JPWO2014155603A1 - Oxidant solution for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing solid electrolytic capacitor - Google Patents

Oxidant solution for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing solid electrolytic capacitor Download PDF

Info

Publication number
JPWO2014155603A1
JPWO2014155603A1 JP2015507801A JP2015507801A JPWO2014155603A1 JP WO2014155603 A1 JPWO2014155603 A1 JP WO2014155603A1 JP 2015507801 A JP2015507801 A JP 2015507801A JP 2015507801 A JP2015507801 A JP 2015507801A JP WO2014155603 A1 JPWO2014155603 A1 JP WO2014155603A1
Authority
JP
Japan
Prior art keywords
conductive polymer
producing
solution
solid electrolytic
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015507801A
Other languages
Japanese (ja)
Other versions
JP6154461B2 (en
Inventor
志杰 谷
志杰 谷
章範 渡邉
章範 渡邉
義人 石北
義人 石北
和之 金本
和之 金本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carlit Holdings Co Ltd
Original Assignee
Carlit Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carlit Holdings Co Ltd filed Critical Carlit Holdings Co Ltd
Publication of JPWO2014155603A1 publication Critical patent/JPWO2014155603A1/en
Application granted granted Critical
Publication of JP6154461B2 publication Critical patent/JP6154461B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • H01G9/151Solid electrolytic capacitors with wound foil electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

高静電容量かつ低ESRで、さらに、高温条件下でも静電容量の低下やESRの増大が少なく、耐熱性にも優れる固体電解コンデンサを得ることが可能な導電性高分子製造用酸化剤液を提供することを目的とし、溶媒中にベンゼンスルホン酸第二鉄塩と、硫酸または硫酸鉄とを含有する導電性高分子製造用酸化剤溶液であって、導電性高分子製造用酸化剤溶液中にベンゼンスルホン酸第二鉄塩を30〜80質量%、硫酸または硫酸鉄を硫酸イオンとして0.001〜10質量%含有し、アルコール溶媒を主溶媒とすることを特徴とする導電性高分子製造用酸化剤溶液を提供する。An oxidizer solution for producing a conductive polymer capable of obtaining a solid electrolytic capacitor having high capacitance and low ESR, less decrease in capacitance and increase in ESR even under high temperature conditions, and excellent heat resistance. An oxidizing agent solution for producing a conductive polymer, which contains ferric benzenesulfonic acid salt and sulfuric acid or iron sulfate in a solvent, the oxidizing agent solution for producing a conducting polymer Conductive polymer characterized in that it contains 30 to 80% by mass of ferric benzenesulfonate, 0.001 to 10% by mass of sulfuric acid or iron sulfate as sulfate ions, and an alcohol solvent as the main solvent. A manufacturing oxidant solution is provided.

Description

本発明は導電性高分子製造用酸化剤液に関し、より詳しくは固体電解コンデンサの固体電解質として好適な導電性高分子層の形成時に使用し、高容量かつ低等価直列抵抗(以下、「ESR」と表す。)を示し、耐熱性に優れた固体電解コンデンサの製造に資する導電性高分子製造用酸化剤溶液に関する。さらに、該酸化剤溶液を使用してなる固体電解コンデンサ及びその製造方法に関する。   The present invention relates to an oxidant solution for producing a conductive polymer, and more specifically, used when forming a conductive polymer layer suitable as a solid electrolyte of a solid electrolytic capacitor, and has a high capacity and low equivalent series resistance (hereinafter referred to as “ESR”). And an oxidizing agent solution for producing a conductive polymer that contributes to the production of a solid electrolytic capacitor having excellent heat resistance. Furthermore, it is related with the solid electrolytic capacitor which uses this oxidizing agent solution, and its manufacturing method.

導電性高分子は、高い導電性を有するため、例えば、アルミニウム電解コンデンサ、タンタル電解コンデンサ等の固体電解質として有用である。   Since the conductive polymer has high conductivity, it is useful as a solid electrolyte such as an aluminum electrolytic capacitor and a tantalum electrolytic capacitor.

前記導電性高分子としては、例えば、ピロール又はその誘導体あるいはチオフェン又はその誘導体等の重合性モノマーを化学酸化重合又は電解酸化重合することによって得られたものが知られている。   Examples of the conductive polymer include those obtained by chemical oxidative polymerization or electrolytic oxidative polymerization of a polymerizable monomer such as pyrrole or a derivative thereof or thiophene or a derivative thereof.

前記ピロール又はその誘導体あるいはチオフェン又はその誘導体の化学酸化重合を行う際のドーパントとしては主に有機スルホン酸が用いられ、その中でも、芳香族スルホン酸を用いることが知られている。また、重合用の酸化剤としてはそれら芳香族スルホン酸の遷移金属塩が用いられ、その中でも第二鉄塩を用いることが知られている。   An organic sulfonic acid is mainly used as a dopant in the chemical oxidative polymerization of the pyrrole or its derivative or thiophene or its derivative, and among them, it is known to use an aromatic sulfonic acid. Further, transition metal salts of these aromatic sulfonic acids are used as the oxidizing agent for polymerization, and among these, it is known to use ferric salts.

例えば特許文献1には、芳香族スルホン酸第二鉄塩であるp−トルエンスルホン酸第二鉄塩を酸化剤として使用し、重合性モノマーを重合して形成された導電性高分子層を固体電解質とするコンデンサが開示されている。   For example, Patent Document 1 discloses that a conductive polymer layer formed by polymerizing a polymerizable monomer using p-toluenesulfonic acid ferric salt, which is an aromatic sulfonic acid ferric salt, as a solid agent is solid. A capacitor as an electrolyte is disclosed.

しかし、酸化剤としてp−トルエンスルホン酸第二鉄塩を使用した場合には、固体電解コンデンサが長期間高温に曝されると、静電容量の低下やESRの増大が生じやすく、耐熱性に欠けるという問題があった。   However, when p-toluenesulfonic acid ferric salt is used as an oxidizing agent, when the solid electrolytic capacitor is exposed to a high temperature for a long period of time, it tends to cause a decrease in capacitance and an increase in ESR, which makes it heat resistant. There was a problem of lacking.

また特許文献2には、溶媒としてエチルアルコール、プロピルアルコールを使用することによって、粘度の上昇を抑制しながらp−トルエンスルホン酸第二鉄塩を高濃度で含有させた酸化剤溶液が開示されており、この酸化剤溶液を使用して導電性高分子層を形成させることにより、固体電解コンデンサのESRを低下できることが記載されている。しかし、この酸化剤溶液を使用してもなお十分に低ESRとすることは困難であり、また耐熱性の面でも十分なものとはいえなかった。   Patent Document 2 discloses an oxidizing agent solution containing p-toluenesulfonic acid ferric salt at a high concentration while suppressing an increase in viscosity by using ethyl alcohol or propyl alcohol as a solvent. It is described that the ESR of a solid electrolytic capacitor can be reduced by forming a conductive polymer layer using this oxidant solution. However, even if this oxidant solution is used, it is still difficult to achieve a sufficiently low ESR, and it cannot be said that the heat resistance is sufficient.

さらに引用文献3にはトルエンスルホン酸第二鉄またはメトキシベンゼンスルホン酸の第二鉄と、硫酸第二鉄とを酸化剤兼ドーパントとして含有するアルコール溶液用いて作製された固体電解コンデンサが開示されている。しかし、この固体電解コンデンサも十分な静電容量とESRを有するものではなく、また高温条件下ではこれらの変化が大きく、耐熱性にも劣るものであった。   Further, Cited Document 3 discloses a solid electrolytic capacitor produced by using an alcohol solution containing ferric toluenesulfonate or ferric methoxybenzenesulfonate and ferric sulfate as an oxidizing agent and a dopant. Yes. However, this solid electrolytic capacitor also does not have sufficient electrostatic capacity and ESR, and these changes are large under high temperature conditions and inferior in heat resistance.

特開平02−015611号公報Japanese Patent Laid-Open No. 02-015611 特開2003−272953号公報JP 2003-272953 A 再表2009−001707号公報No. 2009-001707

したがって、高静電容量かつ低ESRを示し、さらに、高温条件下でも静電容量の低下やESRの増大が少なく、耐熱性にも優れる固体電解コンデンサが求められており、本発明は、そのような固体電解コンデンサを得ることが可能な導電性高分子製造用酸化剤液を提供することを課題とする。   Accordingly, there is a need for a solid electrolytic capacitor that exhibits high capacitance and low ESR, and that is less susceptible to lowering of capacitance and increase of ESR even under high temperature conditions, and excellent in heat resistance. It is an object of the present invention to provide an oxidant solution for producing a conductive polymer capable of obtaining a solid electrolytic capacitor.

本発明者は上記課題を解決すべく鋭意検討を行った結果、酸化剤としてベンゼンスルホン酸第二鉄塩と、硫酸または硫酸鉄とを特定量で組合せた酸化剤溶液を用いて導電性高分子層を形成させることによって、高静電容量かつ低ESRで、耐熱性にも優れる固体電解コンデンサが得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor has found that a conductive polymer using an oxidizing agent solution in which ferric benzene sulfonate and sulfuric acid or iron sulfate are combined in a specific amount as an oxidizing agent. By forming the layer, it was found that a solid electrolytic capacitor having high capacitance, low ESR, and excellent heat resistance was obtained, and the present invention was completed.

すなわち本発明は、溶媒中にベンゼンスルホン酸第二鉄塩と、硫酸または硫酸鉄とを含有する導電性高分子製造用酸化剤溶液であって、導電性高分子製造用酸化剤溶液中にベンゼンスルホン酸第二鉄塩を30〜80質量%、硫酸または硫酸鉄を硫酸イオンとして0.001〜10質量%含有し、アルコール溶媒を主溶媒とすることを特徴とする導電性高分子製造用酸化剤溶液である。   That is, the present invention relates to an oxidant solution for producing a conductive polymer containing a ferric salt of benzenesulfonic acid and sulfuric acid or iron sulfate in a solvent, wherein the benzene solution is contained in the oxidant solution for producing a conductive polymer. Oxidation for producing a conductive polymer, characterized in that it contains 30 to 80% by mass of ferric sulfonate, 0.001 to 10% by mass of sulfuric acid or iron sulfate as sulfate ions, and an alcohol solvent as a main solvent. Agent solution.

また本発明は、上記導電性高分子製造用酸化剤溶液を用いて重合性モノマーを重合反応させて形成された導電性高分子層を有することを特徴とする固体電解コンデンサである。   The present invention is also a solid electrolytic capacitor characterized by having a conductive polymer layer formed by polymerizing a polymerizable monomer using the above oxidizing polymer solution for conductive polymer production.

さらに本発明は、重合性モノマーと酸化剤溶液との混合液をコンデンサ素子に含浸させることにより、又は重合性モノマー溶液と酸化剤溶液とをコンデンサ素子に含浸させることにより、重合性モノマーと酸化剤を重合反応させて導電性高分子層をコンデンサ素子に形成する工程を含む固体電解コンデンサの製造方法において、酸化剤溶液として、上記導電性高分子製造用酸化剤溶液を用いることを特徴とする固体電解コンデンサの製造方法である。   Furthermore, the present invention provides a method of impregnating a capacitor element with a mixed liquid of a polymerizable monomer and an oxidant solution, or impregnating a capacitor element with a polymerizable monomer solution and an oxidant solution, thereby In the method for producing a solid electrolytic capacitor including the step of forming a conductive polymer layer in a capacitor element by polymerizing the solid, using the oxidant solution for producing a conductive polymer as the oxidant solution This is a method of manufacturing an electrolytic capacitor.

本発明の導電性高分子製造用酸化剤溶液を用いることにより、高静電容量かつ低ESRであり、さらに、高温条件下でも静電容量の低下やESRの増大が少なく、耐熱性にも優れる固体電解コンデンサを得ることができる。   By using the oxidant solution for the production of the conductive polymer of the present invention, the electrostatic capacity is low and the ESR is low, and further, even under high temperature conditions, there is little decrease in electrostatic capacity and increase in ESR, and excellent heat resistance. A solid electrolytic capacitor can be obtained.

(酸化剤溶液)
本発明の導電性高分子製造用酸化剤溶液(以下、単に「酸化剤溶液」ということがある)は、酸化剤としてベンゼンスルホン酸第二鉄塩を含有する。ベンゼンスルホン酸第二鉄塩を構成するベンゼンスルホン酸アニオンと第二鉄カチオンのモル比は特に限定されるものではないが、2.00〜3.50:1が好ましく、2.50〜3.30:1がより好ましく、2.95〜3.20:1が特に好ましい。このようなモル比の範囲にすることで、より耐熱性に優れた導電性高分子層を形成することができる。
(Oxidant solution)
The oxidant solution for producing a conductive polymer of the present invention (hereinafter sometimes simply referred to as “oxidant solution”) contains ferric benzenesulfonic acid as an oxidant. The molar ratio of the benzenesulfonic acid anion and the ferric cation constituting the ferric benzenesulfonic acid salt is not particularly limited, but is preferably 2.00 to 3.50: 1, and 2.50 to 3. 30: 1 is more preferable, and 2.95 to 3.20: 1 is particularly preferable. By setting the molar ratio in such a range, a conductive polymer layer having more excellent heat resistance can be formed.

本発明の酸化剤溶液中のベンゼンスルホン酸第二鉄塩の含有量は30〜80質量%である。この範囲外であると、静電容量およびESRが十分なものではなく、また耐熱性にも劣るものとなる。   Content of the ferric benzenesulfonic acid salt in the oxidizing agent solution of this invention is 30-80 mass%. Outside this range, the capacitance and ESR are not sufficient, and the heat resistance is poor.

また本発明の酸化剤溶液は、ベンゼンスルホン酸第二鉄塩とともに、硫酸または硫酸鉄を含有する。硫酸鉄としては、硫酸第一鉄、硫酸第二鉄が使用できる。これらのうち、ベンゼンスルホン酸と塩を形成することがなく、酸性度への影響も少ないため、硫酸第一鉄が好適に用いられる。   Moreover, the oxidizing agent solution of this invention contains a sulfuric acid or iron sulfate with the ferric benzenesulfonic acid salt. As iron sulfate, ferrous sulfate and ferric sulfate can be used. Of these, ferrous sulfate is preferably used because it does not form a salt with benzenesulfonic acid and has little influence on acidity.

本発明の酸化剤溶液中の硫酸または硫酸鉄の含有量は、硫酸イオンとして0.001〜10質量%であり、好ましくは0.01〜10質量であり、より好ましくは0.01〜0.5質量%である。0.001質量%未満または10質量%よりも多いと十分な静電容量が得られず、また耐熱性にも劣るものとなる。   The content of sulfuric acid or iron sulfate in the oxidant solution of the present invention is 0.001 to 10% by mass as sulfate ions, preferably 0.01 to 10%, more preferably 0.01 to 0.00. 5% by mass. If it is less than 0.001% by mass or more than 10% by mass, sufficient electrostatic capacity cannot be obtained, and the heat resistance is inferior.

本発明の酸化剤溶液に用いる溶媒は、アルコール溶媒を主溶媒とするものである。アルコール溶媒としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、アミルアルコール等の炭素数1〜5の低級アルコールが挙げられ、これらを単独でまたは2種以上併用して使用することができる。これらの中でも、ベンゼンスルホン酸第二鉄塩を、例えば60質量%以上の高濃度で含有させた場合にも保存安定性に優れることから、メタノール、エタノール、ブタノールおよびこれらの2種以上の混合溶媒が好適であり、特にn−ブタノールとメタノールの混合溶媒、n−ブタノールとエタノールの混合溶媒が好ましい。これらの混合溶媒においてn−ブタノールと、メタノールまたはエタノールとの質量比は、80:20〜20:80が好ましく、60:40〜40:60がより好ましい。この範囲にあると重合速度が最適化されるため、より電気特性に優れた固体電解コンデンサを製造できるという点で好適である。   The solvent used for the oxidizing agent solution of the present invention is an alcohol solvent as a main solvent. Examples of the alcohol solvent include lower alcohols having 1 to 5 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol, and amyl alcohol, and these can be used alone or in combination of two or more. Among these, methanol, ethanol, butanol and a mixed solvent of two or more of these are preferable because they have excellent storage stability even when ferric benzenesulfonate is contained at a high concentration of, for example, 60% by mass or more. In particular, a mixed solvent of n-butanol and methanol, and a mixed solvent of n-butanol and ethanol are preferable. In these mixed solvents, the mass ratio of n-butanol and methanol or ethanol is preferably 80:20 to 20:80, and more preferably 60:40 to 40:60. Within this range, the polymerization rate is optimized, which is preferable in that a solid electrolytic capacitor having more excellent electrical characteristics can be produced.

溶媒には、上記アルコール溶媒以外に、保存安定性等を損なわない限度において副溶媒を添加することもできる。副溶媒としては、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル等のエーテル類、アセトン、メチルエチルケトン等のケトン類、エチレングリコール、プロピレングリコール類等のグリコール類等を挙げることができる。   In addition to the alcohol solvent, a secondary solvent can be added to the solvent as long as the storage stability is not impaired. Examples of the co-solvent include ethers such as diethyl ether, dipropyl ether, and dibutyl ether, ketones such as acetone and methyl ethyl ketone, and glycols such as ethylene glycol and propylene glycol.

溶媒中のアルコール溶媒の含有量は、50質量%以上であり、80質量%以上であることが好ましい。このような範囲であると、誘電体酸化皮膜を有する弁作用金属に対する含浸性が高くなるため、よりESRに優れた固体電解コンデンサを製造できるという点で好適である。   Content of the alcohol solvent in a solvent is 50 mass% or more, and it is preferable that it is 80 mass% or more. Within such a range, the impregnation property with respect to the valve action metal having a dielectric oxide film is enhanced, which is preferable in that a solid electrolytic capacitor having better ESR can be produced.

また一般に、導電性高分子層の形成において、重合性モノマーの重合効率を向上させ、導電性高分子層の電気伝導度を高めることによって、固体電解コンデンサのESRを低下できることが知られているが(特許文献2)、本発明の酸化剤溶液に含有される水分の量を一定の範囲に調整することによって、重合速度を適切に制御し、重合効率を向上することができる。酸化剤溶液中の水分含有量は、好ましくは5質量%未満であり、より好ましくは0.01〜4質量%であり、特に好ましくは0.1〜3質量%である。水分含有量が5質量%以上の場合、重合効率が低下する場合がある。   In general, it is known that in the formation of the conductive polymer layer, the ESR of the solid electrolytic capacitor can be reduced by improving the polymerization efficiency of the polymerizable monomer and increasing the electrical conductivity of the conductive polymer layer. (Patent Document 2) By adjusting the amount of water contained in the oxidant solution of the present invention within a certain range, the polymerization rate can be appropriately controlled and the polymerization efficiency can be improved. The water content in the oxidant solution is preferably less than 5% by mass, more preferably 0.01 to 4% by mass, and particularly preferably 0.1 to 3% by mass. When the water content is 5% by mass or more, the polymerization efficiency may decrease.

次に、本発明の導電性高分子製造用酸化剤溶液の製造方法について説明する。   Next, the manufacturing method of the oxidizing agent solution for conductive polymer manufacture of this invention is demonstrated.

ベンゼンスルホン酸の水溶液に、酸化第二鉄を加え、撹拌後、ろ過により、未反応酸化鉄及び不純物を除去した後、水を除去し目的とするベンゼンスルホン酸第二鉄塩を得る。反応に用いるベンゼンスルホン酸の水溶液濃度は、任意のものを用いることができるが、50〜80質量%の濃度のものを用いることが好ましい。また、酸化第二鉄は、ベンゼンスルホン酸に対し、概ね当量加える。通常、100〜120℃にて5〜72時間反応を行うことにより、目的とするベンゼンスルホン酸第二鉄塩を生成させることができる。   Ferric oxide is added to an aqueous solution of benzenesulfonic acid, and after stirring, unreacted iron oxide and impurities are removed by filtration, and then water is removed to obtain the desired ferric benzenesulfonic acid salt. The aqueous solution concentration of benzenesulfonic acid used for the reaction can be any, but it is preferable to use a solution having a concentration of 50 to 80% by mass. Further, ferric oxide is added in an equivalent amount with respect to benzenesulfonic acid. Usually, the target ferric benzenesulfonic acid salt can be produced | generated by reacting at 100-120 degreeC for 5-72 hours.

反応終了後、得られた反応液をろ過し、ろ液を濃縮、脱水した後、硫酸または硫酸鉄を添加する。脱水工程中に酸化剤溶液の溶媒であるブタノール等を添加し、濃縮することによってベンゼンスルホン酸第二鉄塩と、硫酸または硫酸鉄の濃度を調整することができる。さらに、脱水工程中に、エーテル化合物等の低沸点溶媒を加え、水、アルコール、エーテル化合物の混合物として共沸させながら脱水してもよい。この脱水工程を複数回繰り返すことで、酸化剤溶液中の水分含有量を所望の範囲に調整することができる。   After completion of the reaction, the obtained reaction solution is filtered, and the filtrate is concentrated and dehydrated, and then sulfuric acid or iron sulfate is added. The concentration of ferric benzenesulfonic acid and sulfuric acid or iron sulfate can be adjusted by adding butanol or the like as the solvent of the oxidant solution during the dehydration step and concentrating. Further, during the dehydration step, a low-boiling solvent such as an ether compound may be added and dehydrated while azeotropically forming a mixture of water, alcohol and ether compound. By repeating this dehydration step a plurality of times, the water content in the oxidant solution can be adjusted to a desired range.

(固体電解コンデンサ)
次に、本発明の酸化剤溶液を用いて作製する固体電解コンデンサおよびその製造方法について説明する。
(Solid electrolytic capacitor)
Next, a solid electrolytic capacitor produced using the oxidant solution of the present invention and a method for producing the same will be described.

巻回型コンデンサの場合を例にとると、まずアルミニウム、タンタル、ニオブ、チタン等からなる弁作用金属表面に酸化皮膜を形成した帯状の陽極箔及び対向陰極となる金属製の帯状の陰極箔とを、帯状の絶縁性のセパレータを介して巻回して作製された巻回部を具備したコンデンサ素子を準備する。   Taking the case of a wound capacitor as an example, first, a strip-shaped anode foil in which an oxide film is formed on the surface of a valve metal made of aluminum, tantalum, niobium, titanium, etc., and a metal strip-shaped cathode foil serving as a counter cathode, A capacitor element having a winding portion prepared by winding a wire through a strip-shaped insulating separator is prepared.

このコンデンサ素子の巻回部に、本発明の酸化剤溶液と重合性モノマーとの混合液を含浸させ、コンデンサ素子内で重合反応させて、適宜乾燥することによって、コンデンサ素子に導電性高分子層が形成される。コンデンサ素子部へ含浸させるにあたっては、重合性モノマーと酸化剤溶液とを混合することなく、重合性モノマー溶液と、酸化剤溶液とをそれぞれ含浸させても良い。なお、この含浸、乾燥工程は繰り返し行っても良い。   A conductive polymer layer is placed on the capacitor element by impregnating the winding portion of the capacitor element with the mixed solution of the oxidant solution and the polymerizable monomer of the present invention, causing a polymerization reaction in the capacitor element, and drying appropriately. Is formed. When impregnating the capacitor element portion, the polymerizable monomer solution and the oxidant solution may be impregnated without mixing the polymerizable monomer and the oxidant solution. This impregnation and drying process may be repeated.

重合性モノマーとしては、チオフェン系の導電性高分子材料、ピロール系又はアニリン系の導電性高分子材料が使用され、より好ましくは3,4−エチレンジオキシチオフェンが用いられる。   As the polymerizable monomer, a thiophene-based conductive polymer material, a pyrrole-based or aniline-based conductive polymer material is used, and 3,4-ethylenedioxythiophene is more preferably used.

重合反応は通常45〜150℃にて行い、反応時間は0.5〜5時間とする。重合後、重合残渣や余剰のモノマーと酸化剤を取り除くために洗浄を行っても良い。その後、金属製ケースに封入し、必要に応じてエージング等の処理を行い、巻回型コンデンサを完成する。   The polymerization reaction is usually carried out at 45 to 150 ° C., and the reaction time is 0.5 to 5 hours. After the polymerization, washing may be performed in order to remove a polymerization residue, an excess monomer, and an oxidizing agent. Then, it encloses in a metal case and performs a process such as aging as necessary to complete a wound capacitor.

次にチップ型コンデンサの場合を例にとり説明する。アルミニウム、タンタル、ニオブ、チタン等の弁作用金属の板状箔又は焼結体を準備し、この陽極体表面を酸化し誘電体酸化皮膜を形成させた陽極体を準備する。この陽極体に導電性高分子層、導電性カーボンを含有するカーボン層、銀ペーストなどからなる陰極引き出し層が順次形成されコンデンサ素子が構成される。陽極体に導電性高分子層を形成するにあたって、上記巻回型コンデンサの場合と同様に本発明の酸化溶剤を使用して重合反応させる。陽極体の一端面に植立された陽極リード部材に陽極端子が接続され、陰極引き出し層に陰極端子が接続され、コンデンサ素子がエポキシ樹脂等の外装樹脂によって被覆密封され、チップ型コンデンサを完成する。   Next, a chip type capacitor will be described as an example. A plate-like foil or sintered body of valve action metal such as aluminum, tantalum, niobium or titanium is prepared, and an anode body is prepared by oxidizing the surface of the anode body to form a dielectric oxide film. On this anode body, a conductive polymer layer, a carbon layer containing conductive carbon, and a cathode lead layer made of silver paste or the like are sequentially formed to constitute a capacitor element. In forming the conductive polymer layer on the anode body, the polymerization reaction is carried out using the oxidizing solvent of the present invention in the same manner as in the case of the wound capacitor. The anode terminal is connected to the anode lead member planted on one end surface of the anode body, the cathode terminal is connected to the cathode lead-out layer, and the capacitor element is covered and sealed with an exterior resin such as an epoxy resin to complete the chip capacitor. .

かくして得られる本発明の固体電解コンデンサは、高静電容量かつ低ESRで、高温に長期間曝された後も、これらの変動が小さく、耐熱性も極めて高いものであり、例えば、初期静電容量が好ましくは690μF以上、より好ましくは705μF以上であり、初期ESRが好ましくは5.5mΩ以下、より好ましくは5.3mΩ以下の特性値を示すものとなる。その理由は明らかではないが、本発明で酸化剤として用いられるベンゼンスルホン酸第二鉄塩を構成するベンゼンスルホン酸は、一般に用いられるp−トルエンスルホン酸等よりも分子量が小さいため、粘度が低く、かつ、適切な重合速度をとることができ、その結果、高電導度を有する導電性高分子からなる固体電解質が形成されるとともに、誘電体酸化皮膜を有する弁作用金属の細孔部にまで深く入り込むことができることから、高静電容量と低ESRとすることができ、かつ、ドーパントとしても脱離が生じにくくなるため、耐熱性が向上するものと考えられる。   The solid electrolytic capacitor of the present invention thus obtained has a high electrostatic capacity, low ESR, small fluctuations after exposure to high temperatures for a long time, and extremely high heat resistance. The capacitance is preferably 690 μF or more, more preferably 705 μF or more, and the initial ESR is preferably 5.5 mΩ or less, more preferably 5.3 mΩ or less. The reason for this is not clear, but benzenesulfonic acid constituting the ferric benzenesulfonic acid salt used as an oxidizing agent in the present invention has a lower viscosity because it has a lower molecular weight than p-toluenesulfonic acid or the like generally used. In addition, an appropriate polymerization rate can be obtained, and as a result, a solid electrolyte made of a conductive polymer having high conductivity is formed, and the pores of the valve action metal having a dielectric oxide film are formed. Since it can penetrate deeply, high capacitance and low ESR can be obtained, and desorption does not easily occur as a dopant, so that heat resistance is considered to be improved.

以下、本発明を実施例等に基づいてより詳細に説明する。なお、本発明はこれら実施例等によりなんら限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples and the like. In addition, this invention is not limited at all by these Examples.

製造例1
酸化剤溶液の調製:
ベンゼンスルホン酸一水和物(和光製薬)50.0gに水3.28gを加え、酸化鉄7.60gを撹拌しながら混合し、温度100℃で3時間撹拌還流した。その後、水を留去した後、硫酸第一鉄を0.8mg加え、ブタノールとメタノールの混合溶媒(質量比1:1)を50ml加えた。得られたベンゼンスルホン酸第二鉄のブタノール・メタノール混合溶液について、ベンゼンスルホン酸第二鉄の濃度を0.1Nチオ硫酸ナトリウム水溶液で滴定して求め、その後、濃度が60質量%となるようブタノールとメタノール混合溶液(質量比1:1)を添加し、酸化剤溶液を調製した(酸化剤溶液1)。酸化剤溶液中の硫酸第一鉄の硫酸イオンとしての含有量を、イオンクロマトグラフ(日本ダイオネクス社製、IC25イオンクロマトシステム)によって測定した。また、酸化剤溶液中の水分量をカールフィッシャー法によって測定したところ1.0質量%であった。
Production Example 1
Preparation of oxidant solution:
3.28 g of water was added to 50.0 g of benzenesulfonic acid monohydrate (Wako Pharmaceutical Co., Ltd.), and 7.60 g of iron oxide was mixed with stirring, followed by stirring and refluxing at a temperature of 100 ° C. for 3 hours. Then, after distilling off water, 0.8 mg of ferrous sulfate was added, and 50 ml of a mixed solvent of butanol and methanol (mass ratio 1: 1) was added. About the obtained butanol / methanol mixed solution of ferric benzenesulfonate, the concentration of ferric benzenesulfonate was determined by titration with a 0.1N sodium thiosulfate aqueous solution, and then butanol was adjusted so that the concentration became 60% by mass. And a methanol mixed solution (mass ratio 1: 1) were added to prepare an oxidant solution (oxidant solution 1). The content of ferrous sulfate in the oxidizer solution as sulfate ions was measured by an ion chromatograph (IC25 ion chromatographic system, manufactured by Nippon Dionex). Moreover, it was 1.0 mass% when the moisture content in an oxidizing agent solution was measured by the Karl Fischer method.

製造例2〜11
ベンゼンスルホン酸第二鉄および硫酸第一鉄の濃度を表1に示す濃度に変更した以外は、製造例1と同様にして酸化剤溶液を調製した(酸化剤溶液2〜11)。各酸化剤溶液について製造例1と同様にして硫酸イオン濃度を測定した。結果を表1に併せて示す。また製造例1と同様に水分を測定したところいずれも1.0質量%であった。
Production Examples 2-11
Except for changing the concentrations of ferric benzenesulfonate and ferrous sulfate to the concentrations shown in Table 1, oxidant solutions were prepared in the same manner as in Production Example 1 (oxidant solutions 2 to 11). The sulfate ion concentration was measured in the same manner as in Production Example 1 for each oxidant solution. The results are also shown in Table 1. Moreover, when the water | moisture content was measured similarly to manufacture example 1, all were 1.0 mass%.

比較製造例1〜6
有機スルホン酸第二鉄の種類と濃度、硫酸第一鉄の濃度を表1のとおりに変更した以外は、製造例1と同様にして酸化剤溶液を調製した(酸化剤溶液12〜17)。各酸化剤溶液について製造例1と同様にして硫酸イオン濃度を測定した。結果を表1に併せて示す。また製造例1と同様に水分を測定したところいずれも1.0質量%であった。
Comparative Production Examples 1-6
An oxidant solution was prepared in the same manner as in Production Example 1 except that the type and concentration of ferric organic sulfonate and the concentration of ferrous sulfate were changed as shown in Table 1 (oxidant solutions 12 to 17). The sulfate ion concentration was measured in the same manner as in Production Example 1 for each oxidant solution. The results are also shown in Table 1. Moreover, when the water | moisture content was measured similarly to manufacture example 1, all were 1.0 mass%.

Figure 2014155603
Figure 2014155603

実施例1
固体電解コンデンサの作製:
製造例1で調製した酸化剤溶液1に、重合性モノマーとして3,4−エチレンジオキシチオフェンを質量比2.5:1(酸化剤溶液:重合性モノマー)となるように加え、18℃に設定したサーモプレート上で攪拌し重合溶液を準備した。この重合溶液に巻回型アルミニウム固体電解コンデンサ素子を1分間含浸させた。その後45℃で1時間、次いで100℃で10分重合反応させ、さらに150℃で10分、200℃で10分乾燥し、巻回型コンデンサに導電性高分子層を形成させて固体電解コンデンサを作製した。
Example 1
Production of solid electrolytic capacitors:
To the oxidant solution 1 prepared in Production Example 1, 3,4-ethylenedioxythiophene was added as a polymerizable monomer so as to have a mass ratio of 2.5: 1 (oxidant solution: polymerizable monomer), and the temperature was increased to 18 ° C. The polymerization solution was prepared by stirring on the set thermoplate. This polymerized solution was impregnated with a wound aluminum solid electrolytic capacitor element for 1 minute. Thereafter, a polymerization reaction is carried out at 45 ° C. for 1 hour, then at 100 ° C. for 10 minutes, and further dried at 150 ° C. for 10 minutes and at 200 ° C. for 10 minutes to form a conductive polymer layer on the wound type capacitor to obtain a solid electrolytic capacitor. Produced.

実施例2〜11
酸化剤溶液1を、製造例2〜11で調製した酸化剤溶液2〜11に代えた以外は実施例1と同様にして固定電解コンデンサを作製した。
Examples 2-11
A fixed electrolytic capacitor was produced in the same manner as in Example 1 except that the oxidant solution 1 was replaced with the oxidant solutions 2 to 11 prepared in Production Examples 2 to 11.

比較例1〜6
酸化剤溶液1を、比較製造例1〜6で調製した酸化剤溶液12〜17に代えた以外は実施例1と同様にして固体電解コンデンサを作製した。
Comparative Examples 1-6
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the oxidant solution 1 was replaced with the oxidant solutions 12 to 17 prepared in Comparative Production Examples 1 to 6.

(固体電解コンデンサの評価)
実施例1〜11及び比較例1〜6により得られた固体電解コンデンサを用いて125℃の恒温槽中で負荷電圧4.0V、500時間の耐熱試験を行い、LCRメーター(型式名 4284A、Agilent Technologeis製)で初期および耐熱試験後の静電容量(μF、120Hz)、ESR(mΩ、100kHz)を測定した。またそれぞれについて初期値からの変化率を算出した。結果を表2に示す。
(Evaluation of solid electrolytic capacitors)
The solid electrolytic capacitors obtained in Examples 1 to 11 and Comparative Examples 1 to 6 were subjected to a heat resistance test at a load voltage of 4.0 V for 500 hours in a thermostatic bath at 125 ° C., and an LCR meter (model name: 4284A, Agilent) The capacitance (μF, 120 Hz) and ESR (mΩ, 100 kHz) at the initial stage and after the heat resistance test were measured with a technology of Technology. Moreover, the change rate from the initial value was calculated about each. The results are shown in Table 2.

Figure 2014155603
Figure 2014155603

表2から、実施例1〜11の酸化剤溶液を使用して導電性高分子層を形成させた固体電解コンデンサは、いずれも高静電容量かつ低ESRとなり、さらに耐熱試験後もこれらの特性値の変化は小さく、耐熱性にも優れることが示された。   From Table 2, the solid electrolytic capacitors in which the conductive polymer layers were formed using the oxidant solutions of Examples 1 to 11 all had high capacitance and low ESR, and these characteristics even after the heat resistance test. The change in value was small and it was shown that the heat resistance was also excellent.

本発明の導電性高分子製造用酸化剤溶液を用いて製造した固体電解コンデンサは優れた電気特性を有するため、高周波領域で使用される様々なデジタル機器等に適用できる。   Since the solid electrolytic capacitor manufactured using the oxidant solution for manufacturing a conductive polymer of the present invention has excellent electrical characteristics, it can be applied to various digital devices used in a high frequency region.

Claims (6)

溶媒中にベンゼンスルホン酸第二鉄塩と、硫酸または硫酸鉄とを含有する導電性高分子製造用酸化剤溶液であって、導電性高分子製造用酸化剤溶液中にベンゼンスルホン酸第二鉄塩を30〜80質量%、硫酸または硫酸鉄を硫酸イオンとして0.001〜10質量%含有し、アルコール溶媒を主溶媒とすることを特徴とする導電性高分子製造用酸化剤溶液。   An oxidizing agent solution for producing a conductive polymer containing ferric benzenesulfonic acid salt and sulfuric acid or iron sulfate in a solvent, wherein the ferric benzenesulfonate is contained in the oxidizing agent solution for producing a conductive polymer An oxidizing agent solution for producing a conductive polymer comprising 30 to 80% by mass of a salt, 0.001 to 10% by mass of sulfuric acid or iron sulfate as a sulfate ion, and an alcohol solvent as a main solvent. アルコール溶媒が、メタノール、エタノールおよびブタノールからなる群より選ばれる1種または2種類以上である請求項1に記載の導電性高分子製造用酸化剤溶液。   The oxidant solution for producing a conductive polymer according to claim 1, wherein the alcohol solvent is one or more selected from the group consisting of methanol, ethanol and butanol. 硫酸または硫酸鉄が、硫酸第一鉄である請求項1または2に記載の導電性高分子製造用酸化剤溶液。   The oxidizing agent solution for producing a conductive polymer according to claim 1 or 2, wherein the sulfuric acid or iron sulfate is ferrous sulfate. 水分含有量が5質量%未満である請求項1〜3のいずれかに記載の導電性高分子製造用酸化剤溶液。   Water content is less than 5 mass%, The oxidizing agent solution for electroconductive polymer manufacture in any one of Claims 1-3. 請求項1〜4のいずれかに記載の導電性高分子製造用酸化剤溶液を用いて重合性モノマーを重合反応させて形成された導電性高分子層を有することを特徴とする固体電解コンデンサ。   5. A solid electrolytic capacitor comprising a conductive polymer layer formed by a polymerization reaction of a polymerizable monomer using the oxidant solution for producing a conductive polymer according to claim 1. 重合性モノマーと酸化剤溶液との混合液をコンデンサ素子に含浸させることにより、又は重合性モノマー溶液と酸化剤溶液とをコンデンサ素子に含浸させることにより、重合性モノマーと酸化剤を重合反応させて導電性高分子層をコンデンサ素子に形成する工程を含む固体電解コンデンサの製造方法において、酸化剤溶液として、請求項1〜4のいずれかに記載の導電性高分子製造用酸化剤溶液を用いることを特徴とする固体電解コンデンサの製造方法。
By impregnating a capacitor element with a mixture of a polymerizable monomer and an oxidant solution, or by impregnating a capacitor element with a polymerizable monomer solution and an oxidant solution, the polymerizable monomer and the oxidant are polymerized. In the manufacturing method of the solid electrolytic capacitor including the process of forming a conductive polymer layer in a capacitor | condenser element, using the oxidizing agent solution for conductive polymer manufacture in any one of Claims 1-4 as an oxidizing agent solution. A method for producing a solid electrolytic capacitor characterized by the above.
JP2015507801A 2013-03-28 2013-03-28 Oxidant solution for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing solid electrolytic capacitor Active JP6154461B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059252 WO2014155603A1 (en) 2013-03-28 2013-03-28 Oxidant solution for conductive polymer production, solid electrolytic capacitor using same, and method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPWO2014155603A1 true JPWO2014155603A1 (en) 2017-02-16
JP6154461B2 JP6154461B2 (en) 2017-06-28

Family

ID=51622678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015507801A Active JP6154461B2 (en) 2013-03-28 2013-03-28 Oxidant solution for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing solid electrolytic capacitor

Country Status (2)

Country Link
JP (1) JP6154461B2 (en)
WO (1) WO2014155603A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6100576B2 (en) * 2013-03-28 2017-03-22 カーリットホールディングス株式会社 Oxidant solution for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing solid electrolytic capacitor
JP2023058759A (en) * 2020-03-25 2023-04-26 パナソニックIpマネジメント株式会社 Capacitor element and electrolytic capacitor
CN112530705A (en) * 2020-12-10 2021-03-19 肇庆绿宝石电子科技股份有限公司 SMD solid capacitor and manufacturing method thereof
CN113972072B (en) * 2021-11-05 2023-04-07 肇庆绿宝石电子科技股份有限公司 16V solid-state capacitor and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002138136A (en) * 2000-11-01 2002-05-14 Tayca Corp Oxidizer for producing electroconductive polymer
JP2003197468A (en) * 2001-10-19 2003-07-11 Nec Tokin Toyama Ltd Solid electrolytic capacitor and manufacturing method therefor
WO2009001707A1 (en) * 2007-06-26 2008-12-31 Tayca Corporation Substance capable of acting as oxidizing agent and dopant for synthesis of electrically conductive polymer, alcohol solution thereof, electrically conductive polymer, and solid electrolyte capacitor
JP2012231120A (en) * 2011-04-15 2012-11-22 Nec Tokin Corp Solid electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002138136A (en) * 2000-11-01 2002-05-14 Tayca Corp Oxidizer for producing electroconductive polymer
JP2003197468A (en) * 2001-10-19 2003-07-11 Nec Tokin Toyama Ltd Solid electrolytic capacitor and manufacturing method therefor
WO2009001707A1 (en) * 2007-06-26 2008-12-31 Tayca Corporation Substance capable of acting as oxidizing agent and dopant for synthesis of electrically conductive polymer, alcohol solution thereof, electrically conductive polymer, and solid electrolyte capacitor
JP2012231120A (en) * 2011-04-15 2012-11-22 Nec Tokin Corp Solid electrolytic capacitor

Also Published As

Publication number Publication date
WO2014155603A1 (en) 2014-10-02
JP6154461B2 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
JP2011109023A (en) Solid electrolytic capacitor, and method of manufacturing the same
JP2010182426A (en) Conductive polymer composition and manufacturing method thereof, and solid electrolytic capacitor using the conductive polymer composition
JP5745881B2 (en) Solid electrolytic capacitor
JP2015095616A (en) Solid electrolytic capacitor and manufacturing method therefor
JP4975237B2 (en) Method for producing conductive composition and solid electrolytic capacitor using the same
JP2012244077A (en) Method for manufacturing solid electrolytic capacitor
JP6154461B2 (en) Oxidant solution for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing solid electrolytic capacitor
JP5327842B2 (en) Oxidizing agent for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing the same
JP5557638B2 (en) Oxidant solution for producing conductive polymer and method for producing solid electrolytic capacitor using the same
JP2017222795A (en) Conductive polymer dispersion liquid and method for producing solid electrolytic capacitor using the same
JP2011228636A (en) Solid-state capacitor and manufacturing method of the same
JP2014192423A (en) Oxidant solution for conductive polymer production, and method for producing solid electrolytic capacitor by use thereof
JP2014225538A (en) Oxidant solution for manufacturing conductive polymer, and method for manufacturing solid electrolytic capacitor by use thereof
JP2011258808A (en) Method of manufacturing solid electrolytic capacitor
JP6100576B2 (en) Oxidant solution for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing solid electrolytic capacitor
JP2008227399A (en) Method for manufacturing solid-state electrolytic capacitor
JP6125301B2 (en) Oxidant solution for producing conductive polymer and method for producing solid electrolytic capacitor using the same
JP2014187222A (en) Method for manufacturing solid electrolytic capacitor
JP2013179292A (en) Oxidant solution for manufacturing electroconductive polymer and method of manufacturing solid electrolytic capacitor using the same
JP4925144B2 (en) Manufacturing method of solid electrolytic capacitor
JP2017017182A (en) Solid electrolytic capacitor and manufacturing method for the same
JP2008060556A (en) Solid-state electrolytic capacitor, and its manufacturing process
JP6537105B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2019145679A (en) Manufacturing method of solid electrolytic capacitor
JP2012077218A (en) Polymerizable monomer composition, method for producing solid electrolytic capacitor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170601

R150 Certificate of patent or registration of utility model

Ref document number: 6154461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250