JPWO2014115332A1 - Heat exchanger and refrigeration cycle apparatus - Google Patents

Heat exchanger and refrigeration cycle apparatus Download PDF

Info

Publication number
JPWO2014115332A1
JPWO2014115332A1 JP2014558410A JP2014558410A JPWO2014115332A1 JP WO2014115332 A1 JPWO2014115332 A1 JP WO2014115332A1 JP 2014558410 A JP2014558410 A JP 2014558410A JP 2014558410 A JP2014558410 A JP 2014558410A JP WO2014115332 A1 JPWO2014115332 A1 JP WO2014115332A1
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
header
corrugated plate
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014558410A
Other languages
Japanese (ja)
Other versions
JP6038186B2 (en
Inventor
石橋 晃
晃 石橋
拓也 松田
拓也 松田
相武 李
相武 李
岡崎 多佳志
多佳志 岡崎
厚志 望月
厚志 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6038186B2 publication Critical patent/JP6038186B2/en
Publication of JPWO2014115332A1 publication Critical patent/JPWO2014115332A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/028Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using inserts for modifying the pattern of flow inside the header box, e.g. by using flow restrictors or permeable bodies or blocks with channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

互いに離間して配置された一対の入口ヘッダ3、出口ヘッダ5と、入口ヘッダ3、出口ヘッダ5の間に並列に配置され、両端が入口ヘッダ3、出口ヘッダ5が有する貫通孔からヘッダ内に挿入される複数の扁平管1とを備える熱交換器であって、少なくとも蒸発器として機能する際の冷媒流入側となる入口ヘッダ3の管内に、凹凸を有し、波状に形成した波状板4を入口ヘッダ3に沿って設けるようにした。A pair of inlet header 3 and outlet header 5 that are spaced apart from each other, and are arranged in parallel between the inlet header 3 and the outlet header 5, and both ends of the inlet header 3 and the outlet header 5 enter the header from the through holes. A wave exchanger 4 having a plurality of flat tubes 1 to be inserted and having a corrugation and a corrugated shape in a tube of an inlet header 3 on the refrigerant inflow side when functioning as an evaporator at least. Is provided along the inlet header 3.

Description

本発明は、空気調和装置等の冷凍サイクル装置に用いられる熱交換器等に関するものである。   The present invention relates to a heat exchanger or the like used in a refrigeration cycle apparatus such as an air conditioner.

例えば、冷凍サイクル装置に用いられる熱交換器において、ヘッダ内に網状部材を挿入して、熱交換後に流出しようとする液冷媒のミスト化を防ぐことをはかった凝縮器が提案されている(例えば、特許文献1参照)。   For example, in a heat exchanger used in a refrigeration cycle apparatus, a condenser has been proposed in which a net-like member is inserted into a header to prevent mist formation of liquid refrigerant that tends to flow out after heat exchange (for example, , See Patent Document 1).

特開2002−350000号公報(第1図)Japanese Patent Laid-Open No. 2002-350,000 (FIG. 1)

ここで、例えば空気調和装置のような冷凍サイクル装置においては、熱交換器を、凝縮器としてだけでなく、蒸発器として機能させることがある。しかし、上記の特許文献1に述べたような従来の方法では、熱交換器を蒸発器として用い、液状の冷媒が流入する場合について手当てされていない。このため、熱交換器を蒸発器として機能させたときには、複数の伝熱管に液冷媒を均等分配させることが困難となっていた。   Here, in a refrigeration cycle apparatus such as an air conditioner, for example, the heat exchanger may function not only as a condenser but also as an evaporator. However, the conventional method as described in the above-mentioned Patent Document 1 does not deal with a case where a liquid refrigerant flows in using a heat exchanger as an evaporator. For this reason, when the heat exchanger functions as an evaporator, it has been difficult to evenly distribute the liquid refrigerant to the plurality of heat transfer tubes.

本発明は、上記のような課題を解決するためになされたもので、複数の伝熱管に均一して冷媒を分配することができる熱交換器等を得ることを目的とするものである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a heat exchanger or the like that can uniformly distribute a refrigerant to a plurality of heat transfer tubes.

本発明に係る熱交換器は、互いに離間して配置され、管内を冷媒が通過する一対のヘッダと、一対のヘッダの間に配置され、一対のヘッダが有する複数の貫通孔からヘッダ内にそれぞれ両端が挿入され、内部を冷媒が通過する複数の伝熱管とを備える熱交換器であって、少なくとも蒸発器として機能する際の冷媒流入側となるヘッダの管内に、凹凸を有し、波状に形成した波状板を、ヘッダに沿って設けるものである。   The heat exchanger according to the present invention is disposed between a pair of headers that are spaced apart from each other and through which refrigerant passes, and a plurality of through holes that the pair of headers have in the headers. A heat exchanger having a plurality of heat transfer tubes through which both ends are inserted and through which the refrigerant passes, having at least concave and convex in the header tube on the refrigerant inflow side when functioning as an evaporator The formed corrugated plate is provided along the header.

少なくとも蒸発器として機能する際の冷媒流入側となるヘッダの管内に波状板を設けるようにしたので、重力等に影響されずに、液状の冷媒を各伝熱管に均等に分配し、通過させることができる。   Since the corrugated plate is provided in the header tube on the refrigerant inflow side at least when functioning as an evaporator, the liquid refrigerant is evenly distributed and passed through each heat transfer tube without being affected by gravity or the like. Can do.

本発明の実施の形態1の熱交換器の外観図である。It is an external view of the heat exchanger of Embodiment 1 of this invention. 本発明の実施の形態1の熱交換器のヘッダの断面図である。It is sectional drawing of the header of the heat exchanger of Embodiment 1 of this invention. 本発明の実施の形態1に係るガス冷媒10と液冷媒11の状態を示す説明図である。It is explanatory drawing which shows the state of the gas refrigerant 10 and the liquid refrigerant 11 which concern on Embodiment 1 of this invention. 本発明の実施の形態1の熱交換器の波状板4の外観図である。It is an external view of the corrugated board 4 of the heat exchanger of Embodiment 1 of this invention. 本発明の実施の形態1に係る扁平管1と波状板4との距離を示す説明図。Explanatory drawing which shows the distance of the flat tube 1 and the corrugated board 4 which concern on Embodiment 1 of this invention. 本発明の実施の形態1に係る開口穴部9を有する波状板4の外観図である。It is an external view of the corrugated board 4 which has the opening hole part 9 which concerns on Embodiment 1 of this invention. この本発明の実施の形態2に係る冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigerating-cycle apparatus based on this Embodiment 2 of this invention.

実施の形態1.
図1は本発明の実施の形態1による熱交換器の外観図である。ここで、図1における上方を「上側」とし、下方を「下側」として説明する。図1において、上側から下側に向かう方向が重力方向(鉛直方向)となる。
Embodiment 1 FIG.
FIG. 1 is an external view of a heat exchanger according to Embodiment 1 of the present invention. Here, the upper side in FIG. 1 will be described as “upper side” and the lower side will be described as “lower side”. In FIG. 1, the direction from the upper side to the lower side is the gravity direction (vertical direction).

本実施の形態の熱交換器は、例えば空気調和装置の室外機に使用され、伝熱管として扁平管1を用いたアルミニウム(アルミニウム合金を含む)製の熱交換器である。扁平管1は、例えば断面外形が扁平形状、楔型形状の伝熱管である。そして、扁平管1を、扁平形状の短軸の方向となる重力方向に沿って、間隔を空けて複数列並べて構成する。このため、扁平形状における長軸が冷媒との熱交換対象となる流体(空気等)の流通方向に沿って設けられる。扁平管1内には、例えば隔壁によって区分された複数の冷媒流路が形成されている。   The heat exchanger of the present embodiment is an aluminum (including aluminum alloy) heat exchanger that is used in, for example, an outdoor unit of an air conditioner and uses a flat tube 1 as a heat transfer tube. The flat tube 1 is, for example, a heat transfer tube having a flat cross-sectional outer shape and a wedge shape. Then, the flat tubes 1 are configured by arranging a plurality of rows at intervals along the gravity direction which is the direction of the short axis of the flat shape. For this reason, the long axis in a flat shape is provided along the flow direction of the fluid (air etc.) used as the heat exchange object with a refrigerant | coolant. In the flat tube 1, for example, a plurality of refrigerant channels divided by partition walls are formed.

扁平管1の両端には一対の円筒状のヘッダが付設される。ヘッダは、伝熱管である扁平管1に流入した冷媒を分配し、扁平管1を通過した冷媒を集めて流出させるための管(筒)である。各ヘッダには扁平管1の端部を内部に挿入させるための貫通穴(図示せず)を有している。熱交換器を蒸発器として用いる場合、冷媒は、入口管6を通過して、内部に波状板4を具備したヘッダ(以下、入口ヘッダ3とする)に流入し、扁平管1を通過した後、例えば内部が空洞のヘッダ(以下、出口ヘッダ5とする)を通過して出口管7から流出する。また、図1では詳述していないが、冷媒との熱交換対象が空気の場合、扁平管1における熱交換を促すため、ヘッダと同じ方向に沿うように複数の板状のフィン2が設けられている。   A pair of cylindrical headers are attached to both ends of the flat tube 1. The header is a tube (cylinder) for distributing the refrigerant that has flowed into the flat tube 1 that is a heat transfer tube and collecting and flowing out the refrigerant that has passed through the flat tube 1. Each header has a through hole (not shown) for inserting the end of the flat tube 1 into the header. When the heat exchanger is used as an evaporator, the refrigerant passes through the inlet pipe 6, flows into a header (hereinafter referred to as inlet header 3) having a corrugated plate 4 therein, and passes through the flat pipe 1. For example, it passes through a hollow header (hereinafter referred to as an outlet header 5) and flows out from the outlet pipe 7. In addition, although not described in detail in FIG. 1, when the heat exchange target with the refrigerant is air, a plurality of plate-like fins 2 are provided along the same direction as the header in order to promote heat exchange in the flat tube 1. It has been.

図1に示すように、通常、ヘッダ(入口ヘッダ3、出口ヘッダ5)は重力方向に対して平行(略平行であることも含む)となるように配置され、扁平管1は垂直(略垂直であることも含む)となるように配置される。このため、液状の冷媒(液冷媒)、液冷媒とガス状の冷媒(ガス冷媒)とが混在する2相冷媒が、重力方向とは反対向きにヘッダ内に流入する場合、液冷媒は、重力と冷媒の慣性力との影響を強く受ける。例えばヘッダ内に分配を調整する機構を設けない場合、冷媒流量が多い(冷媒の速度が速い)と慣性力の方が効く。このため、液冷媒は上側に位置する扁平管1に多く流れる。一方、冷媒流量が少ない(冷媒の速度が遅い)場合には、重力の方が効く。このため、液冷媒は下側に位置する扁平管1に多く流れる。このように、流入する冷媒の流量によって各扁平管1を流れる冷媒量が異なる。   As shown in FIG. 1, the headers (inlet header 3 and outlet header 5) are usually arranged so as to be parallel (including substantially parallel) to the direction of gravity, and the flat tube 1 is vertical (substantially vertical). Is also included). For this reason, when the liquid refrigerant (liquid refrigerant) and the two-phase refrigerant in which the liquid refrigerant and the gaseous refrigerant (gas refrigerant) are mixed flow into the header in the direction opposite to the gravity direction, the liquid refrigerant And the inertia of the refrigerant. For example, when a mechanism for adjusting distribution is not provided in the header, the inertial force is more effective when the refrigerant flow rate is large (the refrigerant speed is high). For this reason, a lot of liquid refrigerant flows through the flat tube 1 located on the upper side. On the other hand, gravity is more effective when the refrigerant flow rate is small (the refrigerant speed is slow). For this reason, a lot of liquid refrigerant flows through the flat tube 1 located on the lower side. Thus, the amount of refrigerant flowing through each flat tube 1 varies depending on the flow rate of the refrigerant flowing in.

図2は本発明の実施の形態1による図1のA−A’線における断面図である。本実施の形態の熱交換器においては、入口ヘッダ3の内部(管内)に、扁平管1と平行となるように、凹凸を有するカーテン状(波状)の波状板4を付設する。ここで、入口ヘッダ3内における扁平管1の端部と波状板4との距離δは0≦δ≦Fp(波状板4のピッチFp)となっている。   2 is a cross-sectional view taken along line A-A ′ of FIG. 1 according to the first embodiment of the present invention. In the heat exchanger according to the present embodiment, a curtain-like (wave-like) corrugated plate 4 having irregularities is provided inside the inlet header 3 (in the pipe) so as to be parallel to the flat tube 1. Here, the distance δ between the end of the flat tube 1 in the inlet header 3 and the corrugated plate 4 is 0 ≦ δ ≦ Fp (pitch Fp of the corrugated plate 4).

図3は本発明の実施の形態1による入口ヘッダ3内におけるガス冷媒及び液冷媒の状態を示す説明図である。液冷媒11は、表面張力により波状板4の板間(谷間)に保持され、ガス冷媒10は波状板4の外側を流れる。   FIG. 3 is an explanatory diagram showing states of the gas refrigerant and the liquid refrigerant in the inlet header 3 according to Embodiment 1 of the present invention. The liquid refrigerant 11 is held between plates (valleys) of the corrugated plates 4 by surface tension, and the gas refrigerant 10 flows outside the corrugated plates 4.

ここで、波状板4が液冷媒11を有効に保持し、液冷媒11が上側に伝っていくようにするには、次式を満たすとよい。ここで、Boはボンド数、ρLは液冷媒の密度、Fpは波状板4のピッチ(間隔)、Ftは板厚、σLは液冷媒の表面張力、rは気液界面における液半径である。   Here, in order for the corrugated plate 4 to effectively hold the liquid refrigerant 11 so that the liquid refrigerant 11 is transmitted upward, the following equation should be satisfied. Here, Bo is the number of bonds, ρL is the density of the liquid refrigerant, Fp is the pitch (interval) of the corrugated plate 4, Ft is the plate thickness, σL is the surface tension of the liquid refrigerant, and r is the liquid radius at the gas-liquid interface.

[数1]
Bo=ρL×(Fp−Ft)/(σL/r)<1
[Equation 1]
Bo = ρL × (Fp−Ft) / (σL / r) <1

液半径rは波状板4における間隔Fp−Ftの半分程度であると考えられるため、r=(Fp−Ft)/2として(1)式に代入し、さらにFpに係る式として変更すると次式で表される。このように(2)式を満たすFpとなるように波状板4を構成すれば液冷媒11を有効に保持することができる。   Since the liquid radius r is considered to be about half of the interval Fp−Ft in the corrugated plate 4, substituting into the equation (1) as r = (Fp−Ft) / 2, and further changing the equation relating to Fp, the following equation: It is represented by Thus, if the corrugated plate 4 is configured to satisfy Fp satisfying the expression (2), the liquid refrigerant 11 can be effectively held.

[数2]
Fp<(2×σL/ρL)0.5 +Ft
[Equation 2]
Fp <(2 × σL / ρL) 0.5 + Ft

ガス冷媒10は、波状板4及び波状板4と扁平管1との間の隙間から扁平管1に流入する。一方、液冷媒11は波状板4に保持されており、順次、扁平管1に流入していく。前述したように、入口ヘッダ3は重力方向に対して平行である(重力方向に沿っている)ため、液冷媒11の動きは重力と冷媒の慣性力に影響を受ける。本実施の形態の熱交換器においては、液冷媒11が波状板4に保持されつつ入口ヘッダ3内を流れる。例えば冷媒流量が多いときには、波状板4が流入した液冷媒11の勢いを弱めつつ、保持した冷媒を上側まで行き渡るようにする。例えば冷媒流量が少ないときでも、波状板4において冷媒にかかる表面張力による保持力が効き、保持した冷媒が上側まで行き渡るようにする。このため、入口ヘッダ3のどの高さにおいても扁平管1への液冷媒11の供給を平準にし、均一分配することができる。   The gas refrigerant 10 flows into the flat tube 1 from the corrugated plate 4 and the gap between the corrugated plate 4 and the flat tube 1. On the other hand, the liquid refrigerant 11 is held by the corrugated plate 4 and sequentially flows into the flat tube 1. As described above, since the inlet header 3 is parallel to the gravity direction (along the gravity direction), the movement of the liquid refrigerant 11 is affected by gravity and the inertial force of the refrigerant. In the heat exchanger of the present embodiment, the liquid refrigerant 11 flows through the inlet header 3 while being held by the corrugated plate 4. For example, when the refrigerant flow rate is large, the held refrigerant is spread to the upper side while weakening the momentum of the liquid refrigerant 11 into which the corrugated plate 4 flows. For example, even when the flow rate of the refrigerant is small, the holding force due to the surface tension applied to the refrigerant is effective in the corrugated plate 4 so that the held refrigerant reaches the upper side. For this reason, the supply of the liquid refrigerant 11 to the flat tube 1 can be leveled and distributed uniformly at any height of the inlet header 3.

図4は、本発明の実施の形態1における熱交換器に用いられる波状板4の外観図である。波状板4は入口ヘッダ3内に固定する必要があるため、波状板4の扁平管1の設置側とその反対側(波の山谷となる側)に一定間隔で、固定用の固定板8を付設している。このように一定間隔で固定板8を波状板4に付設することで、入口ヘッダ3内における冷媒の流動を妨げることなく、入口ヘッダ3内に波状板4を固定することが可能となる。   FIG. 4 is an external view of corrugated plate 4 used in the heat exchanger according to Embodiment 1 of the present invention. Since the corrugated plate 4 needs to be fixed in the inlet header 3, the fixing plate 8 for fixing is fixed at regular intervals on the installation side of the flat tube 1 of the corrugated plate 4 and on the opposite side (the side where the wave peaks and valleys). It is attached. By attaching the fixing plate 8 to the corrugated plate 4 at regular intervals in this manner, the corrugated plate 4 can be fixed in the inlet header 3 without hindering the flow of the refrigerant in the inlet header 3.

図5は、本発明の実施の形態1における熱交換器に用いられる波状板4と扁平管1との間隔を示す説明図である。液冷媒11及びガス冷媒10は、波状板4と扁平管1の間からも扁平管1に供給される。この際、液冷媒11を波状板4と扁平管1の間に保持させるためには、波状板4と扁平管1の距離δは、(2)式から、ピッチFp程度となる。また、波状板4の幅と扁平管1の長軸方向の長さ(幅)を一致させるようにすると、波状板4に保持された液冷媒11を斑なく扁平管1に流入させることができる。   FIG. 5 is an explanatory diagram showing the distance between the corrugated plate 4 and the flat tube 1 used in the heat exchanger according to Embodiment 1 of the present invention. The liquid refrigerant 11 and the gas refrigerant 10 are also supplied to the flat tube 1 from between the corrugated plate 4 and the flat tube 1. At this time, in order to hold the liquid refrigerant 11 between the corrugated plate 4 and the flat tube 1, the distance δ between the corrugated plate 4 and the flat tube 1 is about a pitch Fp from the equation (2). Further, if the width of the corrugated plate 4 and the length (width) of the flat tube 1 in the long axis direction are matched, the liquid refrigerant 11 held by the corrugated plate 4 can flow into the flat tube 1 without any spots. .

図6は、本発明の実施の形態1における熱交換器に用いられる開口穴部9を持つ波状板4の外観図である。図3に示されるように、液冷媒11は波状板4に保持されるが、波状板4に、複数の微小の開口穴部9を設けることにより、すべての板間の液冷媒が扁平管1側に流動できるようになる。このため、扁平管1が複数の冷媒流路(マイクロチャネル)を持つ場合においても、各冷媒流路に流入する冷媒を均一に分配することができる。   FIG. 6 is an external view of corrugated plate 4 having opening hole 9 used in the heat exchanger according to Embodiment 1 of the present invention. As shown in FIG. 3, the liquid refrigerant 11 is held by the corrugated plate 4, but by providing a plurality of minute opening holes 9 in the corrugated plate 4, the liquid refrigerant between all the plates is flattened 1. Will be able to flow to the side. For this reason, even when the flat tube 1 has a plurality of refrigerant channels (microchannels), the refrigerant flowing into each refrigerant channel can be uniformly distributed.

以上のように、実施の形態1の熱交換器によれば、蒸発器となるときの冷媒流入側となる入口ヘッダ3に波状板4を設けるようにしたので、重力、慣性力に影響されることなく、重力方向(上下方向)に配された扁平管1に液冷媒を均一に供給することができる。また、波状板4を入口ヘッダ3内に挿入し、固定するだけでよいので、製造を容易に行うことができる。そして、熱交換器の伝熱管を扁平管1によって構成することで、コンパクトな熱交換器を得ることができる。   As described above, according to the heat exchanger of the first embodiment, since the corrugated plate 4 is provided on the inlet header 3 on the refrigerant inflow side when it becomes an evaporator, it is affected by gravity and inertial force. The liquid refrigerant can be uniformly supplied to the flat tube 1 arranged in the direction of gravity (vertical direction) without any problem. Further, since the corrugated plate 4 has only to be inserted into the inlet header 3 and fixed, the manufacture can be easily performed. And the heat exchanger tube of a heat exchanger is comprised by the flat tube 1, and a compact heat exchanger can be obtained.

実施の形態2.
図7は本発明の実施の形態2に係る冷凍サイクル装置の構成を示す図である。図7の冷凍サイクル装置は、圧縮機33、凝縮器34、絞り装置35及び蒸発器36を配管接続して冷媒回路(冷媒循環回路)を構成している。また、送風機37は、それぞれ送風機用モータ38の駆動により、凝縮器34、蒸発器36を通過する冷媒と空気との熱交換を促すために空気の流れを形成する。
Embodiment 2. FIG.
FIG. 7 is a diagram showing a configuration of a refrigeration cycle apparatus according to Embodiment 2 of the present invention. In the refrigeration cycle apparatus of FIG. 7, a compressor 33, a condenser 34, a throttling device 35, and an evaporator 36 are connected to form a refrigerant circuit (refrigerant circulation circuit). In addition, the blower 37 forms a flow of air in order to promote heat exchange between the refrigerant passing through the condenser 34 and the evaporator 36 and air by driving the blower motor 38.

圧縮機33は冷媒を吸入し、圧縮して高温・高圧の状態にして吐出する。ここで、例えばインバータ回路等により回転数を制御し、冷媒の吐出量を調整できるタイプの圧縮機で構成するとよい。熱交換器を有する凝縮器34は、例えば送風機37から供給される空気と冷媒との間で熱交換を行い、冷媒を凝縮させて液状の冷媒にする(凝縮液化させる)ものである。   The compressor 33 sucks the refrigerant, compresses it, and discharges it in a high temperature / high pressure state. Here, for example, it may be configured by a compressor of a type that can control the number of revolutions by an inverter circuit or the like and adjust the discharge amount of the refrigerant. The condenser 34 having a heat exchanger, for example, performs heat exchange between the air supplied from the blower 37 and the refrigerant to condense the refrigerant into a liquid refrigerant (condensate liquid).

また、絞り装置35は、冷媒を減圧して膨張させるものである。例えば電子式膨張弁等の流量制御手段で構成するが、例えば、感温筒を有する膨張弁、毛細管(キャピラリ)等の冷媒流量調節手段等で構成してもよい。蒸発器36は、空気等との熱交換により冷媒を蒸発させて気体(ガス)状の冷媒にする(蒸発ガス化させる)ものである。   The expansion device 35 expands the refrigerant by decompressing it. For example, it is constituted by a flow rate control means such as an electronic expansion valve, but may be constituted by an expansion valve having a temperature sensing cylinder, a refrigerant flow rate adjusting means such as a capillary (capillary), or the like. The evaporator 36 evaporates the refrigerant by heat exchange with air or the like to form a gas (gas) refrigerant (evaporates into gas).

例えば、蒸発器36、凝縮器34の少なくとも一方に、実施の形態1において説明した熱交換器を用いることができる。これにより、実施の形態2の装置においては、伝熱性能を向上させることができる。伝熱性能が向上することにより、エネルギー効率がよく、省エネルギーの冷凍サイクル装置を得ることができる。   For example, the heat exchanger described in Embodiment 1 can be used for at least one of the evaporator 36 and the condenser 34. Thereby, in the apparatus of Embodiment 2, heat transfer performance can be improved. By improving the heat transfer performance, an energy-efficient and energy-saving refrigeration cycle apparatus can be obtained.

ここで、エネルギー効率は、次式(1)及び(2)で構成されるものである。
暖房エネルギー効率=室内熱交換器(凝縮器)能力/全入力 …(1)
冷房エネルギー効率=室内熱交換器(蒸発器)能力/全入力 …(2)
Here, energy efficiency is comprised by following Formula (1) and (2).
Heating energy efficiency = indoor heat exchanger (condenser) capacity / total input (1)
Cooling energy efficiency = indoor heat exchanger (evaporator) capacity / total input (2)

次に、冷凍サイクル装置の各構成機器における動作等を、冷媒回路を循環する冷媒の流れに基づいて説明する。まず、圧縮機33は、冷媒を吸入し、圧縮して高温・高圧の状態にして吐出する。吐出した冷媒は凝縮器34へ流入する。凝縮器34は、送風機37から供給される空気と冷媒との間で熱交換を行い、冷媒を凝縮液化させる。凝縮液化した冷媒は絞り装置35を通過する。絞り装置35は、通過する凝縮液化した冷媒を減圧する。減圧した冷媒は蒸発器36に流入する。蒸発器36は、送風機37から供給される空気と冷媒との間で熱交換を行い、冷媒を蒸発ガス化する。蒸発ガス化した冷媒を圧縮機33が吸入する。   Next, operation | movement in each component apparatus of a refrigerating-cycle apparatus is demonstrated based on the flow of the refrigerant | coolant which circulates through a refrigerant circuit. First, the compressor 33 sucks the refrigerant, compresses it, and discharges it in a high temperature / high pressure state. The discharged refrigerant flows into the condenser 34. The condenser 34 performs heat exchange between the air supplied from the blower 37 and the refrigerant, and condenses and liquefies the refrigerant. The condensed and liquefied refrigerant passes through the expansion device 35. The expansion device 35 depressurizes the condensed and liquefied refrigerant passing therethrough. The decompressed refrigerant flows into the evaporator 36. The evaporator 36 exchanges heat between the air supplied from the blower 37 and the refrigerant to evaporate the refrigerant. The compressor 33 sucks the evaporated gas refrigerant.

ここで、上述の冷凍サイクル装置については、HCFC(R22)やHFC(R116、R125、R134a、R14、R143a、R152a、R227ea、R23、R236ea、R236fa、R245ca、R245fa、R32、R41、RC318など、これら冷媒の数種の混合冷媒R407A、R407B、R407C、R407D、R407E、R410A、R410B、R404A、R507A、R508A、R508Bなど)、HC(ブタン、イソブタン、エタン、プロパン、プロピレンなど、これら冷媒の数種混合冷媒)、自然冷媒(空気、炭酸ガス、アンモニアなど、これら冷媒の数種の混合冷媒)、HFO1234yf等の低GWP冷媒、またこれら冷媒の数種の混合冷媒などを用いてもよい。特にR410A、R410Aと設計圧力及び物性値が近いR32において、その効果をより効率的に達成することができる。   Here, the refrigeration cycle apparatus described above includes HCFC (R22) and HFC (R116, R125, R134a, R14, R143a, R152a, R227ea, R23, R236ea, R236fa, R245ca, R245fa, R32, R41, RC318, etc. Several mixed refrigerants such as R407A, R407B, R407C, R407D, R407E, R410A, R410B, R404A, R507A, R508A, R508B, etc.), HC (butane, isobutane, ethane, propane, propylene, etc.) Refrigerant), natural refrigerant (several mixed refrigerants such as air, carbon dioxide, and ammonia), low GWP refrigerant such as HFO1234yf, and several mixed refrigerants of these refrigerants. In particular, the effect can be achieved more efficiently in R410A, R410A, and R32 whose design pressure and physical property values are close.

また、作動流体として、空気と冷媒とを例に示したが、他の気体、液体、気液混合流体を用いるようにしても、同様の効果を奏することができる。   Moreover, although air and a refrigerant | coolant were shown as an example as a working fluid, even if it uses other gas, a liquid, and a gas-liquid mixed fluid, there can exist the same effect.

また、上述の実施の形態1で述べた熱交換器を室内機で用いた場合においても同様な効果を奏することができる。   Further, the same effect can be obtained when the heat exchanger described in the first embodiment is used in an indoor unit.

ここで、実施の形態1、実施の形態2で述べた熱交換器及び冷凍サイクル装置については、鉱油系、アルキルベンゼン油系、エステル油系、エーテル油系、フッ素油系など、冷媒と油が混じり合うかどうかにかかわらず、どんな冷凍機油についても、その効果を達成することができる。   Here, the heat exchanger and the refrigeration cycle apparatus described in the first and second embodiments are mixed with refrigerant and oil such as mineral oil, alkylbenzene oil, ester oil, ether oil, and fluorine oil. The effect can be achieved with any refrigeration oil, whether or not it fits.

本発明の活用例として、露飛びしにくく、熱交換性能を向上し、省エネルギー性能を向上することが必要なヒートポンプ装置に使用することが出来る。   As an application example of the present invention, it can be used for a heat pump apparatus that is difficult to be exposed, improves heat exchange performance, and needs to improve energy saving performance.

1 扁平管、2 フィン、3 入口ヘッダ、4 波状板、5 出口ヘッダ、6 入口管、7 出口管、8 固定板、9 開口穴部、10 ガス冷媒、11 液冷媒、12 気泡、33 圧縮機、34 凝縮器、35 絞り装置、36 蒸発器、37 送風機、38 送風機用モータ。   DESCRIPTION OF SYMBOLS 1 Flat tube, 2 Fin, 3 Inlet header, 4 Corrugated board, 5 Outlet header, 6 Inlet pipe, 7 Outlet pipe, 8 Fixing plate, 9 Opening hole part, 10 Gas refrigerant, 11 Liquid refrigerant, 12 Air bubbles, 33 Compressor , 34 condenser, 35 throttling device, 36 evaporator, 37 blower, 38 motor for blower.

本発明に係る熱交換器は、互いに離間して配置され、管内を冷媒が通過する一対のヘッダと、一対のヘッダの間に配置され、一対のヘッダが有する複数の貫通孔からヘッダ内にそれぞれ両端が挿入され、内部を冷媒が通過する複数の伝熱管とを備える熱交換器であって、少なくとも蒸発器として機能する際の冷媒流入側となるヘッダの管内に、凹凸を有し、波状に形成した波状板を、ヘッダに沿って設け、波状板の波間のピッチFpとしたときに、ヘッダの管内における波状板と伝熱管の端部との間の距離δが、0<δ<Fpを満たすように構成するものである。 The heat exchanger according to the present invention is disposed between a pair of headers that are spaced apart from each other and through which refrigerant passes, and a plurality of through holes that the pair of headers have in the headers. A heat exchanger having a plurality of heat transfer tubes through which both ends are inserted and through which the refrigerant passes, having at least concave and convex in the header tube on the refrigerant inflow side when functioning as an evaporator When the formed corrugated plate is provided along the header and the pitch between the corrugated plates is set to Fp, the distance δ between the corrugated plate and the end of the heat transfer tube in the header tube satisfies 0 <δ <Fp. It is configured to satisfy .

本発明に係る熱交換器は、互いに離間して配置され、管内を冷媒が通過する一対のヘッダと、一対のヘッダの間に配置され、一対のヘッダが有する複数の貫通孔からヘッダ内にそれぞれ両端が挿入され、内部を冷媒が通過する複数の伝熱管とを備える熱交換器であって、少なくとも蒸発器として機能する際の冷媒流入側となるヘッダの管内に、凹凸を有し、波状に形成した波状板を、ヘッダに沿って設け、波状板の波間のピッチFpとしたときに、ヘッダの管内における波状板と伝熱管の端部との間の距離δが、0<δ<Fpを満たすように、波状板の幅とヘッダの管内における伝熱管の径とが同一となるように構成するものである。 The heat exchanger according to the present invention is disposed between a pair of headers that are spaced apart from each other and through which refrigerant passes, and a plurality of through holes that the pair of headers have in the headers. A heat exchanger having a plurality of heat transfer tubes through which both ends are inserted and through which the refrigerant passes, having at least concave and convex in the header tube on the refrigerant inflow side when functioning as an evaporator When the formed corrugated plate is provided along the header and the pitch between the corrugated plates is set to Fp, the distance δ between the corrugated plate and the end of the heat transfer tube in the header tube satisfies 0 <δ <Fp. In order to satisfy , the width of the corrugated plate and the diameter of the heat transfer tube in the header tube are configured to be the same .

Claims (8)

互いに離間して配置され、管内を冷媒が通過する一対のヘッダと、
該一対のヘッダの間に配置され、前記一対のヘッダが有する複数の貫通孔から前記ヘッダ内にそれぞれ両端が挿入され、内部を冷媒が通過する複数の伝熱管とを備える熱交換器であって、
少なくとも蒸発器として機能する際の冷媒流入側となる前記ヘッダの管内に、凹凸を有し、波状に形成した波状板を、前記ヘッダに沿って設ける熱交換器。
A pair of headers that are spaced apart from each other and through which refrigerant passes through the pipe;
A heat exchanger comprising a plurality of heat transfer tubes disposed between the pair of headers, both ends of which are respectively inserted into the header from a plurality of through holes of the pair of headers, and through which a refrigerant passes. ,
A heat exchanger in which a corrugated plate having a corrugation and formed in a corrugated shape is provided along the header in a pipe of the header serving as a refrigerant inflow side when functioning as an evaporator.
前記波状板は、波間において冷媒を流通可能にする複数の開口穴部を有する請求項1記載の熱交換器。   The heat exchanger according to claim 1, wherein the corrugated plate has a plurality of opening holes that allow the refrigerant to flow between the waves. 前記波状板は、液冷媒の密度ρL、板厚Ft、液冷媒の表面張力σLとしたときに、波間のピッチFpが、
Fp<(2×σL/ρL)0.5 +Ft
を満たすように構成する請求項1又は2に記載の熱交換器。
When the corrugated plate has a liquid refrigerant density ρL, a plate thickness Ft, and a liquid refrigerant surface tension σL, the pitch Fp between waves is
Fp <(2 × σL / ρL) 0.5 + Ft
The heat exchanger according to claim 1 or 2 configured to satisfy the above.
前記波状板の波間のピッチFpとしたときに、前記ヘッダ管内における前記波状板と前記伝熱管の端部との間の距離δが、
0<δ<Fp
を満たすように構成する請求項1〜3のいずれか一項に記載の熱交換器。
The distance δ between the corrugated plate and the end of the heat transfer tube in the header tube when the corrugated pitch Fp of the corrugated plate is
0 <δ <Fp
The heat exchanger as described in any one of Claims 1-3 comprised so that it may satisfy | fill.
前記波状板の幅と前記ヘッダ管内における前記伝熱管の径とが同一となるように構成する請求項4記載の熱交換器。   The heat exchanger according to claim 4, wherein the width of the corrugated plate and the diameter of the heat transfer tube in the header tube are the same. 前記波状板に対して、前記伝熱管と対向する面とその反対側の面に、前記ヘッダ内に前記波状板を固定する固定板を付設する請求項5記載の熱交換器。   The heat exchanger according to claim 5, wherein a fixing plate for fixing the corrugated plate in the header is attached to the corrugated plate on a surface facing the heat transfer tube and an opposite surface thereof. 前記伝熱管を扁平管とする請求項1〜6のいずれか一項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 6, wherein the heat transfer tube is a flat tube. 冷媒を圧縮して吐出する圧縮機と、
熱交換により前記冷媒を凝縮させる凝縮器と、
凝縮に係る冷媒を減圧させるための絞り装置と、
請求項1〜7のいずれか一項に記載の熱交換器で構成し、減圧に係る冷媒との熱交換により前記冷媒を蒸発させる蒸発器と
を配管接続して冷媒回路を構成する冷凍サイクル装置。
A compressor that compresses and discharges the refrigerant;
A condenser for condensing the refrigerant by heat exchange;
A throttling device for depressurizing the refrigerant for condensation;
A refrigeration cycle apparatus comprising the heat exchanger according to any one of claims 1 to 7, wherein a refrigerant circuit is configured by pipe connection to an evaporator that evaporates the refrigerant by heat exchange with a refrigerant related to decompression. .
JP2014558410A 2013-01-28 2013-01-28 Heat exchanger and refrigeration cycle apparatus Active JP6038186B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/051780 WO2014115332A1 (en) 2013-01-28 2013-01-28 Heat exchanger and refrigeration cycle device

Publications (2)

Publication Number Publication Date
JP6038186B2 JP6038186B2 (en) 2016-12-07
JPWO2014115332A1 true JPWO2014115332A1 (en) 2017-01-26

Family

ID=51227145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014558410A Active JP6038186B2 (en) 2013-01-28 2013-01-28 Heat exchanger and refrigeration cycle apparatus

Country Status (2)

Country Link
JP (1) JP6038186B2 (en)
WO (1) WO2014115332A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019207799A1 (en) * 2018-04-27 2019-10-31 日立ジョンソンコントロールズ空調株式会社 Air conditioner and heat exchanger

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02247498A (en) * 1989-03-20 1990-10-03 Nippondenso Co Ltd Heat exchanger
JPH02282670A (en) * 1989-04-24 1990-11-20 Matsushita Electric Ind Co Ltd Heat exchanger
JP2002350000A (en) * 2001-05-29 2002-12-04 Calsonic Kansei Corp Condenser
JP2006170589A (en) * 2004-12-14 2006-06-29 Nichirei Kogyo Kk Gas-liquid separator and refrigerating apparatus equipped therewith
JP2007046890A (en) * 2005-07-12 2007-02-22 Usui Kokusai Sangyo Kaisha Ltd Tubular heat exchanger for egr gas cooler
JP5757415B2 (en) * 2010-08-27 2015-07-29 日冷工業株式会社 Refrigeration equipment such as air conditioners

Also Published As

Publication number Publication date
JP6038186B2 (en) 2016-12-07
WO2014115332A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
JP4506609B2 (en) Air conditioner and method of manufacturing air conditioner
JP4679542B2 (en) Finned tube heat exchanger, heat exchanger unit using the same, and air conditioner
US20150319885A1 (en) Outdoor unit and refrigeration cycle apparatus
JP6894520B2 (en) Condenser
WO2014125566A1 (en) Plate-type heat exchanger and refrigeration cycle device
JP2002206890A (en) Heat exchanger, and freezing air-conditioning cycle device using it
JP6400257B1 (en) Heat exchanger and air conditioner
JP2000274982A (en) Heat exchanger and air-conditioning refrigerating device using the same
US9696095B2 (en) Heat exchanger utilizing device to vary cross section of header
Chen et al. Application of a vapor–liquid separation heat exchanger to the air conditioning system at cooling and heating modes
JP2010249343A (en) Fin tube type heat exchanger and air conditioner using the same
US20140352352A1 (en) Outdoor heat exchanger and air conditioner
JP2012032089A (en) Finned tube heat exchanger and air conditioner using the same
JP5171983B2 (en) Heat exchanger and refrigeration cycle apparatus
JP6038186B2 (en) Heat exchanger and refrigeration cycle apparatus
JP5646257B2 (en) Refrigeration cycle equipment
JP5295207B2 (en) Finned tube heat exchanger and air conditioner using the same
JPWO2013094084A1 (en) Air conditioner
WO2014203500A1 (en) Air conditioner
JP5404729B2 (en) Heat exchanger and refrigeration cycle apparatus
KR101210570B1 (en) Heat exchanger
JP2005009827A (en) Fin tube type heat exchanger and heat pump device
JP4983878B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
US11236946B2 (en) Microchannel heat exchanger
JP2013185790A (en) Heat exchanger, and refrigeration cycle device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161101

R150 Certificate of patent or registration of utility model

Ref document number: 6038186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250