ厚さの測定の誤差を、図1に示す水槽(ただし、補強板を有しない)を用いた場合の測定の誤差との対比で評価した。評価方法は、実施例4と同様である。なお、水槽の材質や厚さは同一とした。なお、表5において、「測定の誤差」は図1の場合を100とした場合の相対値で示しており、数値が小さい方が、誤差が小さいことを意味する。なお、本実施例においては、排水量制御を行わないものとした。
(Example 5)
Next, the measurement error of the wafer thickness when the water tank shown in FIG. 2 was used was evaluated by comparison with the measurement error when the water tank shown in FIG. 1 (but not having a reinforcing plate) was used. . The evaluation method is the same as in Example 4. The material and thickness of the water tank were the same. In Table 5, “measurement error” is shown as a relative value when the case of FIG. 1 is set to 100, and a smaller numerical value means a smaller error. In this embodiment, the wastewater amount control is not performed.

Figure 2015105055
Figure 2015105055

図2に示す装置を用いた場合、水槽が隙間を有し、水槽の変形が測定器に干渉しないため、表5に示すように、測定の誤差を大幅に低減することができたことがわかる。   When the apparatus shown in FIG. 2 is used, since the water tank has a gap and the deformation of the water tank does not interfere with the measuring instrument, it can be seen that the measurement error can be greatly reduced as shown in Table 5. .

(実施例6)
次に、図3に示す装置を用いた場合の、ウェーハ厚さの測定の誤差を図1に示す水槽(ただし、補強板を有しない)を用いた場合の測定の誤差との対比で評価した。評価方法は、実施例4、5と同様である。なお、表6において、「測定の誤差」は図1の場合を100とした場合の相対値で示しており、数値が小さい方が、誤差が小さいことを意味する。なお、本実施例においては、排水量制御を行わないものとした。
(Example 6)
Next, the wafer thickness measurement error in the case of using the apparatus shown in FIG. 3 was evaluated in comparison with the measurement error in the case of using the water tank shown in FIG. 1 (without a reinforcing plate). . The evaluation method is the same as in Examples 4 and 5. In Table 6, “measurement error” is shown as a relative value when the case of FIG. 1 is set to 100, and a smaller numerical value means a smaller error. In this embodiment, the wastewater amount control is not performed.

Figure 2015105055
Figure 2015105055

表6に示すように、図3に示す装置を用いた場合、測定の誤差を生じさせる原因となる水槽自体を用いていないため、測定の誤差を大幅に低減することができたことがわかる。   As shown in Table 6, when the apparatus shown in FIG. 3 is used, the measurement error can be greatly reduced because the water tank itself that causes the measurement error is not used.

(実施例7)
次に、実施例2と同様に、片面研磨後のウェーハの厚さを測定し、それを片面研磨装置にフィードバックして研磨時間を補正した際のSFQR(Site Front Least Square Range)を測定し、片面研磨前後のSFQRの差(ΔSFQR)を求めた。試験は、金属補強及び排水量制御を共に行わない場合と、金属補強のみ行う場合と、金属補強と排水量制御を共に行う場合と、の3通りで行った。なお、片面研磨後のウェーハの厚さの測定は、発明例1と同様に行ったものである。
表7において、評価結果は、ΔSFQRの標準偏差の相対値で示しており、金属補強及び排水量制御を共に行わない場合を100とし、数値が小さい程ばらつきが小さく良好である。
なお、金属補強及び排水量制御は、実施例4と同様の手法により行ったものである。
(Example 7)
Next, as in Example 2, the thickness of the wafer after single-side polishing was measured, and SFQR (Site Front Last Square Range) when the polishing time was corrected by feeding it back to the single-side polishing apparatus was measured. The difference in SFQR before and after single-side polishing (ΔSFQR) was determined. The test was performed in three ways: when not performing both metal reinforcement and drainage control, performing only metal reinforcement, and performing both metal reinforcement and drainage control. Note that the thickness of the wafer after single-side polishing was measured in the same manner as in Invention Example 1.
In Table 7, the evaluation results are shown as relative values of the standard deviation of ΔSFQR, where 100 is the case where neither metal reinforcement nor drainage control is performed, and the smaller the value, the better the variation.
In addition, metal reinforcement and drainage amount control were performed by the same method as Example 4.

Figure 2015105055
Figure 2015105055

表7に示すように、金属補強を行うことにより、ΔSFQRの標準偏差の相対値をより一層低減することができ、金属補強及び排水量制御を行うことにより、ΔSFQRの標準偏差の相対値をさらに低減することができたことがわかる。   As shown in Table 7, the relative value of the standard deviation of ΔSFQR can be further reduced by performing metal reinforcement, and the relative value of the standard deviation of ΔSFQR is further reduced by performing metal reinforcement and drainage control. I understand that I was able to.

1 ワークの厚さ測定装置
2 水槽
3 測定器
4 支持部材
5 水
6 キャップ
7 空気層
8 隙間
9 液体供給管
10 液体導入管
11 水膜
W ワーク(ウェーハ)
DESCRIPTION OF SYMBOLS 1 Work thickness measuring apparatus 2 Water tank 3 Measuring device 4 Support member 5 Water 6 Cap 7 Air layer 8 Crevice 9 Liquid supply pipe 10 Liquid introduction pipe 11 Water film W Workpiece (wafer)

Claims (17)

研磨後のワークの少なくとも一部を液体に浸す液体浸漬器と、
対向して配置され、前記ワークの前記液体に浸された部分の表面までの距離を測定可能な2つ以上の測定器と、を
備えることを特徴とする、ワークの厚さ測定装置。
A liquid immersion device that immerses at least a part of the workpiece after polishing in a liquid;
Two or more measuring devices which are arranged opposite to each other and capable of measuring the distance to the surface of the part immersed in the liquid of the workpiece, and comprising a workpiece thickness measuring device.
前記測定器を固定する支持部材をさらに備える、請求項1に記載のワークの厚さ測定装置。   The workpiece thickness measuring apparatus according to claim 1, further comprising a support member for fixing the measuring instrument. 前記測定器は、先端にキャップを備える、請求項1又は2に記載のワークの厚さ測定装置。   The workpiece measuring device according to claim 1, wherein the measuring device includes a cap at a tip. 前記液体浸漬器は、前記ワークを内部に収容可能な槽である、請求項1〜3のいずれか一項に記載のワークの厚さ測定装置。   The said liquid immersion device is a thickness measuring apparatus of the workpiece | work as described in any one of Claims 1-3 which is a tank which can accommodate the said workpiece | work inside. 前記槽は、石英又は板ガラスでできている、請求項4に記載のワークの厚さ測定装置。   The workpiece thickness measuring device according to claim 4, wherein the tank is made of quartz or plate glass. 前記槽内に、前記測定器の少なくとも一部が挿入され、
前記槽と前記測定器との間に隙間を有する、請求項4又は5に記載のワークの厚さ測定装置。
At least a part of the measuring device is inserted into the tank,
The workpiece thickness measuring apparatus according to claim 4, wherein a gap is provided between the tank and the measuring instrument.
前記液体浸漬器は、前記ワークの少なくとも一部が前記液体に常に浸るように前記液体を供給可能な液体供給管である、請求項1〜3のいずれか一項に記載のワークの厚さ測定装置。   The thickness measurement of the workpiece according to any one of claims 1 to 3, wherein the liquid immersion device is a liquid supply pipe capable of supplying the liquid so that at least a part of the workpiece is always immersed in the liquid. apparatus. 前記液体供給管は、前記液体を供給する量を調整可能な液体供給量調整部を備える、請求項7に記載のワークの厚さ測定装置。   The workpiece thickness measuring device according to claim 7, wherein the liquid supply pipe includes a liquid supply amount adjusting unit capable of adjusting an amount of supplying the liquid. 前記ワークの厚さの測定箇所に近接して前記ワークを挟んで対向して配置される液体導入管をさらに備え、
前記測定器の少なくとも先端は、前記液体導入管内に挿入される、請求項7又は8に記載のワークの厚さ測定装置。
Further comprising a liquid introduction pipe disposed in close proximity to the workpiece thickness measurement location and sandwiching the workpiece;
The work thickness measuring device according to claim 7 or 8, wherein at least a tip of the measuring device is inserted into the liquid introduction tube.
前記液体は、水である、請求項1〜9のいずれか一項に記載のワークの厚さ測定装置。   The workpiece thickness measurement apparatus according to any one of claims 1 to 9, wherein the liquid is water. 前記測定器は、光学式の分光干渉型測定器である、請求項1〜10のいずれか一項に記載のワークの厚さ測定装置。   The workpiece measuring device according to claim 1, wherein the measuring device is an optical spectral interference measuring device. 前記ワークの厚さの測定時に、前記槽の変形量が50nm以下である、請求項4又は5に記載のワークの厚さ測定装置。   The workpiece thickness measuring device according to claim 4 or 5, wherein the deformation amount of the tank is 50 nm or less when the thickness of the workpiece is measured. 前記槽に補強板を配置してなる、請求項12に記載のワークの厚さ測定装置。   The workpiece thickness measuring device according to claim 12, wherein a reinforcing plate is disposed in the tank. 前記槽は、排液体部と、前記排液体部からの排液体量を測定する排液体量測定器と、測定した排液体量に基づいて排液体量を調整する制御部と、を有する、請求項12又は13に記載のワークの厚さ測定装置。   The tank includes a drained liquid part, a drained liquid amount measuring device that measures a drained liquid amount from the drained liquid part, and a control unit that adjusts the drained liquid amount based on the measured drained liquid amount. Item 14. The workpiece thickness measuring apparatus according to Item 12 or 13. 研磨後のワークの少なくとも一部を液体に浸す工程と、
前記ワークの少なくとも一部が前記液体に浸った状態で、前記ワークを挟んで対向して配置され、前記ワークの前記液体に浸された部分の表面までの距離を測定可能な2つ以上の測定器により、前記ワークの厚さを測定する工程と、を含むことを特徴とする、ワークの厚さ測定方法。
Immersing at least a part of the polished workpiece in a liquid;
Two or more measurements in which at least a part of the workpiece is immersed in the liquid and arranged opposite to each other with the workpiece interposed therebetween, and the distance to the surface of the portion of the workpiece immersed in the liquid can be measured Measuring the thickness of the workpiece by means of a vessel, and a method for measuring the thickness of the workpiece.
請求項1〜14のいずれか一項に記載のワークの厚さ測定装置により測定された、前記ワークの厚さの情報を受け取る受信部と、
前記ワークの厚さの情報に基づいて、研磨レシピの切り替え又は研磨条件のパラメータの補正を行う演算部と、を備えることを特徴とする、ワークの研磨装置。
A receiving unit that receives information on the thickness of the workpiece measured by the workpiece thickness measuring device according to any one of claims 1 to 14,
An apparatus for polishing a workpiece, comprising: an arithmetic unit that switches a polishing recipe or corrects a parameter of a polishing condition based on information on the thickness of the workpiece.
請求項15に記載のワークの厚さ測定方法により測定された、前記ワークの厚さの情報を受け取る受信部と、
前記ワークの厚さの情報に基づいて、研磨レシピの切り替え又は研磨条件のパラメータの補正を行う演算部と、を備えることを特徴とする、ワークの研磨装置。
A receiver for receiving information on the thickness of the workpiece measured by the workpiece thickness measuring method according to claim 15;
An apparatus for polishing a workpiece, comprising: an arithmetic unit that switches a polishing recipe or corrects a parameter of a polishing condition based on information on the thickness of the workpiece.
JP2015556788A 2014-01-10 2015-01-09 Work thickness measuring apparatus, measuring method, and work polishing apparatus Active JP6229737B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014003265 2014-01-10
JP2014003265 2014-01-10
PCT/JP2015/000080 WO2015105055A1 (en) 2014-01-10 2015-01-09 Workpiece thickness measurement device, measure method, and workpiece polishing device

Publications (2)

Publication Number Publication Date
JPWO2015105055A1 true JPWO2015105055A1 (en) 2017-03-23
JP6229737B2 JP6229737B2 (en) 2017-11-15

Family

ID=53523884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015556788A Active JP6229737B2 (en) 2014-01-10 2015-01-09 Work thickness measuring apparatus, measuring method, and work polishing apparatus

Country Status (4)

Country Link
JP (1) JP6229737B2 (en)
KR (1) KR101904062B1 (en)
TW (2) TWI583495B (en)
WO (1) WO2015105055A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6602725B2 (en) * 2016-05-24 2019-11-06 スピードファム株式会社 Window structure for workpiece thickness measurement
CN117140236B (en) * 2023-10-25 2024-01-26 苏州博宏源机械制造有限公司 Wafer thickness online measurement device and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115911A (en) * 1989-09-29 1991-05-16 Anritsu Corp Thickness measuring instrument for transparent body
JPH0562952A (en) * 1991-08-31 1993-03-12 Shin Etsu Handotai Co Ltd Manufacture of soi substrate
JP2000009437A (en) * 1997-10-22 2000-01-14 Hitachi Ltd Method and apparatus for measuring thickness of thin film, and method and apparatus for manufacturing thin film device using the same
JP2007199013A (en) * 2006-01-30 2007-08-09 Disco Abrasive Syst Ltd Thickness measuring device and grinding attachment
JP2012189507A (en) * 2011-03-11 2012-10-04 Disco Abrasive Syst Ltd Measuring instrument

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068689A (en) 2001-08-22 2003-03-07 Tokyo Seimitsu Co Ltd Apparatus for feedback polishing and method for polishing
US7101257B2 (en) * 2003-05-21 2006-09-05 Ebara Corporation Substrate polishing apparatus
JP2009050944A (en) * 2007-08-24 2009-03-12 Disco Abrasive Syst Ltd Substrate thickness measuring method and substrate processing device
JP5066410B2 (en) * 2007-08-31 2012-11-07 Hoya株式会社 Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
TWM416070U (en) * 2011-06-29 2011-11-11 New Power Team Technology Inc Substrate thickness measurement and detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115911A (en) * 1989-09-29 1991-05-16 Anritsu Corp Thickness measuring instrument for transparent body
JPH0562952A (en) * 1991-08-31 1993-03-12 Shin Etsu Handotai Co Ltd Manufacture of soi substrate
JP2000009437A (en) * 1997-10-22 2000-01-14 Hitachi Ltd Method and apparatus for measuring thickness of thin film, and method and apparatus for manufacturing thin film device using the same
JP2007199013A (en) * 2006-01-30 2007-08-09 Disco Abrasive Syst Ltd Thickness measuring device and grinding attachment
JP2012189507A (en) * 2011-03-11 2012-10-04 Disco Abrasive Syst Ltd Measuring instrument

Also Published As

Publication number Publication date
JP6229737B2 (en) 2017-11-15
WO2015105055A1 (en) 2015-07-16
KR101904062B1 (en) 2018-10-04
TW201527041A (en) 2015-07-16
TWI597128B (en) 2017-09-01
TW201716183A (en) 2017-05-16
TWI583495B (en) 2017-05-21
KR20160095071A (en) 2016-08-10

Similar Documents

Publication Publication Date Title
KR100937544B1 (en) Substrate treatment apparatus
CN102725830B (en) The thickness of retainer ring and the immediately monitoring method and apparatus of useful life
KR101884049B1 (en) Polishing apparatus and polishing method
JP6101175B2 (en) Semiconductor wafer polishing method
JP6406238B2 (en) Wafer polishing method and polishing apparatus
JP2015012200A (en) Substrate processing apparatus
JP6229737B2 (en) Work thickness measuring apparatus, measuring method, and work polishing apparatus
JP2018133558A (en) Substrate liquid processing apparatus
JP5099111B2 (en) Double-side polishing equipment
KR102160516B1 (en) Method for polishing plate-like body and device for polishing plate-like body
TW201513190A (en) Semiconductor device manufacturing method and manufacturing apparatus
TWI746847B (en) Methods and apparatuses for effluent monitoring for brush conditioning
TWI724182B (en) Method, computer-readable storage medium, and system for chemical mechanical polishing automated recipe generation
CN109309031A (en) Control the device and method thereof of the temperature in wafer cleaning apparatus
US20090088909A1 (en) Batch processing apparatus for processing work pieces
Wei et al. Experimental and numerical analysis of wafer-to-wafer uniformity in double-sided polishing
JP4524580B2 (en) Single wafer coating apparatus and die positioning method
JP5699783B2 (en) Work polishing method and polishing apparatus
JP5899099B2 (en) Chemical liquid discharge amount measuring jig, chemical liquid discharge amount measuring mechanism and chemical liquid discharge amount measuring method
US20230268186A1 (en) Systems and methods for producing epitaxial wafers
JP2011251907A (en) Method and apparatus for processing surface
KR20070092427A (en) Apparatus for controling temperature of cleaning liquid
KR20150067446A (en) Method for producing glass substrate for display and apparatus for producing glass substrate for display
JP2014103297A (en) Substrate processing apparatus and substrate processing method
JP2009255217A (en) Evaluation method for consumable material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171002

R150 Certificate of patent or registration of utility model

Ref document number: 6229737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250