WO2014125566A1 - Plate-type heat exchanger and refrigeration cycle device - Google Patents

Plate-type heat exchanger and refrigeration cycle device Download PDF

Info

Publication number
WO2014125566A1
WO2014125566A1 PCT/JP2013/053253 JP2013053253W WO2014125566A1 WO 2014125566 A1 WO2014125566 A1 WO 2014125566A1 JP 2013053253 W JP2013053253 W JP 2013053253W WO 2014125566 A1 WO2014125566 A1 WO 2014125566A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
side inner
flow path
heat transfer
inner fin
Prior art date
Application number
PCT/JP2013/053253
Other languages
French (fr)
Japanese (ja)
Inventor
伊東 大輔
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015500018A priority Critical patent/JPWO2014125566A1/en
Priority to PCT/JP2013/053253 priority patent/WO2014125566A1/en
Priority to CN201420062584.0U priority patent/CN203758092U/en
Publication of WO2014125566A1 publication Critical patent/WO2014125566A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/06Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles

Definitions

  • the present invention relates to a plate heat exchanger and a refrigeration cycle apparatus.
  • the present invention relates to an inner fin type plate heat exchanger or the like.
  • JP 2003-185375 A page 5, FIG. 1
  • Japanese Unexamined Patent Publication No. 2003-294382 page 4, FIG. 1
  • JP 2003-056990 A page 5, FIG. 3
  • the inner fin plate type heat exchanger as in Patent Document 1 has the following problems. For example, when heat exchange is performed between the first fluid (for example, refrigerant) and the second fluid (for example, water) and the first fluid is condensed from gas to liquid, a liquid film is formed on the wall surface of the fin on the second fluid side. It becomes easy to be done. Since the liquid film becomes a thermal resistance, the heat transfer coefficient has been lowered. Furthermore, when two types of fluids flow in adjacent flow paths, the shape of the flow paths is the same, so that only the characteristics of one of the fluids can be matched. Therefore, it has become impossible to design optimally in terms of heat transfer and strength.
  • first fluid for example, refrigerant
  • the second fluid for example, water
  • the grooves are inclined with respect to the flow direction and are formed intermittently. For this reason, it is possible to hold a condensed liquid fluid (hereinafter referred to as “condensate”), but the liquid repellency is poor and the condensate becomes a thermal resistance.
  • condensate a condensed liquid fluid
  • the grooves are supported by the convex portions of each other, and the joining area of the adjacent heat transfer tubes is small and the strength is weak.
  • channel is a cyclic
  • the plate type heat exchanger according to the present invention has a passage hole serving as an outflow inlet for the first fluid and an outflow inlet for the second fluid.
  • a heat transfer plate forming a second flow path through which the second fluid passes, a first fluid-side inner fin disposed in the first flow path for promoting heat transfer, and disposed in the second flow path, for heat transfer
  • the first fluid fin has a convex portion protruding from the first flow path side to the second flow path side, and the surface serving as the first flow path in the heat transfer plate is
  • the first fluid side inner fin has a concave portion matched with the convex portion.
  • the first inner fin has a convex portion projecting to the second flow path side.
  • the first fluid side inner fin has a liquid generated when the first fluid is condensed. It can hold
  • FIG. 2 is a perspective view showing a partial cross section of the heat exchanger according to Embodiment 1.
  • FIG. 3 is a diagram in which an upper second fluid side inner fin 9 is removed from FIG. 2.
  • FIG. 6 is a perspective view showing a partial cross section of a second fluid side inner fin 9.
  • FIG. 4 is a perspective view showing a partial cross section of a heat transfer plate 8. It is the figure which remove
  • FIG. It is the figure which expanded a part of cross section of the heat exchanger in this Embodiment shown in FIG. It is a figure which shows the structure of the refrigerating-cycle apparatus which concerns on Embodiment 4 of this invention.
  • FIG. 1 is a view showing a plate heat exchanger according to Embodiment 1 of the present invention.
  • an inner fin type plate heat exchanger hereinafter referred to as a heat exchanger
  • the upper side in each drawing will be described as the upper side
  • the lower side will be described as the lower side.
  • the first fluid is a refrigerant (for example, a fluid that changes phase by heat exchange)
  • the second fluid is water.
  • the first fluid inlet pipe 1, the first fluid outlet pipe 2, the first fluid outlet pipe 2, the first fluid outlet pipe 2, the first fluid outlet pipe 2, the first fluid outlet pipe 2, and the second fluid A two-fluid inflow pipe 3 and a second fluid outflow pipe 4 are provided.
  • the side plate 5 which does not have the first fluid inflow pipe 1, the first fluid outflow pipe 2, the second fluid inflow pipe 3 and the second fluid outflow pipe 4 does not have a passage hole.
  • the side plate 5 serves to reinforce the heat exchanger and increase the strength.
  • the inner fin promotes heat transfer between the first fluid and the second fluid.
  • the first fluid side inner fin 10 and the second fluid side inner fin 9 through which the second fluid flows are different in shape. The first fluid side inner fin 10 and the second fluid side inner fin 9 will be described later.
  • a plurality of heat transfer plates 8 are stacked to form a flow path between the first fluid and the second fluid between the plates, and to exchange heat between the fluids.
  • the direction from the passage hole communicating with the fluid inflow pipe to the passage hole communicating with the outflow pipe is the major axis direction (longitudinal direction), and the orthogonal direction is the minor axis direction (short direction).
  • the first flow path and the second flow path are formed by laminating one or a plurality of heat transfer plates 8 between the pair of side plates 5.
  • the first fluid side inner fins 10 and the second fluid side inner fins 9 are alternately sandwiched between the heat transfer plates 8.
  • the heat transfer plate 8 of the present embodiment has irregularities corresponding to the shapes of the first fluid side inner fin 10 and the second fluid side inner fin 9.
  • the first fluid-side inner fin 10 and the second fluid-side inner fin 9 have different heights (directions perpendicular to the direction in which the fluid flows)
  • two types of heat transfer plates 8 matched to the height are used. have.
  • it has a passage hole corresponding to the 1st fluid inflow pipe 1, the 1st fluid outflow pipe 2, the 2nd fluid inflow pipe 3, and the 2nd fluid outflow pipe 4.
  • the flow direction of the first fluid be X and let the flow direction of the second fluid be Y. From FIG. 1, in the flow path formed in the heat transfer plate 8, the flow direction of the refrigerant in the first fluid and the second fluid is the opposite flow.
  • FIG. 2 is a perspective view showing a partial cross section of the heat exchanger according to Embodiment 1 of the present invention.
  • the heat transfer plate 8, the second fluid side inner fin 9, the heat transfer plate 8, the first fluid side inner fin 10, the heat transfer plate 8, and the second fluid side inner fin 9 are stacked in this order from the lower side. The figure is shown.
  • FIG. 3 is a view obtained by removing the upper second fluid side inner fin 9 from FIG.
  • FIG. 4 is a perspective view showing a cross section of a part of the second fluid side inner fin 9.
  • FIG. 5 is a perspective view showing a partial cross section of the heat transfer plate 8.
  • FIG. 6 is a view obtained by removing the heat transfer plate 8 from FIG.
  • FIG. 7 is a perspective view showing a partial cross section of the first fluid-side inner fin 10.
  • FIG. 8 is an enlarged view of a part of the cross section of the heat exchanger in the present embodiment shown in FIG.
  • the first fluid-side inner fin 10 has a protruding portion that protrudes toward the second flow path.
  • corrugation is also formed in the heat-transfer plate 8.
  • FIG. The concave portion of the heat transfer plate 8 corresponds to the convex portion of the first fluid-side inner fin 10. For this reason, the convex part when viewed from the first flow path side becomes a concave part on the second fluid side.
  • the first fluid-side inner fin 10 Since the first fluid-side inner fin 10 has the convex portion, when the first fluid passes through the first flow path and condenses, a liquid film (condensed liquid film) formed by condensation is converted into the first fluid-side inner fin 10. It is made to concentrate on the convex part. For this reason, the condensate film formed on the wall surface of the first fluid-side inner fin 10 other than the convex portion and the wall surface of the heat transfer plate 8 can be thinned, and the heat transfer coefficient can be improved.
  • the second fluid-side inner fin 9 is also formed with a convex portion.
  • the arrangement of the inner fins may be parallel or orthogonal to the fluid flow direction.
  • the heat transfer plate 8 and the protrusions formed on each inner fin may be formed so as to be linear along the fluid flow direction.
  • the convex portion is formed from the passage hole communicating with the first fluid inflow pipe 1 toward the passage hole communicating with the first fluid outflow pipe 2 along the fluid flow direction (long axis direction). The first fluid that has been condensed and turned into a liquid is concentrated on the convex portion and flows down, so that the liquid spillability from the fin wall surface is improved and the heat transfer rate is improved.
  • the heat transfer coefficient is improved by holding the condensate in the convex portion of the first fluid-side inner fin 10 and activating nucleate boiling between adjacent bubbles.
  • the convex portions protruding into the flow paths promote local disturbance of the fluid, and compared to the case where the inner fin and heat transfer plate surfaces are flat, The heat transfer coefficient can be improved.
  • by forming convex portions on the first fluid-side inner fin 10 and the second fluid-side inner fin 9 it is possible to increase the effective heat transfer area and further increase the amount of heat exchange.
  • the convex portions of the first fluid-side inner fin 10 and the second fluid-side inner fin 9 can be fitted by forming the heat transfer plate 8 to be uneven, an offset type heat exchange having a flat surface is possible. Compared with a vessel, the bonding strength can be greatly improved. Thereby, the plate
  • FIG. 5 Although not particularly shown in the first embodiment, the arrangement of the heat transfer plate 8 having a convex portion and a concave portion will be described in the present embodiment.
  • the convex portions are arranged at equal intervals in the short axis direction.
  • the dimension s which is the interval between the convex portions of the first fluid-side inner fin 10 and the interval t between the convex portions of the heat transfer plate 8 are each in the minor axis direction. Are arranged at equal intervals with the same length.
  • corrugation of the heat-transfer plate 8 corresponding to the 1st fluid side inner fin 10 can be formed with the same kind of metal mold
  • the interval between the convex portions of the second fluid side inner fin 9 and the interval between the convex portions of the heat transfer plate 8 are equally spaced in the minor axis direction.
  • the unevenness of the two-fluid-side inner fins 9 and the unevenness of the heat transfer plate 8 corresponding to the second fluid-side inner fins 9 can be formed by the same type (two types in total, one type each).
  • the interval between the convex portions of the first fluid-side inner fin 10 and the interval between the convex portions of the second fluid-side inner fin 9 are the same. There is no need to make the heat transfer plate 8. For this reason, in addition to the effect of Embodiment 1, a heat exchanger can be obtained more inexpensively.
  • Embodiment 3 the convex portion of the first fluid-side inner fin 10 will be described.
  • the convex portions and concave portions of the first fluid-side inner fin 10 are arranged in a staggered manner.
  • the unevenness of the heat transfer plate 8 can be fitted so that a plurality of rows of protrusions can be fitted.
  • corrugation of the heat-transfer plate 8 is formed so that the convex part for 2 rows of the 1st fluid side inner fin 10 can be fitted by one recessed part.
  • the convex portion of the first fluid-side inner fin 10 when the convex portion of the first fluid-side inner fin 10 is set to s1 that is 1 ⁇ 2 of the dimension s, the convex portion of the first fluid-side inner fin 10 becomes the concave portion of the heat transfer plate 8. It will fit. For this reason, the 1st fluid side inner fin 10 and the heat-transfer plate 8, and the 2nd fluid side inner fin 9 and the heat-transfer plate 8 can each be created with 1 type (total 3 types) metal mold
  • the first fluid-side inner fin 10 may be used as long as pressure loss and manufacturing restrictions of the first fluid are not exceeded.
  • the number of convex portions may be divided.
  • the first fluid-side inner fin 10 is arranged so that the direction u is the flow direction X, but may be arranged so that the direction s is the flow direction X. Similar effects can be obtained.
  • the second fluid-side inner fin 9 is arranged so that the direction of v is the flow direction Y, but is arranged so that the direction of t is the flow direction X. The same effect can be obtained.
  • FIG. 9 is a diagram showing a configuration of a refrigeration cycle apparatus according to Embodiment 4 of the present invention.
  • a refrigerant circuit (refrigerant circulation circuit) is configured by connecting a compressor 21, a condenser (including a gas cooler) 22, an expansion device 23, and an evaporator 24.
  • the blower 25 drives the blower motor 26 to form an air flow in order to promote heat exchange between the refrigerant passing through the evaporator 24 and the air.
  • Compressor 21 sucks in refrigerant, compresses it, discharges it in a high temperature / high pressure state.
  • it may be configured by a compressor of a type that can control the number of revolutions by an inverter circuit or the like and adjust the discharge amount of the refrigerant.
  • the condenser 22 having the heat exchanger described in the first embodiment or the like performs heat exchange between, for example, water (second fluid) flowing through the water circuit 27 and the refrigerant (first fluid) to condense the refrigerant. To make a liquid refrigerant (condensed liquid).
  • the expansion device 23 expands the refrigerant by decompressing it.
  • a flow rate control means such as an electronic expansion valve, but may be constituted by an expansion valve having a temperature sensing cylinder, a refrigerant flow rate adjustment means such as a capillary tube (capillary), or the like.
  • the evaporator 24 evaporates the refrigerant by exchanging heat with air or the like to form a gas (gas) -like refrigerant (evaporation gasification).
  • the heat exchanger described in Embodiments 1 to 3 can be used for the evaporator 24.
  • heat transfer performance can be improved by using the heat exchanger described in the first to third embodiments. By improving the heat transfer performance, an energy-efficient and energy-saving refrigeration cycle apparatus can be obtained.
  • Heating energy efficiency indoor heat exchanger (condenser) capacity / total input
  • Cooling energy efficiency indoor heat exchanger (evaporator) capacity / total input
  • the compressor 21 sucks the refrigerant, compresses it, and discharges it in a high temperature / high pressure state.
  • the discharged refrigerant flows into the condenser 22.
  • the condenser 22 performs heat exchange between the water flowing through the water circuit 27 and the refrigerant to condense and liquefy the refrigerant.
  • the condensed and liquefied refrigerant passes through the expansion device 23.
  • the expansion device 23 depressurizes the condensed and liquefied refrigerant that passes therethrough.
  • the decompressed refrigerant flows into the evaporator 24.
  • the evaporator 24 exchanges heat between the air supplied from the blower 25 and the refrigerant, and evaporates the refrigerant.
  • the compressor 21 sucks the evaporated gas refrigerant.
  • the refrigeration cycle apparatus described above includes HCFC (R22) and HFC (R116, R125, R134a, R14, R143a, R152a, R227ea, R23, R236ea, R236fa, R245ca, R245fa, R32, R41, RC318, etc.
  • the effect can be achieved more efficiently in R410A, R410A, and R32 whose design pressure and physical property values are close.
  • the refrigerant and the oil dissolve, such as mineral oil, alkylbenzene oil, ester oil, ether oil, and fluorine oil.
  • the effect can be achieved with any refrigeration oil, whether or not.
  • the present invention is not particularly limited to the above-described embodiments, and can be combined as appropriate. Moreover, as an application example of the present invention, for example, the present invention can be used for many industrial and household equipment equipped with a plate heat exchanger such as air conditioning, power generation, and food sterilization equipment.

Abstract

A plate-type heat exchanger is provided with: a plurality of rectangular heat transfer plates (8) that comprise a passage hole serving as an inlet/outlet for a first fluid and a second fluid and that are stacked to form a first flow path through which the first fluid passes and a second flow path through which the second fluid passes; a first fluid-side inner fin (10) that is arranged in the first flow path and that accelerates heat transfer; and a second fluid-side inner fin (9) that is arranged in the second flow path and that accelerates heat transfer. The first fluid-side inner fin (10) comprises a protrusion that protrudes on the second flow path side along the direction in which the first fluid flows in the first flow path. In the heat transfer plates (8), the surface serving as the first flow path comprises a recess that matches the protrusion of the first fluid-side inner fin (10).

Description

プレート式熱交換器及び冷凍サイクル装置Plate heat exchanger and refrigeration cycle apparatus
 この発明は、プレート式熱交換器及び冷凍サイクル装置に関するものである。特にインナーフィン型のプレート式熱交換器等に係るものである。 The present invention relates to a plate heat exchanger and a refrigeration cycle apparatus. In particular, the present invention relates to an inner fin type plate heat exchanger or the like.
 従来、複数のプレートで流路を形成し、プレートの間にはインナーフィンを挿入した積層型の熱交換器が、給湯、オイルクーラー用として提案されている(例えば、特許文献1、2参照)。また、流体の流路内に凹凸を設け、伝熱面積を広げるようにしたプレート型の蒸発器が提案されている(例えば、特許文献3参照)。 Conventionally, a laminated heat exchanger in which a flow path is formed by a plurality of plates and an inner fin is inserted between the plates has been proposed for hot water supply and oil coolers (for example, see Patent Documents 1 and 2). . In addition, a plate-type evaporator has been proposed in which irregularities are provided in the fluid flow path to increase the heat transfer area (see, for example, Patent Document 3).
特開2003-185375号公報(第5頁、第1図)JP 2003-185375 A (page 5, FIG. 1) 特開2003-294382号公報(第4頁、第1図)Japanese Unexamined Patent Publication No. 2003-294382 (page 4, FIG. 1) 特開2003-056990号公報(第5頁、第3図)JP 2003-056990 A (page 5, FIG. 3)
 しかし、特許文献1のようなインナーフィン型プレート式熱交換器には、次のような問題がある。例えば第1流体(例えば冷媒)と第2流体(例えば水)とによる熱交換を行って、第1流体が気体から液体に凝縮する場合、第2流体側のフィンの壁面において、液膜が形成され易くなる。この液膜が熱抵抗となってしまうため、熱伝達率が低下してしまっていた。さらに、隣り合う流路で二種類の流体が流れる場合、流路の形状が同じであるため、どちらか一方の流体の特性にしか合わせることしかできない。したがって、伝熱、強度の点で最適設計ができなくなっていた。 However, the inner fin plate type heat exchanger as in Patent Document 1 has the following problems. For example, when heat exchange is performed between the first fluid (for example, refrigerant) and the second fluid (for example, water) and the first fluid is condensed from gas to liquid, a liquid film is formed on the wall surface of the fin on the second fluid side. It becomes easy to be done. Since the liquid film becomes a thermal resistance, the heat transfer coefficient has been lowered. Furthermore, when two types of fluids flow in adjacent flow paths, the shape of the flow paths is the same, so that only the characteristics of one of the fluids can be matched. Therefore, it has become impossible to design optimally in terms of heat transfer and strength.
 また、特許文献2のような熱交換器では、溝が流れ方向に対して傾いており、かつ断続的に形成されている。このため、凝縮した液状の流体(以下、凝縮液という)の保持は可能であるが、液捌け性が悪く、凝縮液が熱抵抗になる。扁平管の流体から見ると、溝は互いの凸部で支持しており、隣り合う伝熱管の接合面積が小さく、強度が弱くなっていた。そして、特許文献3のような蒸発器においては、溝が環状の凹みであり、断続的に形成されている。凝縮液の保持は可能であるが、液捌け性が悪い。加えて隣り合う伝熱プレートの接合面積が小さく、強度が弱くなっていた。 Further, in the heat exchanger as in Patent Document 2, the grooves are inclined with respect to the flow direction and are formed intermittently. For this reason, it is possible to hold a condensed liquid fluid (hereinafter referred to as “condensate”), but the liquid repellency is poor and the condensate becomes a thermal resistance. When viewed from the fluid of the flat tube, the grooves are supported by the convex portions of each other, and the joining area of the adjacent heat transfer tubes is small and the strength is weak. And in the evaporator like patent document 3, a groove | channel is a cyclic | annular dent and is formed intermittently. Although the condensate can be retained, the liquid repellency is poor. In addition, the bonding area between adjacent heat transfer plates was small and the strength was weak.
 以上のことから、この発明では、熱交換の性能をよくし、強度を高めることができるプレート式熱交換器等を得ることを目的とする。 From the above, it is an object of the present invention to obtain a plate heat exchanger or the like that can improve heat exchange performance and increase strength.
 この発明に係るプレート式熱交換器は、第1流体の流出入口及び第2流体の流出入口となる通路孔を有し、複数を積層することにより、第1流体が通過する第1流路と第2流体が通過する第2流路とを形成する伝熱プレートと、第1流路に配置され、伝熱を促進させる第1流体側インナーフィンと、第2流路に配置され、伝熱を促進させる第2流体側インナーフィンとを備え、第1インナーフィンは、第1流路側から第2流路側に突出する凸部を有し、伝熱プレートにおいて、第1流路となる面は、第1流体側インナーフィンの凸部に合わせた凹部を有するものである。 The plate type heat exchanger according to the present invention has a passage hole serving as an outflow inlet for the first fluid and an outflow inlet for the second fluid. A heat transfer plate forming a second flow path through which the second fluid passes, a first fluid-side inner fin disposed in the first flow path for promoting heat transfer, and disposed in the second flow path, for heat transfer The first fluid fin has a convex portion protruding from the first flow path side to the second flow path side, and the surface serving as the first flow path in the heat transfer plate is The first fluid side inner fin has a concave portion matched with the convex portion.
 この発明のプレート式熱交換器では、第1インナーフィンが、第2流路側に突出する凸部を有するようにしたので、例えば第1流体の凝縮時に生じる液を第1流体側インナーフィンが有する凸部に保持することができ、フィン壁面全周における液膜の拡大を抑制し、凸部以外の液膜を薄くすることができ、伝熱性能を向上させることができる。 In the plate type heat exchanger according to the present invention, the first inner fin has a convex portion projecting to the second flow path side. For example, the first fluid side inner fin has a liquid generated when the first fluid is condensed. It can hold | maintain to a convex part, the expansion of the liquid film in a fin wall surface perimeter can be suppressed, liquid films other than a convex part can be made thin, and heat-transfer performance can be improved.
この発明の実施の形態1に係るプレート式熱交換器の構成を示す図である。It is a figure which shows the structure of the plate type heat exchanger which concerns on Embodiment 1 of this invention. 実施の形態1に係る熱交換器の一部の断面を示す斜視図である。2 is a perspective view showing a partial cross section of the heat exchanger according to Embodiment 1. FIG. 図2から上側の第2流体側インナーフィン9を除いた図である。FIG. 3 is a diagram in which an upper second fluid side inner fin 9 is removed from FIG. 2. 第2流体側インナーフィン9の一部の断面を示す斜視図である。FIG. 6 is a perspective view showing a partial cross section of a second fluid side inner fin 9. 伝熱プレート8の一部の断面を示す斜視図である。FIG. 4 is a perspective view showing a partial cross section of a heat transfer plate 8. 図3から伝熱プレート8を除いた図である。It is the figure which remove | excluded the heat-transfer plate 8 from FIG. 第1流体側インナーフィン10の一部の断面を示す斜視図である。3 is a perspective view showing a cross section of a part of the first fluid-side inner fin 10. FIG. 図2に示す本実施の形態における熱交換器の断面の一部を拡大した図である。It is the figure which expanded a part of cross section of the heat exchanger in this Embodiment shown in FIG. この発明の実施の形態4に係る冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigerating-cycle apparatus which concerns on Embodiment 4 of this invention.
実施の形態1.
 図1はこの発明の実施の形態1におけるプレート式熱交換器を示す図である。以下の実施の形態においては、インナーフィン型のプレート式熱交換器(以下、熱交換器という)について説明する。ここで、各図における上側を上とし、下側を下として説明する。また、本実施の形態では第1流体を冷媒(例えば熱交換により相変化する流体)とし、第2流体を水とする。
Embodiment 1 FIG.
FIG. 1 is a view showing a plate heat exchanger according to Embodiment 1 of the present invention. In the following embodiments, an inner fin type plate heat exchanger (hereinafter referred to as a heat exchanger) will be described. Here, the upper side in each drawing will be described as the upper side, and the lower side will be described as the lower side. In the present embodiment, the first fluid is a refrigerant (for example, a fluid that changes phase by heat exchange), and the second fluid is water.
 本実施の形態の熱交換器の一方のサイドプレート5には、第1流体及び第2流体のそれぞれの流入出口となる位置に合わせ、第1流体流入管1、第1流体流出管2、第2流体流入管3及び第2流体流出管4を有している。第1流体流入管1、第1流体流出管2、第2流体流入管3及び第2流体流出管4を有していない方のサイドプレート5は通路孔を有していない。サイドプレート5は熱交換器を補強し、強度を高める役割を果たす。 In one side plate 5 of the heat exchanger of the present embodiment, the first fluid inlet pipe 1, the first fluid outlet pipe 2, the first fluid outlet pipe 2, the first fluid outlet pipe 2, the first fluid outlet pipe 2, the first fluid outlet pipe 2, and the second fluid. A two-fluid inflow pipe 3 and a second fluid outflow pipe 4 are provided. The side plate 5 which does not have the first fluid inflow pipe 1, the first fluid outflow pipe 2, the second fluid inflow pipe 3 and the second fluid outflow pipe 4 does not have a passage hole. The side plate 5 serves to reinforce the heat exchanger and increase the strength.
 インナーフィンは第1流体と第2流体とにおける伝熱を促進する。本実施の形態では、第1流体が流れる流路(第1流路)に配置される第1流体側インナーフィン10と第2流体が流れる流路(第2流路)に配置される第2流体側インナーフィン9とを有している。本実施の形態では第1流体側インナーフィン10と第2流体が流れる第2流体側インナーフィン9とは形状が異なっている。第1流体側インナーフィン10と第2流体側インナーフィン9とについては後述する。 The inner fin promotes heat transfer between the first fluid and the second fluid. In the present embodiment, the first fluid-side inner fin 10 disposed in the flow path (first flow path) through which the first fluid flows and the second flow path disposed in the flow path (second flow path) through which the second fluid flows. It has a fluid side inner fin 9. In the present embodiment, the first fluid side inner fin 10 and the second fluid side inner fin 9 through which the second fluid flows are different in shape. The first fluid side inner fin 10 and the second fluid side inner fin 9 will be described later.
 伝熱プレート8は、複数を積層することでプレート間を第1流体と第2流体との流路とし、流体間を熱交換させる。ここでは、流体の流入管と連通する通路孔から流出管と連通する通路孔に向かう方向が長軸方向(長手方向)となり、直交する方向が短軸方向(短手方向)となる。本実施の形態の熱交換器では、一対のサイドプレート5の間に、1又は複数の伝熱プレート8を挟む形で積層することで、第1流路と第2流路とを形成する。各伝熱プレート8の間には、第1流体側インナーフィン10と第2流体側インナーフィン9とを交互に挟む。本実施の形態の伝熱プレート8は、第1流体側インナーフィン10及び第2流体側インナーフィン9の形状に対応した凹凸を有している。また、第1流体側インナーフィン10と第2流体側インナーフィン9との高さ(流体が流れる方向に対して垂直となる方向)が異なるため、高さに合わせた2種類の伝熱プレート8を有している。そして、第1流体流入管1、第1流体流出管2、第2流体流入管3及び第2流体流出管4に対応する通路孔を有している。ここで、図1に示すように、第1流体の流れ方向をXとし、第2流体の流れ方向をYとする。図1から、伝熱プレート8において形成された流路においては、第1流体と第2流体とにおける冷媒の流れる向きが反対となった対向流となっている。 A plurality of heat transfer plates 8 are stacked to form a flow path between the first fluid and the second fluid between the plates, and to exchange heat between the fluids. Here, the direction from the passage hole communicating with the fluid inflow pipe to the passage hole communicating with the outflow pipe is the major axis direction (longitudinal direction), and the orthogonal direction is the minor axis direction (short direction). In the heat exchanger of the present embodiment, the first flow path and the second flow path are formed by laminating one or a plurality of heat transfer plates 8 between the pair of side plates 5. The first fluid side inner fins 10 and the second fluid side inner fins 9 are alternately sandwiched between the heat transfer plates 8. The heat transfer plate 8 of the present embodiment has irregularities corresponding to the shapes of the first fluid side inner fin 10 and the second fluid side inner fin 9. In addition, since the first fluid-side inner fin 10 and the second fluid-side inner fin 9 have different heights (directions perpendicular to the direction in which the fluid flows), two types of heat transfer plates 8 matched to the height are used. have. And it has a passage hole corresponding to the 1st fluid inflow pipe 1, the 1st fluid outflow pipe 2, the 2nd fluid inflow pipe 3, and the 2nd fluid outflow pipe 4. Here, as shown in FIG. 1, let the flow direction of the first fluid be X and let the flow direction of the second fluid be Y. From FIG. 1, in the flow path formed in the heat transfer plate 8, the flow direction of the refrigerant in the first fluid and the second fluid is the opposite flow.
 図2はこの発明の実施の形態1に係る熱交換器の一部の断面を示す斜視図である。図2は、下側から、伝熱プレート8、第2流体側インナーフィン9、伝熱プレート8、第1流体側インナーフィン10、伝熱プレート8、第2流体側インナーフィン9の順に重ねた図を示している。 FIG. 2 is a perspective view showing a partial cross section of the heat exchanger according to Embodiment 1 of the present invention. In FIG. 2, the heat transfer plate 8, the second fluid side inner fin 9, the heat transfer plate 8, the first fluid side inner fin 10, the heat transfer plate 8, and the second fluid side inner fin 9 are stacked in this order from the lower side. The figure is shown.
 また、図3は図2から上側の第2流体側インナーフィン9を除いた図である。さらに、図4は第2流体側インナーフィン9の一部の断面を示す斜視図である。また、図5は伝熱プレート8の一部の断面を示す斜視図である。図6は図3から伝熱プレート8を除いた図である。そして、図7は第1流体側インナーフィン10の一部の断面を示す斜視図である。 3 is a view obtained by removing the upper second fluid side inner fin 9 from FIG. FIG. 4 is a perspective view showing a cross section of a part of the second fluid side inner fin 9. FIG. 5 is a perspective view showing a partial cross section of the heat transfer plate 8. FIG. 6 is a view obtained by removing the heat transfer plate 8 from FIG. FIG. 7 is a perspective view showing a partial cross section of the first fluid-side inner fin 10.
 図8は図2に示す本実施の形態における熱交換器の断面の一部を拡大した図である。図7及び図8に示すように、本実施の形態の熱交換器は、少なくとも第1流体側インナーフィン10が、第2流路側に突出した凸部を有しているものとする。そして、第1流体側インナーフィン10の凸部に合わせて、図3及び図5に示すように、伝熱プレート8にも凹凸を形成する。第1流体側インナーフィン10の凸部に伝熱プレート8の凹部が対応するものとする。このため、第1流路側から見て凸となる部分は第2流体側においては凹となる部分になる。第1流体側インナーフィン10が凸部を有することで、第1流体が第1流路を通過して凝縮する際、凝縮によってできる液膜(凝縮液膜)を、第1流体側インナーフィン10の凸部に集約させるようにする。このため、凸部以外の第1流体側インナーフィン10の壁面、伝熱プレート8の壁面にできる凝縮液膜を薄くすることができ、熱伝達率を向上させることができる。 FIG. 8 is an enlarged view of a part of the cross section of the heat exchanger in the present embodiment shown in FIG. As shown in FIGS. 7 and 8, in the heat exchanger of the present embodiment, at least the first fluid-side inner fin 10 has a protruding portion that protrudes toward the second flow path. And according to the convex part of the 1st fluid side inner fin 10, as shown in FIG.3 and FIG.5, an unevenness | corrugation is also formed in the heat-transfer plate 8. FIG. The concave portion of the heat transfer plate 8 corresponds to the convex portion of the first fluid-side inner fin 10. For this reason, the convex part when viewed from the first flow path side becomes a concave part on the second fluid side. Since the first fluid-side inner fin 10 has the convex portion, when the first fluid passes through the first flow path and condenses, a liquid film (condensed liquid film) formed by condensation is converted into the first fluid-side inner fin 10. It is made to concentrate on the convex part. For this reason, the condensate film formed on the wall surface of the first fluid-side inner fin 10 other than the convex portion and the wall surface of the heat transfer plate 8 can be thinned, and the heat transfer coefficient can be improved.
 ここで、図3及び図4に示すように、本実施の形態では第2流体側インナーフィン9にも凸部を形成している。ここで、インナーフィンの配置は、流体の流れ方向に対して平行又は直交させるようにしてもよい。特に液捌け性を向上する場合には、伝熱プレート8と各インナーフィンに形成する凸部を、流体の流れ方向に沿って直線的になるように形成するとよい。凸部は流体の流れ方向(長軸方向)に沿って、第1流体流入管1と連通する通路孔から第1流体流出管2と連通する通路孔に向かって形成されている。凝縮して液体となった第1流体が凸部に集約して流れ落ちることにより、フィン壁面からの液捌け性がよくなり、熱伝達率が向上する。一方、冷媒が蒸発する場合、単相の流体の場合には、凸部において、流体の流れが攪拌されて熱伝達が向上する。このため、熱交換量を増大させることができる。例えば蒸発時には、第1流体側インナーフィン10の凸部内における凝縮液の保持、隣接する気泡同士の核沸騰の活性化により熱伝達率が向上する。このため、二相、単相に関係なく、互いの流路に突出した凸部により流体の局所的な乱れを促進し、インナーフィン、伝熱プレートの面がフラットな場合に比べて、流体間の熱伝達率を向上させることができる。また、第1流体側インナーフィン10及び第2流体側インナーフィン9に凸部を形成することにより、有効伝熱面積を増加することができ、さらに熱交換量を増大させることができる。 Here, as shown in FIGS. 3 and 4, in the present embodiment, the second fluid-side inner fin 9 is also formed with a convex portion. Here, the arrangement of the inner fins may be parallel or orthogonal to the fluid flow direction. In particular, in order to improve the liquid spillability, the heat transfer plate 8 and the protrusions formed on each inner fin may be formed so as to be linear along the fluid flow direction. The convex portion is formed from the passage hole communicating with the first fluid inflow pipe 1 toward the passage hole communicating with the first fluid outflow pipe 2 along the fluid flow direction (long axis direction). The first fluid that has been condensed and turned into a liquid is concentrated on the convex portion and flows down, so that the liquid spillability from the fin wall surface is improved and the heat transfer rate is improved. On the other hand, when the refrigerant evaporates, in the case of a single-phase fluid, the flow of the fluid is agitated at the convex portion, and heat transfer is improved. For this reason, the amount of heat exchange can be increased. For example, at the time of evaporation, the heat transfer coefficient is improved by holding the condensate in the convex portion of the first fluid-side inner fin 10 and activating nucleate boiling between adjacent bubbles. For this reason, regardless of two-phase or single-phase, the convex portions protruding into the flow paths promote local disturbance of the fluid, and compared to the case where the inner fin and heat transfer plate surfaces are flat, The heat transfer coefficient can be improved. Moreover, by forming convex portions on the first fluid-side inner fin 10 and the second fluid-side inner fin 9, it is possible to increase the effective heat transfer area and further increase the amount of heat exchange.
 また、伝熱プレート8を凹凸に形成することで、第1流体側インナーフィン10及び第2流体側インナーフィン9の凸部を嵌合させることができるため、フラット面を持つオフセット型の熱交換器に比べて接合強度を大幅に向上させることができる。これにより、従来のオフセット型熱交換器よりも、サイドプレート5、伝熱プレート8の板厚を薄くすることができ、安価に熱交換器を製造することができる。 Moreover, since the convex portions of the first fluid-side inner fin 10 and the second fluid-side inner fin 9 can be fitted by forming the heat transfer plate 8 to be uneven, an offset type heat exchange having a flat surface is possible. Compared with a vessel, the bonding strength can be greatly improved. Thereby, the plate | board thickness of the side plate 5 and the heat-transfer plate 8 can be made thinner than the conventional offset type heat exchanger, and a heat exchanger can be manufactured cheaply.
 以上より、流体の流れ状態に関らず、熱伝達と強度の向上とを両立することができる。このため、例えば二酸化炭素のような高圧冷媒も使用可能となる。また、伝熱プレート8の凹凸を流体の流れに沿って形成することで、第1流体と第2流体の流れ方向が変わる冷房、暖房の同時運転や除霜運転においても、高い熱交換性能を実現することができる。 From the above, it is possible to achieve both heat transfer and strength improvement regardless of the fluid flow state. For this reason, for example, a high-pressure refrigerant such as carbon dioxide can be used. In addition, by forming the irregularities of the heat transfer plate 8 along the flow of the fluid, high heat exchange performance can be achieved even in simultaneous cooling and heating operations and defrosting operations in which the flow directions of the first fluid and the second fluid change. Can be realized.
実施の形態2.
 上述した実施の形態1では特に示さなかったが、本実施の形態では、凸部と凹部を有する伝熱プレート8の配置について説明する。例えば第1流体側インナーフィン10において凸となっている部分に合わせ、図5等に示すように、短軸方向において凸部間(凹部間)が等間隔で並ぶように配置する。
Embodiment 2. FIG.
Although not particularly shown in the first embodiment, the arrangement of the heat transfer plate 8 having a convex portion and a concave portion will be described in the present embodiment. For example, in accordance with the convex portion of the first fluid-side inner fin 10, as shown in FIG. 5 and the like, the convex portions (between concave portions) are arranged at equal intervals in the short axis direction.
 例えば、図7、図8に示すように、第1流体側インナーフィン10の凸となっている部分の間隔である寸法sと伝熱プレート8の凸部間の間隔tとをそれぞれ短軸方向に同等の長さとして等間隔に配置する。これにより、第1流体側インナーフィン10の凹凸と第1流体側インナーフィン10に対応する伝熱プレート8の凹凸とを同じ種類の金型で形成することができる。同様に、第2流体側インナーフィン9の凸部間の間隔と伝熱プレート8の凸部間の間隔とをそれぞれ短軸方向に同等の長さとして等間隔に配置するようにすれば、第2流体側インナーフィン9の凹凸と第2流体側インナーフィン9に対応する伝熱プレート8の凹凸とを同じ種類(各1種類で計2種類)の金型で形成することができる。また、例えば図8に示す例では、第1流体側インナーフィン10の凸となっている部分の間隔と第2流体側インナーフィン9の凸部間の間隔とが同じであるため、異なる凹凸の伝熱プレート8を作成する必要がない。このため、実施の形態1の効果に加え、さらに安価に熱交換器を得ることができる。 For example, as shown in FIGS. 7 and 8, the dimension s, which is the interval between the convex portions of the first fluid-side inner fin 10, and the interval t between the convex portions of the heat transfer plate 8 are each in the minor axis direction. Are arranged at equal intervals with the same length. Thereby, the unevenness | corrugation of the 1st fluid side inner fin 10 and the unevenness | corrugation of the heat-transfer plate 8 corresponding to the 1st fluid side inner fin 10 can be formed with the same kind of metal mold | die. Similarly, if the interval between the convex portions of the second fluid side inner fin 9 and the interval between the convex portions of the heat transfer plate 8 are equally spaced in the minor axis direction, The unevenness of the two-fluid-side inner fins 9 and the unevenness of the heat transfer plate 8 corresponding to the second fluid-side inner fins 9 can be formed by the same type (two types in total, one type each). For example, in the example shown in FIG. 8, the interval between the convex portions of the first fluid-side inner fin 10 and the interval between the convex portions of the second fluid-side inner fin 9 are the same. There is no need to make the heat transfer plate 8. For this reason, in addition to the effect of Embodiment 1, a heat exchanger can be obtained more inexpensively.
実施の形態3.
 本実施の形態では、第1流体側インナーフィン10の凸となっている部分について説明する。図7、図8に示すように、第1流体側インナーフィン10の凸部、凹部は千鳥状に配置されている。このため、例えば冷媒の流れ方向に対して列を成して凸部が形成されている第1流体側インナーフィン10において、複数列の凸部を嵌合できるように、伝熱プレート8の凹凸を形成する。図8等においては、第1流体側インナーフィン10の2列分の凸部を1つの凹部で嵌合できるように、伝熱プレート8の凹凸を形成している。
Embodiment 3 FIG.
In the present embodiment, the convex portion of the first fluid-side inner fin 10 will be described. As shown in FIGS. 7 and 8, the convex portions and concave portions of the first fluid-side inner fin 10 are arranged in a staggered manner. For this reason, for example, in the first fluid-side inner fin 10 in which the protrusions are formed in rows with respect to the flow direction of the refrigerant, the unevenness of the heat transfer plate 8 can be fitted so that a plurality of rows of protrusions can be fitted. Form. In FIG. 8 etc., the unevenness | corrugation of the heat-transfer plate 8 is formed so that the convex part for 2 rows of the 1st fluid side inner fin 10 can be fitted by one recessed part.
 これにより、第1流体の熱伝達率及び伝熱面積を第2流体に比べて大きくすることができる。ただ、インナーフィンをこのような形状に形成すると圧力損失が増える。そこで、圧力損失に係る制約がある流体を第2流体として使用し、圧力損失の制約がなく、伝熱性能を優先することができる流体を第1流体として使用する場合には有効となる。 This makes it possible to increase the heat transfer coefficient and heat transfer area of the first fluid compared to the second fluid. However, if the inner fin is formed in such a shape, the pressure loss increases. Therefore, this is effective when a fluid having a restriction on pressure loss is used as the second fluid, and a fluid that has no restriction on the pressure loss and can prioritize heat transfer performance is used as the first fluid.
 また、例えば、図8のように、第1流体側インナーフィン10の凸部を寸法sの1/2であるs1にすると第1流体側インナーフィン10の凸部が伝熱プレート8の凹部に収まる。このため、第1流体側インナーフィン10及び伝熱プレート8、第2流体側インナーフィン9及び伝熱プレート8をそれぞれ1種類(合計3種類)の金型で作成することができる。したがって、生産性にも優れる。 For example, as shown in FIG. 8, when the convex portion of the first fluid-side inner fin 10 is set to s1 that is ½ of the dimension s, the convex portion of the first fluid-side inner fin 10 becomes the concave portion of the heat transfer plate 8. It will fit. For this reason, the 1st fluid side inner fin 10 and the heat-transfer plate 8, and the 2nd fluid side inner fin 9 and the heat-transfer plate 8 can each be created with 1 type (total 3 types) metal mold | die. Therefore, it is excellent in productivity.
 第1流体側インナーフィン10の凸部が第2流体側の凹部に2個配置する場合を例としたが、第1流体の圧力損失や製造制約を超過しない限り、第1流体側インナーフィン10の凸部の数を分割してもよい。 Although the case where two convex portions of the first fluid-side inner fin 10 are arranged in the concave portion on the second fluid side has been described as an example, the first fluid-side inner fin 10 may be used as long as pressure loss and manufacturing restrictions of the first fluid are not exceeded. The number of convex portions may be divided.
 また、図7に示すように、第1流体側インナーフィン10について、uの方向が流れ方向Xとなるように配置しているが、sの方向が流れ方向Xとなるように配置しても同様の効果が得られる。同様に、図4に示すように、第2流体側インナーフィン9について、vの方向が流れ方向Yとなるように配置しているが、tの方向が流れ方向Xとなるように配置しても同様の効果が得られる。 Further, as shown in FIG. 7, the first fluid-side inner fin 10 is arranged so that the direction u is the flow direction X, but may be arranged so that the direction s is the flow direction X. Similar effects can be obtained. Similarly, as shown in FIG. 4, the second fluid-side inner fin 9 is arranged so that the direction of v is the flow direction Y, but is arranged so that the direction of t is the flow direction X. The same effect can be obtained.
実施の形態4.
 図9はこの発明の実施の形態4に係る冷凍サイクル装置の構成を示す図である。図9の冷凍サイクル装置は、圧縮機21、凝縮器(ガスクーラーを含む)22、絞り装置23及び蒸発器24を配管接続して冷媒回路(冷媒循環回路)を構成している。また、送風機25は、送風機用モータ26の駆動により、蒸発器24を通過する冷媒と空気との熱交換を促すために空気の流れを形成する。
Embodiment 4 FIG.
FIG. 9 is a diagram showing a configuration of a refrigeration cycle apparatus according to Embodiment 4 of the present invention. In the refrigeration cycle apparatus of FIG. 9, a refrigerant circuit (refrigerant circulation circuit) is configured by connecting a compressor 21, a condenser (including a gas cooler) 22, an expansion device 23, and an evaporator 24. In addition, the blower 25 drives the blower motor 26 to form an air flow in order to promote heat exchange between the refrigerant passing through the evaporator 24 and the air.
 圧縮機21は冷媒を吸入し、圧縮して高温・高圧の状態にして吐出する。ここで、例えばインバータ回路等により回転数を制御し、冷媒の吐出量を調整できるタイプの圧縮機で構成するとよい。 Compressor 21 sucks in refrigerant, compresses it, discharges it in a high temperature / high pressure state. Here, for example, it may be configured by a compressor of a type that can control the number of revolutions by an inverter circuit or the like and adjust the discharge amount of the refrigerant.
 実施の形態1等において説明した熱交換器を有する凝縮器22は、例えば水回路27を流れる水(第2流体)と冷媒(第1流体)との間で熱交換を行い、冷媒を凝縮させて液状の冷媒にする(凝縮液化させる)ものである。 The condenser 22 having the heat exchanger described in the first embodiment or the like performs heat exchange between, for example, water (second fluid) flowing through the water circuit 27 and the refrigerant (first fluid) to condense the refrigerant. To make a liquid refrigerant (condensed liquid).
 また、絞り装置23は、冷媒を減圧して膨張させるものである。例えば電子式膨張弁等の流量制御手段で構成するが、例えば、感温筒を有する膨張弁、毛細管(キャピラリ)等の冷媒流量調節手段等で構成してもよい。蒸発器24は、空気等との熱交換により冷媒を蒸発させて気体(ガス)状の冷媒にする(蒸発ガス化させる)ものである。図9では特に示していないが、例えば、蒸発器24に実施の形態1~3において説明した熱交換器を蒸発器24に用いることができる。 Further, the expansion device 23 expands the refrigerant by decompressing it. For example, it is constituted by a flow rate control means such as an electronic expansion valve, but may be constituted by an expansion valve having a temperature sensing cylinder, a refrigerant flow rate adjustment means such as a capillary tube (capillary), or the like. The evaporator 24 evaporates the refrigerant by exchanging heat with air or the like to form a gas (gas) -like refrigerant (evaporation gasification). Although not particularly shown in FIG. 9, for example, the heat exchanger described in Embodiments 1 to 3 can be used for the evaporator 24.
 実施の形態4の冷凍サイクル装置において、実施の形態1~3において説明した熱交換器を用いることにより、伝熱性能を向上させる等することができる。伝熱性能が向上することにより、エネルギー効率がよく、省エネルギーの冷凍サイクル装置を得ることができる。 In the refrigeration cycle apparatus of the fourth embodiment, heat transfer performance can be improved by using the heat exchanger described in the first to third embodiments. By improving the heat transfer performance, an energy-efficient and energy-saving refrigeration cycle apparatus can be obtained.
 ここで、冷房及び暖房における各エネルギー効率は次のようになる。
 暖房エネルギー効率=室内熱交換器(凝縮器)能力/全入力
 冷房エネルギー効率=室内熱交換器(蒸発器)能力/全入力
Here, each energy efficiency in cooling and heating is as follows.
Heating energy efficiency = indoor heat exchanger (condenser) capacity / total input Cooling energy efficiency = indoor heat exchanger (evaporator) capacity / total input
 次に、冷凍サイクル装置の各構成機器における動作等を、冷媒回路を循環する冷媒の流れに基づいて説明する。まず、圧縮機21は、冷媒を吸入し、圧縮して高温・高圧の状態にして吐出する。吐出した冷媒は凝縮器22へ流入する。凝縮器22は、水回路27を流れる水と冷媒との間で熱交換を行い、冷媒を凝縮液化させる。凝縮液化した冷媒は絞り装置23を通過する。絞り装置23は、通過する凝縮液化した冷媒を減圧する。減圧した冷媒は蒸発器24に流入する。蒸発器24は、送風機25から供給される空気と冷媒との間で熱交換を行い、冷媒を蒸発ガス化する。蒸発ガス化した冷媒を圧縮機21が吸入する。 Next, operations and the like in each component device of the refrigeration cycle apparatus will be described based on the flow of the refrigerant circulating in the refrigerant circuit. First, the compressor 21 sucks the refrigerant, compresses it, and discharges it in a high temperature / high pressure state. The discharged refrigerant flows into the condenser 22. The condenser 22 performs heat exchange between the water flowing through the water circuit 27 and the refrigerant to condense and liquefy the refrigerant. The condensed and liquefied refrigerant passes through the expansion device 23. The expansion device 23 depressurizes the condensed and liquefied refrigerant that passes therethrough. The decompressed refrigerant flows into the evaporator 24. The evaporator 24 exchanges heat between the air supplied from the blower 25 and the refrigerant, and evaporates the refrigerant. The compressor 21 sucks the evaporated gas refrigerant.
 ここで、上述の冷凍サイクル装置については、HCFC(R22)やHFC(R116、R125、R134a、R14、R143a、R152a、R227ea、R23、R236ea、R236fa、R245ca、R245fa、R32、R41、RC318など、これら冷媒の数種の混合冷媒R407A、R407B、R407C、R407D、R407E、R410A、R410B、R404A、R507A、R508A、R508Bなど)、HC(ブタン、イソブタン、エタン、プロパン、プロピレンなど、これら冷媒の数種混合冷媒)、自然冷媒(空気、炭酸ガス、アンモニアなど、これら冷媒の数種の混合冷媒)、HFO1234yf等の低GWP冷媒、またこれら冷媒の数種の混合冷媒などを用いてもよい。特にR410A、R410Aと設計圧力及び物性値が近いR32において、その効果をより効率的に達成することができる。 Here, the refrigeration cycle apparatus described above includes HCFC (R22) and HFC (R116, R125, R134a, R14, R143a, R152a, R227ea, R23, R236ea, R236fa, R245ca, R245fa, R32, R41, RC318, etc. Several mixed refrigerants R407A, R407B, R407C, R407D, R407E, R410A, R410B, R404A, R507A, R508A, R508B, etc.), HC (butane, isobutane, ethane, propane, propylene, etc.) Refrigerant), natural refrigerant (several mixed refrigerants such as air, carbon dioxide, and ammonia), low GWP refrigerant such as HFO1234yf, and several mixed refrigerants of these refrigerants. In particular, the effect can be achieved more efficiently in R410A, R410A, and R32 whose design pressure and physical property values are close.
 ここで、実施の形態1、実施の形態2で述べた熱交換器及び冷凍サイクル装置については、鉱油系、アルキルベンゼン油系、エステル油系、エーテル油系、フッ素油系など、冷媒と油が溶けるかどうかにかかわらず、どんな冷凍機油についても、その効果を達成することができる。 Here, with respect to the heat exchanger and the refrigeration cycle apparatus described in the first embodiment and the second embodiment, the refrigerant and the oil dissolve, such as mineral oil, alkylbenzene oil, ester oil, ether oil, and fluorine oil. The effect can be achieved with any refrigeration oil, whether or not.
 この発明は、上述の各実施の形態に特に限定されるものではなく、適宜組み合わせ等を行うことができる。また、本発明の活用例として、例えば、空調、発電、食品の加熱殺菌処理機器等、プレート式熱交換器を搭載した多くの産業、家庭用機器に利用可能である。 The present invention is not particularly limited to the above-described embodiments, and can be combined as appropriate. Moreover, as an application example of the present invention, for example, the present invention can be used for many industrial and household equipment equipped with a plate heat exchanger such as air conditioning, power generation, and food sterilization equipment.
 1 第1流体流入管、2 第1流体流出管、3 第2流体流入管、4 第2流体流出管、5 サイドプレート、8 伝熱プレート、9 第2流体側インナーフィン、10 第1流体側インナーフィン、21 圧縮機、22 凝縮器、23 絞り装置、24 蒸発器、25 送風機、26 送風機用モータ、27 水回路、X 第1流体の流れ方向、Y 第2流体の流れ方向。 1 1st fluid inflow pipe, 2nd 1st fluid outflow pipe, 3rd 2nd fluid inflow pipe, 4th 2nd fluid outflow pipe, 5 side plate, 8 heat transfer plate, 9 2nd fluid side inner fin, 10 1st fluid side Inner fin, 21 compressor, 22 condenser, 23 throttling device, 24 evaporator, 25 blower, 26 blower motor, 27 water circuit, X first fluid flow direction, Y second fluid flow direction.

Claims (4)

  1.  第1流体の流出入口及び第2流体の流出入口となる通路孔を有し、複数を積層することにより、前記第1流体が通過する第1流路と前記第2流体が通過する第2流路とを形成する伝熱プレートと、
     前記第1流路に配置され、伝熱を促進させる第1流体側インナーフィンと、
     前記第2流路に配置され、伝熱を促進させる第2流体側インナーフィンと
    を備え、
     前記第1流体側インナーフィンは、前記第1流路側から前記第2流路側に突出する凸部を有し、
     前記伝熱プレートにおいて、前記第1流路となる面は、前記第1流体側インナーフィンの凸部に合わせた凹部を有するプレート式熱交換器。
    A first flow path through which the first fluid passes and a second flow through which the second fluid passes by having a plurality of passage holes that serve as the first fluid outflow inlet and the second fluid outflow inlet. A heat transfer plate forming a path;
    A first fluid-side inner fin disposed in the first flow path to promote heat transfer;
    A second fluid-side inner fin that is disposed in the second flow path and promotes heat transfer;
    The first fluid side inner fin has a convex portion protruding from the first flow path side to the second flow path side,
    In the heat transfer plate, the surface serving as the first flow path is a plate heat exchanger having a concave portion matched with the convex portion of the first fluid-side inner fin.
  2.  前記伝熱プレートの凹部は、前記第1流路において前記第1流体の流れる方向と直交する方向において等間隔に配置されている請求項1記載のプレート式熱交換器。 The plate heat exchanger according to claim 1, wherein the recesses of the heat transfer plate are arranged at equal intervals in a direction orthogonal to a direction in which the first fluid flows in the first flow path.
  3.  前記第1流体側インナーフィンの凸部は、前記第1流路において前記第1流体の流れる方向に沿った列状に形成されており、
     前記第1流体側インナーフィンの複数列分の凸部を前記伝熱プレートの1つの凹部に嵌合させる請求項1又は請求項2記載のプレート式熱交換器。
    The convex portions of the first fluid-side inner fins are formed in a row along the direction in which the first fluid flows in the first flow path,
    The plate-type heat exchanger according to claim 1 or 2, wherein convex portions for a plurality of rows of the first fluid-side inner fins are fitted into one concave portion of the heat transfer plate.
  4.  冷媒を圧縮して吐出する圧縮機と、熱交換により前記冷媒を凝縮させる凝縮器と、凝縮に係る冷媒を減圧させるための絞り装置と、減圧に係る冷媒と空気とを熱交換して前記冷媒を蒸発させる蒸発器とを配管接続して冷媒回路を構成し、
     前記蒸発器、前記凝縮器の少なくとも一方が、請求項1~3のいずれか一項に記載のプレート式熱交換器を有することを特徴とする冷凍サイクル装置。
    A compressor that compresses and discharges the refrigerant; a condenser that condenses the refrigerant by heat exchange; a throttling device that depressurizes the refrigerant related to condensation; and A refrigerant circuit is configured by connecting a pipe to an evaporator that evaporates
    A refrigeration cycle apparatus, wherein at least one of the evaporator and the condenser includes the plate heat exchanger according to any one of claims 1 to 3.
PCT/JP2013/053253 2013-02-12 2013-02-12 Plate-type heat exchanger and refrigeration cycle device WO2014125566A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015500018A JPWO2014125566A1 (en) 2013-02-12 2013-02-12 Plate heat exchanger and refrigeration cycle apparatus
PCT/JP2013/053253 WO2014125566A1 (en) 2013-02-12 2013-02-12 Plate-type heat exchanger and refrigeration cycle device
CN201420062584.0U CN203758092U (en) 2013-02-12 2014-02-12 Plate heat exchanger and refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/053253 WO2014125566A1 (en) 2013-02-12 2013-02-12 Plate-type heat exchanger and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2014125566A1 true WO2014125566A1 (en) 2014-08-21

Family

ID=51253354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053253 WO2014125566A1 (en) 2013-02-12 2013-02-12 Plate-type heat exchanger and refrigeration cycle device

Country Status (3)

Country Link
JP (1) JPWO2014125566A1 (en)
CN (1) CN203758092U (en)
WO (1) WO2014125566A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2998676A1 (en) * 2014-09-17 2016-03-23 VALEO AUTOSYSTEMY Sp. Z. o.o. Heat exchanger, in particular a condenser
FR3045801A1 (en) * 2015-12-21 2017-06-23 Valeo Systemes Thermiques THERMAL EXCHANGER, IN PARTICULAR FOR MOTOR VEHICLE
JP6492148B1 (en) * 2017-10-24 2019-03-27 株式会社日阪製作所 Plate heat exchanger
CN111351387A (en) * 2018-12-21 2020-06-30 因诺黑特瑞典公司 Heat exchanger plate and heat exchanger
JPWO2021149139A1 (en) * 2020-01-21 2021-07-29
WO2022108450A1 (en) * 2020-11-20 2022-05-27 Level Holding Ii B.V. Recuperator with improved channel configuration

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL255877B (en) 2017-11-23 2019-12-31 Dulberg Sharon Device for extraction of water from air, and dehumidifying with high energy efficiency and methods for manufacturing thereof
JP7256951B2 (en) * 2018-10-29 2023-04-13 株式会社ノーリツ Plate heat exchanger and water heater equipped with same
EP3686260B1 (en) * 2019-01-23 2022-12-28 Weiss Technik GmbH Coolant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174495A (en) * 2000-12-07 2002-06-21 Matsushita Electric Ind Co Ltd Heat exchanger
JP2003075088A (en) * 2001-08-28 2003-03-12 Mitsubishi Electric Corp Structure of cooling fin
JP2005069499A (en) * 2003-08-25 2005-03-17 Nissan Motor Co Ltd Plate fin type heat exchanger
JP2009079779A (en) * 2007-09-25 2009-04-16 Mitsubishi Electric Corp Plate-type heat exchanger and air conditioning device using the same
JP2009150587A (en) * 2007-12-19 2009-07-09 Denso Corp Heat exchanger

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2782009A (en) * 1952-03-14 1957-02-19 Gen Motors Corp Heat exchangers
JP2660207B2 (en) * 1987-11-25 1997-10-08 株式会社荏原シンワ Manufacturing method of indirect heat exchanger
JPH08204074A (en) * 1995-01-30 1996-08-09 Calsonic Corp Heat sink and manufacture of the same
JP2003056990A (en) * 2001-08-16 2003-02-26 Sasakura Engineering Co Ltd Plate type evaporator
JP2003185375A (en) * 2001-12-17 2003-07-03 Daikin Ind Ltd Plate-type heat exchanger
JP2003185377A (en) * 2001-12-18 2003-07-03 Nissan Motor Co Ltd Plate fin-type heat exchanger
JP2003294382A (en) * 2002-04-04 2003-10-15 Toyo Radiator Co Ltd Heat exchanger
EP2700894B1 (en) * 2011-04-18 2018-11-07 Mitsubishi Electric Corporation Plate-type heat exchanger and heat pump device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174495A (en) * 2000-12-07 2002-06-21 Matsushita Electric Ind Co Ltd Heat exchanger
JP2003075088A (en) * 2001-08-28 2003-03-12 Mitsubishi Electric Corp Structure of cooling fin
JP2005069499A (en) * 2003-08-25 2005-03-17 Nissan Motor Co Ltd Plate fin type heat exchanger
JP2009079779A (en) * 2007-09-25 2009-04-16 Mitsubishi Electric Corp Plate-type heat exchanger and air conditioning device using the same
JP2009150587A (en) * 2007-12-19 2009-07-09 Denso Corp Heat exchanger

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2998676A1 (en) * 2014-09-17 2016-03-23 VALEO AUTOSYSTEMY Sp. Z. o.o. Heat exchanger, in particular a condenser
WO2016042047A1 (en) * 2014-09-17 2016-03-24 Valeo Autosystemy Sp. Z.O.O. Heat exchanger, in particular a condenser
US20170241686A1 (en) * 2014-09-17 2017-08-24 Valeo Autosystemy Sp. Z O.O. Heat exchanger, in particular a condenser
US10352598B2 (en) 2014-09-17 2019-07-16 Valeo Autosystemy Sp. Z O.O. Heat exchanger, in particular a condenser
FR3045801A1 (en) * 2015-12-21 2017-06-23 Valeo Systemes Thermiques THERMAL EXCHANGER, IN PARTICULAR FOR MOTOR VEHICLE
WO2017109348A1 (en) * 2015-12-21 2017-06-29 Valeo Systemes Thermiques Heat exchanger, in particular for a motor vehicle
JP2019078441A (en) * 2017-10-24 2019-05-23 株式会社日阪製作所 Plate heat exchanger
JP6492148B1 (en) * 2017-10-24 2019-03-27 株式会社日阪製作所 Plate heat exchanger
CN111351387A (en) * 2018-12-21 2020-06-30 因诺黑特瑞典公司 Heat exchanger plate and heat exchanger
US11898805B2 (en) 2018-12-21 2024-02-13 Innoheat Sweden Ab Heat exchanger plate and heat exchanger
JPWO2021149139A1 (en) * 2020-01-21 2021-07-29
JP7292435B2 (en) 2020-01-21 2023-06-16 三菱電機株式会社 Plate heat exchanger and heat transfer device
WO2022108450A1 (en) * 2020-11-20 2022-05-27 Level Holding Ii B.V. Recuperator with improved channel configuration

Also Published As

Publication number Publication date
JPWO2014125566A1 (en) 2017-02-02
CN203758092U (en) 2014-08-06

Similar Documents

Publication Publication Date Title
WO2014125566A1 (en) Plate-type heat exchanger and refrigeration cycle device
US9482445B2 (en) Heat pump water heater with heat utilization balance processor and heat utilization balance processor thereof
JP6042026B2 (en) Refrigeration cycle equipment
WO2015132963A1 (en) Heat exchanger and air conditioner
KR20140142802A (en) Outdoor heat exchanger and air conditioner
JP6214670B2 (en) Heat exchanger and refrigeration cycle apparatus using the heat exchanger
EP2770278A1 (en) Water heater
JP6016935B2 (en) Plate heat exchanger and refrigeration cycle apparatus equipped with the plate heat exchanger
JP5171983B2 (en) Heat exchanger and refrigeration cycle apparatus
JP5627635B2 (en) Air conditioner
JP5646257B2 (en) Refrigeration cycle equipment
JP5404729B2 (en) Heat exchanger and refrigeration cycle apparatus
JP2002228380A (en) Heat exchanger and cooling apparatus
JP4983878B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
JP6038186B2 (en) Heat exchanger and refrigeration cycle apparatus
CN107003081A (en) Heat exchanger and the refrigerating circulatory device with the heat exchanger
JP2008267731A (en) Air-conditioning device
JP6469489B2 (en) Refrigeration cycle equipment
JP2012163233A (en) Refrigeration cycle apparatus and water circulation system using the same
JP2010078256A (en) Fin tube type heat exchanger, and refrigerating cycle device and air conditioner using the same
JP6827179B2 (en) Heat exchanger and refrigeration system using it
US20220026154A1 (en) Microchannel heat exchanger with varying fin density
KR100731389B1 (en) Heat exchanger
JP2003004396A (en) Heat exchanger and refrigerating air conditioner
WO2017138052A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500018

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875166

Country of ref document: EP

Kind code of ref document: A1