JPWO2014129035A1 - 通信制御装置、通信制御方法及び無線通信装置 - Google Patents

通信制御装置、通信制御方法及び無線通信装置 Download PDF

Info

Publication number
JPWO2014129035A1
JPWO2014129035A1 JP2015501274A JP2015501274A JPWO2014129035A1 JP WO2014129035 A1 JPWO2014129035 A1 JP WO2014129035A1 JP 2015501274 A JP2015501274 A JP 2015501274A JP 2015501274 A JP2015501274 A JP 2015501274A JP WO2014129035 A1 JPWO2014129035 A1 JP WO2014129035A1
Authority
JP
Japan
Prior art keywords
frequency channel
frequency
interference
channel
communication control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015501274A
Other languages
English (en)
Other versions
JP6406242B2 (ja
Inventor
亮 澤井
亮 澤井
亮太 木村
亮太 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of JPWO2014129035A1 publication Critical patent/JPWO2014129035A1/ja
Application granted granted Critical
Publication of JP6406242B2 publication Critical patent/JP6406242B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/354Adjacent channel leakage power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Noise Elimination (AREA)

Abstract

【課題】部分的に重複し得る周波数チャネルの組合せである周波数チャネル間で無線信号が干渉するケースにおいて、干渉信号の電力を適切に制御することのできる新たな方式を実現すること。【解決手段】部分的に重複し得る周波数チャネルの組合せである第1の周波数チャネル及び第2の周波数チャネルであって、干渉信号が送信される前記第1の周波数チャネル及び前記干渉信号から干渉される所望信号が送信される前記第2の周波数チャネルについてのチャネル配置情報を取得する情報取得部と、前記チャネル配置情報に基づいて前記第1の周波数チャネルと前記第2の周波数チャネルとの間の周波数軸上の重複を判定し、判定した前記重複に応じて前記第2の周波数チャネルを干渉から保護するための保護比率を計算する干渉制御部と、を備える通信制御装置を提供する。【選択図】図7

Description

本開示は、通信制御装置、通信制御方法及び無線通信装置に関する。
近年の無線通信環境は、データトラフィックの急増を原因として、周波数リソースの枯渇化という問題に直面している。そこで、特定の事業者に利用許可が与えられたものの活用されていない周波数帯域を二次的な通信のために開放するための枠組みについて、活発な議論が交わされている。こうした二次的な通信のための枠組みを、LSA(Licensed Shared Access)ともいう。例えば、CEPT(European Conference of Postal and Telecommunications Administrations)は、下記非特許文献1において、テレビジョン放送のために活用されていないいわゆる「TVホワイトスペース」を二次的に利用する装置(WSD:White Space Devices)のための技術的な要件について提言を行っている。
一般的に、周波数帯域を二次的に利用する送信機の送信電力は、一次システムの受信機に有害な干渉を与えないように制限される。例えば、下記非特許文献1は、WSDの送信電力を適切に制御するために、一次システムであるDTT(Digital Terrestrial Television)システムのカバレッジ、DTT受信機の位置、及び許容干渉レベルなどの情報を提供する地理位置データベース(GLDB:Geo-Location Database)を配備することを提案している。通常、周波数帯域の利用許可は国(又は地域)ごとに与えられるため、GLDBもまた国(又は地域)ごとに配備されるであろう。GLDBは、一次システムを干渉から保護するための保護比率(Protection Ratio)の計算なども行い得る。保護比率を計算するための手法は、例えば下記非特許文献2により示されている。
下記非特許文献3は、GLDBから提供される情報を使用し、より高度な計算を通じて二次システムのシステムキャパシティを最大化するための発展型地理位置エンジン(AGLE:Advanced Geo-Location Engine)を例えば国又はサードパーティが設置することを提案している。AGLEを設置するというアプローチは、英国の周波数管理主体であるOfCom(Office of Communications)及びサードパーティのデータベースプロバイダにより採用されることが決まっている。
ECC(Electronic Communications Committee), "TECHNICAL AND OPERATIONAL REQUIREMENTS FOR THE POSSIBLE OPERATION OF COGNITIVE RADIO SYSTEMS IN THE ‘WHITE SPACES’ OF THE FREQUENCY BAND 470-790 MHz",ECC REPORT 159, January 2011 ECC(Electronic Communications Committee), "Complementary Report to ECC Report 159; Further definition of technical and operational requirements for the operation of white space devices in the band 470-790 MHz",ECC REPORT 185, September 2012 Naotaka Sato(Sony Corporation),"TV WHITE SPACE AS PART OF THE FUTURE SPECTRUM LANDSCAPE FOR WIRELESS COMMUNICATIONS", ETSI Workshop on Reconfigurable Radio Systems,December 12 2012, Cannes (France)
各国における周波数帯域の割当ては、通常、何らかの周波数分割スキームに従って周波数帯域を分割することにより形成される周波数チャネルごとに行われる。この場合に周波数チャネルごとに番号を付与すると、同じ番号のチャネルは帯域の一致する同一のチャネル、異なる番号のチャネルは帯域の重複しない別のチャネルとなる。上記非特許文献2に記載された保護比率の計算式は、このような仮定に基づいている。
しかしながら、国又は地域の境界付近での二次利用のケースでは、ある国において二次利用を許可された周波数チャネル上で送信される無線信号が、他の国の別の周波数チャネル上で受信される無線信号に干渉を与え得る。そして、これら周波数チャネルは、1つの分割スキームに従って分割された周波数チャネルの組合せではないかも知れない。同様の問題は、TVホワイトスペースのみならず、例えば、マクロセルのために保護される周波数帯域をスモールセルが二次利用する際のスモールセルへの柔軟な周波数チャネルの割当てにおいても生じ得る。既存の送信電力の制御方式は、これらケースを十分に考慮していない。
従って、部分的に重複し得る周波数チャネルの組合せである周波数チャネル間で無線信号が干渉するケースにおいて、干渉信号の電力を適切に制御することのできる新たな方式が実現されることが望ましい。
本開示によれば、部分的に重複し得る周波数チャネルの組合せである第1の周波数チャネル及び第2の周波数チャネルであって、干渉信号が送信される前記第1の周波数チャネル及び前記干渉信号から干渉される所望信号が送信される前記第2の周波数チャネルについてのチャネル配置情報を取得する情報取得部と、前記チャネル配置情報に基づいて前記第1の周波数チャネルと前記第2の周波数チャネルとの間の周波数軸上の重複を判定し、判定した前記重複に応じて前記第2の周波数チャネルを干渉から保護するための保護比率を計算する干渉制御部と、を備える通信制御装置が提供される。
また、本開示によれば、通信制御装置により実行される通信制御方法において、部分的に重複し得る周波数チャネルの組合せである第1の周波数チャネル及び第2の周波数チャネルであって、干渉信号が送信される前記第1の周波数チャネル及び前記干渉信号から干渉される所望信号が送信される前記第2の周波数チャネルについてのチャネル配置情報を取得することと、前記チャネル配置情報に基づいて前記第1の周波数チャネルと前記第2の周波数チャネルとの間の周波数軸上の重複を判定することと、判定した前記重複に応じて、前記第2の周波数チャネルを干渉から保護するための保護比率を計算することと、を含む通信制御方法が提供される。
また、本開示によれば、部分的に重複し得る周波数チャネルの組合せである第1の周波数チャネル及び第2の周波数チャネルであって、干渉信号が送信される前記第1の周波数チャネル及び前記干渉信号から干渉される所望信号が送信される前記第2の周波数チャネルについてのチャネル配置情報に基づいて判定される前記第1の周波数チャネルと前記第2の周波数チャネルとの間の周波数軸上の重複に応じて前記第2の周波数チャネルを干渉から保護するための保護比率を計算する通信制御装置と通信する通信部と、自装置の無線信号の送信特性を示す情報を前記通信部を介して前記通信制御装置へ送信し、前記通信制御装置により前記送信特性を用いて計算される前記保護比率に違反しない送信電力を用いて、前記第1の周波数チャネル上で無線通信を行う通信制御部と、を備える無線通信装置が提供される。
本開示に係る技術によれば、部分的に重複し得る周波数チャネルの組合せである周波数チャネル間で無線信号が干渉するケースにおいて、干渉信号の電力を適切に制御することが可能となる。
保護比率を計算するための既存の手法の一例について説明するための第1の説明図である。 保護比率を計算するための既存の手法の一例について説明するための第2の説明図である。 異なる分割スキームに従って規定された周波数チャネルの組合せの一例について説明するための説明図である。 周波数チャネル間の重複に関連するパラメータについて説明するための説明図である。 与干渉側の周波数チャネルと被干渉側の周波数チャネルとの間の重複関係の第1の例を示す説明図である。 与干渉側の周波数チャネルと被干渉側の周波数チャネルとの間の重複関係の第2の例を示す説明図である。 与干渉側の周波数チャネルと被干渉側の周波数チャネルとの間の重複関係の第3の例を示す説明図である。 与干渉側の周波数チャネルと被干渉側の周波数チャネルとの間の重複関係の第4の例を示す説明図である。 与干渉側の周波数チャネルと被干渉側の周波数チャネルとの間の重複関係の第5の例を示す説明図である。 複数の干渉信号が存在する状況の一例を示す説明図である。 制御エンティティの配置の第1の例を示す説明図である。 制御エンティティの配置の第2の例を示す説明図である。 制御エンティティの配置の第3の例を示す説明図である。 一実施形態に係る通信制御装置の構成の一例を示すブロック図である。 一実施形態に係る通信装置の構成の一例を示すブロック図である。 一実施形態に係る通信制御処理の流れの一例を示すシーケンス図である。 マクロセルの周波数チャネルとスモールセルの周波数チャネルとの間の重複関係の第1の例を示す説明図である。 マクロセルの周波数チャネルとスモールセルの周波数チャネルとの間の重複関係の第2の例を示す説明図である。 マクロセルの周波数チャネルとスモールセルの周波数チャネルとの間の重複関係の第3の例を示す説明図である。 複数のスモールセルが存在する状況の一例を示す説明図である。 応用例における制御エンティティの配置の第1の例を示す説明図である。 応用例における制御エンティティの配置の第2の例を示す説明図である。 応用例における制御エンティティの配置の第3の例を示す説明図である。 応用例における制御エンティティの配置の第4の例を示す説明図である。 応用例における制御エンティティの配置の第5の例を示す説明図である。 サーバの概略的な構成の一例を示すブロック図である。 eNBの概略的な構成の一例を示すブロック図である。 スマートフォンの概略的な構成の一例を示すブロック図である。 カーナビゲーション装置の概略的な構成の一例を示すブロック図である。
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
また、以下の順序で説明を行う。
1.概要
1−1.既存の手法
1−2.課題の説明
1−3.新たな手法
2.装置の構成
2−1.制御エンティティの配置
2−2.制御エンティティの構成例
2−3.マスタ端末の構成例
2−4.処理の流れ
3.応用例
3−1.制御エンティティの配置
3−2.様々な製品への応用
4.まとめ
<1.概要>
[1−1.既存の手法]
まず、図1A及び図1Bを用いて、上記非特許文献2に記載されている既存の手法について説明する。
図1Aは、保護比率を計算するための既存の手法の一例について説明するための第1の説明図である。図1Aを参照すると、周波数軸を一定の帯域幅で均等に分割することにより形成される5つの周波数チャネルが示されている。これら周波数チャネルの帯域幅はWであり、中心周波数はそれぞれF01、F02、F03、F04及びF05である。一次システム(Primary System)は、例えば、これら5つの周波数チャネルについて利用許可を与えられている一方で、中心周波数F02を有する周波数チャネルCHのみを使用しているものとする。図中に実線で示された所望信号は、一次システムの無線信号である。一方、周波数チャネルCHn+jは、一次システムにより使用されていない。従って、周波数チャネルCHn+jは、周波数リソースの効率的な使用のために二次システム(Secondary System)へ開放され得る。二次システムが周波数チャネルCHn+j上で無線信号を送信する場合、当該無線信号は、一次システムの視点からは干渉信号として見られる(図中の点線)。従って、二次システムにより使用される送信電力は、一次システムにおける干渉が許容レベルを上回らないように決定されることが求められる。そこで、上記非特許文献2は、次の式(1)のように計算される保護比率PRadjを二次システムに適用することを提案している。
Figure 2014129035
式(1)において、PRCoは、予め定義される、同一チャネル(Co-Channel)上の送信に適用される保護比率(Protection Ratio)である。ACLRは、チャネル番号がjだけ離れたチャネルについての近傍チャネル漏れ率(Adjacent Channel Leakage Ratio)である。ACLRは、干渉信号を送信する送信機の送信特性の1つであり、n+j番目の周波数チャネル上での送信電力に対する、n番目の周波数チャネル上で受信側で測定される受信電力の比を表す。ACSは、チャネル番号がjだけ離れたチャネルについての近傍チャネル選択度(Adjacent Channel Selectivity)である。ACSは、干渉を受ける受信機の受信特性の1つであり、n番目の周波数チャネル上での所望信号の減衰量に対する、n+j番目の周波数チャネル上での干渉信号の減衰量の比を表す。ACLR及びACSは、予め送受信機の試験を通じて測定される。
図1Aの例では、周波数チャネルCHn+jから遠くなるほどACLRが減少し、及び周波数チャネルCHから遠くなるほどACSが減少するという、理想的なラインが描かれている。しかしながら、現実の送受信機の多くは、このような理想的な送信特性及び受信特性を有しない。そこで、システムの実装をより容易にするために、チャネル番号のオフセットjに依存しないACLR及びACSを採用することも広く行われている。図1Bの例では、所望信号が送信される周波数チャネルと干渉信号が送信される周波数チャネルとの間のオフセットjに依存することなく、ACLR及びACSは一定である。
[1−2.課題の説明]
図1A及び図1Bの例において、5つの周波数チャネルからどの2つのペアを取り出したとしても、取り出した周波数チャネルは周波数軸上で重複しない。そのため、予め測定される送信特性及び受信特性並びにチャネル番号のオフセットを用いて、式(1)に従って保護比率を計算することができる。しかしながら、例えば国境付近で二次システムが運用される場合、ある国において二次利用を許可された周波数チャネル上で送信される無線信号が、隣国において異なる周波数分割スキームに従って規定された別の周波数チャネルに干渉を与える可能性がある。この場合、与干渉側(interfering side)の周波数チャネルと被干渉側(interfered side)の周波数チャネルとの組合せは、1つの分割スキームに従って分割された周波数チャネルの組合せにならない。
図2は、異なる分割スキームに従って規定された周波数チャネルの組合せの一例について説明するための説明図である。図2の下段の周波数軸は、第1の周波数分割スキームRG1に関連付けられる。図2の上段の周波数軸は、第2の周波数分割スキームRG2に関連付けられる。例えば、第1の周波数分割スキームRG1は、第1の国において採用され、帯域幅Wとそれぞれ中心周波数F11、F12、F13及びF14とを有する4つの周波数チャネルに周波数帯域を分割する。第2の周波数分割スキームRG2は、第1の国の隣国である第2の国において採用され、帯域幅Wとそれぞれ中心周波数F21、F22、F23及びF24とを有する4つの周波数チャネルに周波数帯域を分割する。ここで、例えば第2の国の国境付近で周波数チャネルCH21を二次システムが利用することが許可された場合、当該二次システムが送信する無線信号は、第1の国において周波数チャネルCH11上で送信される一次システムに干渉を与え得る。しかし、図2の例では、周波数チャネルCH11及び周波数チャネルCH21は、全く同一のチャネルでも完全に分離されたチャネルでもない。このようなケースでは、二次システムに適用すべき保護比率を計算するために、式(1)をそのまま使用することができない。
[1−3.新たな手法]
そこで、本開示に係る技術は、上述した既存の手法を拡張する新たな手法を導入する。本開示に係る技術では、与干渉側の周波数チャネル及び被干渉側の周波数チャネルについてのチャネルの配置に基づいて、これらチャネル間の周波数軸上の重複が判定される。そして、判定された重複に応じて、被干渉側の周波数チャネルを干渉から保護するための保護比率が計算される。
図3は、周波数チャネル間の重複に関連するパラメータについて説明するための説明図である。図3を参照すると、互いに重複する周波数チャネル上で送信される干渉信号と所望信号とが、それぞれ点線及び実線で示されている。干渉信号の周波数チャネルは、中心周波数Ftxと帯域幅Wtxとを有する。所望信号の周波数チャネルは、中心周波数Frxと帯域幅Wrxとを有する。この場合、周波数チャネル間の重複部分の帯域幅Wolは、次のように計算され得る。
Figure 2014129035
さらに、重複帯域幅Wolを用いて、与干渉側の残帯域幅Wtz及び被干渉側の残帯域幅Wrzは、次のように計算され得る。
Figure 2014129035
これらパラメータを用いて、上記式(1)は、次式のように拡張される。なお、ここでは、説明の簡明さのために、チャネル間のオフセットjに依存することなくACLR及びACSは一定であるものとする。
Figure 2014129035
式(5)の右辺の対数項の真数(antilog)は、4つの項を含む。そのうち第1項は、同一チャネルの干渉に対応する成分である。第2項は、干渉信号を送信する装置のACLRに対応する成分である。第3項は、所望信号を受信する装置のACSに対応する成分である。第4項は、ゼロ又は非ゼロの干渉マージン成分である。第1項、第2項及び第3項には、重みw、w及びwがそれぞれ適用される。重みwは、与干渉側の周波数チャネルの帯域幅Wtxに対する、重複帯域幅Wolの比である。重みwは、被干渉側の周波数チャネルの帯域幅Wrxに対する、被干渉側の残帯域幅Wrzの比である。重みwは、与干渉側の周波数チャネルの帯域幅Wtxに対する、与干渉側の残帯域幅Wtzの比である。周波数チャネルの5通りの重複関係について、式(5)の保護比率計算式がどのように適用されるかを以下に説明する。なお、以下の説明では、説明の簡明さのために、干渉マージン成分IMはゼロであるものとする。干渉マージン成分IMがゼロでないケースについては、後にさらに説明する。
(1)第1の例
図4Aは、与干渉側の周波数チャネルと被干渉側の周波数チャネルとの間の重複関係の第1の例を示す説明図である。第1の例では、与干渉側の周波数チャネルと被干渉側の周波数チャネルとは重複しない。この場合、重複帯域幅Wol=0、与干渉側の残帯域幅Wtz=Wtx及び被干渉側の残帯域幅Wrz=Wrxであるため、式(5)は、次のように変形される。
Figure 2014129035
即ち、この場合、保護比率計算式は、既存の手法の計算式(1)に等しい。
(2)第2の例
図4Bは、与干渉側の周波数チャネルと被干渉側の周波数チャネルとの間の重複関係の第2の例を示す説明図である。第2の例では、与干渉側の周波数チャネルが被干渉側の周波数チャネルを包含する。この場合、重複帯域幅Wol=Wrx、与干渉側の残帯域幅Wtz=Wtx−Wrx及び被干渉側の残帯域幅Wrz=0であるため、式(5)は、次のように変形される。
Figure 2014129035
(3)第3の例
図4Cは、与干渉側の周波数チャネルと被干渉側の周波数チャネルとの間の重複関係の第3の例を示す説明図である。第3の例では、与干渉側の周波数チャネルと被干渉側の周波数チャネルとは、部分的に重複する。この場合、与干渉側の残帯域幅Wtz=Wtx−Wol及び被干渉側の残帯域幅Wrz=Wrx−Wolであるため、式(5)は、次のように変形される。
Figure 2014129035
(4)第4の例
図4Dは、与干渉側の周波数チャネルと被干渉側の周波数チャネルとの間の重複関係の第4の例を示す説明図である。第4の例では、与干渉側の周波数チャネルが被干渉側の周波数チャネルにより包含される。この場合、重複帯域幅Wol=Wtx、与干渉側の残帯域幅Wtz=0及び被干渉側の残帯域幅Wrz=Wrx−Wtxであるため、式(5)は、次のように変形される。
Figure 2014129035
(5)第5の例
図4Eは、与干渉側の周波数チャネルと被干渉側の周波数チャネルとの間の重複関係の第5の例を示す説明図である。第5の例では、与干渉側の周波数チャネルが被干渉側の周波数チャネルに一致する。この場合、重複帯域幅Wol=Wtx=Wrx、与干渉側の残帯域幅Wtz=0及び被干渉側の残帯域幅Wrz=0であるため、式(5)は、次のように変形される。
Figure 2014129035
即ち、この場合、計算される保護比率は、同一チャネル上の送信に適用される保護比率PRCoに等しい。
なお、チャネル間のオフセットjに依存するACLR及びACSが使用される場合には、式(5)におけるACLRに対応する成分及びACSに対応する成分は、それぞれ2つ以上の成分に分解されてもよい。
(6)複数の干渉信号
所望信号に干渉する複数の干渉信号が存在する場合には、それら複数の干渉信号を考慮して統合的な(aggregate)保護比率を計算することが望ましい。複数の干渉信号が存在する場合の統合保護比率PRaggは、次式のように計算され得る。
Figure 2014129035
式(6)において、Ntxは考慮すべき干渉信号の数、PRadj,kはk番目の干渉信号について上記式(5)に従って暫定的に計算される個別の保護比率を表す。
図5は、複数の干渉信号が存在する状況の一例を示す説明図である。図5の例において、所望信号が送信される被干渉側の周波数チャネルCHrxは、中心周波数Frxと帯域幅Wrxとを有する。周波数チャネルCHrxに対して、与干渉側の3つの周波数チャネルCHtx1、CHtx2及びCHtx3が存在する。周波数チャネルCHtx1は、中心周波数Ftx1と帯域幅Wtx1とを有する。周波数チャネルCHtx1と周波数チャネルCHrxとは部分的に重複するため、周波数チャネルCHtx1についての個別保護比率は、図4Cを用いて説明したケースに従って計算され得る。周波数チャネルCHtx2は、中心周波数Ftx2と帯域幅Wtx2とを有する。周波数チャネルCHtx2は周波数チャネルCHrxにより包含されるため、周波数チャネルCHtx2についての個別保護比率は、図4Dを用いて説明したケースに従って計算され得る。周波数チャネルCHtx3は、中心周波数Ftx3と帯域幅Wtx3とを有する。周波数チャネルCHtx3は周波数チャネルCHrxと重複部分を有しないため、周波数チャネルCHtx3についての個別保護比率は、図4Aを用いて説明したケースに従って計算され得る。このように暫定的に計算される個別保護比率を上記式(6)に代入することにより、統合保護比率は計算され得る。なお、式(6)に干渉信号ごとの重み係数が追加されてもよい。
典型的には、図5に例示した周波数チャネルCHtx1、CHtx2及びCHtx3は、それぞれ異なる二次システムに割当てられる周波数チャネルであって、それら周波数チャネル上でそれぞれ異なる装置から無線信号が送信され得る。しかしながら、かかる例に限定されず、周波数チャネルCHtx1、CHtx2及びCHtx3は、例えば単一の装置から周波数ホッピング技術を用いて複数の無線信号を送信するためのチャネル群であってもよい。周波数ホッピング技術に式(6)が適用される場合、ホッピングシーケンスにおける周波数チャネルごとの使用率に応じた重み係数が、式(6)に追加されてもよい。
(7)干渉マージン
式(5)の干渉マージンIMは、固定値であってもよく、又は、二次システム数若しくは二次システムに参加するデバイス数などに依存して動的に設定される値であってもよい(例えば、特開2012−151815号公報参照)。また、干渉マージンIMは、保護比率の計算において考慮される周波数チャネルがいくつのGLDB(あるいは周波数管理主体)によって管理されるかに依存して決定されてもよい。一例として、M個の異なる国又は地域によって管理される周波数チャネルが保護比率の計算において考慮される場合には、干渉マージンIM=log10(M)[dB]であってもよい。また、干渉マージンIMは、保護比率の計算において考慮される周波数チャネルがどのGLDB(あるいは周波数管理主体)によって管理されるかに依存して決定されてもよい。例えば、特定の国又は地域によって管理される周波数チャネルが考慮される場合に、特別な干渉マージンIMの値が使用されてもよい。なお、干渉マージンIMは、式(5)のように加算される成分の形式ではなく、何らかの項に乗算される係数の形式で定義されてもよい。
<2.装置の構成>
[2−1.制御エンティティの配置]
一実施形態において、前節で説明した新たな手法に従って保護比率を計算する制御エンティティが導入される。当該制御エンティティは、既存のいずれかの制御ノード(例えば、GLDB又はAGLE)上に配置されてもよく、又は新たに設けられる制御ノード上に配置されてもよい。
図6Aは、制御エンティティの配置の第1の例を示す説明図である。図6Aを参照すると、A国とB国との間の境界10が示されている。境界10は、必ずしも国境に一致していなくてもよく、周波数帯域の管理の観点から柔軟に設定されてよい。また、本開示に係る技術は、国の境界のみならず、共同体、州又は県などを含み得る地域の境界における二次利用の制御に広く適用可能である。GLDB12aは、A国が管理する周波数チャネルについてのデータを管理するレギュラトリデータベースである。AGLE13aは、A国において周波数管理主体又はサードパーティが運営する二次システム管理ノードである。GLDB12bは、B国が管理する周波数チャネルについてのデータを管理するレギュラトリデータベースである。AGLE13bは、B国において周波数管理主体又はサードパーティが運営する二次システム管理ノードである。通信制御装置100は、制御エンティティが配置される制御ノードである。第1の例では、通信制御装置100は、レギュラトリデータベース及び二次システム管理ノードから物理的に独立した装置として実装され、レギュラトリデータベース及び二次システム管理ノードと通信可能に接続される。マスタ端末14aは、A国の領域内で二次システムを運用する端末装置である。マスタ端末14aの送信電力は、GLDB12a又はAGLE13aによって決定され得る。マスタ端末14bは、B国の領域内で二次システムを運用する端末装置である。マスタ端末14bの送信電力は、GLDB12b又はAGLE13bによって決定され得る。マスタ端末15は、A国の領域内の境界10の近傍で二次システムを運用する端末装置である。マスタ端末15(又はマスタ端末15と接続するスレーブ端末)によって送信される無線信号は、A国内の一次システムのみならず、B国内の一次システムに干渉を与え得る。そこで、例えばマスタ端末15が二次システムの運用を開始する際、AGLE13aは、マスタ端末15のための保護比率の計算を通信制御装置100へ要求し得る。そして、AGLE13aは、通信制御装置100から通知される計算結果を用いて、マスタ端末15に送信電力を割り当てる。
図6Bは、制御エンティティの配置の第2の例を示す説明図である。図6Bの第2の例では、AGLE13a及び13bに制御エンティティがそれぞれ配置されている。制御エンティティは、同じ国のレギュラトリデータベース、並びに隣国のレギュラトリデータベース及び二次システム管理ノードと通信可能に接続される。例えばマスタ端末15が二次システムの運用を開始する際、AGLE13aは、マスタ端末15のための保護比率の計算を自ら実行し、その計算結果を用いてマスタ端末15に送信電力を割り当てる。AGLE13aは、マスタ端末15のための保護比率の計算をAGLE13bに依頼してもよい。
図6Cは、制御エンティティの配置の第3の例を示す説明図である。図6Cの第3の例では、GLDB12a及び12bに制御エンティティがそれぞれ配置されている。制御エンティティは、同じ国の二次システム管理ノード、並びに隣国のレギュラトリデータベース及び二次システム管理ノードと通信可能に接続される。例えばマスタ端末15が二次システムの運用を開始する際、GLDB12aによってマスタ端末15のための保護比率の計算が実行され、その計算結果を用いてGLDB12a又はAGLE13aによってマスタ端末15に送信電力が割り当てられる。GLDB12aは、マスタ端末15のための保護比率の計算をGLDB12bに依頼してもよい。
[2−2.通信制御装置の構成例]
本項では、上述した制御エンティティが配置される通信制御装置100の構成例について説明する。図7は、一実施形態に係る通信制御装置100の構成の一例を示すブロック図である。図7を参照すると、通信制御装置100は、通信部110、記憶部120及び制御部130を備える。
(1)通信部
通信部110は、通信制御装置100による他のノードとの間の通信のための通信モジュールである。通信部110は、アンテナ及びRF(Radio Frequency)回路を含む無線通信モジュールを含んでもよく、又はLAN(Local Area Network)接続端子などの有線通信モジュールを含んでもよい。
(2)記憶部
記憶部120は、ハードディスク又は半導体メモリなどの記憶媒体を用いて、通信制御装置100の動作のためのプログラム及びデータを記憶する。例えば、記憶部120は、後述する情報取得部132が様々なデータベース、管理ノード及びマスタ端末から取得する情報を記憶する。
(3)制御部
制御部130は、CPU(Central Processing Unit)又はDSP(Digital Signal Processor)などのプロセッサに相当する。制御部130は、記憶部120又は他の記憶媒体に記憶されるプログラムを実行することにより、制御エンティティを動作させる。本実施形態において、制御部130は、情報取得部132及び干渉制御部134を含む。
(4)情報取得部
情報取得部132は、後述する干渉制御部134によって保護比率の計算のために使用される情報を取得する。例えば、情報取得部132は、与干渉側の周波数チャネルのチャネル配置情報を、与干渉側の周波数チャネルを管理するGLDBから直接的に又はAGLEを介して取得する。また、情報取得部132は、被干渉側の周波数チャネルについてのチャネル配置情報を、被干渉側の周波数チャネルを管理するGLDBから直接的に又はAGLEを介して取得する。これらGLDBは、異なる周波数管理主体により運営されるデータベースであり得る。従って、与干渉側の周波数チャネル及び被干渉側の周波数チャネルの組合せは、必ずしも1つの周波数分割スキームに従って分割された周波数チャネルの組合せではない。よって、これら周波数チャネルの間に、重複部分が存在し得る。チャネル配置情報は、典型的には、各周波数チャネルの帯域幅及び中心周波数の少なくとも一方を決定するためのパラメータを含む。チャネル配置情報に含まれるパラメータは、帯域幅及び中心周波数そのものを示してもよく、又は帯域の下端周波数と上端周波数とを示してもよい。また、チャネル配置情報は、周波数分割スキームの識別子とチャネル番号とを示してもよい。
さらに、情報取得部132は、干渉信号を送信する装置(例えば、WSD)の送信特性を示す与干渉側デバイス情報を取得する。与干渉側デバイス情報は、少なくともACLRを示す。また、情報取得部132は、所望信号を受信する装置(例えば、一次システム端末)の受信特性を示す被干渉側デバイス情報を取得する。被干渉側デバイス情報は、少なくともACSを示す。また、情報取得部132は、被干渉側のGLDBから、同一チャネルの干渉について予め定義される保護比率を取得する。そして、情報取得部132は、取得したこれら情報を干渉制御部134へ出力する。
(5)干渉制御部
干渉制御部134は、情報取得部132から入力されるチャネル配置情報に基づいて、与干渉側の周波数チャネルと被干渉側の周波数チャネルとの間の周波数軸上の重複を判定する。これら周波数チャネル間の重複は、図4A〜図4Eを用いて説明した重複関係のいずれかに該当し得る。そして、干渉制御部134は、判定した重複に応じて、被干渉側の周波数チャネルを干渉から保護するための保護比率を計算する。より具体的には、干渉制御部134は、例えば、判定した重複に応じて、保護比率計算式(5)の対数項に含まれる重みw、w及びwを決定する。また、干渉制御部134は、干渉マージンIMを決定する。そして、干渉制御部134は、同一チャネルの干渉についての保護比率PRCo、重みw、w及びw、与干渉側デバイス情報により示されるALCR、被干渉側デバイス情報により示されるACS、並びに干渉マージンIMを式(5)に代入することにより、保護比率PRadjを計算し得る。干渉制御部134は、考慮すべき周波数チャネルがいくつの又はどのデータベースによって管理されるかに依存して異なる干渉マージンIMを、保護比率PRadjの計算に算入してもよい。また、干渉制御部134は、複数の干渉信号が存在する場合には、当該複数の干渉信号の各々について式(5)に従って個別の保護比率を計算し、さらに式(6)に従って統合保護比率を計算してもよい。
図6Aの例のように制御エンティティがGLDB及びAGLEとは別のノード上に配置される場合、干渉制御部134は、GLDB又はAGLEからの要求に応じて二次システムについて保護比率を計算し、計算結果を送り返す。そして、GLDB又はAGLEにより、計算された保護比率に違反しない範囲内で二次システムに送信電力が割り当てられる。一方、図6B又は図6Cの例ように制御エンティティがGLDB又はAGLEと同じノード上に配置される場合、干渉制御部134は、二次システムについて保護比率を計算し、さらに計算した保護比率に違反しない範囲内で二次システムに送信電力を割り当てる。マスタ端末は、このように割り当てられた送信電力の値を受信し、受信した値を上回らない送信電力を使用して二次システムを運用する。
[2−3.マスタ端末の構成例]
図8は、通信制御装置100により計算される保護比率に違反しない送信電力を用いて無線通信を行うマスタ端末200の構成の一例を示すブロック図である。図8を参照するとマスタ端末200は、無線通信部210、ネットワーク通信部220、記憶部230及び制御部240を備える。
(1)無線通信部
無線通信部210は、二次システムに接続するスレーブ端末との間で無線信号を送受信するための無線通信モジュールである。無線通信部210は、アンテナ及びRF回路を含む。無線通信部210から送信される無線信号の送信電力は、一次システムに与える干渉が許容される範囲内に抑制されるように、通信制御装置100により計算される保護比率を用いて制御され得る。
(2)ネットワーク通信部
ネットワーク通信部220は、マスタ端末200とGLDB、AGLE又は通信制御装置100との間の通信のための通信モジュールである。ネットワーク通信部220は、無線通信部210と共通化され得る無線通信モジュールを含んでもよく、又はLAN接続端子などの有線通信モジュールを含んでもよい。
(3)記憶部
記憶部230は、ハードディスク又は半導体メモリなどの記憶媒体を用いて、マスタ端末200の動作のためのプログラム及びデータを記憶する。例えば、記憶部230は、GLDB、AGLE又は通信制御装置100からシグナリングされる送信電力値及びその他の制御情報を記憶し得る。
(4)制御部
制御部240は、CPU又はDSPなどのプロセッサに相当する。制御部240は、記憶部230又は他の記憶媒体に記憶されるプログラムを実行することにより、マスタ端末200の様々な機能を動作させる。本実施形態において、制御部240は、設定部242及び通信制御部244を有する。
(5)設定部
設定部242は、ネットワーク通信部220により受信される制御情報に従って、スレーブ端末との間の無線通信のための通信パラメータを設定する。例えば、設定部242は、制御情報において指定されるチャネルを、二次システムにおいて利用すべき周波数チャネルとして設定する。また、設定部242は、GLDB、AGLE又は通信制御装置100からシグナリングされる送信電力値を、二次システムの最大送信電力の値として設定する。
(6)通信制御部
通信制御部244は、二次システムの運用を制御する。例えば、通信制御部244は、二次システムの運用を開始する際、ネットワーク通信部220を介して、GLDB、AGLE又は通信制御装置100へ電力割当て要求を送信する。電力割当て要求には、マスタ端末200のデバイスID及び位置情報に加えて、マスタ端末200の無線信号の送信特性を示すデバイス情報が含まれ得る。なお、デバイス情報は、電力割当て要求とは別に送信されてもよい。また、デバイス情報は、予めいずれかのデータベースに登録されていてもよい。デバイス情報は、通信制御装置100によって、保護比率の計算のために上述した与干渉側デバイス情報として使用され得る。電力割当て要求に応じて二次システムのための周波数チャネル及び送信電力が割り当てられると、通信制御部244は、割り当てられた周波数チャネル及び送信電力を設定部242に設定させる。それにより、二次システムの運用が可能となる。そして、例えば、通信制御部244は、設定された周波数チャネル上の通信リソースを各スレーブ端末に割当て、スケジューリング情報をスレーブ端末へ配信する。また、通信制御部244は、スケジューリング情報に従って、無線通信部210によりアップリンク信号を受信させ及びダウンリンク信号を送信させる。通信制御部244は、これら無線信号の送信電力が設定部242により設定された最大送信電力を上回らないように、送信電力を制御する。
なお、ここでは二次システム内の通信をマスタ端末200がスケジューリングする例について説明した。しかしながら、本開示に係る技術は、かかる例に限定されない。例えば、二次システムは、衝突回避方式で運用されてもよい。
[2−4.処理の流れ]
図9は、本実施形態に係る通信制御処理の流れの一例を示すシーケンス図である。一例として、図9のシーケンス図には、GLDB12a、AGLE13a、通信制御装置(CE)100、マスタ端末(WSD)200、GLDB13b及びAGLE13bが関与する。ここでは、マスタ端末200が二次システムの運用を開始しようとしており、AGLE13aがマスタ端末200に送信電力を割り当てるものとする。
まず、GLDB12a及びAGLE13aは、周期的に又は所定のトリガに従って、情報を交換する。同様に、GLDB12b及びAGLE13bは、周期的に又は所定のトリガに従って、情報を交換する(ステップS100)。ここで交換される情報は、例えば、同期情報(NTP情報、時刻補正情報など)、ID情報、領域情報(管理領域の境界位置、及び地形情報など)、セキュリティ情報(相互認証のためのセキュリティキーなど)、シグナリング制御情報(情報更新周期、情報有効期間、バックアップ関連情報など)、及び二次システム制御情報(二次利用可能な周波数チャネルのリスト、許容干渉レベル、同一チャネルの干渉についての保護比率、並びに一次システムのチャネル配置情報及び受信特性など)が含まれ得る。
また、通信制御装置100及びAGLE13aは、周期的に又は所定のトリガに従って、情報を交換する。同様に、通信制御装置100及びAGLE13bは、周期的に又は所定のトリガに従って、情報を交換する(ステップS105)。ここで交換される情報は、例えば、同期情報、ID情報、領域情報、セキュリティ情報、シグナリング制御情報、及び二次システム制御情報が含まれ得る。
マスタ端末200は、GLDB12a及びAGLE13aにより管理される領域に位置する場合、二次システムの運用を開始するために、AGLE13aへ電力割当て要求を送信する(ステップS110)。マスタ端末200は、さらにデバイス情報及びシステム要件情報をAGLE13aへ送信する。ここで送信されるデバイス情報は、マスタ端末200のデバイスID、証明(certification)ID、位置情報、アンテナ情報(ゲイン、高さなど)、特性情報(送信特性、受信特性など)、ケイパビリティ情報(無線アクセス技術(RAT)、収容可能スレーブ端末数、サポートされるチャネル、出力可能電力など)及びバッテリー情報を含み得る。システム要件情報は、マスタ端末200が運用することを希望する二次システムの要件を特定する情報であって、例えば所望帯域幅、利用時間帯、所望品質レベルなどを含み得る。
AGLE13aは、マスタ端末200から電力割当て要求が受信されると、二次利用可能な周波数チャネルのうちの1つ以上をマスタ端末200に割当てると共に、マスタ端末200が希望する要件を満たす送信電力の値を暫定的に計算する(ステップS115)。ここで、割当ての有効期間が設定されてもよい。さらに、AGLE13aは、マスタ端末200の位置と暫定的な送信電力値とに基づいて二次システムのカバレッジが管理領域の境界をまたがると判定される場合、通信制御装置100へ制御要求を送信する(ステップS120)。AGLE13aは、制御要求と共に、二次システムの(与干渉側の)チャネル配置情報及び暫定的な送信電力値を通信制御装置100へ提供してもよい。なお、管理領域の境界の近傍での使用のために専用の周波数チャネルが予め定義される場合には、二次システムが利用すべきチャネルとして当該専用の周波数チャネルが使用されてもよい。
通信制御装置100は、AGLE13aから制御要求が受信されると、与干渉側の周波数チャネルと被干渉側の周波数チャネルとの間の周波数軸上の重複を判定し、判定した重複に応じて一次システムを干渉から保護するための保護比率を計算する(ステップS125)。なお、二次システムのカバレッジが境界をまたがるかの判定は、通信制御装置100により実行されてもよい。通信制御装置100は、保護比率の計算において考慮される周波数チャネルがいくつの又はどのデータベースによって管理されるかに依存して異なる干渉マージンを、保護比率の計算に算入してもよい。そして、通信制御装置100は、保護比率の計算結果をAGLE13aへ通知する(ステップS130)。
AGLE13aは、通信制御装置100から保護比率の計算結果が通知されると、通知された保護比率に違反しない範囲内で二次システムに送信電力を割り当てる(ステップS135)。そして、AGLE13aは、二次システムが利用すべき周波数チャネルと割当てた送信電力の値とをマスタ端末へ指示する(ステップS140)。
マスタ端末200は、AGLE13aから指示される周波数チャネル上で、割り当てられた電力値を上回らない範囲内の送信電力を用いて、二次システムの運用を開始する(ステップS150)。
なお、図9に示した処理の流れは一例に過ぎない。例えば、AGLE13aと同じノード上に制御エンティティが配置される場合には、AGLE13aと通信制御装置100との間のシグナリングは省略され得る。同様に、GLDB12aと同じノード上に制御エンティティが配置される場合には、GLDB12aと通信制御装置100との間のシグナリングは省略され得る。異なるノード上にそれぞれ制御エンティティが配置される場合には、それら制御エンティティが協調して保護比率を計算してもよい。また、複数の制御エンティティ間で負荷分散又は処理の委任などが行われてもよい。
<3.応用例>
[3−1.制御エンティティの配置]
ここまで、主にTVホワイトスペースの文脈での実施形態について説明した。しかしながら、本開示に係る技術は、かかる例に限定されない。例えば、3GPPリリース12以降の第5世代(5G)無線通信方式の検討において、通信キャパシティを向上させるために、マクロセルとスモールセルとを互いに重複させることが提案されている(NTT DOCOMO, INC., “Requirements, Candidate Solutions & Technology Roadmap for LTE Rel-12 Onward”, 3GPP Workshop on Release 12 and onwards,Ljubljana, Slovenia, June 11-12, 2012)。本開示に係る技術は、このようにマクロセルのために保護される周波数帯域をスモールセルが二次利用する際のスモールセルへの送信電力の割当てにも適用可能である。また、本開示に係る技術は、インフラシェアリングを前提としたLSAにも適用可能である。また、本開示に係る技術は、MVNO(Mobile Virtual Network Operator)により運用されるシステムとMNO(Mobile Network Operator)により運用されるシステムとの間の干渉制御にも適用可能である。どのシステム又はセルを与干渉側とし、どのシステム又はセルを被干渉として扱うかは、通信リンクごとの優先度に従って決定されてもよい。優先度は、QoS要件によって特定され、又は予め定義され得る。
図10Aは、マクロセルの周波数チャネルとスモールセルの周波数チャネルとの間の重複関係の第1の例を示す説明図である。スモールセルの周波数チャネルは、中心周波数Fscと帯域幅Wscとを有する。マクロセルの周波数チャネルは、中心周波数Fmcと帯域幅Wmcとを有する。第1の例において、スモールセルの周波数チャネルとマクロセルの周波数チャネルとは、部分的に重複する。この場合、図4Cを用いて説明したケースと同様にして計算される保護比率を用いて、スモールセルの最大送信電力を決定することが有益である。
図10Bは、マクロセルの周波数チャネルとスモールセルの周波数チャネルとの間の重複関係の第2の例を示す説明図である。第2の例において、スモールセルの周波数チャネルはマクロセルの周波数チャネルにより包含される。この場合、図4Dを用いて説明したケースと同様にして計算される保護比率を用いて、スモールセルの最大送信電力を決定することが有益である。
図10Cは、マクロセルの周波数チャネルとスモールセルの周波数チャネルとの間の重複関係の第3の例を示す説明図である。第3の例において、スモールセルの周波数チャネルはマクロセルの周波数チャネルを包含する。この場合、図4Bを用いて説明したケースと同様にして計算される保護比率を用いて、スモールセルの最大送信電力を決定することが有益である。
図11は、複数のスモールセルが存在する状況の一例を示している。図11の例において、マクロセルの周波数チャネルCHmcは、中心周波数Fmcと帯域幅Wmcとを有する。これに対して、マクロセルに干渉を与え得る3つのスモールセルが、それぞれ周波数チャネルCHsc1、CHsc2及びCHsc3上で運用される。周波数チャネルCHsc1は、中心周波数Fsc1と帯域幅Wsc1とを有する。周波数チャネルCHsc2は、中心周波数Fsc2と帯域幅Wsc2とを有する。周波数チャネルCHsc3は、中心周波数Fsc3と帯域幅Wsc3とを有する。これらスモールセルの周波数チャネルについて暫定的に計算される個別保護比率を上記式(6)に代入することにより、マクロセルを干渉から保護するための統合保護比率が計算されてもよい。
図12A〜図12Eは、スモールセルとマクロセルとの間の干渉制御のために上述した制御エンティティが導入される場合の制御エンティティの配置のいくつかの例を示している。ここでは、一例として、マクロセルがLTE(Long Term Evolution)ベースのセルラ通信方式に従って運用され、マクロセル基地局はEPC(Evolved Packet Core)として実装されるコアネットワークに接続されるものとする。図中の各ノードは、それぞれ次のような役割を有する。なお、ここでは代表的なノードのみを示しているが、他の種類のノードもまた無線通信システムに含まれ得る。
・HSS(Home Subscriber Server):加入者の識別情報、プロフィール情報及び認証情報などを管理するサーバである。
・MME(Mobility Management Entity):UEとの間でNAS(Non Access Stratum)信号を送受信し、モビリティ管理、セッション管理及びページングなどを行うエンティティである。複数のeNBと接続される。
・P−GW(PDN-Gateway):EPCとPDNとの間の接続点に位置し、UEへのIPアドレスの割当て、IPヘッダの付与及び削除などを行うゲートウェイである。
・S−GW(Serving-Gateway):E−UTRANとEPCとの間の接続点に位置し、ユーザプレーンのパケットをルーティングするゲートウェイである。
・eNB(evolved Node B):マクロセル内の無線リンクを実現する基地局である。無線リソース管理(RRM:Radio Resource Management)、無線ベアラ制御及びスケジューリングなどを行う。
・SBS(Small-cell Base Station):スモールセルを運用する基地局である。
・CE(Control Entity):マクロセルを干渉から保護するために保護比率を計算するエンティティである。ここでは、計算した保護比率に基づくスモールセルへの送信電力の割当ても行う。
図12Aの例において、制御エンティティは、コアネットワークN1内の新たな制御ノードとして配置されている。この場合、制御エンティティとスモールセル基地局との間のシグナリングは、インターネットなどの外部ネットワークN2を介して行われてもよく、マクロセル基地局(eNB)を介して行われてもよい。図12Bの例において、制御エンティティは、コアネットワークN1内の制御ノード(例えば、MME)上の新たな機能として配置されている。図12Cの例において、制御エンティティは、マクロセルの基地局(eNB)上の新たな機能として配置されている。この場合、制御エンティティとスモールセル基地局との間のシグナリングは、コアネットワークN1及び外部ネットワークN2を介して行われてもよく、又は基地局間のX2インタフェース上で行われてもよい。図12Dの例において、制御エンティティは、スモールセル基地局上の新たな機能として配置されている。この場合、制御エンティティと他のスモールセル基地局との間のシグナリングは、無線アクセスネットワークN3、コアネットワークN1及び外部ネットワークN2を介して行われてもよく、又はスモールセル基地局間のX2インタフェース上で行われてもよい。図12Eの例において、制御エンティティは、外部ネットワークN2内の新たなサーバ装置として配置されている。この場合、制御エンティティとスモールセル基地局との間のシグナリングは、外部ネットワークN2を介して行われてもよく、又はコアネットワークN1を介して行われてもよい。
[3−2.様々な製品への応用]
本開示に係る技術は、様々な製品へ応用可能である。例えば、通信制御装置100は、タワーサーバ、ラックサーバ、又はブレードサーバなどのいずれかの種類のサーバとして実現されてもよい。また、通信制御装置100は、サーバに搭載される制御モジュール(例えば、1つのダイで構成される集積回路モジュール、又はブレードサーバのスロットに挿入されるカード若しくはブレード)であってもよい。
また、例えば、制御エンティティは、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)上に実装されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、制御エンティティは、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局上に実装されてもよい。eNBは、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。
また、例えば、マスタ端末200は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末、携帯型/ドングル型のモバイルルータ若しくはデジタルカメラなどのモバイル端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、マスタ端末200は、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、これら端末に搭載される無線通信モジュール(例えば、1つのダイで構成される集積回路モジュール)が提供されてもよい。
(1)制御ノードに関する応用例
図13は、本開示に係る技術が適用され得るサーバ700の概略的な構成の一例を示すブロック図である。サーバ700は、プロセッサ701、メモリ702、ストレージ703、ネットワークインタフェース704及びバス706を備える。
プロセッサ701は、例えばCPU(Central Processing Unit)又はDSP(Digital Signal Processor)であってよく、サーバ700の各種機能を制御する。メモリ702は、RAM(Random Access Memory)及びROM(Read Only Memory)を含み、プロセッサ701により実行されるプログラム及びデータを記憶する。ストレージ703は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。
ネットワークインタフェース704は、サーバ700を有線通信ネットワーク705に接続するための有線通信インタフェースである。有線通信ネットワーク705は、EPC(Evolved Packet Core)などのコアネットワークであってもよく、又はインターネットなどのPDN(Packet Data Network)であってもよい。
バス706は、プロセッサ701、メモリ702、ストレージ703及びネットワークインタフェース704を互いに接続する。バス706は、速度の異なる2つ以上のバス(例えば、高速バス及び低速バス)を含んでもよい。
図13に示したサーバ700において、図7を用いて説明した情報取得部132及び干渉制御部134は、プロセッサ701において実装されてもよい。例えば、サーバ700が上述した仕組みに従って保護比率を計算することにより、周波数チャネルが部分的に重複する状況においても被干渉側の周波数チャネルを干渉から適切に保護することができる。
(2)基地局に関する応用例
図14は、本開示に係る技術が適用され得るeNBの概略的な構成の一例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。eNB800は、図14に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図14にはeNB800が複数のアンテナ810を有する例を示したが、eNB800は単一のアンテナ810を有してもよい。
基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。
コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。
ネットワークインタフェース823は、基地局装置820をコアネットワーク824に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、コアネットワークノード又は他のeNBと通信してもよい。その場合に、eNB800と、コアネットワークノード又は他のeNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース823は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース823が無線通信インタフェースである場合、ネットワークインタフェース823は、無線通信インタフェース825により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。
無線通信インタフェース825は、LTE(Long Term Evolution)又はLTE−Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、eNB800のセル内に位置する端末に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。
無線通信インタフェース825は、図14に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図14に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図14には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。
図14に示したeNB800において、図7を用いて説明した情報取得部132及び干渉制御部134は、例えばコントローラ821において実装されてもよい。例えば、eNB800が上述した仕組みに従って保護比率を計算することにより、周波数チャネルが部分的に重複する状況においても被干渉側の周波数チャネルを干渉から適切に保護することができる。
(3)端末装置に関する第1の応用例
図15は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
プロセッサ901は、例えばCPU又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM及びROMを含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。
カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。
無線通信インタフェース912は、LTE又はLTE−Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース912は、典型的には、BBプロセッサ913及びRF回路914などを含み得る。BBプロセッサ913は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路914は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ916を介して無線信号を送受信する。無線通信インタフェース912は、BBプロセッサ913及びRF回路914を集積したワンチップのモジュールであってもよい。無線通信インタフェース912は、図15に示したように複数のBBプロセッサ913及び複数のRF回路914を含んでもよい。なお、図15には無線通信インタフェース912が複数のBBプロセッサ913及び複数のRF回路914を含む例を示したが、無線通信インタフェース912は単一のBBプロセッサ913又は単一のRF回路914を含んでもよい。
さらに、無線通信インタフェース912は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN(Local Area Network)方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ913及びRF回路914を含んでもよい。
アンテナスイッチ915の各々は、無線通信インタフェース912に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ916の接続先を切り替える。
アンテナ916の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース912による無線信号の送受信のために使用される。スマートフォン900は、図15に示したように複数のアンテナ916を有してもよい。なお、図15にはスマートフォン900が複数のアンテナ916を有する例を示したが、スマートフォン900は単一のアンテナ916を有してもよい。
さらに、スマートフォン900は、無線通信方式ごとにアンテナ916を備えてもよい。その場合に、アンテナスイッチ915は、スマートフォン900の構成から省略されてもよい。
バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図15に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。
図15に示したスマートフォン900において、図8を用いて説明した設定部242及び通信制御部244は、無線通信インタフェース912において実装されてもよい。また、これら機能の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。例えば、スマートフォン900が上述した制御エンティティにより計算される保護比率に違反しない送信電力を使用することにより、被干渉側の周波数チャネルを干渉から適切に保護することができる。
(4)端末装置に関する第2の応用例
図16は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。
GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。
コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。
無線通信インタフェース933は、LTE又はLTE−Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース933は、典型的には、BBプロセッサ934及びRF回路935などを含み得る。BBプロセッサ934は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路935は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ937を介して無線信号を送受信する。無線通信インタフェース933は、BBプロセッサ934及びRF回路935を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、図16に示したように複数のBBプロセッサ934及び複数のRF回路935を含んでもよい。なお、図16には無線通信インタフェース933が複数のBBプロセッサ934及び複数のRF回路935を含む例を示したが、無線通信インタフェース933は単一のBBプロセッサ934又は単一のRF回路935を含んでもよい。
さらに、無線通信インタフェース933は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ934及びRF回路935を含んでもよい。
アンテナスイッチ936の各々は、無線通信インタフェース933に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ937の接続先を切り替える。
アンテナ937の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース933による無線信号の送受信のために使用される。カーナビゲーション装置920は、図16に示したように複数のアンテナ937を有してもよい。なお、図16にはカーナビゲーション装置920が複数のアンテナ937を有する例を示したが、カーナビゲーション装置920は単一のアンテナ937を有してもよい。
さらに、カーナビゲーション装置920は、無線通信方式ごとにアンテナ937を備えてもよい。その場合に、アンテナスイッチ936は、カーナビゲーション装置920の構成から省略されてもよい。
バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図16に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。
図16に示したカーナビゲーション装置920において、図8を用いて説明した設定部242及び通信制御部244は、無線通信インタフェース933において実装されてもよい。また、これら機能の少なくとも一部は、プロセッサ921において実装されてもよい。例えば、カーナビゲーション装置920が上述した制御エンティティにより計算される保護比率に違反しない送信電力を使用することにより、被干渉側の周波数チャネルを干渉から適切に保護することができる。
また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。
<4.まとめ>
ここまで、図2〜図16を用いて、本開示に係る技術のいくつかの実施形態について詳細に説明した。上述した実施形態によれば、干渉信号が送信される周波数チャネルと所望信号が送信される周波数チャネルとが部分的に重複し得る場合に、それら周波数チャネルが周波数軸上でどの程度重複するかに基づいて、被干渉側の周波数チャネルを干渉から保護するための保護比率が計算される。従って、既存の手法が対処し得なかった干渉のケースにおいて干渉信号の電力をより適切に制御することが可能となる。
また、上述した実施形態によれば、周波数チャネル間の重複は、与干渉側の周波数チャネル及び被干渉側の周波数チャネルの帯域幅及び中心周波数から判定される。そして、周波数チャネル間の重複に応じて、保護比率の計算式に含まれる重みが決定される。従って、異なる周波数分割スキームに従って分割される周波数チャネルの様々な組合せについて、保護比率を柔軟に変化させることができる。それにより、例えば周波数管理主体の異なる国又は地域の境界付近での二次システムへの送信電力の割当てを最適化することが可能となる。また、マクロセルとスモールセルとが併存するような無線通信環境において、マクロセルを適切に保護しつつスモールセルに柔軟に周波数チャネルを割り当てることが可能となる。
また、上述した実施形態によれば、保護比率は、同一チャネルの干渉に対応する成分、干渉信号を送信する装置の送信特性に対応する成分、及び所望信号を受信する装置の受信特性に対応する成分を含み、これら成分の間の重みが周波数チャネル間の重複に応じて調整される。例えば、保護比率の計算にあたって、与干渉側の帯域幅が優勢である場合には与干渉側の送信特性の寄与がより大きくなるような、又は被干渉側の帯域幅が優勢である場合には被干渉側の受信特性の寄与がより大きくなるような調整がなされ得る。従って、TVホワイトスペースの二次利用、ヘテロジーニアスネットワーク、インフラシェアリング、及びMNOとMVNNOとの共存などの様々なシナリオにおいて、各シナリオに関与するデバイスの特性とチャネルの配置とを保護比率の計算に反映させることができる。
また、上述した実施形態によれば、複数の干渉信号が存在する場合には、当該複数の干渉信号の各々について計算される個別の保護比率から統合保護比率が計算され得る。従って、与干渉側と被干渉側とが1対1の関係に無いケースにも本開示に係る技術を適用することができる。また、周波数ホッピング技術が利用されるケースにも本開示に係る技術を適用することができる。
また、上述した実施形態によれば、保護比率の計算において考慮される周波数チャネルがいくつの又はどのデータベースによって管理されるかに依存して決定される干渉マージンが、保護比率の計算に算入される。従って、例えば周波数管理主体の管理領域が複雑に入り組んでいるような地域においては干渉マージンをより大きくすることにより有害な干渉を確実に回避する一方、そうでない地域においては干渉マージンを抑制することにより二次システムのキャパシティを積極的に高めることができる。
なお、本明細書において説明した各装置による一連の制御処理は、ソフトウェア、ハードウェア、及びソフトウェアとハードウェアとの組合せのいずれを用いて実現されてもよい。ソフトウェアを構成するプログラムは、例えば、各装置の内部又は外部に設けられる記憶媒体(非一時的な媒体:non-transitory media)に予め格納される。そして、各プログラムは、例えば、実行時にRAM(Random Access Memory)に読み込まれ、CPUなどのプロセッサにより実行される。
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
なお、以下のような構成も本開示の技術的範囲に属する。
(1)
部分的に重複し得る周波数チャネルの組合せである第1の周波数チャネル及び第2の周波数チャネルであって、干渉信号が送信される前記第1の周波数チャネル及び前記干渉信号から干渉される所望信号が送信される前記第2の周波数チャネルについてのチャネル配置情報を取得する情報取得部と、
前記チャネル配置情報に基づいて前記第1の周波数チャネルと前記第2の周波数チャネルとの間の周波数軸上の重複を判定し、判定した前記重複に応じて前記第2の周波数チャネルを干渉から保護するための保護比率を計算する干渉制御部と、
を備える通信制御装置。
(2)
前記チャネル配置情報は、各周波数チャネルの帯域幅及び中心周波数の少なくとも一方を決定するためのパラメータを含む、前記(1)に記載の通信制御装置。
(3)
前記保護比率は、同一チャネルの干渉に対応する第1項、前記干渉信号を送信する装置の送信特性に対応する第2項、及び前記所望信号を受信する装置の受信特性に対応する第3項を含む計算式を用いて計算され、
前記第1項、前記第2項及び前記第3項の重みが前記第1の周波数チャネルと前記第2の周波数チャネルとの間の前記重複に応じて決定される、
前記(1)又は前記(2)に記載の通信制御装置。
(4)
前記干渉制御部は、前記第1の周波数チャネルと前記第2の周波数チャネルとが重複する部分の第1の帯域幅、前記第2の周波数チャネルの帯域幅から前記第1の帯域幅を除いた第2の帯域幅、及び前記第1の周波数チャネルの帯域幅から前記第1の帯域幅を除いた第3の帯域幅に基づいて、前記第1項、前記第2項及び前記第3項の重みを決定する、前記(3)に記載の通信制御装置。
(5)
前記計算式は、次のように表現され、
Figure 2014129035
ここで、PRadjは計算すべき前記保護比率、PRcoは同一チャネル上の送信について定義される保護比率、ACLRは前記送信特性、ACSは前記受信特性、IMはゼロ又は非ゼロの干渉マージンを表し、w、w及びwはそれぞれ前記第1項、前記第2項及び前記第3項の前記重みを表す、前記(4)に記載の通信制御装置。
(6)
前記干渉制御部は、前記所望信号に干渉する複数の干渉信号が存在する場合には、当該複数の干渉信号の各々について前記重複に応じて個別の保護比率を計算し、計算した個別の保護比率を統合することにより統合保護比率を計算する、前記(1)〜(5)のいずれか1項に記載の通信制御装置。
(7)
前記干渉制御部は、前記保護比率の計算において考慮される周波数チャネルがいくつの又はどのデータベースによって管理されるかに依存して決定される干渉マージンを、前記保護比率の計算に算入する、前記(1)〜(6)のいずれか1項に記載の通信制御装置。
(8)
前記情報取得部は、前記第1の周波数チャネルについての前記チャネル配置情報を第1のデータベースから取得し、前記第2の周波数チャネルについての前記チャネル配置情報を前記第1のデータベースとは異なる周波数管理主体により運営される第2のデータベースから取得する、前記(1)〜(7)のいずれか1項に記載の通信制御装置。
(9)
前記第1の周波数チャネルは、前記干渉信号を送信するスモールセルに割当てられ、
前記第2の周波数チャネルは、前記所望信号を送信するマクロセルに割当てられる、
前記(1)〜(7)のいずれか1項に記載の通信制御装置。
(10)
前記複数の干渉信号は、互いに異なる周波数チャネルを割り当てられた複数の装置からそれぞれ送信される複数の無線信号である、前記(6)に記載の通信制御装置。
(11)
前記複数の干渉信号は、単一の装置から周波数ホッピング技術を用いて送信される複数の無線信号である、前記(6)に記載の通信制御装置。
(12)
通信制御装置により実行される通信制御方法において、
部分的に重複し得る周波数チャネルの組合せである第1の周波数チャネル及び第2の周波数チャネルであって、干渉信号が送信される前記第1の周波数チャネル及び前記干渉信号から干渉される所望信号が送信される前記第2の周波数チャネルについてのチャネル配置情報を取得することと、
前記チャネル配置情報に基づいて前記第1の周波数チャネルと前記第2の周波数チャネルとの間の周波数軸上の重複を判定することと、
判定した前記重複に応じて、前記第2の周波数チャネルを干渉から保護するための保護比率を計算することと、
を含む通信制御方法。
(13)
部分的に重複し得る周波数チャネルの組合せである第1の周波数チャネル及び第2の周波数チャネルであって、干渉信号が送信される前記第1の周波数チャネル及び前記干渉信号から干渉される所望信号が送信される前記第2の周波数チャネルについてのチャネル配置情報に基づいて判定される前記第1の周波数チャネルと前記第2の周波数チャネルとの間の周波数軸上の重複に応じて前記第2の周波数チャネルを干渉から保護するための保護比率を計算する通信制御装置と通信する通信部と、
自装置の無線信号の送信特性を示す情報を前記通信部を介して前記通信制御装置へ送信し、前記通信制御装置により前記送信特性を用いて計算される前記保護比率に違反しない送信電力を用いて、前記第1の周波数チャネル上で無線通信を行う通信制御部と、
を備える無線通信装置。
100 通信制御装置
110 通信部
120 記憶部
132 情報取得部
134 干渉制御部
200 無線通信装置(マスタ端末)
210 無線通信部
220 ネットワーク通信部
230 記憶部
242 設定部
244 通信制御部

Claims (13)

  1. 部分的に重複し得る周波数チャネルの組合せである第1の周波数チャネル及び第2の周波数チャネルであって、干渉信号が送信される前記第1の周波数チャネル及び前記干渉信号から干渉される所望信号が送信される前記第2の周波数チャネルについてのチャネル配置情報を取得する情報取得部と、
    前記チャネル配置情報に基づいて前記第1の周波数チャネルと前記第2の周波数チャネルとの間の周波数軸上の重複を判定し、判定した前記重複に応じて前記第2の周波数チャネルを干渉から保護するための保護比率を計算する干渉制御部と、
    を備える通信制御装置。
  2. 前記チャネル配置情報は、各周波数チャネルの帯域幅及び中心周波数の少なくとも一方を決定するためのパラメータを含む、請求項1に記載の通信制御装置。
  3. 前記保護比率は、同一チャネルの干渉に対応する第1項、前記干渉信号を送信する装置の送信特性に対応する第2項、及び前記所望信号を受信する装置の受信特性に対応する第3項を含む計算式を用いて計算され、
    前記第1項、前記第2項及び前記第3項の重みが前記第1の周波数チャネルと前記第2の周波数チャネルとの間の前記重複に応じて決定される、
    請求項1に記載の通信制御装置。
  4. 前記干渉制御部は、前記第1の周波数チャネルと前記第2の周波数チャネルとが重複する部分の第1の帯域幅、前記第2の周波数チャネルの帯域幅から前記第1の帯域幅を除いた第2の帯域幅、及び前記第1の周波数チャネルの帯域幅から前記第1の帯域幅を除いた第3の帯域幅に基づいて、前記第1項、前記第2項及び前記第3項の重みを決定する、請求項3に記載の通信制御装置。
  5. 前記計算式は、次のように表現され、
    Figure 2014129035
    ここで、PRadjは計算すべき前記保護比率、PRcoは同一チャネル上の送信について定義される保護比率、ACLRは前記送信特性、ACSは前記受信特性、IMはゼロ又は非ゼロの干渉マージンを表し、w、w及びwはそれぞれ前記第1項、前記第2項及び前記第3項の前記重みを表す、請求項4に記載の通信制御装置。
  6. 前記干渉制御部は、前記所望信号に干渉する複数の干渉信号が存在する場合には、当該複数の干渉信号の各々について前記重複に応じて個別の保護比率を計算し、計算した個別の保護比率を統合することにより統合保護比率を計算する、請求項1に記載の通信制御装置。
  7. 前記干渉制御部は、前記保護比率の計算において考慮される周波数チャネルがいくつの又はどのデータベースによって管理されるかに依存して決定される干渉マージンを、前記保護比率の計算に算入する、請求項1に記載の通信制御装置。
  8. 前記情報取得部は、前記第1の周波数チャネルについての前記チャネル配置情報を第1のデータベースから取得し、前記第2の周波数チャネルについての前記チャネル配置情報を前記第1のデータベースとは異なる周波数管理主体により運営される第2のデータベースから取得する、請求項1に記載の通信制御装置。
  9. 前記第1の周波数チャネルは、前記干渉信号を送信するスモールセルに割当てられ、
    前記第2の周波数チャネルは、前記所望信号を送信するマクロセルに割当てられる、
    請求項1に記載の通信制御装置。
  10. 前記複数の干渉信号は、互いに異なる周波数チャネルを割り当てられた複数の装置からそれぞれ送信される複数の無線信号である、請求項6に記載の通信制御装置。
  11. 前記複数の干渉信号は、単一の装置から周波数ホッピング技術を用いて送信される複数の無線信号である、請求項6に記載の通信制御装置。
  12. 通信制御装置により実行される通信制御方法において、
    部分的に重複し得る周波数チャネルの組合せである第1の周波数チャネル及び第2の周波数チャネルであって、干渉信号が送信される前記第1の周波数チャネル及び前記干渉信号から干渉される所望信号が送信される前記第2の周波数チャネルについてのチャネル配置情報を取得することと、
    前記チャネル配置情報に基づいて前記第1の周波数チャネルと前記第2の周波数チャネルとの間の周波数軸上の重複を判定することと、
    判定した前記重複に応じて、前記第2の周波数チャネルを干渉から保護するための保護比率を計算することと、
    を含む通信制御方法。
  13. 部分的に重複し得る周波数チャネルの組合せである第1の周波数チャネル及び第2の周波数チャネルであって、干渉信号が送信される前記第1の周波数チャネル及び前記干渉信号から干渉される所望信号が送信される前記第2の周波数チャネルについてのチャネル配置情報に基づいて判定される前記第1の周波数チャネルと前記第2の周波数チャネルとの間の周波数軸上の重複に応じて前記第2の周波数チャネルを干渉から保護するための保護比率を計算する通信制御装置と通信する通信部と、
    自装置の無線信号の送信特性を示す情報を前記通信部を介して前記通信制御装置へ送信し、前記通信制御装置により前記送信特性を用いて計算される前記保護比率に違反しない送信電力を用いて、前記第1の周波数チャネル上で無線通信を行う通信制御部と、
    を備える無線通信装置。
JP2015501274A 2013-02-22 2013-11-21 通信制御装置、通信制御方法及び無線通信装置 Active JP6406242B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013033452 2013-02-22
JP2013033452 2013-02-22
PCT/JP2013/081410 WO2014129035A1 (ja) 2013-02-22 2013-11-21 通信制御装置、通信制御方法及び無線通信装置

Publications (2)

Publication Number Publication Date
JPWO2014129035A1 true JPWO2014129035A1 (ja) 2017-02-02
JP6406242B2 JP6406242B2 (ja) 2018-10-17

Family

ID=51390850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015501274A Active JP6406242B2 (ja) 2013-02-22 2013-11-21 通信制御装置、通信制御方法及び無線通信装置

Country Status (10)

Country Link
US (2) US9825721B2 (ja)
EP (2) EP2961214B1 (ja)
JP (1) JP6406242B2 (ja)
CN (1) CN105075312B (ja)
BR (1) BR112015019626B1 (ja)
MX (1) MX355492B (ja)
RU (1) RU2641718C2 (ja)
TW (1) TWI644527B (ja)
WO (1) WO2014129035A1 (ja)
ZA (1) ZA201505239B (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6361661B2 (ja) * 2013-08-21 2018-07-25 ソニー株式会社 通信制御装置及び無線通信装置
US9655119B2 (en) * 2013-11-07 2017-05-16 Qualcomm Incorporated Primary channel determination in wireless networks
EP3251407A4 (en) * 2015-01-30 2018-07-04 Nokia Solutions and Networks Oy Improvements in handovers between different access networks
US10158432B2 (en) * 2015-10-22 2018-12-18 Photonic Systems, Inc. RF signal separation and suppression system and method
US10623986B2 (en) 2015-10-22 2020-04-14 Photonic Systems, Inc. RF signal separation and suppression system and method
WO2017214981A1 (zh) 2016-06-17 2017-12-21 华为技术有限公司 通道校正方法、装置及通信系统
JP6950703B2 (ja) * 2016-10-20 2021-10-13 ソニーグループ株式会社 通信制御装置、通信制御方法及びコンピュータプログラム
US10862639B2 (en) * 2016-11-04 2020-12-08 Qualcomm Incorporated Decoupling of synchronization raster and channel raster
CN108282283B (zh) 2017-01-05 2023-04-18 华为技术有限公司 资源映射方法及用户设备
WO2019003555A1 (ja) * 2017-06-26 2019-01-03 ソニー株式会社 制御装置、基地局、端末装置、方法及び記録媒体
US11363610B2 (en) 2017-12-28 2022-06-14 Sony Corporation Communication control device, communication control method, and computer program
FR3082090B1 (fr) * 2018-06-04 2023-11-03 Red Tech Sas Une methode de reconfiguration automatique des stations de base radio dans le contexte du lsa
US20210153031A1 (en) * 2018-07-11 2021-05-20 Sony Corporation Communication management device, communication device, communication management method, and communication method
JP6923496B6 (ja) * 2018-09-06 2021-09-29 日本電信電話株式会社 干渉軽減係数算出方法及び干渉軽減係数算出プログラム
WO2020085014A1 (ja) * 2018-10-25 2020-04-30 ソニー株式会社 通信装置、通信方法及びデータ構造
JP7143240B2 (ja) * 2019-03-26 2022-09-28 本田技研工業株式会社 通信システム、管理装置及びプログラム
JP7099391B2 (ja) * 2019-04-02 2022-07-12 日本電信電話株式会社 無線通信特性評価方法および無線通信特性評価装置
CN115149976B (zh) * 2022-06-30 2023-08-18 联想(北京)有限公司 控制方法、装置及通信终端
CN116112933B (zh) * 2023-04-12 2023-08-29 荣耀终端有限公司 一种通信方法及电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009100452A (ja) * 2007-09-28 2009-05-07 Ntt Docomo Inc 基地局装置、受信装置及び移動端末並びに周波数共用方法
JP2012151815A (ja) * 2010-10-29 2012-08-09 Sony Corp 通信制御装置、通信制御方法、通信装置、通信方法及び通信システム

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6332293B1 (en) * 1997-02-28 2001-12-25 Milliken & Company Floor mat having antimicrobial characteristics
US6954616B2 (en) * 2001-03-22 2005-10-11 Transdimension, Inc. Top-level controller for wireless communication devices and protocols
CN102769523B (zh) * 2007-03-16 2015-07-01 株式会社Ntt都科摩 通信系统、发送装置以及通信方法
US7995529B2 (en) * 2007-03-27 2011-08-09 Clear Wireless Llc System and method for cell planning in a wireless communication network
KR100864835B1 (ko) * 2007-05-30 2008-10-23 한국전자통신연구원 인지무선 송신 신호의 디지털 tv 방송에 대한 간섭정도를 평가하는 모델링 장치 및 방법
US8086258B2 (en) 2007-09-28 2011-12-27 Ntt Docomo, Inc. Base station, receiving device, mobile terminal, and frequency sharing method
JP4886647B2 (ja) * 2007-09-28 2012-02-29 Kddi株式会社 周波数チャネル選択装置、周波数チャネル選択方法及びコンピュータプログラム
US20090135754A1 (en) * 2007-11-27 2009-05-28 Qualcomm Incorporated Interference management in a wireless communication system using overhead channel power control
JP5166891B2 (ja) * 2008-01-24 2013-03-21 京セラ株式会社 通信方法ならびにそれを利用した基地局装置および通信システム
US7848221B2 (en) * 2008-07-14 2010-12-07 Motorola Mobility, Inc. Method and system for detecting adjacent channel interference from OFDM/OFDMA based broadband wireless access
CN101968679B (zh) * 2009-07-28 2012-06-27 郑国书 计算机无线电射频通讯方法
KR101083542B1 (ko) * 2009-10-16 2011-11-14 주식회사 팬택 소형 기지국 및 그의 동작제어방법
KR101819739B1 (ko) * 2009-10-28 2018-01-19 엘지전자 주식회사 무선통신 시스템에서 셀간 간섭을 완화하는 장치 및 방법
EP2525596B1 (en) * 2010-01-12 2019-12-25 Sharp Kabushiki Kaisha Wireless communication system, base station apparatus, mobile station apparatus, communication control method, and communication control program
US8854994B2 (en) * 2010-04-10 2014-10-07 Alcatel Lucent Method for mitigating outages in heterogeneous networks
US20110319066A1 (en) * 2010-06-24 2011-12-29 Industrial Technology Research Institute Apparatus and method for relaying content between a macrocell and a femtocell
WO2012061224A1 (en) * 2010-11-05 2012-05-10 Interdigital Patent Holdings, Inc. Methods, apparatus and systems for applying almost blank subframe (abs) patterns
JP5907071B2 (ja) * 2010-12-17 2016-04-20 日本電気株式会社 無線パラメータ制御装置、基地局装置、無線パラメータ制御方法、およびプログラム
JP5427221B2 (ja) * 2011-01-07 2014-02-26 株式会社Nttドコモ 無線通信方法及び無線基地局
JP5854050B2 (ja) * 2011-02-04 2016-02-09 日本電気株式会社 無線通信システム、基地局装置、無線リソース制御方法、及びプログラム
JP5285721B2 (ja) * 2011-02-08 2013-09-11 株式会社エヌ・ティ・ティ・ドコモ 通信制御装置及び通信制御方法
JP5772057B2 (ja) * 2011-02-24 2015-09-02 ソニー株式会社 通信制御装置、通信制御方法、プログラム及び通信システム
JP5444275B2 (ja) * 2011-02-28 2014-03-19 株式会社Nttドコモ 基地局装置及び通信制御方法
JP2013038585A (ja) * 2011-08-08 2013-02-21 Sony Corp 無線基地局、送信電力制御方法及びコンピュータプログラム
US20150110024A1 (en) * 2012-04-11 2015-04-23 Telefonaktiebolaget L M Ericsson (Publ) Low Power Radio Base Station and a Method Therein for Scheduling Downlink Transmissions to a User Equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009100452A (ja) * 2007-09-28 2009-05-07 Ntt Docomo Inc 基地局装置、受信装置及び移動端末並びに周波数共用方法
JP2012151815A (ja) * 2010-10-29 2012-08-09 Sony Corp 通信制御装置、通信制御方法、通信装置、通信方法及び通信システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
藤井 啓正,吉野 仁: "マルチセル環境下における送信電力制御型周波数共用方法の容量解析", 電子情報通信学会技術研究報告〔ソフトウェア無線〕, vol. 108, no. 250, JPN6018004337, 23 October 2008 (2008-10-23), pages 113 - 118, ISSN: 0003734789 *

Also Published As

Publication number Publication date
US20150333853A1 (en) 2015-11-19
TWI644527B (zh) 2018-12-11
BR112015019626A2 (pt) 2017-07-18
RU2015134179A (ru) 2017-02-17
TW201436492A (zh) 2014-09-16
BR112015019626B1 (pt) 2022-08-16
WO2014129035A1 (ja) 2014-08-28
ZA201505239B (en) 2016-02-24
US9825721B2 (en) 2017-11-21
RU2641718C2 (ru) 2018-01-22
MX355492B (es) 2018-04-19
EP3537750A1 (en) 2019-09-11
JP6406242B2 (ja) 2018-10-17
EP2961214A4 (en) 2016-10-05
CN105075312A (zh) 2015-11-18
EP2961214B1 (en) 2019-05-01
US10211934B2 (en) 2019-02-19
EP3537750B1 (en) 2023-09-20
EP2961214A1 (en) 2015-12-30
MX2015010515A (es) 2015-10-30
US20180062775A1 (en) 2018-03-01
CN105075312B (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
JP6406242B2 (ja) 通信制御装置、通信制御方法及び無線通信装置
US10772093B2 (en) Communication control device, communication control method, and communication device
US20210258957A1 (en) Electronic device, user equipment and wireless communication method in wireless communication system
US20200228963A1 (en) Control device, base station, terminal device, method, and recording medium
CN109804653B (zh) 频谱管理装置、电子设备以及由其执行的方法
JP2019071694A (ja) 装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R151 Written notification of patent or utility model registration

Ref document number: 6406242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151