JP2579515B2 - Heat exchanger made of synthetic resin for cooling tower and DC-type cooling tower using heat exchanger composed of this heat exchanger - Google Patents

Heat exchanger made of synthetic resin for cooling tower and DC-type cooling tower using heat exchanger composed of this heat exchanger

Info

Publication number
JP2579515B2
JP2579515B2 JP2538888A JP2538888A JP2579515B2 JP 2579515 B2 JP2579515 B2 JP 2579515B2 JP 2538888 A JP2538888 A JP 2538888A JP 2538888 A JP2538888 A JP 2538888A JP 2579515 B2 JP2579515 B2 JP 2579515B2
Authority
JP
Japan
Prior art keywords
heat exchanger
cooling tower
liquid
synthetic resin
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2538888A
Other languages
Japanese (ja)
Other versions
JPH01200197A (en
Inventor
健 柏田
忠信 武藤
哲夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Refrigeration Equipment and Systems Co Ltd
Original Assignee
Ebara Shinwa Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Shinwa Ltd filed Critical Ebara Shinwa Ltd
Priority to JP2538888A priority Critical patent/JP2579515B2/en
Publication of JPH01200197A publication Critical patent/JPH01200197A/en
Application granted granted Critical
Publication of JP2579515B2 publication Critical patent/JP2579515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は冷却塔用の熱交換体及びこの熱交換体から
成る熱交換器を利用した冷却塔に関する。
Description: TECHNICAL FIELD The present invention relates to a heat exchanger for a cooling tower and a cooling tower using a heat exchanger including the heat exchanger.

(従来の技術) 従来、この種の気液非接触型の熱交換器が、特開昭51
−100370号公報に記載されており、その構造は全体合成
樹脂製で、扁平な垂直方向の相互に平行な複数この液体
流下通路と、これらの液体流下通路間に夫れ夫れ形成さ
れた垂直方向の面を持つ扁平で、気流の流れる空気通路
とを有し、これら2つの液体通路が相互の液体を非接触
とする複数枚の合成樹脂板よりなる熱交換隔壁板によっ
て仕切られている冷却塔用熱交換器が記載されており、
各空気通路の両壁は逆U字状部材で形成され、隣接する
逆U字状部材の波形側壁は突出して設けたリブ部分で相
互に接着されていると共にその側縁において連結パネル
により相互に連結されて前記液体流下通路を形成してい
る。
(Prior Art) Conventionally, this type of gas-liquid non-contact type heat exchanger has been disclosed in
No. -100370, the structure of which is entirely made of synthetic resin, a plurality of flat liquid flowing passages parallel to each other in a vertical direction, and a vertical formed respectively between these liquid flowing passages. Cooling, which has a flat, air-flowing air passage having a surface in the direction, and wherein the two liquid passages are separated by a heat-exchange partition plate made of a plurality of synthetic resin plates that make the liquids of the two liquids out of contact with each other. A tower heat exchanger is described,
Both walls of each air passage are formed by inverted U-shaped members, and the corrugated side walls of adjacent inverted U-shaped members are bonded to each other by protruding rib portions, and are mutually connected at their side edges by connecting panels. They are connected to form the liquid flow passage.

この公報記載の前記熱交換器は第10図に示すように冷
却塔の外気取入口に面した充填材の内側にこの熱交換器
を数個階層的に吊り下げ支持し、冬季における白煙発生
の防止を図っている。
In the heat exchanger described in this publication, several heat exchangers are suspended and supported hierarchically inside a filler facing the outside air intake of a cooling tower as shown in FIG. It is aimed at prevention.

(発明が解決しようとする課題) このように先行技術のものにおいては、液体の流下速
度を緩くするため狭く、かつ屈曲させた液体通路は長期
間使用する間には塵埃や微生物がそれらの壁面に付着
し、液体通路の断面積を実質的に狭くし、所定の流量流
下できず、これらの熱交換器の供給側において溢水し、
これらの周辺を悪戯に濡らすだけでなく、循環冷媒の損
失となっている。
(Problems to be Solved by the Invention) As described above, in the prior art, a narrow and bent liquid passage is formed in order to slow down the flow rate of the liquid. Adhered to the liquid passage, substantially reduced the cross-sectional area of the liquid passage, could not flow down the predetermined flow rate, overflowed on the supply side of these heat exchangers,
Not only do these areas become mischievous, but also the loss of circulating refrigerant.

冷却塔の外気取入口に面した充填材の内側にこの熱交
換器を数個階層的に吊り下げ支持してある(第10図)場
合には、前記供給側での溢水現象により所望の白煙発生
の防止を行えないこともあると共に、前記流体通路が狭
いため内部に侵入したエアが抜けがたく、この通路内に
滞留し熱交換を阻害している。
In the case where several heat exchangers are suspended and supported hierarchically inside the packing material facing the outside air intake of the cooling tower (FIG. 10), the desired white color is produced by the overflow phenomenon on the supply side. In some cases, it is not possible to prevent the generation of smoke. In addition, since the fluid passage is narrow, air that has entered the interior is difficult to escape, and stays in this passage to hinder heat exchange.

この発明は気液非接触型の熱交換器の熱交換を行なう
主要部分における液体通路において、仮に一部分に目詰
りを起したとしても、熱交換器全体として液体の給吐出
量が一定に保持できるようにし、液体通路の流量に影響
を及ぼさないようにすると共に侵入したエアを円滑に抜
けるようにした熱交換体を提供すると共に、かかる熱交
換体を使用した前記冷却塔を提供することを目的とす
る。
According to the present invention, the liquid supply / discharge amount can be kept constant as a whole heat exchanger even if the liquid passage in the main part of the gas-liquid non-contact type heat exchanger performing heat exchange is partially clogged. To provide a heat exchanger that does not affect the flow rate of the liquid passage and that smoothly allows the invading air to escape, and to provide the cooling tower using the heat exchanger. And

(課題を解決する手段) 前記課題を達成するために、この特定発明の冷却塔用
合成樹脂製熱交換体は、全体として扁平な薄肉中空体で
あり、内部が液体流下通路としてありその中空体の上部
には外部に開口した循環冷却水供給部が形成されてお
り、その中空体の下縁である前記液体流下通路の下端に
も外部に開口した吐出部が設けてあり、この液体流下通
路の幅の大部分は、流下液緩速部としてあり、この流下
液緩速部は水平方向に長い邪魔シール部を全面に複数段
にわたり階層的に分布させて、これら邪魔シール部を一
つ置きに位置をずらせ、前記邪魔シール部間に蛇行流路
形成して成り この流下液緩速部は、少なくとも一つの垂直なシール
部を介して垂直方向の溢水路と隣接形成して配置され、
この垂直なシール部の上端は、堰の形状としてあり、こ
の堰を通して前記溢水路と流下液緩速部における最上段
部の液溜部分とが相互連通していると共に、前記蛇行す
る流下緩速部の屈曲路位置には前記垂直なシール部を横
断し前記溢水路内に開口するエア抜き穴が形成してあ
り、前記両壁板外面には、隆起部がスペーサとして形成
してあることを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the heat exchanger made of synthetic resin for a cooling tower of this specific invention is a flat thin-walled hollow body as a whole, the inside of which is a liquid flow passage, and the hollow body A circulating cooling water supply part which is open to the outside is formed at the upper part of the liquid flow path, and a discharge part which is open to the outside is also provided at the lower end of the liquid flow path which is the lower edge of the hollow body. Most of the width of is a falling liquid slow part, and this falling liquid slow part has a horizontally long baffle seal section distributed over the entire surface in a hierarchical manner over multiple stages, and one of these baffle seal sections is placed. And a meandering channel is formed between the baffle seal portions.The falling liquid slow portion is disposed adjacent to the vertical overflow channel via at least one vertical seal portion,
The upper end of the vertical seal portion is in the form of a weir, and the overflow channel and the liquid reservoir at the uppermost stage in the slowing down liquid portion are interconnected through the weir, and the meandering slow down flow An air vent hole is formed at the bent path position of the portion, which traverses the vertical seal portion and opens into the overflow channel, and a raised portion is formed as a spacer on the outer surface of both wall plates. Features.

前記課題を解決するために、前記中空体を真空乃至ブ
ロー成形品としあることが望ましい。
In order to solve the above-mentioned problem, it is desirable that the hollow body is a vacuum or blow molded product.

前記課題を解決するために、この熱交換体における前
記溢水路は前記中空体の一側縁に沿って設けてあること
が望ましい。
In order to solve the above-mentioned problem, it is desirable that the overflow channel in the heat exchanger is provided along one side edge of the hollow body.

前記課題を解決するために、この熱交換体における前
記溢水路は前記中空体の両側縁に沿って設けてあるとよ
り好ましい。
In order to solve the above problem, it is more preferable that the overflow channel in the heat exchanger is provided along both side edges of the hollow body.

前記課題を解決するために、この熱交換体における前
記屈曲する流下液緩速部はその中央部分で垂直な邪魔シ
ール部分で2系列乃至4系列の流体通路に夫れ夫れ分離
されている場合もある。
In order to solve the above-mentioned problem, the bent downflow liquid slow portion in the heat exchanger is separated from the second to fourth fluid passages by a vertical obstruction seal portion at the center thereof. There is also.

前記課題を解決するために、この冷却塔用合成樹脂製
熱交換体における上下隣接する水平な方向に長い邪魔シ
ール部間の蛇行流路の両壁は、この両壁のほぼ全面にわ
たり下流側ほど上位に45度前後傾斜した平行な畝を内外
に形成した波板状としてあることもある。
In order to solve the above-mentioned problem, both walls of the meandering flow passage between the horizontally long obstruction seal portions vertically adjacent to each other in the cooling tower synthetic resin heat exchanger are almost completely downstream of the both walls. It may be in the form of a corrugated sheet with parallel ridges inclined 45 degrees upward and downward.

前記課題を解決するために、直交流式冷却塔は、 特許請求の範囲第1項記載の熱交換体を隆起部を相互
嵌合乃至当接して若干の間隙を置いて所定枚数並列配置
し、隣接する熱交換体間に狭幅の水平な空気流通路を形
成して冷却塔用の間接型熱交換器を構成し、 前記冷却塔の外気取入口に対面して設けた板状波板か
らなる充填材の2次側に、前記間接型熱交換器の各空気
流通路を前記充填材の空気通路と同方向で水平とし、そ
の一側を充填材側とし、その二次側を冷却塔の排気口よ
りの空気室側として、この間接型熱交換器をこの充填材
の全幅、全高さにわたり配置してあることを特徴とす
る。
In order to solve the problem, the cross-flow cooling tower is arranged in parallel with a predetermined number of heat exchangers according to claim 1 with a slight gap between the protrusions and abutment or contact with each other, A narrow horizontal air flow passage is formed between adjacent heat exchangers to form an indirect heat exchanger for the cooling tower, and a plate-like corrugated sheet provided facing the outside air intake of the cooling tower. On the secondary side of the packing material, each air flow passage of the indirect heat exchanger is made horizontal in the same direction as the air passage of the packing material, one side thereof is used as the packing material side, and the secondary side thereof is a cooling tower. The indirect heat exchanger is arranged on the entire width and height of the filler as the air chamber side from the exhaust port.

前記課題を解決するために、前記中空体の上縁を全幅
にわたり開口しこの上縁の両壁板が外方へ前記隆起部と
同一高さで張り出し、この上縁中央部分が凹みU字状の
窪みに形成しあり、この窪みの底部で前記供給部を形成
しており、前記上縁は外周面において組立時に隣接する
熱交換体の上縁同士が当接密着し、長手方向に延在する
循環冷却液溜り部を形成する形状としてあるのが好まし
い。
In order to solve the above problem, the upper edge of the hollow body is opened over the entire width, and both wall plates of the upper edge project outward at the same height as the raised portion, and the central portion of the upper edge is concave U-shaped. The supply portion is formed at the bottom of the depression, and the upper edge of the heat exchanger adjacent to the heat exchanger at the time of assembling on the outer peripheral surface is in close contact and extends in the longitudinal direction. It is preferable to have a shape that forms a circulating cooling liquid reservoir.

(発明の作用) 特許請求の範囲第1項乃至第5項記載の発明である前
記熱交換体の作用を特許請求の範囲第7項記載の直交流
式冷却塔の作用と共に説明する。
(Operation of the Invention) The operation of the heat exchanger according to the first to fifth aspects of the present invention will be described together with the operation of the cross-flow cooling tower according to the seventh aspect.

先ず、複数枚の熱交換体をケース乃至適宜の支持枠を
用いて並列配置し、前記隆起部を一種のスペーサとし
て、これにより隣接する熱交換体の間に狭い幅の水平な
空気流通路を形成し、所望寸法の間接型熱交換器を組み
立てる。
First, a plurality of heat exchangers are arranged in parallel using a case or an appropriate support frame, and the ridge is used as a kind of spacer, thereby forming a narrow air flow passage between adjacent heat exchangers. Form and assemble an indirect heat exchanger of desired dimensions.

このように組み立てた熱交換器を、直交流式冷却塔の
充填材の内側に配列する。この際、この充填材上部の上
部水槽へ循環冷却液を供給する供給パイプは、途中から
分岐し、この分岐パイプにはバルブを設け前記熱交換体
群への供給用ヘッダーとして使用する。
The heat exchanger thus assembled is arranged inside the packing material of the crossflow cooling tower. At this time, a supply pipe for supplying the circulating cooling liquid to the upper water tank above the filler is branched from the middle, and the branch pipe is provided with a valve to be used as a header for supply to the heat exchanger group.

この状態で冷却塔の送風機を回転駆動し、負荷部であ
る空調若しくは冷凍機によって温められた(30〜70℃程
度)循環する冷媒たる冷却水を前記供給用ヘッダーを通
して前記各熱交換体の供給部から前記流下液緩速部位置
に供給すると、冷却水は順次前記邪魔シール部間に形成
された蛇行流路中を蛇行しつつ順次流下し、前記熱交換
体の両壁板と充分に撹拌されながら接触し、単に垂直に
流下するより遥かに長時間両壁板と接触し、これら両壁
板を介して前記各空気流通路を水平方向に流れる空気と
熱交換し、これらを暖めると同時に、自づからは空気に
熱をとられてその分冷却される。
In this state, the blower of the cooling tower is driven to rotate, and cooling water as a circulating refrigerant (about 30 to 70 ° C.) warmed by an air conditioner or a refrigerator as a load unit is supplied to each of the heat exchangers through the supply header. When the cooling water is supplied from the portion to the position of the slowly flowing down liquid portion, the cooling water sequentially flows down while meandering in the meandering flow path formed between the baffle seal portions, and is sufficiently stirred with both wall plates of the heat exchanger. Contact with both wall plates for a much longer time than just flowing down vertically, heat exchange with the air flowing horizontally through each of the air flow passages through these wall plates, and warm them simultaneously. The heat is taken by the air and cooled accordingly.

この冷却塔の運転中に、前記流下液緩速部内に残留し
ているエアは、前記畝により上方へ若干盛り上がる冷却
水の動きに伴い、前記流下液緩速部の屈曲路上部隅角に
押しやられ、この部分に滞留しようとするが、前記エア
抜き穴を通って前記溢水路内に流入しこの溢水路を上昇
し前記供給部から外部へ吐き出される。
During the operation of the cooling tower, the air remaining in the flowing liquid slow-moving part is pushed to the upper corner of the curved path of the flowing liquid slow-moving part by the movement of the cooling water slightly rising upward by the ridges. Although it is damaged and tries to stay in this portion, it flows into the overflow channel through the air vent hole, rises in the overflow channel, and is discharged from the supply unit to the outside.

冷却塔の内部に配設された充填材の内側位置にこの特
定発明の熱交換体群を配列することで、充填材上で冷却
水と直接接触して冷却し自身昇温し絶対温度が高くなっ
た空気全部がこの発明の熱交換体群の全ての空気流通路
内に流入する。一方、この熱交換体の屈曲した流下液緩
速部を蛇行して流下してくる冷却水をその流下中に前記
空気通路内を通過中の前記空気で間接的に冷却し、この
冷却で自身昇温した空気を排気口から白煙を伴わずに冷
却塔外に排気する(第6図参照)。
By arranging the group of heat exchangers of the present invention at the inside position of the packing material disposed inside the cooling tower, the cooling medium is brought into direct contact with the cooling water on the packing material, and the temperature rises to increase the absolute temperature. All of the resulting air flows into all the air flow passages of the heat exchanger group of the present invention. On the other hand, the cooling water flowing meandering down the curved falling liquid slow portion of the heat exchanger is indirectly cooled by the air passing through the air passage during the flow, and the cooling water is cooled by itself. The heated air is exhausted from the exhaust port to the outside of the cooling tower without white smoke (see FIG. 6).

仮に冷却水の供給量が脈動を起したり、一時的に供給
量が増加したとき、或は流下液緩速路中に微生物などが
付着し、流下液緩速路の断面積が狭くなり、流量低下を
きたし、液溜部の水位が上昇し、堰より高くなると、前
記冷却水の一部は溢水路を通り直接流下し、前記熱交換
体外に溢れ出さない。
If the supply amount of cooling water pulsates, or if the supply amount temporarily increases, or microorganisms adhere to the slow-flowing liquid slow path, the cross-sectional area of the slow-flowing liquid slow path decreases, When the flow rate decreases and the water level in the liquid reservoir rises and becomes higher than the weir, a part of the cooling water directly flows down through the overflow channel and does not overflow out of the heat exchanger.

なお、前記冷却塔運転中、各熱交換体の供給部は外気
に開放してあり、自然流下式に前記冷却塔内に配設され
た冷却水は前記流下液緩速路内を蛇行しつつ流下してい
く。そして、冷却塔の運転停止と同時に大気圧を受けて
前記吐出部より外部へ吐出される。
During the operation of the cooling tower, the supply section of each heat exchanger is open to the outside air, and the cooling water arranged in the cooling tower in a natural flow manner is meandering in the slow flowing liquid flow path. It flows down. Then, at the same time when the operation of the cooling tower is stopped, the cooling tower receives the atmospheric pressure and is discharged from the discharge section to the outside.

なお、特許請求の範囲第6項記載の発明においては、
前記作用に加えて、前記流下液緩速部を構成する両壁板
内面が、この両壁ほぼ全面にわたり下流側ほど上位に45
度前後傾斜した平行な畝を内外に形成した波板状として
ある場合には、こと蛇行流路内を巡回する冷却水はこれ
ら畝を乗り越える毎に上方に誘導されて若干盛り上がる
と共に上流側に引き戻され、この蛇行流路の各水平部分
の流路の上側部まで冷却水は充満乃至は少なくとも前記
水平部分の内壁面の上部までを濡らして屈曲位置に達
し、長時間にわたり両壁板のほぼ全面と接触し続ける。
In the invention described in claim 6,
In addition to the above operation, the inner surfaces of the two wall plates constituting the slowing portion of the flowing liquid are almost all over the two walls, and the lower the downstream side, the higher the upper surface.
In the case of a corrugated plate with parallel ridges that are inclined inside and outside, the cooling water circulating in the meandering channel is guided upwards and rises slightly as it gets over these ridges, and is drawn back upstream. The cooling water is filled up to the upper part of the flow path of each horizontal part of the meandering flow path or wets at least up to the upper part of the inner wall surface of the horizontal part and reaches the bent position, and for a long time almost the entire surface of both wall plates Keep in contact with.

この冷却塔の運転中に、前記流下液緩速部内に残留し
ているエアは、前記畝により上方へ若干盛り上がる冷却
水の動きに伴い、前記流下液緩速部の屈曲路上部隅角に
押しやられ、この部分に滞留しようとするが、前記エア
抜き穴を通って前記溢水路内に流入しこの溢水路を上昇
し前記供給部から外部へ吐き出される。
During the operation of the cooling tower, the air remaining in the flowing liquid slow-moving part is pushed to the upper corner of the curved path of the flowing liquid slow-moving part by the movement of the cooling water slightly rising upward by the ridges. Although it is damaged and tries to stay in this portion, it flows into the overflow channel through the air vent hole, rises in the overflow channel, and is discharged from the supply unit to the outside.

冷却塔の内部に配設された充填材の内側位置にこの特
定発明の熱交換体群を配列することで、充填材上で冷却
水と直接接触して冷却し自身昇温し絶対温度が高くなっ
た空気全部がこの発明の熱交換体群の全ての空気流通路
内に流入する。一方、この熱交換体の屈曲した流下液緩
速部を蛇行して流下してくる冷却水をその流下中に前記
空気通路内を通過中の前記空気で間接的に冷却し、この
冷却で自身昇温した空気を排気口から白煙を伴わずに冷
却塔外に排気する(第6図参照)。
By arranging the group of heat exchangers of the present invention at the inside position of the packing material disposed inside the cooling tower, the cooling medium is brought into direct contact with the cooling water on the packing material, and the temperature rises to increase the absolute temperature. All of the resulting air flows into all the air flow passages of the heat exchanger group of the present invention. On the other hand, the cooling water flowing meandering down the curved falling liquid slow portion of the heat exchanger is indirectly cooled by the air passing through the air passage during the flow, and the cooling water is cooled by itself. The heated air is exhausted from the exhaust port to the outside of the cooling tower without white smoke (see FIG. 6).

仮に冷却水の供給量が脈動を起したり、一時的に供給
量が増加したとき、或は流下液緩速路中に微生物などが
付着し、流下液緩速路の断面積が狭くなり、流量低下を
きたし、液溜部の水位が上昇し、堰より高くなると、前
記冷却水の一部は溢水路を通り直接流下し、前記熱交換
体外に溢れ出さない。
If the supply amount of cooling water pulsates, or if the supply amount temporarily increases, or microorganisms adhere to the slow-flowing liquid slow path, the cross-sectional area of the slow-flowing liquid slow path decreases, When the flow rate decreases and the water level in the liquid reservoir rises and becomes higher than the weir, a part of the cooling water directly flows down through the overflow channel and does not overflow out of the heat exchanger.

なお、前記冷却塔運転中、各熱交換体の供給部は外気
に開放してあり、自然流下式に配設された冷却水は前記
流下液緩速路内を蛇行しつつ流下していく。そして、冷
却塔の運転停止と同時に大気圧を受けて前記吐出部より
外部へ吐出される。
During the operation of the cooling tower, the supply section of each heat exchanger is open to the outside air, and the cooling water arranged in a naturally flowing manner flows down the meandering path in the flowing liquid slow path. Then, at the same time when the operation of the cooling tower is stopped, the cooling tower receives the atmospheric pressure and is discharged from the discharge section to the outside.

また、特許請求の範囲第8項記載の発明においては、
前記中空体の上縁を全幅にわたり開口しこの上縁の両壁
板が外方へ前記隆起部と同一高さで張り出し、この上縁
中央部分が凹みU字状の窪みに形成しあり、この窪みの
底部で前記供給部を形成しており、前記上縁はその外周
面において組立時に隣接する熱交換体の上縁同士が当接
密着し、長手方向に延在する循環冷却液溜り部を形成す
る形状としてある場合には、複数枚の前記熱交換体を隣
接し並列配置することで、前記熱交換器上縁を循環冷却
液溜り部とし、この溜り部内に前記供給用ヘッダーを水
平に配管し、この供給用ヘッダーから循環冷却水を前記
溜り部に向け供給し、この溜り部を構成する各熱交換体
の前記窪みの底部に形成した各熱交換体の供給口から各
熱交換体内へ流入する。
In the invention described in claim 8,
The upper edge of the hollow body is opened over the entire width, and both wall plates of the upper edge project outward at the same height as the raised portion, and the central portion of the upper edge is formed as a U-shaped depression. The supply portion is formed at the bottom of the depression, and the upper edge is a circulating coolant reservoir that extends and extends in the longitudinal direction, with the upper edges of adjacent heat exchangers being in close contact with each other at the time of assembly on the outer peripheral surface. In the case of having a shape to be formed, by arranging a plurality of the heat exchangers adjacent to each other and in parallel, the upper edge of the heat exchanger is used as a circulating cooling liquid reservoir, and the supply header is horizontally disposed in the reservoir. Piping, circulating cooling water is supplied from the supply header to the reservoir, and each heat exchanger is formed from a supply port of each heat exchanger formed at the bottom of the recess of each heat exchanger constituting the reservoir. Flows into

前記作用の説明は冬季又は外気が低温の場合であり、
それ以外の夏季若しくは外気が高温の場合は、前記供給
用ヘッダーのバルブを閉じて、前記熱交換体への循環冷
却水の供給を停止する。
The explanation of the action is in winter or when the outside air is low temperature,
In other summer months or when the outside air is at a high temperature, the valve of the supply header is closed to stop the supply of the circulating cooling water to the heat exchanger.

(発明の効果) 叙上のように構成し作用を為すこの特定発明の熱交換
体においては、熱交換を行なう主要部分たる流下液緩速
部において、仮に一部目詰り乃至流量制限があり、一時
的に供給冷却水の流量が変化し、液溜部の水位が上昇し
ても、堰を越えて熱交換流下水路の一部である溢水路を
通過して下方に冷却水が吐出するため、通過水量自体を
制限するおそれがない。
(Effect of the Invention) In the heat exchanger according to the present invention, which is configured and operates as described above, a part of the slow-flowing liquid slowing part, which is a main part for performing heat exchange, is temporarily clogged or restricted in flow rate. Even if the flow rate of the supply cooling water changes temporarily and the water level in the liquid reservoir rises, the cooling water is discharged downward through the overflow channel, which is a part of the heat exchange drainage channel, over the weir. Therefore, there is no possibility of limiting the amount of passing water itself.

更にこの冷却塔運転開始時に前記流下液緩速部内に残
留しているエアは冷却水により前記流下液緩速部の屈曲
路上部に押しやられ、前記エア抜き穴を通って前記溢水
路内に流入しこの溢水路を上昇して前記供給部から外部
へ吐きだされるため、エアはこの流下液緩速部内に殆ど
残留せず、熱交換に支障を来さない。
Further, at the start of the operation of the cooling tower, the air remaining in the slow-flowing liquid slow section is pushed by the cooling water to the upper part of the curved path of the slow-flowing liquid slow section, and flows into the overflow channel through the air vent hole. Since the water rises in the overflow channel and is discharged from the supply section to the outside, the air hardly remains in the slow flowing-down liquid section, and does not hinder heat exchange.

特許請求の範囲第2項記載の発明である前記中空体を
真空乃至ブロー成形品とすれば、この熱交換体の製造が
容易で、かつ安価と成る。
If the hollow body according to the second aspect of the present invention is a vacuum or blow molded product, the production of the heat exchanger is easy and inexpensive.

特許請求の範囲第3項記載の発明においては、前記溢
水路を前記中空体の一側縁に沿って設けたものでは、そ
の成形が容易と成り、特許請求の範囲第4項記載の発明
においては、この溢水路を前記中空体の両側縁に沿って
設ければ、前記溢水路及びエア抜き穴に関する効果を倍
増できる。
In the invention according to claim 3, if the overflow channel is provided along one side edge of the hollow body, it is easy to form the overflow channel, and the invention according to claim 4 is provided. If the overflow channel is provided along both side edges of the hollow body, the effect relating to the overflow channel and the air vent hole can be doubled.

特許請求の範囲第5項記載の発明においては、前記屈
曲する流下液緩速部をその中央部分で垂直な区画シール
部分で2系列乃至4系列の流体通路に夫れ夫れ分離させ
れば、この熱交換体全面に均一に循環冷却水を分配でき
る。
In the invention described in claim 5, if the bent downflow liquid slow portion is separated into two or four series of fluid passages by a vertical partition seal portion at a center portion thereof, The circulating cooling water can be distributed uniformly over the entire surface of the heat exchanger.

特許請求の範囲第6項記載の発明においては、更に、
前記流下液緩速部を構成する両壁板内面がこの両壁ほぼ
全面にわたり下流側ほど上位に45度前後傾斜した平行な
畝を内外に形成した波板状としてあることを特徴とする
冷却塔用合成樹脂製熱交換体においては、前記特定発明
の効果に加えて、この蛇行流路内を巡回する冷却液をこ
れら畝を乗り越える毎に上方に誘導されて若干盛り上が
る。
In the invention described in claim 6, further,
A cooling tower characterized in that the inner surface of the two wall plates constituting the slow liquid slow-down portion is a corrugated plate formed with parallel ridges inclined upward and downward by about 45 degrees as the downstream side extends over substantially the entire surfaces of the two walls. In the heat exchanger made of synthetic resin for use, in addition to the effect of the specific invention described above, the cooling liquid circulating in the meandering flow path is guided upward and slightly swells as it gets over these ridges.

この場合に、各水平流路部分の上側にエアが残留して
いたとしても、この盛り上がる冷却水によって、エアは
前述のエア抜き穴から押し出されるため、内部の残留エ
アが各水平流路部における水位の上昇を阻害することが
ない。
In this case, even if air remains on the upper side of each horizontal flow path portion, the air is pushed out from the air vent hole by the rising cooling water, so that the residual air inside the horizontal flow path portion is It does not inhibit the rise of the water level.

また蛇行流路の各水平部分の流路の上側部まで冷却水
は上昇してこれら各水平部分に充満乃至は少なくとも前
記水平部分の内壁面の上部までも濡らし屈曲位置に到達
させるため、前記傾斜させた畝のない場合よりも、循環
冷却液が蛇行流路を通過する時間が長くなり、かつ両壁
板と循環冷却液とが接触する表面積が広くなるため、空
気と循環冷却液との非接触の熱交換率を上げることが出
来る。
In addition, the cooling water rises to the upper part of the flow path of each horizontal part of the meandering flow path, fills each of these horizontal parts or wets at least the upper part of the inner wall surface of the horizontal part, and reaches the bent position, As compared with the case without the ridges, the time for the circulating coolant to pass through the meandering flow path is longer, and the surface area of contact between the both wall plates and the circulating coolant is larger. The heat exchange rate of the contact can be increased.

特許請求の範囲第7項記載の発明である直交流式冷却
塔においては、前記流下液緩速路の一部目詰りが発生し
ても、堰を越えて熱交換流水路の一部である溢水路を通
過して下部開口部から冷却水が吐出する為、冷却水が前
記供給部から溢れること無くこの供給量は激減せず、こ
の熱交換体での空気と冷却液との間での間接形熱交換量
が少なくなったりはせず、当木全は外気が低温の場合に
所望の白煙発生の防止を行える。その他、前記熱交換体
と同様の効果を発揮することはいうまでもない。
In the cross-flow cooling tower according to the invention described in claim 7, even if a part of the slow liquid flow path is clogged, it is a part of the heat exchange flow path beyond the weir. Since the cooling water is discharged from the lower opening through the overflow channel, the supply amount does not drastically decrease without the cooling water overflowing from the supply unit, and the amount of the cooling water between the air and the cooling liquid in the heat exchanger is reduced. The amount of indirect heat exchange does not decrease, and the entire tree can prevent a desired generation of white smoke when the outside air is at a low temperature. In addition, it goes without saying that the same effect as the heat exchanger is exhibited.

特許請求の範囲第8項記載の発明においては、前記中
空体の上縁を全幅にわたり開口し前記中空体の上縁を全
幅にわたり開口しこの上縁の両壁板が外方へ前記隆起部
と同一高さで張り出し、この上縁中央部分が凹みU字状
の窪みに形成しあり、この窪みの底部で前記供給部を形
成しており、前記上縁はその外周面において組立時に隣
接する熱交換体の上縁同士が当接密着し、長手方向に延
在する循環冷却液溜り部を形成する形状としてある場合
には、供給用ヘッダーをこの液溜り部上方に水平に配管
し、このヘッダーから吐出した循環冷却液が、並列した
熱交換体からなる熱交換器の容量より若干多くても、こ
の液溜り部内に一度滞留し、熱交換器外には流出せず、
簡易な配管構造で、自然流下式に動力を使用せずに循環
冷却水を各熱交換器液体流下通路に供給し、熱交換でき
る。
In the invention described in claim 8, the upper edge of the hollow body is opened over the entire width, the upper edge of the hollow body is opened over the entire width, and both wall plates of the upper edge are outwardly provided with the raised portion. At the same height, the center of the upper edge is formed in a U-shaped dent, and the supply portion is formed at the bottom of the dent. In the case where the upper edges of the exchanger are in contact with each other and form a circulating cooling liquid reservoir portion extending in the longitudinal direction, a supply header is horizontally piped above the liquid reservoir portion, and the header is provided. Even if the circulating cooling liquid discharged from the heat exchanger is slightly larger than the capacity of the heat exchanger composed of the parallel heat exchangers, it stays in the liquid reservoir once and does not flow out of the heat exchanger,
With a simple piping structure, circulating cooling water can be supplied to each heat exchanger liquid flow-down passage without using power in a natural flow manner to exchange heat.

(実施例) 次に特許請求の範囲第1項乃至第6項記載の発明の代
表的な実施例を説明する。
(Embodiment) Next, a representative embodiment of the invention described in claims 1 to 6 will be described.

実施例1 第1図において、10は熱交換体であり、この熱交換体
10は好適には真空成形乃至はブロー成形した合成樹脂製
の扁平中空体よりなり、その内部は液体流下通路として
あり、この合成樹脂としては、特に限定はないがポリ塩
化ビニル、ポリエチレン、ポリプロピレンなど安価で成
形性のよいものがよい。
Example 1 In FIG. 1, reference numeral 10 denotes a heat exchanger.
10 is preferably a flat hollow body made of a synthetic resin formed by vacuum molding or blow molding, and the inside thereof is a liquid flow passage. The synthetic resin is not particularly limited, but may be polyvinyl chloride, polyethylene, polypropylene, or the like. An inexpensive one with good moldability is preferred.

前記中空体よりなる熱交換体10の上縁隅角部に、外部
に開口した循環冷却液供給部の一種である筒状の供給口
11が、またその下縁隅角部に、外部に開口した循環冷却
液吐出部の一種である吐出部口12が設けてある。これら
供給口11と吐出口12は、同一側、図示のものでは左側に
あるが、この位置に限定するものではない。
A cylindrical supply port which is a kind of a circulating cooling liquid supply unit opened to the outside at the upper edge corner of the heat exchange body 10 formed of the hollow body.
In addition, a discharge port 12 which is a kind of a circulating cooling liquid discharge section which is open to the outside is provided at a lower corner of the lower portion. The supply port 11 and the discharge port 12 are on the same side, that is, on the left side in the drawing, but are not limited to this position.

前記熱交換体である中空体10の周辺に両壁板14、15を
溶着した周辺シール部16が形成され、前記熱交換体10の
側縁17、18と平行で、両側縁17、18から若干内側に入っ
たところにおいて、前記両壁板14、15は前記側縁17、18
に沿って相互に溶着した垂直なシール部19が形成され、
左右2本の垂直なシール部19の上下端はそれぞれ熱交換
体10の上下端縁20、21には達していない。
A peripheral seal portion 16 formed by welding both wall plates 14 and 15 is formed around the hollow body 10 which is the heat exchange body, and is parallel to the side edges 17 and 18 of the heat exchange body 10 and from both side edges 17 and 18. At a position slightly inside, the two wall plates 14 and 15 are connected to the side edges 17 and 18.
Vertical seal portions 19 welded to each other are formed along
The upper and lower edges of the two right and left vertical seal portions 19 do not reach the upper and lower edges 20, 21 of the heat exchanger 10, respectively.

前記これら左右2本の垂直なシール部19の中央部には
前記両壁板14と15を相互に溶着した水平方向に長い邪魔
シール部22がその全面に複数段にわたり階層的に分布し
てあり、これら邪魔シール部22は一つ置きに位置をずら
して配置され、これらシール部22間に蛇行流路23として
前記液体流下通路の幅の大部分を占める流下液緩速部24
が形成してあり、この流下液緩速部24における両壁板1
4、15がこの熱交換体10の主要な熱交換面となってい
る。
At the center of the two right and left vertical seal portions 19, a horizontally long obstruction seal portion 22 in which the two wall plates 14 and 15 are welded to each other is hierarchically distributed over a plurality of steps over the entire surface. The obstructing seal portions 22 are arranged at every other position, and the flowing liquid slow portion 24 occupying most of the width of the liquid flowing passage as a meandering flow passage 23 between these seal portions 22.
Are formed, and the both wall plates 1 in the falling liquid slow section 24 are formed.
Reference numerals 4 and 15 are main heat exchange surfaces of the heat exchanger 10.

他方、前記各垂直なシール部19と各側縁17、18との間
の狭い垂直なところが溢水路25とのなっており、垂直な
シール部19の上端26は堰の形状としてあり、前記邪魔シ
ール部22の内、最も上位のもの22aは、この上端26より
若干下位に形成してあり、この前記最上位の邪魔シール
部22aと、中空体の上端縁20及び前記両壁板14、15で液
溜部40を形成する。この液溜部40と溢水路25とが前記堰
26を通して相互連通している。
On the other hand, a narrow vertical portion between each vertical seal portion 19 and each side edge 17, 18 is an overflow channel 25, and an upper end 26 of the vertical seal portion 19 is shaped as a weir, and Of the seal portions 22, the highest one 22a is formed slightly lower than the upper end 26, and the uppermost obstruction seal portion 22a, the upper end edge 20 of the hollow body and the two wall plates 14, 15 are formed. To form a liquid reservoir 40. The liquid reservoir 40 and the overflow channel 25 are connected to the weir
They are interconnected through 26.

前記流下液緩速部24は図示の場合には前記液溜部40を
除いて、中央部分において垂直で不連続な区画シール部
分50により、2系列の流体通路23a、23bに仕切られてい
る。
In the case of the drawing, the flowing-down liquid slowing portion 24 is divided into two series of fluid passages 23a and 23b by a vertical and discontinuous partition seal portion 50 at a central portion except for the liquid reservoir portion 40 in the case shown.

前記蛇行する流下緩速部24の各屈曲路24a位置つま
り、屈曲路24aの上隅角には前記垂直なシール部19を横
断し前記溢水路25内に開口するエア抜き穴60が形成して
あり、前記両壁板14、15外面には、隆起部70がスペーサ
として成形してある。
An air vent hole 60 that opens across the vertical seal portion 19 and opens into the overflow channel 25 is formed at the position of each bent path 24a of the meandering slow flow section 24, that is, at the upper corner of the bent path 24a. A raised portion 70 is formed on the outer surfaces of the two wall plates 14 and 15 as a spacer.

更に、前記流下液緩速部24を構成する両壁板内面、即
ち、上下に隣接する水平な方向に前記長い邪魔シール部
22間の蛇行流路23を形成する両壁板内面は、この両壁ほ
ぼ全面にわたり下流側ほど上位に45度前後傾斜した平行
な畝80を内外に形成した波板状としてある。
Furthermore, the long obstruction seal portion is formed on the inner surface of both wall plates constituting the flow-down liquid slow portion 24, that is, in the horizontal direction adjacent vertically.
The inner surface of both wall plates forming the meandering flow path 23 between the 22 is a corrugated plate in which parallel ridges 80 inclined upward and downward by about 45 degrees are formed on the inner and outer sides of the entire wall substantially toward the downstream side.

前記溢水路25ほ一側縁17又は18にのみ設けることもあ
り、また、前記中空体10の上縁20を全幅にわたり開口し
この上縁20の両壁板14、15が外方へ前記隆起部70と同一
高さで張出し、この上縁20中央部分が凹みU字状の窪み
20aに形成し、この上縁20をその外周面において組立時
に隣接する熱交換体10の上縁20同士が当接密着し、長手
方向に延在する循環冷却溜り部20bをこの窪み20a群で形
成する形状としても良い。また前記吐出口12に代えてこ
の中空体の下端縁21を全幅にわたり開口して吐出部とし
て良い。
The overflow channel 25 may be provided only on one side edge 17 or 18, and the upper edge 20 of the hollow body 10 is opened over the entire width so that the two wall plates 14, 15 of the upper edge 20 are outwardly protruded. At the same height as the part 70, the center of the upper edge 20 is concave and U-shaped concave
The upper edge 20 is formed on the outer peripheral surface, and the upper edges 20 adjacent to each other at the time of assembling are brought into close contact with each other, and the circulating cooling pool portion 20b extending in the longitudinal direction is formed by the recesses 20a. The shape to be formed may be used. Instead of the discharge port 12, the lower end edge 21 of the hollow body may be opened over the entire width to serve as a discharge portion.

このように構成されている前記熱交換体10の作用を関
連発明である特許請求の範囲第7項記載の直交流式冷却
塔Aの代表的な実施例のものの作用と共に説明する。
The operation of the heat exchanger 10 thus configured will be described together with the operation of the representative embodiment of the cross-flow cooling tower A according to claim 7 which is a related invention.

先ず、複数枚の前記熱交換体10をケース乃至適宜の支
持枠(図示せず)を用いて並列配置し、前記隆起部70を
一種のスペーサとして、これにより隣接する熱交換体10
の間に狭い幅の水平な空気流通路33を形成し、所望寸法
の間接型熱交換器Bを組み立てる。
First, a plurality of the heat exchangers 10 are arranged in parallel using a case or an appropriate support frame (not shown), and the raised portions 70 are used as a kind of spacer, whereby the adjacent heat exchangers 10 are arranged.
A horizontal air flow passage 33 having a narrow width is formed therebetween, and an indirect heat exchanger B having a desired size is assembled.

このように組み立てた熱交換器Bを、第6図に示すよ
うに直交流式冷却塔Aの充填材Cの内側に配列する。こ
の際、この充填材C上部の上部水槽Dへ循環冷却液を供
給する供給パイプEは、途中から分岐し、この分岐パイ
プFはバルブGを設け前記熱交換体10群への供給用ヘッ
ダーとして使用する。
The heat exchanger B assembled in this way is arranged inside the filler C of the cross-flow cooling tower A as shown in FIG. At this time, a supply pipe E for supplying the circulating cooling liquid to the upper water tank D above the filler C branches off from the middle, and the branch pipe F is provided with a valve G to serve as a header for supply to the group of heat exchangers 10. use.

この状態で冷却塔Aの送風機を回転駆動し、負荷部で
ある空調若しくは冷凍機などの負荷部Kによって温めら
れた(30〜70℃程度)循環する冷媒たる冷却水を前記供
給用ヘッダーFを通して前記各熱交換体の供給部から前
記流下液緩速部24に位置に供給すると、冷却水は順次邪
魔シール部22間に形成された蛇行流路23中を順次流下
し、各壁板14、15と充分に撹拌されながら接触し、単に
垂直に流下するより遥かに長時間壁板14、15と接触し、
これを介して前記各空気流通路33を水平方向に流れる空
気と熱交換し、これらを温めると同時に、自からは空気
に熱をとられてその分冷却される。
In this state, the blower of the cooling tower A is driven to rotate, and cooling water as a circulating refrigerant (about 30 to 70 ° C.) warmed by a load unit K such as an air conditioner or a refrigerator as a load unit passes through the supply header F. When supplied from the supply section of each heat exchanger to the falling liquid slow section 24, the cooling water sequentially flows down the meandering flow path 23 formed between the obstruction seal sections 22, sequentially, each wall plate 14, Contact with 15 while being sufficiently agitated, contact with wall plates 14 and 15 for a much longer time than just flowing vertically,
Through this, each of the air flow passages 33 exchanges heat with the air flowing in the horizontal direction to heat them, and at the same time, heat is taken from the air by itself and cooled accordingly.

邪魔シール部22間の蛇行流路23の両壁を、この両側ほ
ぼ全面にわたり下流側ほど上位に45度前後傾斜した平行
な畝80を内外に形成した波板状としてあるため、この蛇
行流路23内を巡回する冷却水はこれら畝80を乗り越える
度に上方に誘導されて若干盛り上がると共に上流部まで
冷却水は充満乃至は少なくとも前記水平部分の内壁面の
上部までを濡らして屈曲位置24aに達し、長時間にわた
り両壁板のほぼ全面と接触し続ける。この冷却塔の運転
中に、前記流下液緩速部24内に残留しているエアは、前
記畝80により上方へ若干盛り上がる冷却水の動きに伴
い、前記流下液緩速部24の屈曲路上部隅角に押しやら
れ、この部分に滞留しようとするが、前記エア抜き穴60
を通って前記溢水路25内に流入しこの溢水路25を上昇し
前記供給口11から外部へ吐き出される。
Since both walls of the meandering channel 23 between the baffle seal portions 22 are formed in a corrugated shape in which parallel ridges 80 inclined upward and downward by about 45 degrees are formed on the inner side and the outer side toward the downstream side over substantially the entire both sides thereof, the meandering channel 23 The cooling water circulating in the inside 23 is guided upward each time it gets over these ridges 80 and rises slightly, and the cooling water reaches the upstream part and fills at least the upper part of the inner wall surface of the horizontal part and reaches the bending position 24a. , Keeps in contact with almost the entire surface of both wall boards for a long time. During the operation of the cooling tower, the air remaining in the falling liquid slow section 24 is moved upward by the ridges 80 due to the movement of the cooling water, and the air flows upward in the curved path of the falling liquid slow section 24. It is pushed to the corner and tries to stay in this part.
Flows through the overflow channel 25 through the overflow channel 25 and is discharged from the supply port 11 to the outside.

また、充填材Cの内側にこの熱交換体10群を階層的に
複数個多段に詰み重ねて配列した場合には、充填材C上
で冷却水と直接接触して冷却し自身昇温し絶対温度が高
くなった空気全部がこの熱交換体10の全ての空気流通路
33内に流入する。
When a plurality of groups of the heat exchangers 10 are arranged in a plurality of layers in a hierarchical manner inside the filler C, the heat exchanger is directly contacted with the cooling water on the filler C to be cooled, and the temperature rises by itself. All of the heated air flows through all air passages of the heat exchanger 10.
It flows into 33.

一方、上位の熱交換体10の屈曲した流下液緩速部24を
蛇行して流下してくる冷却水は下位の熱交換体10の流下
液緩速部25にその供給口11から順次流入していき、この
流下中の冷却水を前記空気通路33内を通過中の前記空気
で間接的に冷却し、この冷却で自身昇温した空気を排気
口から白煙を伴わずに冷却塔外に排気する(第2図及び
第6図参照)。
On the other hand, the cooling water meandering down the curved falling liquid slow section 24 of the upper heat exchanger 10 flows into the falling liquid slow section 25 of the lower heat exchanger 10 from its supply port 11 sequentially. The cooling water flowing down is indirectly cooled by the air passing through the air passage 33, and the air heated by itself is discharged from the cooling tower through the exhaust port without white smoke. Exhaust (see FIGS. 2 and 6).

仮に冷却水の供給量が脈動を起したり、一時的に供給
量が増加したとき、或は流下液緩速部24中に微生物など
が付着し、流下液緩速部24の断面積が狭くなり、流量低
下をきたし、液溜部の水位が上昇し、堰26より高くなる
と、前記冷却水の一部は溢水路25を通り直接流下し、前
記熱交換体10の供給口11から外に溢れ出さない。
If the supply amount of the cooling water pulsates, or the supply amount temporarily increases, or microorganisms adhere to the falling liquid slow section 24, the cross-sectional area of the falling liquid slow section 24 becomes narrow. When the flow rate decreases and the water level in the liquid reservoir rises and becomes higher than the weir 26, a part of the cooling water directly flows down through the overflow channel 25 and out of the supply port 11 of the heat exchanger 10. Do not overflow.

なお、前記冷却塔A運転中、各熱交換体10の供給口11
は外気に開放してあり、自然流下式に前記冷却水は前記
流下液緩速部24内を蛇行しつつ流下していく。そして、
冷却塔の運転停止と同時に大気圧を受けて前記吐出部よ
り外部へ吐出される。
During the operation of the cooling tower A, the supply port 11 of each heat exchanger 10
Is open to the outside air, and the cooling water flows down while flowing in the flowing liquid slow speed section 24 in a naturally flowing manner. And
At the same time as the operation of the cooling tower is stopped, the cooling tower receives the atmospheric pressure and is discharged from the discharge section to the outside.

また、前記中空体10の上縁20を全幅にわたり開口しこ
の上縁20の両壁板14、15が外方へ前記隆起部70と同一高
さで張り出し、この上縁20中央部分が凹みU字状の窪み
20aに形成してあり、窪み20aの底部で供給口11aを形成
しており、前記上縁20はその外周面において組立時に隣
接する熱交換体10の窪み20a同士が当接密着し、長手方
向に延在する循環冷却液溜り部20bを形成する形状とし
た場合(第3図参照)には、複数枚の前記熱交換体10を
隣接し並列配置することで、前記熱交換器B上縁を循環
冷却液溜り部20bとし、この溜り部20b内に前記供給用ヘ
ッダーFを水平に配管し、この供給用ヘッダーFから循
環冷却水を前記溜り部20bに向け供給し、この溜り部20b
を構成する各熱交換体10の前記窪み20aの底部にある前
記外部に開口した供給口11aから各熱交換体10内へ流入
する(第4図参照)(特許請求の範囲第8項記載の発明
の作用に対応)。
In addition, the upper edge 20 of the hollow body 10 is opened over the entire width, the two wall plates 14 and 15 of the upper edge 20 project outward at the same height as the raised portion 70, and the central portion of the upper edge 20 is recessed U Character-shaped depression
The supply port 11a is formed at the bottom of the recess 20a, and the recess 20a of the adjacent heat exchanger 10 abuts and adheres to the upper edge 20 at the outer peripheral surface thereof at the time of assembling. (See FIG. 3), a plurality of the heat exchangers 10 are arranged adjacent to and in parallel with each other so that the upper edge of the heat exchanger B is formed. Is a circulating coolant reservoir 20b, the supply header F is horizontally piped into the reservoir 20b, and circulating cooling water is supplied from the supply header F toward the reservoir 20b.
Flows into each heat exchanger 10 from the supply port 11a opened to the outside at the bottom of the recess 20a of each heat exchanger 10 (see FIG. 4) (see claim 8). (Corresponds to the operation of the invention).

このようにして、各熱交換体10に循環冷却液を供給
し、各熱交換体10間の空気通路33に空気を水平方向に流
して、両壁板14、15を介して空気と循環冷却水間で非接
触の熱交換を行う。
In this way, the circulating coolant is supplied to each heat exchanger 10, and the air is caused to flow horizontally in the air passage 33 between the heat exchangers 10. Non-contact heat exchange between water.

またこの熱交換体10を密閉型の熱交換体10として使用
する場合は、これらの吐出口12には前記供給用ヘッダー
Fと同様の吐出用ヘッダー(図示せず)を接続し、内部
に流れる循環冷却液と、各熱交換体10の外面に散布され
る散布水と混合しないようにして使用することは云うま
でもない。
When the heat exchanger 10 is used as a closed type heat exchanger 10, a discharge header (not shown) similar to the supply header F is connected to these discharge ports 12 to flow inside. It is needless to say that the circulating coolant is used without being mixed with the spray water sprayed on the outer surface of each heat exchanger 10.

また、前記吐出部12を中空体の下端縁21全幅を開口し
て形成してなる熱交換体10は、充填材Cの上部に配置
し、充填材上部を均一に冷却水を分配するのに使用さ
れ、白煙防止を行う(第5図、第10図参照)。
Further, the heat exchanging body 10 in which the discharge part 12 is formed by opening the entire width of the lower end edge 21 of the hollow body is disposed above the filler C, so that the cooling water can be uniformly distributed over the upper part of the filler. Used to prevent white smoke (see Fig. 5 and Fig. 10).

前記バルブGとして、三方切換弁を使用し、冷却温度
に対応して、充填材に供給する循環冷却水の流量と、こ
の間接型熱交換器Bへの循環冷却水の供給流量の割合を
調整する場合もある。即ち、冬季のように冷却温度が高
めの場合には充填材に供給する循環冷却水の流量を少な
くし、夏季のように冷却温度が低めの場合には充填材に
供給する循環冷却水の流量を多くなるように、前記三方
切換弁を切り換えて使用することが出来る。
A three-way switching valve is used as the valve G, and the ratio of the flow rate of the circulating cooling water supplied to the filler and the flow rate of the circulating cooling water supplied to the indirect heat exchanger B is adjusted according to the cooling temperature. In some cases. That is, when the cooling temperature is high as in winter, the flow rate of the circulating cooling water supplied to the filler is reduced, and when the cooling temperature is low as in summer, the flow rate of the circulating cooling water supplied to the filler is reduced. The three-way switching valve can be switched and used so as to increase the number.

前記実施例に限定せず、前記上部水槽Dの下側に充填
材Cと並列して前記の間接型熱交換器Bを配置してもこ
の関連発明の直交流式冷却塔としては同一であり、この
場合には、前記のような分岐パイプやバルブを必要とせ
ず、配管構造が簡単となる。
The present invention is not limited to the embodiment, and even if the indirect heat exchanger B is arranged in parallel with the filler C below the upper water tank D, the cross-flow cooling tower of the related invention is the same. In this case, the above-described branch pipe and valve are not required, and the piping structure is simplified.

前記作用の説明は冬季又は外気が高温の場合であり、
それ以外の夏季若しくは外気が低温の場合には、前記供
給用ヘッダーのバルブGを閉じて、前記熱交換体10への
循環冷却水の供給を停止する。
The explanation of the action is in winter or when the outside air is high temperature,
In the other summer months or when the outside air is at a low temperature, the valve G of the supply header is closed, and the supply of the circulating cooling water to the heat exchanger 10 is stopped.

殊に実施例固有の効果としては、前記吐出部として筒
状の吐出口12を前記中空体よりなる熱交換体10の下縁隅
角部に設け、前記供給部として筒状の供給口11を前記熱
交換体10の上縁隅角部に形成する場合には、この熱交換
体10を充填材の高さに合わせて、容易に多段積み出来る
(第6図参照)。
In particular, as an effect unique to the embodiment, a cylindrical discharge port 12 is provided at the lower edge corner of the heat exchanger 10 made of the hollow body as the discharge section, and a cylindrical supply port 11 is provided as the supply section. When formed at the upper edge corner of the heat exchanger 10, the heat exchanger 10 can be easily stacked in multiple stages according to the height of the filler (see FIG. 6).

また、前記吐出部12を前記熱交換体10の下端縁21を全
幅にわたり開口して形成してあるものでは、循環冷却液
の熱交換体からの吐出を迅速、且つ広い面積で行え、充
填材Cをこの熱交換体10の下部に装填してなる冷却塔A
に使用する場合に、この充填材全域に上方から均一に循
環冷却液を散布出来る(第5図及び第11図参照)。
Further, when the discharge portion 12 is formed by opening the lower end edge 21 of the heat exchanger 10 over the entire width, the discharge of the circulating coolant from the heat exchanger can be performed quickly and with a large area, and A cooling tower A in which C is loaded in the lower part of the heat exchanger 10
In this case, the circulating cooling liquid can be evenly applied from above to the entire area of the filler (see FIGS. 5 and 11).

【図面の簡単な説明】[Brief description of the drawings]

図面はこの発明に係るものであって、第1図はこの熱交
換体の第1実施例の正面図、第2図は第1図の熱交換体
を並列した状態を示す側面図、第3図は他の供給部の態
様を示す一部正面図、第4図は第3図の熱交換体を並列
した状態を示す平面図、第5図は熱交換体下部の他の実
施例を示す一部正面図、第6図はこの直交流式冷却塔の
概略図、、第7図、第8図、第9図は第1図7−7線、
8−8線、9−9線に沿う各断面図、及び第10図、第11
図は従来技術のこの種熱交換器を組み込んだ冷却塔の概
略図である。 図中の主な符号 10……熱交換体、11……供給口、 12……吐出口、23……蛇行流路、 24……流下液緩速部、 25……溢水路、60……エア抜き穴。
1 is a front view of a first embodiment of this heat exchanger, FIG. 2 is a side view showing a state in which the heat exchangers of FIG. 1 are juxtaposed, and FIG. FIG. 4 is a partial front view showing an aspect of another supply unit, FIG. 4 is a plan view showing a state where the heat exchangers of FIG. 3 are arranged in parallel, and FIG. 5 shows another embodiment of the lower part of the heat exchanger. FIG. 6 is a partial front view, FIG. 6 is a schematic view of the cross-flow cooling tower, FIG. 7, FIG. 8, and FIG.
Sectional views along line 8-8 and line 9-9, and FIGS. 10 and 11
The figure is a schematic diagram of a cooling tower incorporating such a heat exchanger of the prior art. Main symbols in the figure 10: heat exchanger, 11: supply port, 12: discharge port, 23: meandering channel, 24: slowing down liquid part, 25: overflow channel, 60: Air vent hole.

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】全体として扁平な薄肉中空体であり、内部
が液体流下通路としてありその中空体の上部には外部に
開口した循環冷却水供給部が形成されており、その中空
体の下縁である前記液体流下通路の下端にも外部に開口
した吐出部が設けてあり、この液体流下通路の幅の大部
分は、流下液緩速部としてあり、この流下液緩速部は水
平方向に長い邪魔シール部を全面に複数段にわたり階層
的に分布させて、これら邪魔シール部を一つ置きに位置
をずらせ、前記邪魔シール部間に蛇行流路を形成して成
り この流下液緩速部は、少なくとも一つの垂直なシール部
を介して垂直方向の溢水路と隣接形成して配置され、こ
の垂直なシール部の上端は、堰の形状としてあり、この
堰を通して前記溢水路と流下液緩速部における最上段部
の液溜部分とが相互連通していると共に、前記蛇行する
流下液緩速部の屈曲路位置には前記垂直なシール部を横
断し前記溢水路内に開口するエア抜き穴が形成してあ
り、前記両壁板外面には、隆起部がスペーサとして形成
してあることを特徴とする冷却塔用合成樹脂製熱交換
体。
1. A thin, thin hollow body as a whole, wherein the inside is a liquid flow-down passage, and a circulating cooling water supply part which is open to the outside is formed on the upper part of the hollow body, and a lower edge of the hollow body is provided. There is also provided a discharge part which is open to the outside at the lower end of the liquid flow-down passage, and most of the width of the liquid flow-down passage is a flowing-down liquid slowing portion, and the flowing-down liquid slowing portion extends in the horizontal direction. The long liquid blocking portion is formed by distributing a long blocking member in a hierarchical manner over a plurality of stages over the entire surface, shifting the position of each blocking member, and forming a meandering flow path between the blocking members. Is disposed adjacent to the vertical overflow channel via at least one vertical seal portion, and the upper end of the vertical seal portion is in the form of a weir, and the overflow channel and the downflow liquid are passed through the weir. The liquid reservoir at the top of the speed section An air vent hole is formed at the bent path position of the meandering descending liquid slow part, which is open to the overflow channel, while communicating with each other. A heat exchanger made of a synthetic resin for a cooling tower, wherein the raised portion is formed as a spacer.
【請求項2】前記中空体を真空乃至ブロー成形品としあ
る特許請求の範囲第1項記載の冷却塔用合成樹脂製熱交
換体。
2. The heat exchanger made of synthetic resin for a cooling tower according to claim 1, wherein said hollow body is a vacuum or blow molded product.
【請求項3】前記溢水路は前記中空体の一側縁に沿って
設けてある特許請求の範囲第1項記載の冷却塔用合成樹
脂製熱交換体。
3. A heat exchanger made of synthetic resin for a cooling tower according to claim 1, wherein said overflow channel is provided along one side edge of said hollow body.
【請求項4】前記溢水路は前記中空体の両側縁に沿って
設けてある特許請求の範囲第1項記載の冷却塔用合成樹
脂製熱交換体。
4. The synthetic resin heat exchanger for a cooling tower according to claim 1, wherein said overflow channel is provided along both side edges of said hollow body.
【請求項5】前記屈曲する流下液緩速部はその中央部分
で垂直な区画シール部分で2系列乃至4系列の流体通路
に夫れ夫れ分離されている特許請求の範囲第1項記載の
冷却塔用合成樹脂製熱交換体。
5. The method according to claim 1, wherein said bent downflow liquid slow portion is separated into two to four lines of fluid passages at a vertical section sealing portion at a central portion thereof. Heat exchanger made of synthetic resin for cooling towers.
【請求項6】特許請求の範囲第1項記載の前記流下液緩
速部を構成する両壁板内面は、この両壁ほぼ全面にわた
り下流側ほど上位に45度前後傾斜した平行な畝を内外に
形成した波板状としてあることを特徴とする冷却塔用合
成樹脂製熱交換体。
6. The inner surface of the two wall plates constituting the slow flow portion of the falling liquid according to claim 1 has parallel ridges inclined upward and downward by approximately 45 degrees toward the downstream side over substantially the entire surfaces of the both walls. A heat exchanger made of synthetic resin for a cooling tower, characterized in that the heat exchanger is formed in a corrugated shape.
【請求項7】特許請求の範囲第1項記載の冷却塔用合成
樹脂製熱交換体を隆起部を相互嵌合乃至当接して若干の
間隙を置いて所定枚数並列配置し、隣接する熱交換体間
に狭幅の水平な空気流通路を形成して直交流式冷却塔用
の間接型熱交換器を構成し、 前記冷却塔の外気取入口に対面して設けた板状波板から
なる充填材の2次側に、前記間接型熱交換器の各空気流
通路を前記充填材の空気通路と同方向で水平とし、その
一次側を充填材側とし、その二次側を冷却塔の排気口よ
りの空気室側として、この間接型熱交換器をこの充填材
の全幅、全高さにわたり配置してあることを特徴とする
直交流式冷却塔。
7. A heat exchanger made of a synthetic resin for a cooling tower according to claim 1 is arranged in parallel with a predetermined number of heat exchangers for cooling towers with a slight gap therebetween by fitting or contacting the raised portions. A narrow horizontal air flow passage is formed between the bodies to form an indirect heat exchanger for a cross-flow cooling tower, comprising a plate-like corrugated sheet provided facing the outside air intake of the cooling tower. On the secondary side of the filler, each air flow passage of the indirect heat exchanger is horizontal in the same direction as the air passage of the filler, its primary side is the filler side, and its secondary side is the cooling tower. A cross-flow cooling tower characterized in that the indirect heat exchanger is arranged over the entire width and height of the filler as the air chamber side from the exhaust port.
【請求項8】前記中空体の上縁を全幅にわたり開口しこ
の上縁の両壁板が外方へ前記隆起部と同一高さで張り出
し、かつ、この上縁中央部分が凹みU字状の窪みに形成
しあり、この窪みの底部で前記供給部を形成しており、
前記上縁はその外周面において組立時に隣接する熱交換
体の上縁同士が当接密着し、長手方向に延在する循環冷
却液溜り部を形成する形状としてある特許請求の範囲第
1項記載の冷却塔用合成樹脂製熱交換体。
8. An upper edge of the hollow body is opened over the entire width, both wall plates of the upper edge project outward at the same height as the raised portion, and a central portion of the upper edge is concave U-shaped. Formed in a depression, the supply part is formed at the bottom of the depression,
2. The upper edge according to claim 1, wherein upper edges of adjacent heat exchangers are in close contact with each other at the time of assembly on an outer peripheral surface thereof to form a circulating cooling liquid reservoir extending in a longitudinal direction. Heat exchanger made of synthetic resin for cooling towers.
JP2538888A 1988-02-05 1988-02-05 Heat exchanger made of synthetic resin for cooling tower and DC-type cooling tower using heat exchanger composed of this heat exchanger Expired - Fee Related JP2579515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2538888A JP2579515B2 (en) 1988-02-05 1988-02-05 Heat exchanger made of synthetic resin for cooling tower and DC-type cooling tower using heat exchanger composed of this heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2538888A JP2579515B2 (en) 1988-02-05 1988-02-05 Heat exchanger made of synthetic resin for cooling tower and DC-type cooling tower using heat exchanger composed of this heat exchanger

Publications (2)

Publication Number Publication Date
JPH01200197A JPH01200197A (en) 1989-08-11
JP2579515B2 true JP2579515B2 (en) 1997-02-05

Family

ID=12164492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2538888A Expired - Fee Related JP2579515B2 (en) 1988-02-05 1988-02-05 Heat exchanger made of synthetic resin for cooling tower and DC-type cooling tower using heat exchanger composed of this heat exchanger

Country Status (1)

Country Link
JP (1) JP2579515B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101240981B (en) * 2007-02-05 2010-05-26 白星龙 Apparatus for cellecting the waste-water heat

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2794027B2 (en) * 1989-12-05 1998-09-03 株式会社荏原シンワ cooling tower
JP5386307B2 (en) * 2009-11-06 2014-01-15 株式会社神鋼環境ソリューション cooling tower

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101240981B (en) * 2007-02-05 2010-05-26 白星龙 Apparatus for cellecting the waste-water heat

Also Published As

Publication number Publication date
JPH01200197A (en) 1989-08-11

Similar Documents

Publication Publication Date Title
US3995689A (en) Air cooled atmospheric heat exchanger
EP0922191B1 (en) Dry-air-surface heat exchanger
US4893669A (en) Synthetic resin heat exchanger unit used for cooling tower and cooling tower utilizing heat exchanger consisting of such heat exchanger unit
EP0316510B1 (en) Heat exchanger for cooling tower
JP2579515B2 (en) Heat exchanger made of synthetic resin for cooling tower and DC-type cooling tower using heat exchanger composed of this heat exchanger
JPH0449492Y2 (en)
JPH05240596A (en) Synthetic resin heat exchanging module for cooling tower and cross-flow type cooling tower using said heat exchanging module
JP2740807B2 (en) Manufacturing method of indirect heat exchanger
JP2617757B2 (en) Crossflow cooling tower
JP2579527B2 (en) Countercurrent cooling tower to prevent white smoke
GB1559329A (en) Air cooled atmospheric heat exchanger
JPH0391693A (en) Cross flow type cooling tower with white smoke preventive function
GB1559330A (en) Water cooling apparatus
JP2579504B2 (en) Indirect heat exchanger for cooling tower
JP2750376B2 (en) cooling tower
JPH0449491Y2 (en)
JP2512323Y2 (en) Cross flow type cooling tower
JP2660207B2 (en) Manufacturing method of indirect heat exchanger
JP2794026B2 (en) Indirect heat exchanger
CN214407140U (en) High heat conductivity trickle filler and cooling tower
JP2617759B2 (en) cooling tower
JPH04332397A (en) Heat exchanging body for coolng tower, which is made of synthetic resin
JPH109794A (en) Cross flow type cooling tower and coupling body therefor
CA1124170A (en) Heat exchange unit in particular for an atmospheric heat exchanger
JPH0449493Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees