JP2660207B2 - Manufacturing method of indirect heat exchanger - Google Patents

Manufacturing method of indirect heat exchanger

Info

Publication number
JP2660207B2
JP2660207B2 JP62295045A JP29504587A JP2660207B2 JP 2660207 B2 JP2660207 B2 JP 2660207B2 JP 62295045 A JP62295045 A JP 62295045A JP 29504587 A JP29504587 A JP 29504587A JP 2660207 B2 JP2660207 B2 JP 2660207B2
Authority
JP
Japan
Prior art keywords
heat exchanger
heat exchange
passage
exchange partition
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62295045A
Other languages
Japanese (ja)
Other versions
JPH01140927A (en
Inventor
健 柏田
忠信 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EBARA SHINWA KK
Original Assignee
EBARA SHINWA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP62295045A priority Critical patent/JP2660207B2/en
Application filed by EBARA SHINWA KK filed Critical EBARA SHINWA KK
Priority to DE3852552T priority patent/DE3852552T2/en
Priority to DE88107336T priority patent/DE3883161T2/en
Priority to DE3855049T priority patent/DE3855049T2/en
Priority to EP91116137A priority patent/EP0464874B1/en
Priority to EP88107336A priority patent/EP0316510B1/en
Priority to EP91116138A priority patent/EP0464875B1/en
Priority to US07/233,265 priority patent/US4874035A/en
Priority to US07/337,062 priority patent/US4997031A/en
Publication of JPH01140927A publication Critical patent/JPH01140927A/en
Application granted granted Critical
Publication of JP2660207B2 publication Critical patent/JP2660207B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は空調装置、冷凍装置等に用いる冷却塔にお
ける間接型熱交換器の製造方法に関する。 (従来技術及び問題点) この種の熱交換器として特開昭51−100370号公報に
は、扁平な垂直な垂直方向の相互に平行な数個の液体流
下通路と、これらの各液体流下通路間にそれぞれ形成さ
れた垂直方向の面をもつ扁平で気流の流れる空気通路を
有し、これらの2つの流体通路が相互の流体を非接触と
する複枚数の合成樹脂板よりなる熱交換隔壁板によって
仕切られている冷却塔用熱交換器が記載されている。前
記公報の熱交換器においては各空気通路の両壁がU字状
部材で形成され、隣接するU字状部材の並形側壁は突出
して設けたリブ部分で相互に接着されていると共に、そ
の側縁において連結パネルより相互に連結されて前記液
体流下通路を形成している。 前記の先行技術のものにおいては、液体の流下速度を
緩くするため狭く、かつ屈曲させた液体通路は長時間使
用する間には塵埃や微生物がそれらの壁面に付着し、液
体通路を断面積を実質的に狭くし、所定の流量流下出来
ず、これらの熱交換器の供給側において溢水し、これら
の周辺をむやみに濡らすだけでなく、循環冷媒の損失と
なっている。 更に、前記の通り隣接するU字状部材の波形側壁は突
出して設けたリブ部分で相互に付着されている為、前記
液体流下通路内に付着し滞留した塵埃や微生物を外部か
ら清掃するのは至難の技であり、不可能に近く、更にこ
れらU字状部材を一体に相互接着し所望の熱交換器とす
ることは手間の係ることであり構造を複雑にしている。 またこの種の熱交換器が充填材の上部に設けてあり、
熱交換器よりの吐出液を前記充填材に散布しているもの
においては、散布液(水)量が不足し冷却塔全体として
の流量不足を招来する欠点を有している。 (解決しようとする問題点) この発明は気液非接触型(間接型)の熱交換器の熱交
換を行う主要部分における液体通路を分離自在としてこ
の流体通路の目詰まりを迅速に直すことができ、更に製
造組立を容易化し、その構造を簡素化した間接型熱交換
器を製造することであり、かゝる熱交換器の製造方法を
市場に提供することを目的とする。 (問題点を解決する手段) この発明は扁平な垂直方向の相互に平行な数個の液体
流下通路と、これらの各液体流下通路間にそれぞれ形成
された垂直方向の面をもつ扁平で、気流の流れる水平な
空気通路を有し、これらの2つの流体通路が相互の流体
を非接触とする複数枚の合成樹脂板よりなる熱交換隔壁
板によって仕切られている間接型熱交換器の製造方法に
おいて、 a)真空成形法によって所定枚数、同大同一形状の合成
樹脂製熱交換隔壁板をそれぞれ一枚の合成樹脂板から真
空成形加工し、各熱交換隔壁板の中間で多数の膨出部を
同一側へ突出成形し、更に各隔壁板の両側辺に沿い相互
掛合自在な縦方向の凹凸状を形成すると共に、その上端
部をこの膨出部の高さと同一寸法、L字状に前記膨出部
と同一側へ屈曲成形する工程。 b)前記熱交換隔壁板を2枚一組として相互に表裏を反
転してその屈曲成形した上端縁部同士をその全幅に亘り
相互に結合し一体化し単一の熱交換器ユニットとすると
共に、相対峙する内向きの前記膨出部同士を突合せ、こ
の2枚の熱交換隔壁板の中間部を相互離間させ、少なく
とも上端が閉止され前後が開口しているトンネル状の一
つの空気通路を形成する工程。 c)このように製造した熱交換器ユニットを複数個ケー
ス内に順次起立して並列配置し、隣接する熱交換器ユニ
ットにおける熱交換隔壁板に設けた縦方向の前記凹凸条
を相互に掛け合わせ両側辺においてほゞ水密とした流体
流下通路を、隣接する熱交換器ユニットの熱交換隔壁板
間に形成すると共にこの隣接する熱交換器ユニットの熱
交換隔壁板の上端縁間に前記液体流体流下通路に通じる
液体入口を成形し、各流体流下通路形成面で相互掛合分
離自在にこれら熱交換器ユニット同士を連結する工程。 d)前記の液体流下通路を、この液体流下通路の両側壁
面を形成する隣接する熱交換器ユニットの熱交換壁板の
内外に分布膨出した邪魔部を相互嵌合、若しくは突き合
わせて形成した流下緩速部と、この流下緩速部に隣接し
て形成された溢水路とで形成し、これら流下緩速部と溢
水路を、前記熱交換壁板の少なくとも一側縁に沿い形成
した相互嵌合離反自在の縦方向の凹凸条により相互区画
して、流下緩速部からオーバーフローした循環水を溢水
路内に流入自在に形成する工程。 以上a)乃至d)からなることを特徴とする間接型熱
交換器の製造方法である。 (発明の使用方法) 前記のように構成したこの発明によって製造されたも
のの使用方法を次に説明する。 この熱交換器を直交流式冷却塔に組み込んだ際の熱交
換作用は次の通りである。 前記冷却塔の上部水槽から流下した循環水は前記複数
個の流体流下通路内に流入し下部水槽に向け流下してい
く。一方、外気取入口から取り込まれた空気は循環水の
流れと直交して前記複数の空気通路内を流れ、この通過
中に熱交換隔壁板を介して間接的に、即ち非接触で循環
水を冷却し、自身昇温した空気は通風室を通って排気口
から外部へ排気される。 長時間の使用乃至循環水の水質などにより前記幅の狭
い複数ある流体流下通路のうち、数箇所の流体流下通路
で塵埃や微生物などがそれらの壁面に付着し循環水の流
れに支障を来すほどに目詰まりした場合には、その目詰
まりを生じた流体流下通路の一において、若しくはすべ
ての隣接する熱交換器ユニットを相互に分離し、流体流
下通路の内面を形成していた隣接する熱交換器ユニット
の熱交換隔壁板における凹凸面を外部に露出させて、熱
交換隔壁板の外面、即ち、流体流下通路を形成する凹凸
面に付着する付着物を循環水の一部乃至洗浄水で除去し
清掃化する。 このようにして流体流下面を清掃した後は、再び隣接
する熱交換器ユニットの熱交換隔壁板同士を掛合して目
詰まりのない元の流体流下通路を再度成形して前記冷却
塔の運転を開始する。 前記流体流下通路のうち、流下緩速部が仮に目詰まり
しても、前記流下緩速部からオーバーフロートした循環
水の一部は前記溢水路内に流入して前記下部水槽に向け
この溢水路内を流下していき、流体流下通路の供給口に
向けて逆流せず、冷却塔の周囲に飛散しない。 (発明の効果) 前記のように構成した製法方法によって、製造された
製品は前記のように使用することができ、この発明の間
接型熱交換器の製造方法は次の効果を奏する。 真空成形法によって所定枚数、同大同一形状の合成樹
脂製熱交換隔壁板を一枚の合成樹脂板から真空成形加工
し、前記熱交換隔壁板を2枚一組として相互に表裏を反
転してその屈曲成形した上端縁部同士をその全幅に亘り
相互に結合し一体化し単一の熱交換器ユニットとすると
共に、相対峙する内向きの前記膨出部同士を突合せ、こ
の2枚の熱交換隔壁板の中間部を相互離間させ、少なく
とも上端が閉止され前後が開口しているトンネル状の一
つの空気通路を形成する工程を採用しているため、熱交
換に必要な枚数の熱交換隔壁板を共通の金型加工がで
き、金型及び成形加工機全体の構造、価格を低く出来る
上、相互に嵩張らずに積み重ね平置でき保管し易く、保
管に場所どらないで済む。また熱交換隔壁板を2枚一組
として相互に表裏を反転してその屈曲成形した上端縁同
士をその全幅に亘り相互に結合し一体化し単一の熱交換
器ユニットとすることにより、これらを隣接し並列配置
するのみで、所望の熱交換率を奏する間接型の熱交換器
を製造することができると共に、熱交換率の変更時に、
熱交換器ユニットの数を増減することで容易に対応でき
る。 また、隣接する前記熱交換器ユニット間に前記流体流
下通路を一つ宛形成すると共に、この流体流下通路形成
面において隣接する前記熱交換器ユニット同士を掛合、
分離自在に連結配備するため、流体流下通路内で塵埃や
微生物がそれらの壁面に付着し循環水の流れに支障を来
すほどに目詰まりが生じても、隣接している熱交換器ユ
ニット同士の掛け合いを外すことで、これら熱交換器ユ
ニットの連結を解き、流体流下通路の内面を形成してい
た隣接する熱交換器ユニットの熱交換隔壁板における凹
凸面を外部に露出させて清掃することによって、容易に
流体流下通路の目詰まりを解消できる。 更に前記熱交換隔壁板の両側縁全高さにわたり凹凸条
を形成することにより、隣接する前記熱交換器ユニット
の熱交換隔壁板に設けた凹凸条同士の掛け合いに伴い前
記ジグザグに蛇行した流体流下通路の両側縁を密閉状に
その全高さにわたり簡易に成形することが出来る。 前記流下緩速部と溢水路とは、前記熱交換隔壁板の少
なくとも一側縁に沿い形成され相互嵌合離反自在の縦方
行の凹凸条により相互区画され、流下緩速部からオーバ
ーフローした循環水が溢水路内に流入自在に形成するこ
とにより、前記流体流下通路のうち、流下緩速部が仮に
目詰まりしても、前記流下緩速部からオーバーフローし
た循環水の一部を前記溢水路内に流入させることが出
来、前記下部水槽に向けこの溢水路内を通して循環水の
一部を流すことが出来、流体流下通路の流体入口に向け
て流下緩速部からオーバーフローした循環水の一部が逆
流することが無くなり、循環水量自体に不足を来たさ
ず、しかも冷却塔の周囲に飛散することを皆無にできる
間接型熱交換器を製造できる。 前記流体流下通路の両側壁面を形成する隣接する熱交
換器ユニットの熱交換隔壁板の内外に分布膨出した邪魔
部を相互嵌合、突き合わせて流下緩速部を形成し、これ
ら流下緩速部と溢水路とは、前記熱交換隔壁板の少なく
とも一側縁に沿い形成され相互嵌合離反自在の縦方向の
凹凸条により相互区画する製造方法であるため、前記流
体流下通路の目詰まり時に隣接する熱交換器ユニットを
その流体流下通路形成面で相互離反するのみにより各熱
交換器ユニットを損傷すること無く流下緩速部と溢水路
との分解清掃を簡単に行える間接型熱交換器を製造でき
る。 (実施例) 次にこの発明の代表的な実施例を説明する。 第1実施例 第1図、第2図、第3図、第4図、第5図、第6図、
第7図に示す扁平な垂直方向の相互に平行な数個の流体
流下通路10(=10A)と、これらの各流体流下通路10間
にそれぞれ形成された垂直方向の面をもつ扁平で、気流
の流れる水平な空気通路11を有し、これらの2つの流体
通路10、11が相互の液体を非接触とする複数枚の合成樹
脂板よりなる熱交換隔壁板12によって仕切られている冷
却塔用熱交換器Aは次の要領で製造される。 先ず、真空成形法により所定枚数、同大同一形状の合
成樹脂製熱交換隔壁板12を、一枚の合成樹脂板から真空
成形加工する。この際、各熱交換隔壁板12の中間で多数
の膨出部13を同一側へ突出成形し、更に、各熱交換隔壁
板12の両側辺に沿い相互掛合自在な縦方行の凹凸条15を
形成すると共に、その上端縁部12aを前記膨出部13の高
さと同一寸法、L字状に前記膨出部13と同一側へ屈曲成
形する。 前記熱交換隔壁板12を二枚一組として表裏を反転して
前記上端12a縁をその幅にわたり相互に結合し一体化
し、単一を熱交換器ユニットBとすると共に、相対峙す
る内向きの前記膨出部13同士を突合せ、この2枚の熱交
換隔壁板12の中間部を相互離間させ、上端が閉止され前
後が開口しているトンネル状の一つの前記水平な空気通
路11を形成する。 前記製造した熱交換器ユニットBを複数個相互平行に
して同一ケースC内に順次起立し、隣接する前記熱交換
器ユニットBの熱交換隔壁板12間に前記凹凸条15を相互
に掛け合わせ両側辺においてはほゞ水密とした前記流体
流下通路10を一つ宛形成すると共に、この隣接する熱交
換器ユニットBの熱交換隔壁板12の上端12a部間に前記
流体流下通路10に通じる液体入口10aを成形し、この流
体流下通路形成面において隣接する前記熱交換器ユニッ
トB同士を掛合、分離自在に連結配備し、前記熱交換器
A(=A2)とする。 前記熱交換隔壁板12の中間部には、内外に膨出した水
平な邪魔部14を不連続で位置をずらして階層的に多数分
布して形成し、隣接する前記熱交換器ユニットBの熱交
換隔壁板12に設けた前記邪魔部14同士の掛け合い及び突
合せにより前記流体流下通路10をジグザグに蛇行した流
路に成形する。 図示の例において前述の邪魔部14を更に詳しく説明す
れば流体流下通路10を構成する一方の熱交換隔壁板12に
浅く外方に膨出した膨出部の内側に他方の熱交換隔壁板
12の内方に深く膨出した膨出部の頂部分を各々嵌合し、
また両熱交換隔壁板12とともに内方に浅く膨出部におい
て相互に突合せ、各々邪魔部14を成形すると共に、これ
ら邪魔部14の成形によって相対する両熱交換隔壁板12の
間に間隔を設けて前記流体流下通路10を成形するスペー
サの役目をなさせる。 前記実施例においては2枚の熱交換隔壁板12間に設け
た前記流体流下通路10の間隔寸法は2乃至5mm、好まし
くは約2mmとしてあり、これら熱交換隔壁板12の厚みは
0.2乃至0.4mmのものを用いる。 更に、前記空気通路11内に膨出している膨出部13を底
部51開口の中空円錐台52とし、その内面53を前記流体流
下通路10における流下液体の渦発生部54とする。更に具
体的に説明すると、不連続で位置をずらして階層的に膨
出した水平な邪魔部14郡のうち、上下少なくとも2列お
きで邪魔部14の間毎に膨出部13を位置させ、このように
膨出部13を配置した邪魔部14列と上下の邪魔部14列で形
成されるジグザグな流体流下通路10に対して前記膨出部
13を構成する中空円錐台52の底部51全部が開口し、階層
的に形成された流体流下通路10内を流れる循環水は膨出
部13を配置した邪魔部14列から下の邪魔部14列へ流下す
るときに、必ず前記中空円錐台52内に流入し渦流となり
その後下の邪魔部14に向け流れ落ち、次いで水平方向に
向きを変え邪魔部15に添い流れていく(第2図、第3
図、第4図、第5図、第6図参照)。 前記熱交換器ユニットBの2枚の熱交換隔壁板12の突
き合わされる膨出部13のうち、一方の膨出部13の頂面に
は小突起(図示せず)を形成し、この小突起を受け入れ
る小窪(図示せず)を他方の膨出部13の頂面に形成し、
これら小突起と小窪により、表裏反転して組み立てた2
枚の熱交換隔壁板12の位置合わせを行う。 なお、必要に応じて前記凹凸条15同士の掛け合いを確
実なものとすべく、凹凸条15の一部に掛合分離自在なノ
ッチを設けたり、ファスナーをこの凹凸条15内に挿入し
使用する場合もある。 流体流下通路10Aをこの流体流下通路10Aの両側壁面を
形成する隣接する熱交換器ユニットBの熱交換隔壁板12
の内外に分布膨出した邪魔部14を相互嵌合、突き合わせ
て形成した流下緩速部Eと、この流下緩速部Eに隣接し
て形成された溢水路Fとで形成し、これら流下緩速部E
と溢水路Fとを、前記熱交換隔壁板12の両側縁に沿い形
成した相互嵌合離反自在の縦方向凹凸条19により相互区
画し、流下緩速部Eからオーバーフローした循環水を溢
水路F内に流入自在に形成する工程を付加し、間接型熱
交換器A2とする。 更に前記凹凸条19を前記熱交換隔壁板12の下端からそ
の上端の手前まで垂直に延在し、この凹凸条19の上端と
熱交換ユニットBの閉止した上端によって溢水路Fの入
口部Gを形成し、前記凹凸条15と19により溢水路Fの両
側縁を密閉状態で形成する。 (実施例の使用方法) 前記実施例の製造方法で製造した間接型熱交換器A2の
作用を直交流式冷却塔R2への組込法及び使用法と共に次
に説明する。 この熱交換器A2を前記冷却塔R2の本体40に組み込む場
合には、単一のケースCに前記熱交換器ユニットBを隣
接して複数枚並設し、隣合う熱交換器ユニットB同士の
熱交換隔壁板12を相互に掛合し連結して前は流体流下通
路10を隣合う熱交換器ユニットB間に形成し、所望の熱
交換率を発揮する熱交換器A2に組立てた後、この熱交換
器A2の前記ケースCを冷却塔R2の上部水槽41の下方に配
置し、複数個の流体流下通路10の上部供給口を上部水槽
41底面に向けて開口させ、その吐出口を下部水槽42側に
開口すると共に、この冷却塔R2の本体40に設けた外気取
入口に前記複数個の空気通路11の一次側を対面させ、そ
の二次側を排気口44に通じる通風室に開口して、この熱
交換器A2を前記直交流式冷却塔R2の本体20に組み込む
(第8図参照)。 更に前記各空気通路11内には散水装置Hの散水装置H
の散水管Pが一本宛水平に配管してある。 このように組み込まれた前記熱交換器A2の熱交換作用
は次の通りである。 上部水槽21から流下した循環水は前記複数個の流体流
下通路10内に流入し下部水槽22に向け流下していく。こ
の流下中にジグザグな流路さに連通する前記膨出部13内
に流入していき流体流下通路10に設けた複数の膨出部13
位置において循環水である流下液体は渦流となり膨出部
13内部に一次滞留した後、下段のジグザグな流路内に膨
出部13から再び流出していく。このような流れを繰返し
行いながら循環水はゆっくりと流下していき、下部水槽
22へと流れていく。 一方、外気取入口から取れ込まれた空気は循環水の流
れと直交して前記複数の空気通路11内を流れ、この通過
時に前記空気通路11内に膨出している膨出部13において
この膨出部13外周面に沿い偏流しつつ冷却塔Rの通風室
に向け流れ、この通過中に熱交換隔壁板12を介して間接
的に、即ち非接触で循環水を冷却し、自身昇温した空気
は通風室を通って排気口から外部へ排気される。 長時間の使用乃至循環水の水質などにより前記幅の狭
い複数ある流体流下通路10のうち、数箇所の流体流下通
路10で塵埃や微生物がそれらの壁面に付着し循環水の流
れに支障を来すほどに目詰まりした場合には、その目詰
まりを生じた流体流下通路10の位置において、若しくは
すべての隣接する熱交換器ユニットBを相互に分離し、
流体流下通路10の内面を形成していた隣接する熱交換器
ユニットBの熱交換隔壁板12における凹凸面を外部に露
出させて、熱交換隔壁板12の外面、即ち、流体流下通路
10を形成する凹凸面に付着した付着物を循環水の一部乃
至洗浄水で除去し清浄化する。 このようにして液体流下面を清掃した後は、再び隣接
する熱交換器ユニットBの熱交換隔壁板12同士を掛合し
て元の流体流下通路10を再度形成して前記冷却塔R2の運
転を開始する。 前記流体流下通路10のうち、流下緩速部Eが仮に目詰
まりしても、前記流下緩速部Eからオーバーフローした
循環水の一部は前記溢水路F内に流入して前記下部水槽
に向けこの溢水路F内を流下していき、流体流下通路10
の供給口に向けて逆流せず、冷却塔R2の周囲に飛散しな
い。 更に、前記散水装置Hにおける散水管Pから空気通路
11内に散水される高温循環水と空気通路11内を流れる空
気流との間でも、直接の熱交換を促進し、高温の循環水
を冷却する。 (実施例固有の効果) 実施例の製造方法においては 前記空気通路11内に膨出している膨出部13をその内面
が流体流下通路10に開口した中空円錐台52とし、その内
面53を前記流体流下通路11における流下液体の渦発生部
54とし、ジグザグな流路に連通する前記膨出部13内に流
入し流体流下通路10に設けた複数の膨出部13の内面53に
おいて流下液体は渦流となり膨出50内部に一時滞留した
後、下段のジグザグな流路内に膨出部13から流出してい
く構造に形成することにより、流体流下通路10内での循
環水の流下速度を充分に遅く出来、前記空気通路11を流
れる空気流と間接的な接触時間を充分に長く取ることが
でき、循環水を所定温度に、空気の絶対温度を変えるこ
となく冷却することが出来る間接型熱交換器A2を製造で
きる。 またこれら膨出部13の突合せで2枚の熱交換隔壁板12
の中間部は相互離間して水平な空気通路11としてあるた
め、この空気通路11を通過時に前記空気通路11内に膨出
している膨出突起52においてこの膨出突起52外周面に沿
い偏流しつつ冷却塔Rの通風室25に流れることとなり、
膨出部13内部で渦流となり一時滞留している循環水を一
部と膨出部13の中空円錐台52壁面を介して間接で長い時
間充分な空気量と接触することができ、循環水を各膨出
位置において充分に冷却できる間接型熱交換器Aを製造
できる。 相互に突き合わされ、空気通路11を形成する膨出部13
は、隣接した熱交換ユニットBの横方向のリブとして機
能し、座屈性を向上した間接型熱交換器A2を製造でき
る。 前記流体流下通路10を形成すべくこの熱交換隔壁板12
の中間部には、内外に膨出した水平な邪魔部14が不連続
で位置をずらして階層的に多数分布して形成してあり、
隣接する前記熱交換器ユニットBの熱交換隔壁板12の設
けた前記邪魔部14同士を掛合乃至嵌号及び突合せにより
前記流体流下通路10をジグザグに蛇行した流路に容易に
成形することが出来る間接型熱交換器A2を製造できる。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing an indirect heat exchanger in a cooling tower used for an air conditioner, a refrigeration system, and the like. (Prior art and problems) As this type of heat exchanger, Japanese Patent Application Laid-Open No. S51-100370 discloses a flat, vertical and mutually parallel liquid flowing down passage, and a plurality of these liquid flowing down passages. A heat exchange partition plate made of a plurality of synthetic resin plates having a flat air passage with a vertical surface formed therebetween and through which an air current flows, and in which these two fluid passages are in non-contact with each other. A heat exchanger for cooling towers, which is partitioned by a heat exchanger, is described. In the heat exchanger of the above publication, both walls of each air passage are formed by U-shaped members, and the parallel side walls of adjacent U-shaped members are bonded to each other by protruding rib portions. The liquid flow passage is formed by being connected to each other at the side edges by the connection panel. In the above-mentioned prior art, the liquid passage that is narrow and bent in order to slow down the flow rate of the liquid is such that dust and microorganisms adhere to their walls during a long period of use, and the liquid passage has a cross-sectional area. They are substantially narrow and cannot flow at a predetermined flow rate, overflowing at the supply side of these heat exchangers and not only inadvertently wetting their surroundings, but also causing loss of circulating refrigerant. Further, as described above, since the corrugated side walls of the adjacent U-shaped members are attached to each other at the protruding rib portions, it is not necessary to clean dust and microorganisms attached and retained in the liquid flow passage from the outside. It is an extremely difficult technique, almost impossible, and furthermore, it is troublesome to integrally bond these U-shaped members to each other to obtain a desired heat exchanger, which complicates the structure. Also, this kind of heat exchanger is provided above the filler,
In the case where the liquid discharged from the heat exchanger is sprayed on the filler, there is a disadvantage that the amount of the sprayed liquid (water) is insufficient and the flow rate of the entire cooling tower is insufficient. (Problems to be Solved) The present invention enables a liquid passage in a main portion of a gas-liquid non-contact (indirect) heat exchanger that performs heat exchange to be freely separated, thereby quickly clogging the fluid passage. It is an object of the present invention to manufacture an indirect heat exchanger which can be manufactured and further facilitated in manufacturing and assembling and whose structure is simplified, and an object of the present invention is to provide a method of manufacturing such a heat exchanger to the market. (Means for Solving the Problems) The present invention is directed to a flat, air flow having several flat liquid flowing passages parallel to each other in a vertical direction and a vertical surface formed between each of the liquid flowing passages. A method for manufacturing an indirect heat exchanger, comprising a horizontal air passage through which the two fluid passages are separated by a heat exchange partition plate made of a plurality of synthetic resin plates that keep the fluids out of contact with each other A) A predetermined number of heat exchange partition plates made of synthetic resin having the same shape and the same shape are vacuum formed from one synthetic resin plate by a vacuum forming method, and a large number of bulging portions are provided in the middle of each heat exchange partition plate. Is formed on the same side, and furthermore, a vertical uneven shape is formed along both sides of each partition plate so as to be hookable with each other, and the upper end thereof has the same dimension as the height of the bulging portion, and is L-shaped. A step of bending and molding to the same side as the bulging portion. b) The heat exchange partition plates are formed as a pair, and the top and bottom edges formed by inverting each other are connected to each other over their entire width and integrated to form a single heat exchanger unit. The opposed inwardly projecting portions are abutted to each other, and the intermediate portions of the two heat exchange partition plates are separated from each other to form one tunnel-shaped air passage having at least an upper end closed and open front and rear. Process. c) A plurality of the heat exchanger units manufactured in this manner are sequentially erected and arranged in parallel in the case, and the vertical ridges and valleys provided on the heat exchange partition plates of adjacent heat exchanger units are crossed with each other. A fluid flow passage that is substantially watertight on both sides is formed between the heat exchange partition plates of the adjacent heat exchanger units, and the liquid flow passage is formed between the upper edges of the heat exchange partition plates of the adjacent heat exchanger units. Forming a liquid inlet communicating with the passage, and connecting these heat exchanger units to each other so that they can be engaged with and separated from each other on the fluid flow-down passage forming surface. d) The liquid flow passage formed by interfitting or abutting the bulging portions distributed and bulged inside and outside of the heat exchange wall plate of the adjacent heat exchanger unit forming both side walls of the liquid flow passage. A slow-moving portion and an overflow channel formed adjacent to the slow-moving portion, wherein the slow-moving portion and the overflow channel are formed along at least one side edge of the heat exchange wall plate; A step of forming the circulating water overflowing from the slowly flowing down portion into the overflow channel so as to be able to flow freely into the overflow channel by partitioning each other by vertical concavo-convex strips which can be separated from each other. A method for manufacturing an indirect heat exchanger, comprising the above a) to d). (Method of Using the Invention) Next, a method of using the above-structured device manufactured according to the present invention will be described. The heat exchange action when this heat exchanger is incorporated in a cross-flow cooling tower is as follows. The circulating water flowing down from the upper water tank of the cooling tower flows into the plurality of fluid flow passages and flows down to the lower water tank. On the other hand, the air taken in from the outside air inlet flows in the plurality of air passages orthogonally to the flow of the circulating water, and during this passage, the circulating water is indirectly passed through the heat exchange partition plate, that is, in a non-contact manner. The air that has cooled and heated itself is exhausted to the outside through an exhaust port through the ventilation chamber. Due to prolonged use or the quality of the circulating water, dust and microorganisms adhere to the wall surfaces of the plurality of narrow fluid flowing passages in the plurality of narrow fluid flowing passages, thereby hindering the flow of the circulating water. If the clogging is moderately obstructed, one of the clogged fluid flow passages or the adjacent heat exchanger unit that separates all adjacent heat exchanger units from each other and forms the inner surface of the fluid flow passage. The uneven surface of the heat exchange partition plate of the exchanger unit is exposed to the outside, and the deposits adhering to the outer surface of the heat exchange partition plate, i.e., the uneven surface forming the fluid flow-down passage are partially washed with circulating water or washing water. Remove and clean. After cleaning the lower surface of the fluid flow in this way, the heat exchange partition plates of the adjacent heat exchanger units again engage with each other to form the original fluid flow passage without clogging again to operate the cooling tower. Start. Even if the slow flow portion in the fluid flow passage is clogged, a part of the circulating water overflowing from the slow flow portion flows into the overflow channel and flows toward the lower water tank. It does not flow back toward the supply port of the fluid flow-down passage and does not fly around the cooling tower. (Effect of the Invention) The product manufactured by the manufacturing method configured as described above can be used as described above, and the method for manufacturing an indirect heat exchanger of the present invention has the following effects. A predetermined number of heat exchange partition plates having the same shape and the same shape are vacuum formed from a single synthetic resin plate by a vacuum forming method, and the heat exchange partition plates are turned into a set of two to turn over each other. The bent upper end edges are connected to each other over the entire width and integrated to form a single heat exchanger unit, and the opposed inward bulging portions are abutted against each other, so that the two heat exchange units Since the middle portions of the partition plates are separated from each other and a step of forming one tunnel-shaped air passage having at least an upper end closed and open front and rear is adopted, the number of heat exchange partition plates required for heat exchange is adopted. Can be used for common mold processing, the structure and cost of the entire mold and molding machine can be reduced, and they can be stacked and placed one on top of the other without bulkiness, so that storage is not required. Also, by forming the heat exchange partition plates as a set of two and turning them upside down, the bent upper end edges are mutually connected and integrated over the entire width thereof to form a single heat exchanger unit. Only by arranging adjacently and in parallel, it is possible to manufacture an indirect heat exchanger having a desired heat exchange rate, and at the time of changing the heat exchange rate,
It can be easily handled by increasing or decreasing the number of heat exchanger units. In addition, the fluid flow-down passage is formed between the adjacent heat exchanger units, and the adjacent heat exchanger units are engaged with each other on the fluid flow-down passage forming surface.
Even if the dust and microorganisms adhere to the wall of the fluid flow passage and become clogged enough to impede the flow of circulating water, the heat exchanger units that are adjacent to each other To remove the connection of these heat exchanger units, and to expose and clean the uneven surface of the heat exchange partition plate of the adjacent heat exchanger unit which formed the inner surface of the fluid flow-down passage to the outside. Thus, clogging of the fluid flow-down passage can be easily eliminated. Further, by forming uneven strips over the entire height of both side edges of the heat exchange partition plate, a fluid flow passage meandering in the zigzag with the engagement of the uneven strips provided on the heat exchange partition plate of the adjacent heat exchanger unit. Can be easily molded in a closed state over the entire height. The downflow slow section and the overflow channel are separated from each other by vertical ridges which are formed along at least one side edge of the heat exchange partition plate and can be freely fitted and separated from each other, and the circulation overflows from the downflow slow section. By forming the water so that it can freely flow into the overflow channel, even if the slow flow portion of the fluid flow passage is clogged, a part of the circulating water that overflows from the slow flow portion is used as the overflow channel. A part of the circulating water can flow through the overflow channel toward the lower water tank, and a part of the circulating water overflows from the slowly flowing portion toward the fluid inlet of the fluid flowing-down passage. The indirect heat exchanger can be manufactured without causing backflow of the water and without causing a shortage in the amount of circulating water itself, and without scattering to the periphery of the cooling tower. Baffles distributed and bulged inside and outside the heat exchange partition plates of adjacent heat exchanger units forming both side walls of the fluid flow-down passage are mutually fitted and abutted to form a flow-down slow portion, and these flow-down slow portions are formed. And the overflow channel are a manufacturing method formed along at least one side edge of the heat exchange partition wall plate and separated from each other by vertical uneven strips that can be fitted and separated from each other, so that they are adjacent when the fluid flow-down passage is clogged. Manufacturing of an indirect heat exchanger that allows easy disassembly and cleaning of the slow flow section and overflow channel without damaging each heat exchanger unit by merely separating the heat exchanger units that separate from each other on the fluid flow passage formation surface it can. (Example) Next, a typical example of the present invention will be described. First Embodiment FIG. 1, FIG. 2, FIG. 3, FIG. 4, FIG. 5, FIG.
FIG. 7 shows a flat air flow having a plurality of flat vertical fluid flow passages 10 (= 10 A) which are parallel to each other, and a vertical surface formed between each of the fluid flow passages 10. The cooling tower has a horizontal air passage 11 through which the two fluid passages 10 and 11 are separated by a heat exchange partition plate 12 made of a plurality of synthetic resin plates that make the mutual liquids non-contact. The heat exchanger A is manufactured in the following manner. First, a predetermined number of heat exchange partition plates 12 made of synthetic resin having the same shape and the same shape are vacuum formed from one synthetic resin plate by vacuum forming. At this time, a large number of bulging portions 13 are formed in the middle of each heat exchange partition plate 12 so as to protrude toward the same side, and furthermore, the uneven strips 15 in a vertical direction which can be engaged with each other along both sides of each heat exchange partition plate 12. And the upper edge 12a is bent to the same side as the bulging portion 13 in the same size and L-shape as the height of the bulging portion 13. The heat exchange partition plate 12 is turned into a set of two sheets, and the top and bottom sides are turned over, and the edges of the upper end 12a are joined and integrated with each other over the width thereof, and a single heat exchanger unit B is formed. The bulging portions 13 are abutted with each other, and the middle portions of the two heat exchange partition plates 12 are separated from each other to form one of the horizontal air passages 11 in a tunnel shape having a closed upper end and an open front and rear. . A plurality of the manufactured heat exchanger units B are made parallel to each other and stand up sequentially in the same case C, and the concave and convex strips 15 are put on each other between the heat exchange partition plates 12 of the adjacent heat exchanger units B so that both sides are overlapped. One side of the fluid flow-down passage 10 which is almost water-tight on the side, and a liquid inlet communicating with the fluid flow-down passage 10 between the upper end 12a of the heat exchange partition plate 12 of the adjacent heat exchanger unit B. 10a is formed, and the heat exchanger units B adjacent to each other on the fluid flow-down passage forming surface are engaged with each other and connected and separated so as to form the heat exchanger A (= A2). In the middle portion of the heat exchange partition plate 12, a large number of horizontal obstructing portions 14 swelling in and out are formed discontinuously and displaced from one another in a hierarchically distributed manner, and the heat of adjacent heat exchanger units B is formed. The fluid flow-down passage 10 is formed into a zigzag meandering channel by engaging and abutting the baffle portions 14 provided on the exchange partition plate 12. In the example shown in the drawing, the above-mentioned baffle portion 14 will be described in more detail. One of the heat exchange partition plates 12 constituting the fluid flow-down passage 10 has a shallow outwardly bulging portion inside the other heat exchange partition plate.
Fit the tops of the bulging parts that bulge deeply inward of 12, respectively,
In addition, the two heat exchange partition plates 12 are abutted with each other at the inwardly shallow bulging portion together with the heat exchange partition plates 12, and each of the obstruction portions 14 is formed. Thus, it serves as a spacer for forming the fluid flow-down passage 10. In the above embodiment, the distance between the fluid flow passages 10 provided between the two heat exchange partition plates 12 is 2 to 5 mm, preferably about 2 mm, and the thickness of these heat exchange partition plates 12 is
Use 0.2 to 0.4 mm. Further, the bulging portion 13 bulging into the air passage 11 is a hollow truncated cone 52 having an opening at the bottom 51, and the inner surface 53 is a vortex generating portion 54 of the flowing liquid in the fluid flowing passage 10. More specifically, among the horizontal obstacles 14 that are discontinuously shifted in position and swelled in a hierarchical manner, the swelling portions 13 are located between the obstacles 14 at least every two rows above and below, The zigzag fluid flow passage 10 formed by the 14 rows of baffles 14 and the 14 rows of upper and lower baffles 14 in which the bulges 13 are arranged as described above.
The entire bottom portion 51 of the hollow truncated cone 52 constituting the opening 13 is open, and the circulating water flowing in the fluid flow passage 10 formed in a hierarchy is from the obstruction portion 14 where the bulging portion 13 is arranged to the lower obstruction portion 14 When the water flows downward, it always flows into the hollow truncated cone 52, becomes a vortex, flows down toward the lower obstruction 14, then turns in the horizontal direction and flows along the obstruction 15 (FIG. 2, FIG. 3).
FIG. 4, FIG. 5, FIG. 5, FIG. A small projection (not shown) is formed on the top surface of one of the bulging portions 13 of the two heat exchange partition plates 12 of the heat exchanger unit B, which abuts each other. Forming a small recess (not shown) for receiving the projection on the top surface of the other bulging portion 13;
Assembled with these small projections and small depressions turned upside down.
The two heat exchange partition plates 12 are aligned. In addition, in order to secure the engagement between the concave and convex strips 15 as necessary, a notch that can be hooked and detachable on a part of the concave and convex strips 15 or a fastener is inserted into the concave and convex strips 15 when used. There is also. The fluid flow-down passage 10A is connected to the heat exchange partition plate 12 of the adjacent heat exchanger unit B forming both side walls of the fluid flow-down passage 10A.
A flow-down slow portion E formed by fitting and abutting the baffles 14 distributed and bulging inside and outside of the inside and an overflow channel F formed adjacent to the flow-down slow portion E are formed. Hayabusa E
And the overflow channel F are separated from each other by longitudinally uneven ribs 19 formed along both sides of the heat exchange partition plate 12 and capable of being fitted to and separated from each other. The process of forming the heat exchanger into the inside is added to obtain an indirect heat exchanger A2. Further, the concave and convex strips 19 extend vertically from the lower end of the heat exchange partition plate 12 to just before the upper end thereof, and the upper end of the concave and convex strips 19 and the closed upper end of the heat exchange unit B form the inlet G of the flood channel F. The both sides of the overflow channel F are formed in a sealed state by the concave and convex strips 15 and 19. (How to use the embodiment) The operation of the indirect heat exchanger A2 manufactured by the manufacturing method of the above embodiment will be described below together with the method of assembling into the cross-flow cooling tower R2 and the method of using the same. When incorporating this heat exchanger A2 into the main body 40 of the cooling tower R2, a plurality of the heat exchanger units B are arranged adjacent to each other in a single case C, and the adjacent heat exchanger units B Before the heat exchange partition plates 12 are engaged with each other and connected to each other, the fluid flow-down passage 10 is formed between the adjacent heat exchanger units B, and after assembling to the heat exchanger A2 exhibiting a desired heat exchange rate, The case C of the heat exchanger A2 is disposed below the upper water tank 41 of the cooling tower R2, and the upper supply ports of the plurality of fluid flow-down passages 10 are connected to the upper water tank.
41 is opened toward the bottom surface, and the discharge port is opened to the lower water tank 42 side, and the primary sides of the plurality of air passages 11 face the outside air intake provided in the main body 40 of the cooling tower R2. The secondary side is opened to a ventilation room communicating with the exhaust port 44, and this heat exchanger A2 is incorporated into the main body 20 of the crossflow cooling tower R2 (see FIG. 8). Further, in each of the air passages 11, a sprinkler H
Of water sprinkling pipes P are piped horizontally. The heat exchange action of the heat exchanger A2 thus incorporated is as follows. The circulating water flowing down from the upper water tank 21 flows into the plurality of fluid flow passages 10 and flows down to the lower water tank 22. The plurality of bulging portions 13 provided in the fluid flowing-down passage 10 while flowing into the bulging portion 13 communicating with the zigzag flow path during the downflow.
The flowing liquid that is circulating water at the position becomes a vortex and swells
After the primary stagnation in the inside 13, the swelling portion 13 flows out again into the zigzag flow path in the lower stage. The circulating water slowly flows down while repeating such a flow, and the lower tank
It flows to 22. On the other hand, the air taken in from the outside air inlet flows in the plurality of air passages 11 at right angles to the flow of the circulating water, and at the bulging portion 13 bulging into the air passages 11 when passing through the air passages. The circulating water flows toward the ventilation chamber of the cooling tower R while drifting along the outer peripheral surface of the outlet 13, and during this passage, the circulating water is cooled indirectly via the heat exchange partition plate 12, that is, in a non-contact manner, and the temperature of the circulating water rises. The air is exhausted to the outside from the exhaust port through the ventilation chamber. Due to prolonged use or the quality of the circulating water, dust and microorganisms adhere to the wall surfaces of the plurality of narrow fluid flowing passages 10 of the plurality of narrow fluid flowing passages 10 and obstruct the flow of the circulating water. If the clogging is too much, at the position of the clogged fluid downflow passage 10 or all the adjacent heat exchanger units B are separated from each other,
By exposing the uneven surface of the heat exchange partition plate 12 of the adjacent heat exchanger unit B forming the inner surface of the fluid flow-down passage 10 to the outside, the outer surface of the heat exchange partition plate 12, that is, the fluid flow-down passage
Deposits adhering to the uneven surface forming 10 are removed with a part of circulating water or washing water and cleaned. After cleaning the lower surface of the liquid flow in this way, the heat exchange partition plates 12 of the adjacent heat exchanger units B are again engaged with each other to form the original fluid flow passage 10 again to operate the cooling tower R2. Start. Even if the slow flow portion E in the fluid flow passage 10 is clogged, a part of the circulating water overflowing from the slow flow portion E flows into the overflow channel F and is directed toward the lower water tank. Flowing down the overflow channel F, the fluid flow passage 10
Does not flow back toward the supply port of the cooling tower R2 and does not fly around the cooling tower R2. Further, an air passage extends from the sprinkler pipe P in the sprinkler H.
Even between the high-temperature circulating water sprinkled in the air 11 and the air flow flowing in the air passage 11, direct heat exchange is promoted to cool the high-temperature circulating water. (Effects Specific to Embodiment) In the manufacturing method of the embodiment, the bulging portion 13 bulging into the air passage 11 is a hollow truncated cone 52 whose inner surface is open to the fluid flow-down passage 10, and the inner surface 53 is Vortex generation part of flowing liquid in fluid flowing passage 11
After flowing into the bulging portion 13 communicating with the zigzag flow path and flowing down on the inner surface 53 of the plurality of bulging portions 13 provided in the fluid flow-down passage 10, the flowing liquid becomes a vortex and temporarily stays inside the bulging 50. By forming a structure that flows out of the bulging portion 13 into the lower zigzag flow path, the flow speed of the circulating water in the fluid flow-down passage 10 can be sufficiently reduced, and the air flowing through the air passage 11 An indirect heat exchanger A2 can be manufactured in which the indirect contact time with the flow can be sufficiently long and the circulating water can be cooled to a predetermined temperature without changing the absolute temperature of the air. In addition, the two heat exchange partition plates 12
The intermediate portions are separated from each other to form a horizontal air passage 11, so that when passing through the air passage 11, the bulge 52 bulges into the air passage 11 and drifts along the outer peripheral surface of the bulge 52. While flowing into the ventilation chamber 25 of the cooling tower R,
A part of the circulating water that has become a vortex inside the bulging part 13 and temporarily stays can be indirectly contacted with a sufficient amount of air for a long time through the wall of the hollow truncated cone 52 of the bulging part 13, An indirect heat exchanger A that can sufficiently cool at each bulging position can be manufactured. Bulges 13 that abut each other and form air passages 11
Can function as a lateral rib of the adjacent heat exchange unit B to manufacture the indirect heat exchanger A2 with improved buckling. This heat exchange partition plate 12 is formed to form the fluid flow passage 10.
In the middle part of, a horizontal obstructing part 14 swelling in and out is formed discontinuously, displaced in position and distributed many in a hierarchy,
The obstruction portions 14 provided on the heat exchange partition plate 12 of the adjacent heat exchanger unit B can be easily formed into a zigzag meandering flow path by hooking or fitting and butting. Indirect heat exchanger A2 can be manufactured.

【図面の簡単な説明】 図はこの発明に係るもので、第1図はこの発明の実施例
の熱交換器の一部省略正面図、第2図乃至第6図は第1
図における隣接する熱交換ユニットの突合せ状態を示す
一部省略縦断面図、第7図は第1図の一部省略底面図、
第8図は第1図の熱交換器の使用例を示す概略図であ
る。 図中の主な符号 A(=A2)……冷却塔用熱交換器、 10(=10A)……液体流下通路、 11……空気通路、 12……熱交換隔壁板、 B……熱交換器ユニット。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 relates to the present invention, FIG. 1 is a partially omitted front view of a heat exchanger according to an embodiment of the present invention, and FIGS.
FIG. 7 is a partially omitted vertical sectional view showing the butted state of adjacent heat exchange units in FIG. 7, FIG. 7 is a partially omitted bottom view of FIG.
FIG. 8 is a schematic diagram showing an example of use of the heat exchanger of FIG. Main symbols A (= A2) in the drawing: heat exchanger for cooling tower, 10 (= 10A): liquid downflow passage, 11: air passage, 12: heat exchange partition plate, B: heat exchange Unit.

Claims (1)

(57)【特許請求の範囲】 1.扁平な垂直方向の相互に平行な数個の液体流下通路
と、これらの各液体流下通路間にそれぞれ形成された垂
直方向の面をもつ扁平で、気流の流れる水平な空気通路
を有し、これらの2つの流体通路が相互の流体を非接触
とする複数枚の合成樹脂板よりなる熱交換隔壁板によっ
て仕切られている間接型熱交換器の製造方法において、 a)真空成形法によって所定枚数、同大同一形状の合成
樹脂製熱交換隔壁板をそれぞれ一枚の合成樹脂板から真
空成形加工し、各熱交換隔壁板の中間で多数の膨出部を
同一側へ突出成形し、更に各隔壁板の両側辺に沿い相互
掛合自在な縦方向の凹凸条を形成すると共に、その上端
縁部をこの膨出部の高さと同一寸法、L字状に前記膨出
部と同一側へ屈曲成形する工程。 b)前記熱交換隔壁板を2枚一組として相互に表裏を反
転してその屈曲成形した上端縁部同士をその全幅に亘り
相互に結合し一体化し単一の熱交換器ユニットとすると
共に、相対峙する内向きの前記膨出部同士を突合せ、こ
の2枚の熱交換隔壁板の中間部を相互離間させ、少なく
とも上端が閉止され前後が開口しているトンネル状の一
つの空気通路を形成する工程。 c)このように製造した熱交換器ユニットを複数個ケー
ス内に順次起立して並列配置し、隣接する熱交換器ユニ
ットにおける熱交換隔壁板に設けた縦方向の前記凹凸条
を相互に掛け合わせ両側辺においてほゞ水密とした流体
流下通路を、隣接する熱交換器ユニットの熱交換隔壁板
間に形成すると共にこの隣接する熱交換器ユニットの熱
交換隔壁板の上端縁間に前記液体流体流下通路に通じる
液体入口を成形し、各流体流下通路形成面で相互掛合分
離自在にこれら熱交換器ユニット同士を連結する工程。 d)前記の液体流下通路を、この液体流下通路の両側壁
面を形成する隣接する熱交換器ユニットの熱交換隔壁板
の内外に分布膨出した邪魔部を相互嵌合、若しくは突き
合わせて形成した流下緩速部と、この流下緩速部に隣接
して形成された溢水路とで成形し、これら流下緩速部と
溢水路を、前記熱交換隔壁板の少なくとも一側縁に沿い
形成した相互嵌合離反自在の縦方向の凹凸条により相互
区画して、流下緩速部からオーバーフローした循環水を
溢水路内に流下自在に形成する工程。 以上a)乃至d)からなることを特徴とする間接型熱交
換器の製造方法。
(57) [Claims] There are several flat vertical liquid flow passages parallel to each other, and a flat air passage with a vertical surface formed between each of these liquid flow passages, and a horizontal air passage through which the air flow flows. The method of manufacturing an indirect heat exchanger, wherein the two fluid passages are separated by a heat exchange partition plate made of a plurality of synthetic resin plates that make the fluids not contact with each other. Vacuum-forming each synthetic resin heat exchange partition plate of the same shape from one synthetic resin plate, and protrudingly molding a large number of bulging portions to the same side in the middle of each heat exchange partition plate, and further forming each partition Along the sides of the plate are formed longitudinally uneven strips which can be engaged with each other, and the upper edge is bent to the same size as the height of the bulging portion and to the same side as the bulging portion in an L-shape. Process. b) The heat exchange partition plates are formed as a pair, and the top and bottom edges formed by inverting each other are connected to each other over their entire width and integrated to form a single heat exchanger unit. The opposed inwardly projecting portions are abutted to each other, and the intermediate portions of the two heat exchange partition plates are separated from each other to form one tunnel-shaped air passage having at least an upper end closed and open front and rear. Process. c) A plurality of the heat exchanger units manufactured in this manner are sequentially erected and arranged in parallel in the case, and the vertical ridges and valleys provided on the heat exchange partition plates of adjacent heat exchanger units are crossed with each other. A fluid flow passage that is substantially watertight on both sides is formed between the heat exchange partition plates of the adjacent heat exchanger units, and the liquid flow passage is formed between the upper edges of the heat exchange partition plates of the adjacent heat exchanger units. Forming a liquid inlet communicating with the passage, and connecting these heat exchanger units to each other so that they can be engaged with and separated from each other on the fluid flow-down passage forming surface. d) Flow-down formed by interfitting or abutting the liquid flow-down passage with bulging portions distributed and bulging inside and outside the heat exchange partition plates of adjacent heat exchanger units forming both side walls of the liquid flow-down passage. Formed by a slow portion and an overflow channel formed adjacent to the falling slow portion, and the interfitting formed by forming the slow flowing portion and the overflow channel along at least one side edge of the heat exchange partition plate. A step of forming a circulating water overflowing from a slowly flowing down portion into a flood channel so that the circulating water can freely flow down into the overflow channel by being separated from each other by vertical concavo-convex strips which can be separated from each other. A method for producing an indirect heat exchanger, comprising the above a) to d).
JP62295045A 1987-11-17 1987-11-25 Manufacturing method of indirect heat exchanger Expired - Fee Related JP2660207B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP62295045A JP2660207B2 (en) 1987-11-25 1987-11-25 Manufacturing method of indirect heat exchanger
DE88107336T DE3883161T2 (en) 1987-11-17 1988-05-06 Heat exchanger for a cooling tower.
DE3855049T DE3855049T2 (en) 1987-11-17 1988-05-06 Heat exchanger for a cooling tower
EP91116137A EP0464874B1 (en) 1987-11-17 1988-05-06 Heat exchanger for cooling tower
DE3852552T DE3852552T2 (en) 1987-11-17 1988-05-06 Heat exchanger for a cooling tower.
EP88107336A EP0316510B1 (en) 1987-11-17 1988-05-06 Heat exchanger for cooling tower
EP91116138A EP0464875B1 (en) 1987-11-17 1988-05-06 Heat exchanger for cooling tower
US07/233,265 US4874035A (en) 1987-11-17 1988-08-16 Heat exchanger for cooling tower
US07/337,062 US4997031A (en) 1987-11-17 1989-04-11 Heat exchanger for cooling tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62295045A JP2660207B2 (en) 1987-11-25 1987-11-25 Manufacturing method of indirect heat exchanger

Publications (2)

Publication Number Publication Date
JPH01140927A JPH01140927A (en) 1989-06-02
JP2660207B2 true JP2660207B2 (en) 1997-10-08

Family

ID=17815606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62295045A Expired - Fee Related JP2660207B2 (en) 1987-11-17 1987-11-25 Manufacturing method of indirect heat exchanger

Country Status (1)

Country Link
JP (1) JP2660207B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014125566A1 (en) * 2013-02-12 2017-02-02 三菱電機株式会社 Plate heat exchanger and refrigeration cycle apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU69332A1 (en) * 1974-02-06 1975-12-09
US3995689A (en) * 1975-01-27 1976-12-07 The Marley Cooling Tower Company Air cooled atmospheric heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014125566A1 (en) * 2013-02-12 2017-02-02 三菱電機株式会社 Plate heat exchanger and refrigeration cycle apparatus

Also Published As

Publication number Publication date
JPH01140927A (en) 1989-06-02

Similar Documents

Publication Publication Date Title
US4116271A (en) Counter-current bumped plates heat exchanger
KR102199418B1 (en) Superposed heat exchanger
US3371709A (en) Falling film plate heat exchanger
KR20160132442A (en) Dryer or washer dryer
JPH09170851A (en) Refrigerant evaporator
JP5722528B2 (en) Heat exchanger plate
US20040031599A1 (en) Heat exchanger
JP2660207B2 (en) Manufacturing method of indirect heat exchanger
AU2004202820B2 (en) Louver assembly
KR100338718B1 (en) Film fill-pack for inducement of spiraling gas flow in heat and mass transfer contact apparatus with self-spacing fill-sheets
JP2579504B2 (en) Indirect heat exchanger for cooling tower
KR101303234B1 (en) Heat exchanger for exhaust-heat recovery
JP2550366B2 (en) Heat exchanger for cooling tower
US5490958A (en) Filler for heat exchanger
JP2579515B2 (en) Heat exchanger made of synthetic resin for cooling tower and DC-type cooling tower using heat exchanger composed of this heat exchanger
JPS58138994A (en) Heat exchanger
US7261285B2 (en) Internal inserts in cooling towers
JPH0422225Y2 (en)
JP2617759B2 (en) cooling tower
JP2517097Y2 (en) Closed cooling tower
US7959134B2 (en) Contact body for an evaporation humidifier or material exchanger
JPH0449492Y2 (en)
JP2750376B2 (en) cooling tower
JPH05240596A (en) Synthetic resin heat exchanging module for cooling tower and cross-flow type cooling tower using said heat exchanging module
JP2579527B2 (en) Countercurrent cooling tower to prevent white smoke

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees