JPH0449492Y2 - - Google Patents

Info

Publication number
JPH0449492Y2
JPH0449492Y2 JP1986171175U JP17117586U JPH0449492Y2 JP H0449492 Y2 JPH0449492 Y2 JP H0449492Y2 JP 1986171175 U JP1986171175 U JP 1986171175U JP 17117586 U JP17117586 U JP 17117586U JP H0449492 Y2 JPH0449492 Y2 JP H0449492Y2
Authority
JP
Japan
Prior art keywords
heat exchanger
cooling tower
vacuum
blow
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986171175U
Other languages
Japanese (ja)
Other versions
JPS6380462U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986171175U priority Critical patent/JPH0449492Y2/ja
Publication of JPS6380462U publication Critical patent/JPS6380462U/ja
Application granted granted Critical
Publication of JPH0449492Y2 publication Critical patent/JPH0449492Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) この考案は空調装置、冷凍装置などに用いる冷
却塔における熱交換器に係るものであつて、殊に
気液非接触型の熱交換器に関する。
[Detailed description of the invention] (Field of industrial application) This invention relates to a heat exchanger in a cooling tower used in an air conditioner, a refrigeration system, etc., and particularly relates to a gas-liquid non-contact type heat exchanger. .

(従来技術) 従来、この種の気液非接触型の熱交換器が、特
開昭51−100370号公報に記載されており、その構
造は、全体合成樹脂製で、扁平な垂直方向の相互
に平行な複数のこの液体流下通路と、これらの液
体流下通路間にそれぞれ形成された垂直方向の面
を持つ扁平で、水平に気流の流れる空気通路とを
有し、これら2つの流体通路が相互の流体を非接
触とする複数枚の合成樹脂板よりなる熱交換隔壁
板によつて仕切られている冷却塔用熱交換器が記
載されており、各空気通路の両壁は逆U字状部材
で形成され、隣接する逆U字状部材の波形側壁は
突出して設けたリブ部分で相互に接着されている
と共にその側縁において連結パネルにより相互に
連結されて前記液体流下通路を形成している。
(Prior Art) Conventionally, this type of gas-liquid non-contact type heat exchanger has been described in Japanese Patent Application Laid-Open No. 100370/1983, and its structure is entirely made of synthetic resin, with flat vertical mutual A plurality of liquid flow passages parallel to each other, and flat air passages each having a vertical surface and having a horizontal air flow formed between these liquid flow passages, and these two fluid passages are mutually A cooling tower heat exchanger is described that is partitioned by heat exchange partition plates made of a plurality of synthetic resin plates that allow fluids to flow in a non-contact manner, and both walls of each air passage are formed by an inverted U-shaped member. The corrugated side walls of adjacent inverted U-shaped members are bonded to each other by protruding rib portions and are interconnected at their side edges by connecting panels to form the liquid flow passage. .

この公報記載の前記熱交換器は第8図に示すよ
うに充填材の上部に、水平な支持梁で前記逆U字
状部材を吊り下げ支持したり、第9図に示すよう
に冷却塔の外気取入口に面した充填材の内側にこ
の熱交換器を数個階層的に吊り下げ支持し、冬季
における白煙発生の防止を図つている。
In the heat exchanger described in this publication, the inverted U-shaped member is suspended and supported on the upper part of the filling material by horizontal support beams as shown in FIG. Several of these heat exchangers are suspended and supported in a layered manner inside the filler facing the outside air intake to prevent white smoke from occurring in the winter.

(解決しようとする課題) このように先行技術のものにおいては、液体の
流下速度を緩くするため狭く、かつ屈曲させた液
体通路は長期間使用する間には塵埃や微生物がそ
れらの壁面に付着し、液体通路の断面積を実質的
に狭くし、所定の流量が流下できず、これらの熱
交換器の供給側において溢水し、これらの周辺を
悪戲に濡らすだけでなく、循環冷媒の損失となつ
ている。
(Problem to be Solved) In this way, in the prior art, dust and microorganisms adhere to the liquid passages that are narrow and curved to slow down the flow rate of the liquid during long-term use. However, it substantially narrows the cross-sectional area of the liquid passage, preventing the required flow rate from flowing down, and causing water to overflow on the supply side of these heat exchangers, severely wetting the area around them, as well as causing loss of circulating refrigerant. It is becoming.

またこれら熱交換器が充填材の上部に設けてあ
り、熱交換器よりの吐出液を前記充填材に散布し
ているもの(第8図)においては、散布液(水)
量が不足し冷却塔全体としての流量不足を招来す
る欠点を有している。
In addition, in the case where these heat exchangers are installed above the filler and the liquid discharged from the heat exchanger is sprayed onto the filler (Figure 8), the spray liquid (water)
This has the disadvantage that the amount is insufficient, resulting in insufficient flow rate for the cooling tower as a whole.

この流量不足は冷却塔の外気取入口に面した充
填材の内側にこの熱交換器を数個階層的に吊り下
げ支持してある(第9図)場合にも顕著に現れ、
所望の白煙発生の防止を行えないこともある。
This insufficient flow rate is also noticeable when several heat exchangers are suspended and supported in a hierarchical manner inside the packing material facing the outside air intake of the cooling tower (Figure 9).
In some cases, the desired prevention of white smoke generation may not be achieved.

この考案は気液非接触型の熱交換体の熱交換を
行なう主要部分における液体通路の流下液緩速部
において、仮に一部分に目詰りを起したとして
も、熱交換体の液体の給吐出量が一定に保持でき
るようにし、液体通路の流量に影響を及ぼさない
ような熱交換体とすることであり、かかる熱交換
体を市場に提供することを目的とする。
This idea allows the flow rate of the liquid to be supplied to and discharged from the heat exchanger even if a portion of the liquid passage slows down in the main part of the heat exchanger of a gas-liquid non-contact type heat exchanger is clogged. The object of the present invention is to provide a heat exchanger that can maintain a constant flow rate without affecting the flow rate of a liquid passage, and to provide such a heat exchanger on the market.

(課題を解決する手段) 前記課題を達成するために、この考案の冷却塔
における合成樹脂真空乃至ブロー成形熱交換体は
全体として扁平な薄肉中空体であり、内部が屈曲
した液体通路としてあり上部には供給口及び外気
連通部が形成されており、下端には吐出口が設け
てあり、前記液体通路は両壁面が相互に溶着して
形成した邪魔シール部間に形成してあり、前記流
体通路の一部は中空体の両壁が垂直方向に溶着し
て形成した区画シール部によつて区画された垂直
な溢水路とし、この液体通路の残部は流下液緩速
部としてあり、更に前記区画シール部の上端が一
種の堰とし前記流下液緩速部と溢水路とはこの堰
を介して連通していることを特徴とする。
(Means for Solving the Problems) In order to achieve the above problems, the synthetic resin vacuum or blow-molded heat exchanger in the cooling tower of this invention is a flat, thin-walled hollow body as a whole, and the inside is a curved liquid passage. is formed with a supply port and an outside air communication section, and a discharge port is provided at its lower end, and the liquid passage is formed between a baffle seal section formed by welding both wall surfaces to each other, and the liquid passage A part of the passage is a vertical overflow channel defined by a partition seal formed by vertical welding of both walls of the hollow body, and the remainder of this liquid passage is a slow-flowing liquid section, and the above-mentioned It is characterized in that the upper end of the partition seal part is a kind of weir, and the flowing liquid slowing part and the overflow channel communicate with each other via this weir.

(考案の作用) このように構成されているこの考案の作用をそ
の使用方法と共に説明する。
(Function of the device) The function of this device configured as described above will be explained along with its usage.

先ず、循環冷却水を供給する共通のヘツダーか
ら多数所定間隔で突出する供給パイプをそれぞれ
一個ずつこの熱交換体の供給孔に挿入し、複数枚
の熱交換体をケース乃至適宜の支持枠を用いて並
列配置し、隣接する熱交換体の間に間隙に空気流
通路を形成し所望の寸法熱交換器を組み立てる。
First, a large number of supply pipes protruding at predetermined intervals from a common header for supplying circulating cooling water are inserted one by one into the supply holes of the heat exchanger, and the plurality of heat exchangers are mounted using a case or an appropriate support frame. A heat exchanger of a desired size is assembled by arranging the heat exchangers in parallel and forming air flow passages in the gaps between adjacent heat exchangers.

このように組み立てた熱交換器を、第8図、第
9図の様に、直交流式冷却塔本体内に装填した充
填材の上部に配置したり、充填材の内側に配列す
る。
The heat exchanger assembled in this manner is placed above the packing material loaded in the main body of the cross-flow cooling tower, or arranged inside the packing material, as shown in FIGS. 8 and 9.

この状態で冷却塔を運転し、負荷部である空調
若しくは冷凍機によつて温められた(30〜70℃程
度)循環する冷媒たる冷却水を前記熱交換器の堰
で仕切られた流下液緩速部位置に供給すると、冷
却水は順次前記邪魔シール部間に形成された屈曲
通路中を順次流下し、充分に攪拌されながら前記
熱交換体の両壁板と接触し、単に垂直に流下する
より遥かに長時間隔壁板と接触し、これら両壁板
を介して前記各空気通路を水平方向に流れる空気
と熱交換し、これらを暖めると同時に、自づから
は空気に熱をとられてその分冷却される。
In this state, the cooling tower is operated, and the circulating cooling water, which is a refrigerant heated (approximately 30 to 70 degrees Celsius) by the air conditioner or refrigerator, which is the load section, is fed to the cooling water flowing down the cooling tower, which is partitioned by the weir of the heat exchanger. When supplied to the fast section position, the cooling water sequentially flows down through the bent passage formed between the baffle seal parts, comes into contact with both wall plates of the heat exchanger while being sufficiently stirred, and simply flows down vertically. It is in contact with the bulkhead plate for a much longer period of time, exchanging heat with the air flowing horizontally through the air passages through these two wall plates, warming them, and at the same time, heat is naturally absorbed by the air. It will be cooled accordingly.

殊に、充填材の上部にこの考案の熱交換体群を
配置した場合には、この熱交換体内で空気により
間接的に冷却された循環水を、下部の充填材上に
散布し再度今度は空気と直接接触で冷却すると共
に、この冷却水を直接接触で冷却し、自身昇温し
た空気をその絶対湿度を高めた状態で排気口に向
け吸引し、排気口の近傍において前記熱交換器の
空気通路から吐出してくる昇温した絶対湿度が外
気と変化してない一定の空気と混合し白煙化せず
に冷却塔外に排気される(第8図参照)。
In particular, when the heat exchanger group of this invention is placed above the packing material, the circulating water that has been indirectly cooled by air inside the heat exchanger is sprayed onto the lower packing material and then The cooling water is cooled by direct contact with the air, and the air, which has risen in temperature, is sucked toward the exhaust port in a state with increased absolute humidity, and the heat exchanger is cooled near the exhaust port. The heated absolute humidity discharged from the air passage mixes with constant air that has not changed with the outside air, and is exhausted outside the cooling tower without turning into white smoke (see Figure 8).

また、充填材の内側にこの考案の熱交換体群を
階層的に複数個多段に積み重ねて配列した場合に
は、充填材上で冷却水と直接接触して冷却し自身
昇温し絶対湿度が高くなつた空気全部がこの考案
の熱交換体の全ての空気通路内に流入する。一
方、上位の熱交換体の屈曲した流下液緩速部を蛇
行して流下してくる冷却水は下位の熱交換器の流
下液緩速部に順次流入していき、この流下中の冷
却水を前記空気通路内を通過中の前記空気で間接
的に冷却し、この冷却で自身昇温した空気を排気
口から白煙を伴わずに冷却塔外に排気する(第9
図参照)。
In addition, if a plurality of heat exchangers of this invention are stacked and arranged in layers inside the filler, they will come into direct contact with the cooling water on the filler and cool themselves, raising their own temperature and lowering the absolute humidity. All of the elevated air flows into all air passages of the heat exchanger of this invention. On the other hand, the cooling water flowing down in a meandering manner through the curved slow-flowing liquid section of the upper heat exchanger sequentially flows into the slow-flowing liquid section of the lower heat exchanger. is indirectly cooled by the air passing through the air passage, and the air whose temperature has risen due to this cooling is exhausted from the exhaust port to the outside of the cooling tower without producing white smoke.
(see figure).

仮に冷却水の供給両が脈動を起したり、一時的
に供給量が増加したとき、或は流下液緩速路中に
微生物などが付着し、流下液緩速路の断面積が狭
くなり、流量低下をきたし、液溜部の水位が上昇
し、堰より高くなると、前記冷却水の一部は溢水
路を通り直接前記吐出口に向け流下し、この熱交
換器外に溢れ出さない。
If the cooling water supply pulsates or the supply amount temporarily increases, or if microorganisms etc. adhere to the slow flowing liquid path, the cross-sectional area of the slow flowing liquid path becomes narrow. When the flow rate decreases and the water level in the liquid reservoir rises and becomes higher than the weir, a portion of the cooling water passes through the overflow channel and directly flows down toward the discharge port, and does not overflow out of the heat exchanger.

なお、前記冷却塔運転中、各熱交換体の供給口
は前記外気連通口を介して外気に開放してあり、
自然流下式に前記冷却水は前記流下液緩速路内を
蛇行しつつ流下していく。そして、冷却塔の運転
停止と同時に大気圧を受けてこの熱交換体内部の
冷却水は全部前記吐出口より外部へ吐出される。
Note that during the operation of the cooling tower, the supply ports of each heat exchanger are open to the outside air through the outside air communication ports,
The cooling water flows down in a meandering manner in the slow flowing liquid path in a natural flow manner. At the same time as the operation of the cooling tower is stopped, all of the cooling water inside the heat exchanger is discharged to the outside from the discharge port under atmospheric pressure.

(考案の効果) 叙上のように構成し作用を為すこの考案のもの
においては、熱交換を行なう主要部分たる流下液
緩速部において、仮に一部目詰り乃至流量制限が
あり、一時的に供給冷却水の流量が変化し、液溜
部の水位が上昇しても、堰を超えて前記液体通路
の一部である溢水路を通過して下方に冷却水が吐
出するため、通過水量自体を制限するおそれなく
運転が継続できる。特にこの考案の熱交換器を前
記従来技術と同様に第8図、第9図の様に、直交
流式冷却塔本体内に装填した充填材の上部に配置
したり、充填材の内側に配列して冷却塔の白煙防
止用の熱交換体として使用する場合でも、前記流
下液緩速路の一部目詰まりが発生しても、堰を超
えて前記液体通路の一部である溢水路を通過して
下部の吐出口から冷却水が吐出する為、冷却水が
前記供給口から溢れること無くこの供給量は激減
せず、この熱交換体での空気と冷却水との間での
間接形熱交換量が少なくなつたりはせず、所望の
白煙発生の防止を行える。
(Effects of the device) In this device, which is constructed and operates as described above, there may be some clogging or flow rate restriction in the flowing liquid slowing section, which is the main part that performs heat exchange. Even if the flow rate of the supplied cooling water changes and the water level in the liquid reservoir rises, the cooling water passes over the weir, passes through the overflow channel that is part of the liquid passage, and is discharged downward, so the amount of water passing through itself does not change. Operation can be continued without fear of limiting. In particular, the heat exchanger of this invention can be arranged above the packing material loaded in the main body of the cross-flow cooling tower, or arranged inside the packing material, as shown in FIGS. 8 and 9, as in the prior art. Even when used as a heat exchanger for preventing white smoke in a cooling tower, even if a portion of the slow flowing liquid path becomes clogged, the overflow channel that is a part of the liquid path will cross the weir. Since the cooling water is discharged from the discharge port at the bottom after passing through the supply port, the supply amount does not decrease drastically without overflowing from the supply port, and the indirect flow between the air and the cooling water in this heat exchanger is prevented. The amount of heat exchanged does not decrease, and the desired generation of white smoke can be prevented.

更に、本件考案では、各熱交換体の供給口は記
外気連通口を介して外気に開放してあるため、冷
却塔運転中、この熱交換体の内圧は常に該気圧と
等しくなり、自然流下式に前記冷却水は前記流下
液緩速部内を蛇行しつつ流下していき、そして冷
却塔の運転停止と同時に大気圧を受けて前記吐出
口より熱交換体内の冷却水を全部一斉に外部へ吐
出するため、仮りに全部の循環冷却水が流下しこ
の交換体内が空になつても大気圧で圧潰されるお
それがなく、且つ、水抜きが容易となり冬期にお
ける氷結による熱交換体の破損を未然に防止でき
る。
Furthermore, in the present invention, since the supply ports of each heat exchanger are open to the outside air through the outside air communication ports, the internal pressure of this heat exchanger is always equal to the atmospheric pressure during operation of the cooling tower, and natural flow is prevented. Equationally, the cooling water flows down in a meandering manner within the flowing liquid slowing section, and when the operation of the cooling tower is stopped, all of the cooling water inside the heat exchanger is discharged to the outside at once through the discharge port under atmospheric pressure. Because it is discharged, even if all the circulating cooling water flows down and the exchange body becomes empty, there is no risk of it being crushed by atmospheric pressure, and water can be easily drained, preventing damage to the heat exchange body due to freezing in the winter. It can be prevented.

(実施例) 今この考案の代表的な実施例を説明する。(Example) A typical embodiment of this invention will now be described.

実施例 1 第1図において、10は熱交換体であり、真空
成形乃至フロー成形した合成樹脂製の扁平中空体
よりなり、その壁板の厚みは150乃至500ミクロン
程度の硬質乃至準硬質合成樹脂より形成されてい
る。
Example 1 In FIG. 1, 10 is a heat exchanger, which is a flat hollow body made of vacuum-formed or flow-molded synthetic resin, and its wall plate is made of hard or semi-hard synthetic resin with a thickness of about 150 to 500 microns. It is more formed.

合成樹脂としては、特に限定はないがポリ塩化
ビニル、ポリエチレン、ポリプロピレンなどの安
価で成形性のよいものがよい。
The synthetic resin is not particularly limited, but it is preferable to use one that is inexpensive and has good moldability, such as polyvinyl chloride, polyethylene, and polypropylene.

大きさは特に限定はないが、幅40乃至90cm、長
さ50乃至150cm程度、熱交換体10の厚みは内の
り寸法で3乃至5mm程度としてあり、上部に供給
口11が、下部に吐出口12が設けてある。
There is no particular limitation on the size, but the width is about 40 to 90 cm, the length is about 50 to 150 cm, the inner thickness of the heat exchanger 10 is about 3 to 5 mm, and there is a supply port 11 at the top and a discharge port 12 at the bottom. is provided.

前記供給口11の一部には軸方向に外端から中
空体内に達する外気連通部13たる溝部が外方に
膨出成形してある。前記外気連通部13は、前記
供給口11と別個に前記熱交換体10の上部に設
けてもこの考案としては同一である。
A groove portion serving as an outside air communication portion 13 extending from the outer end into the hollow body in the axial direction is formed in a part of the supply port 11 to bulge outward. Even if the outside air communication part 13 is provided above the heat exchanger 10 separately from the supply port 11, the present invention is the same.

この熱交換体10が真空成形品により成形され
ているものにおいては、周辺に両壁板14,15
を溶着した周辺シール部16が形成され、前記熱
交換体10の側縁17,18と平行で、一方の側
縁17から若干内側に入つたところにおいて、前
記両壁板13,14は前記側縁17に沿つて相互
に溶着した区画シール部19が形成され、この区
画シール部19の上下端はそれぞれ熱交換体10
の上下端縁20,21には達していない。
In the case where the heat exchanger 10 is formed by vacuum forming, both wall plates 14 and 15 are provided around the periphery.
A peripheral seal portion 16 is formed by welding the heat exchanger 10, and is parallel to the side edges 17, 18 of the heat exchanger 10, slightly inward from one side edge 17. A compartment seal 19 is formed along the edge 17 and welded to each other, and the upper and lower ends of the compartment seal 19 are respectively connected to a heat exchanger 10.
It does not reach the upper and lower edges 20, 21 of.

前記区画シール部19と他方の側縁18との間
には、前記両壁板14と15を相互に溶着した水
平方向の邪魔シール部22が多数形成してあつ
て、その邪魔シール部22間に屈曲した液体通路
23が形成してあり、これら屈曲した液体通路2
3のある区画シール部19と前記側縁18とによ
つて狭まれた広い部分が流下液緩速部24となつ
ており、この部分の両壁板14,15がこの熱交
換体10の主要な熱交換面と成つている。他方前
記区画シール部19と他の側縁17との間の狭い
垂直なところが溢水路25となつており、区画シ
ール部19の上端26は一種の堰の役目をなし、
邪魔シール部22の最も上位は、この上端26よ
り若干下位に形成してある。即ち、前記流下液緩
速部24と溢水路25とはこの上端26の堰を介
して相互に連通している。
Between the partition seal portion 19 and the other side edge 18, a large number of horizontal baffle seal portions 22 are formed by welding the wall plates 14 and 15 to each other. A bent liquid passage 23 is formed, and these bent liquid passages 2
A wide part narrowed by the compartment seal part 19 and the side edge 18 is the flowing liquid slowing part 24, and both wall plates 14 and 15 in this part are the main parts of the heat exchanger 10. It has a heat exchange surface. On the other hand, a narrow vertical area between the compartment seal part 19 and the other side edge 17 serves as an overflow channel 25, and the upper end 26 of the compartment seal part 19 serves as a kind of weir.
The uppermost part of the baffle seal part 22 is formed slightly below this upper end 26. That is, the flowing liquid slowing section 24 and the overflow channel 25 communicate with each other via the weir at the upper end 26.

前述の邪魔シール部22の形状は第1図に示す
ように区画シール部19と、これら相対する側縁
18よりなり、交互に水平方向に形成したもので
も、また第2図に示すように短い水平方向のシー
ルを、上下に重なるシールの位置を齟齬させたも
のでもよく、要するに流下する液体通路23にお
ける流下液緩速部24が屈曲したものになるもの
であれば特にその形状の限定はない。
The shape of the aforementioned baffle seal portion 22 consists of the compartment seal portion 19 and these opposing side edges 18, as shown in FIG. The horizontal seal may be one in which the positions of the overlapping seals are shifted, and there is no particular limitation on the shape as long as the flowing liquid slowing section 24 in the flowing liquid passage 23 is curved. .

更にこの熱交換体10の上縁20にはこれより
一体に連なつている吊り下げ部27が少なくとも
2個設けてあり、図示の例においては、孔が設け
てある。
Further, the upper edge 20 of the heat exchanger 10 is provided with at least two hanging portions 27 that are integrally connected thereto, and in the illustrated example, holes are provided.

また第5図に示す実施例においては、熱交換体
10の両壁板14,15には成形時に形成した膨
出凹凸28が屈曲液体通路のほゞ全域に形成して
ある。また両壁板14,15の一部又は周縁シー
ル部16の一部には、相隣る熱交換体10との間
隔を保つスーサ突起29が、真空成形若しくはブ
ロー成形時に形成してある。
Further, in the embodiment shown in FIG. 5, the wall plates 14 and 15 of the heat exchanger 10 have bulging concavities and convexities 28 formed during molding over substantially the entire area of the curved liquid passage. Further, a soother protrusion 29 that maintains a distance between adjacent heat exchangers 10 is formed on a portion of both wall plates 14 and 15 or a portion of the peripheral seal portion 16 during vacuum molding or blow molding.

前記実施例の熱交換体10を使用するには循環
冷却水を供給する共通のヘツダー30から多数所
定間隔で突出する供給パイプ31にそれぞれ一個
づゝこの熱交換体10の供給孔11に挿入し、そ
の吊り下げ部27でもつて熱交換体支持枠32に
固定する。また必要に応じて、各熱交換体10の
それぞれの下端縁21も孔28を利用して、前記
熱交換体支持枠32に固定する。而して、隣接す
る熱交換体10間に空気流通路33を形成し、冷
却塔用の熱交換器とする。
In order to use the heat exchanger 10 of the above embodiment, a plurality of supply pipes 31 protruding at predetermined intervals from a common header 30 for supplying circulating cooling water are inserted into the supply holes 11 of the heat exchanger 10, respectively. , is also fixed to the heat exchanger support frame 32 by its hanging portion 27. Further, if necessary, each lower end edge 21 of each heat exchanger 10 is also fixed to the heat exchanger support frame 32 using the holes 28. Thus, air flow passages 33 are formed between adjacent heat exchange bodies 10, forming a heat exchanger for a cooling tower.

このように組み立てた熱交換器を、第8図、第
9図の様に、直交流式冷却塔本体内に装填した充
填材の上部に配置したり、充填材の内側に配列す
る。
The heat exchanger assembled in this manner is placed above the packing material loaded in the main body of the cross-flow cooling tower, or arranged inside the packing material, as shown in FIGS. 8 and 9.

この状態で冷却塔を運転し負荷部である空調若
しくは冷凍機によつて温められた(30〜70℃程
度)循環する冷媒たる冷却水を前記各熱交換体1
0の堰19で仕切られた流下液緩速部24位置に
供給すると、冷却水は順次前記邪魔シール部22
間に形成された屈曲通路23中を順次流下し、充
分に攪拌されながら各壁板14,15と接触し、
単に垂直に流下するより遥かに長時間壁板14,
15と接触し、これを介して前記各空気通路33
を水平方向に流れる空気と熱交換し、これらを暖
めると同時に、自づからは空気に熱をとられてそ
の分冷却される。
In this state, the cooling tower is operated, and cooling water, which is a refrigerant that is heated (about 30 to 70°C) by the load section of the air conditioner or refrigerator, is transferred to each of the heat exchangers.
When the cooling water is supplied to the downstream liquid slowing section 24 that is partitioned by the weir 19 of
It flows down one after another through the bent passage 23 formed between them, comes into contact with each of the wall plates 14 and 15 while being sufficiently stirred,
The wall plate 14 lasts for a much longer time than simply flowing down vertically.
15 and through which each of the air passages 33
It exchanges heat with the air flowing horizontally, warming them, and at the same time, the air naturally absorbs heat and is cooled accordingly.

殊に、充填材の上部にこの熱交換体10群を配
置した場合には、この熱交換体10で空気により
間接的に冷却された循環水を、一旦散水槽34に
溜た後、下部の充填材上に散布し再度今度は空気
と直接接触で冷却すると共に、この冷却水を直接
接触で冷却し、自身昇温した空気をその絶対湿度
を高めた状態で冷却塔の排気口に向け吸引し、こ
の排気口の近傍において前記熱交換体10の空気
通路33から吐出してくる昇温した絶対湿度が外
気と変化してない一定の空気と混合し白煙化せず
に冷却塔外に排気する(第7図、第8図参照)。
In particular, when the 10 groups of heat exchangers are arranged above the filler, the circulating water that has been indirectly cooled by air in the heat exchanger 10 is stored in the water sprinkling tank 34 and then transferred to the lower part. It is sprayed onto the filling material and cooled again by direct contact with the air, and this cooling water is also cooled by direct contact, and the air, which has risen in temperature itself, is sucked toward the exhaust port of the cooling tower with its absolute humidity increased. In the vicinity of this exhaust port, the heated absolute humidity discharged from the air passage 33 of the heat exchanger 10 mixes with the constant air that has not changed with the outside air, and flows out of the cooling tower without turning into white smoke. Evacuate the air (see Figures 7 and 8).

また、充填材の内側にこの熱交換体10群を階
層的に複数個多段に積み重ねて配列した場合に
は、充填材上で冷却水と直接接触して冷却し自身
昇温し絶対湿度が高くなつた空気全部がこの考案
の熱交換体10の全ての空気通路33内に流入す
る。
In addition, if a plurality of these 10 groups of heat exchangers are stacked and arranged hierarchically in multiple stages inside the filler, they will come into direct contact with the cooling water on the filler and cool themselves, raising their own temperature and increasing the absolute humidity. All of the exhausted air flows into all air passages 33 of the heat exchanger 10 of this invention.

一方、上位の熱交換体10の屈曲した流下液緩
速部24を蛇行して流下してくる冷却水は下位の
熱交換体10の流下液緩速部24に順次流下して
いき、この流下中の冷却水を前記空気通路33内
を通過中の前記空気で間接的に冷却し、この冷却
で自身昇温した空気を前記排気口から白煙を伴わ
ずに冷却塔外に排気する(第9図参照)。
On the other hand, the cooling water flowing down in a meandering manner through the curved downstream liquid slow speed section 24 of the upper heat exchange body 10 sequentially flows down to the downstream liquid slow speed section 24 of the lower heat exchange body 10. The cooling water inside the tower is indirectly cooled by the air passing through the air passage 33, and the air whose temperature has risen due to this cooling is exhausted outside the cooling tower from the exhaust port without producing white smoke. (See Figure 9).

仮に、冷却水の供給量が脈動を起したり、一時
的に供給量が増加したとき、或は流下液緩速部2
4中に微生物などが付着し、流下液緩速部24の
断面積が狭くなり、流量低下をきたし、液溜部の
水位が上昇し、堰19より高くなると、前記冷却
水の一部は溢水路25を通り、直接流下し、この
熱交換体10の供給口11から外周面に溢れ出な
い。
If the supply amount of cooling water pulsates or increases temporarily, or if the flowing liquid slow speed section 2
4, microorganisms etc. adhere to the flowing liquid slowing section 24, the cross-sectional area of the flowing liquid slowing section 24 becomes narrow, and the flow rate decreases, and when the water level of the liquid reservoir section rises and becomes higher than the weir 19, a part of the cooling water overflows. It directly flows down through the passage 25 and does not overflow from the supply port 11 of the heat exchanger 10 onto the outer peripheral surface.

なお、前記冷却塔運転中、各熱交換体10の供
給口11は記外気連通口13を介して外気に開放
してあり、自然流下式に前記冷却水は前記流下液
緩速部24内を蛇行しつつ流下していく。そし
て、冷却塔の運転停止と同時に大気圧を受けて前
記吐出口12より熱交換体内の冷却水は全部一斉
に外部へ吐出される。
During operation of the cooling tower, the supply port 11 of each heat exchanger 10 is open to the outside air through the outside air communication port 13, and the cooling water flows through the flowing liquid slowing section 24 in a natural flow manner. It flows down in a meandering manner. At the same time as the operation of the cooling tower is stopped, all the cooling water inside the heat exchanger is discharged to the outside from the discharge port 12 under atmospheric pressure.

各熱交換体10の吐出孔12が第6図に示すよ
うに数個の小孔12aになつて分布形成してある
ものにおいては、前述の散水槽34を必ずしも必
要としない。
In the case where the discharge holes 12 of each heat exchanger 10 are distributed and formed into several small holes 12a as shown in FIG. 6, the above-mentioned watering tank 34 is not necessarily required.

またこの熱交換体10を密閉型の熱交換体10
として使用する場合は、第1図及び第2図に示す
熱交換体10を用い、これらの吐出口12には前
記供給ヘツダーと同様の吐出用ヘツダーを接続
し、内部に流れる循環冷却液と、各熱交換体10
の外面に散布される散布水と混合しないようにし
て使用することは謂うまでもない。
Moreover, this heat exchanger 10 is a closed type heat exchanger 10.
When used as a heat exchanger, the heat exchanger 10 shown in FIGS. 1 and 2 is used, and a discharge header similar to the supply header is connected to these discharge ports 12, and the circulating cooling liquid flowing inside, Each heat exchanger 10
It goes without saying that it should be used in such a way that it does not mix with the spray water that is sprayed on the outside surface of the container.

(実施例固有の効果) 熱交換体10の壁板14,15に細かい凹凸膨
出部28を形成したものは、本件効果の効果に併
せ、更に熱伝導面積が広くなり、熱変換効率が更
に向上する。
(Effect unique to the embodiment) In addition to the effect of the present invention, the heat exchanger 10 in which the wall plates 14 and 15 are formed with finely uneven bulges 28 has a larger heat conduction area and further increases the heat conversion efficiency. improves.

スペーサ突起29を壁板14,15の一部若し
くは周辺シール部16から膨出させたものにおい
ては、多数の熱交換体10を並設するときの組立
作業が容易で、かつ、組立時に別個のスペーサを
必要としない。
In the case where the spacer protrusion 29 is bulged from a part of the wall plates 14, 15 or from the peripheral seal part 16, the assembly work is easy when a large number of heat exchangers 10 are arranged in parallel, and the spacer protrusion 29 is made to bulge out from a part of the wall plates 14, 15 or from the peripheral seal part 16. No spacer required.

外気連通部13が供給口11の一部に設けたも
のは、構造が簡単で、真空乃至ブロー成形時に同
時形成でき、製造コストを押し上げない。
The structure in which the outside air communication part 13 is provided in a part of the supply port 11 is simple in structure, can be formed simultaneously during vacuum or blow molding, and does not increase manufacturing costs.

全体がブロー成形品よりなるものは、周辺シー
ル部16がなく形成でき、外観の体裁がよくなる
だけでなくその分熱交換面積が増大する。
The entire blow molded product can be formed without the peripheral seal portion 16, which not only improves the appearance but also increases the heat exchange area.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの考案に係るものであつて、第1図は
この熱交換体の第1実施例の外観斜視図、第2図
は邪魔部の形状の異なる他の実施例の正面図、第
3図は第1図の3−3線縦断矢視断面図、第4図
は第1図の4−4線横断平面図、第5図は第1図
の5−5線に沿う縦断面図、第6図は熱交換体下
部の他の実施例を示す一部正面図、第7図はこの
第6図に示す熱交換体を複数枚共通のヘツダーに
間隔をおいて取り付けてなる熱交換器の側面図、
第8図、第9図は従来技術のこの種熱交換器を組
み込んだ冷却塔の概略図である。 図中の主な符号、10……熱交換体、11……
供給口、12……吐出口、13……外気連通部、
23……屈曲通路、24……流下液緩速部、25
……溢水路。
The drawings relate to this invention, and FIG. 1 is an external perspective view of a first embodiment of this heat exchanger, FIG. 2 is a front view of another embodiment with a different shape of the baffle part, and FIG. 3 is a longitudinal sectional view taken along line 3-3 in Fig. 1, Fig. 4 is a cross-sectional plan view taken along line 4-4 in Fig. 1, Fig. 5 is a longitudinal sectional view taken along line 5-5 in Fig. 1, Figure 6 is a partial front view showing another embodiment of the lower part of the heat exchanger, and Figure 7 shows a heat exchanger in which a plurality of heat exchangers shown in Figure 6 are attached to a common header at intervals. Side view,
FIGS. 8 and 9 are schematic diagrams of cooling towers incorporating this type of heat exchanger according to the prior art. Main symbols in the diagram: 10... heat exchanger, 11...
Supply port, 12...discharge port, 13...outside air communication section,
23...Bending passage, 24...Flowing liquid slow speed section, 25
...Overflow channel.

Claims (1)

【実用新案登録請求の範囲】 1) 全体として扁平な薄肉中空体であり、内部
が屈曲した液体通路としてあり上部には供給口
及び外気連通部が形成されており、下端には吐
出口が設けてあり、前記液体通路は両壁面が相
互に溶着して形成した邪魔シール部間に形成し
てあり、 前記液体通路の一部は中空体の両壁が垂直方
向に溶着して形成した区画シール部によつて区
画された垂直な溢水路とし、この液体通路の残
部は流下液緩速部としてあり、更に前記区画シ
ール部の上端が一種の堰とし前記流下液緩速部
と溢水路とはこの堰を介して連通していること
を特徴とする冷却塔における合成樹脂真空乃至
ブロー成形熱交換体。 2) 真空乃至ブロー成形の中空体壁板には細か
い膨出部が形成して、ほゞ全面が凹凸に形成し
てあることを特徴とする実用新案登録請求の範
囲第1項記載の冷却塔における合成樹脂真空乃
至ブロー成形熱交換体。 3) 真空乃至ブロー成形の中空体壁板の少なく
とも片面外方には、相隣る熱交換体との間隔を
保つスペーサ突起が真空乃至ブロー成形時に一
体形成してあることを特徴とする実用新案登録
請求の範囲第1項記載の冷却塔における合成樹
脂真空乃至ブロー成形熱交換体。 4) 前記外気連通部は供給口の一部であること
を特徴とする実用新案登録請求の範囲第1項記
載の冷却塔における合成樹脂真空乃至ブロー成
形熱交換体。
[Scope of Claim for Utility Model Registration] 1) It is a flat thin-walled hollow body as a whole, and the inside is a curved liquid passage, with a supply port and an outside air communication part formed in the upper part, and a discharge port provided in the lower end. The liquid passage is formed between a baffle seal portion formed by welding both wall surfaces to each other, and a part of the liquid passage is formed by a partition seal formed by vertically welding both walls of the hollow body. The remaining part of this liquid passage is a slow flowing liquid section, and the upper end of the partition sealing section is a kind of weir, and the slow flowing flowing section and the overflow channel are separated by a vertical overflow channel. A synthetic resin vacuum or blow-molded heat exchanger in a cooling tower, which is characterized by communicating through this weir. 2) The cooling tower according to claim 1 of the utility model registration, characterized in that the wall plate of the hollow body formed by vacuum or blow molding has fine bulges formed so that almost the entire surface is uneven. Synthetic resin vacuum or blow molded heat exchanger. 3) A utility model characterized in that a spacer protrusion that maintains the distance between adjacent heat exchangers is integrally formed on the outer side of at least one side of the hollow body wall plate formed by vacuum or blow molding during vacuum or blow molding. A synthetic resin vacuum or blow molded heat exchanger for a cooling tower according to claim 1. 4) A synthetic resin vacuum or blow-molded heat exchanger for a cooling tower according to claim 1, wherein the outside air communication portion is a part of a supply port.
JP1986171175U 1986-11-07 1986-11-07 Expired JPH0449492Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986171175U JPH0449492Y2 (en) 1986-11-07 1986-11-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986171175U JPH0449492Y2 (en) 1986-11-07 1986-11-07

Publications (2)

Publication Number Publication Date
JPS6380462U JPS6380462U (en) 1988-05-27
JPH0449492Y2 true JPH0449492Y2 (en) 1992-11-20

Family

ID=31106563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986171175U Expired JPH0449492Y2 (en) 1986-11-07 1986-11-07

Country Status (1)

Country Link
JP (1) JPH0449492Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9057564B2 (en) * 2012-12-17 2015-06-16 Baltimore Aircoil Company, Inc. Cooling tower with indirect heat exchanger
JP6869800B2 (en) * 2017-04-28 2021-05-12 株式会社前川製作所 Air cooler, refrigeration system and defrosting method for air cooler

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164261A (en) * 1981-04-01 1982-10-08 Diesel Kiki Co Laminated type evaporator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471253U (en) * 1977-10-29 1979-05-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164261A (en) * 1981-04-01 1982-10-08 Diesel Kiki Co Laminated type evaporator

Also Published As

Publication number Publication date
JPS6380462U (en) 1988-05-27

Similar Documents

Publication Publication Date Title
US4874035A (en) Heat exchanger for cooling tower
JP3719453B2 (en) Refrigerant evaporator
CN205425504U (en) Box -like refrigeration matrix of unique tuple
JP2006226660A5 (en)
CN107747813B (en) Closed modular flat phase change energy storage box and heat supply method of solar heat supply system
JPH0449492Y2 (en)
JP2579515B2 (en) Heat exchanger made of synthetic resin for cooling tower and DC-type cooling tower using heat exchanger composed of this heat exchanger
JP2579527B2 (en) Countercurrent cooling tower to prevent white smoke
JPH05240596A (en) Synthetic resin heat exchanging module for cooling tower and cross-flow type cooling tower using said heat exchanging module
US7261285B2 (en) Internal inserts in cooling towers
JP2617757B2 (en) Crossflow cooling tower
JP2740807B2 (en) Manufacturing method of indirect heat exchanger
JPH0449493Y2 (en)
JP2750376B2 (en) cooling tower
JP3898843B2 (en) Water tower
CN210802206U (en) Novel filler and phase-change energy tower thereof
JP2550366B2 (en) Heat exchanger for cooling tower
CN213455054U (en) Heat exchanger for preparing sulfonic acid for preventing thermal deformation
JPH01310294A (en) Synthetic resin made heat exchanging body for cooling tower and cooling tower utilizing sealed type heat exchanger consisting of said heat exchanging body
JP2794026B2 (en) Indirect heat exchanger
JP2660207B2 (en) Manufacturing method of indirect heat exchanger
JP2512323Y2 (en) Cross flow type cooling tower
JPH01266487A (en) Dc/ac type heat exchanging tower
JPH01252893A (en) Cooling tower
JP2579523B2 (en) Crossflow cooling tower