JPWO2014087864A1 - 火葬システム - Google Patents

火葬システム Download PDF

Info

Publication number
JPWO2014087864A1
JPWO2014087864A1 JP2014514995A JP2014514995A JPWO2014087864A1 JP WO2014087864 A1 JPWO2014087864 A1 JP WO2014087864A1 JP 2014514995 A JP2014514995 A JP 2014514995A JP 2014514995 A JP2014514995 A JP 2014514995A JP WO2014087864 A1 JPWO2014087864 A1 JP WO2014087864A1
Authority
JP
Japan
Prior art keywords
medium
cremation
buffer tank
exhaust gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014514995A
Other languages
English (en)
Other versions
JP5579346B1 (ja
Inventor
眞知子 浅岡
眞知子 浅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO HAKUZEN CO., LTD.
Original Assignee
TOKYO HAKUZEN CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO HAKUZEN CO., LTD. filed Critical TOKYO HAKUZEN CO., LTD.
Priority to JP2014514995A priority Critical patent/JP5579346B1/ja
Application granted granted Critical
Publication of JP5579346B1 publication Critical patent/JP5579346B1/ja
Publication of JPWO2014087864A1 publication Critical patent/JPWO2014087864A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G1/00Furnaces for cremation of human or animal carcasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/004Accumulation in the liquid branch of the circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2206/00Waste heat recuperation
    • F23G2206/20Waste heat recuperation using the heat in association with another installation
    • F23G2206/203Waste heat recuperation using the heat in association with another installation with a power/heat generating installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/50Cooling fluid supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/55Controlling; Monitoring or measuring
    • F23G2900/55008Measuring produced steam flow rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

火葬炉で発生した排ガスの熱エネルギーを用いて発電し、発電した電力を火葬システムを構成する各装置に供給することによりエネルギー効率を向上する。火葬システムは、再燃炉からの排ガスの熱を媒体と熱交換する排ガス/温水熱交換器(21)と、媒体の温度変化を抑制するバッファタンク(215A)及び流量調整バルブ(212A,212B)とを有する。さらに、媒体の熱により低沸点作動媒体を加熱・蒸発させ作動媒体蒸気を生成する蒸発器(23)により媒体タービン(24)を駆動し発電機(25)で発電する。さらにバッファタンク(215B)を設け、蒸発器(23)から排ガス/温水熱交換器(21)に流入する媒体の温度変化を抑制する。また、電力制御装置は、火葬システムを構成する各装置に発電した電力と、各装置で必要とする電力の不足電力とを外部電源から供給する。

Description

本発明は火葬システムに関し、特に発電システムを備えた火葬システムに関する。
従来の火葬システムは、火葬炉で生じた高温の排ガスを冷却器などで冷却後、集塵機でダストの除去処理を行った後に触媒装置でダイオキシン類などの除去を行い、最終的に煙突を介して大気中に放出していた。すなわち、従来の火葬システムでは高温の熱エネルギーを再利用することなく、そのまま廃棄することが一般的であった。
しかしながら近年火葬システムにおいても、火葬システム全体としてのエネルギー効率を高めて省エネルギーを図ると同時に、人間(ご遺体)の尊厳を尊重した火葬システムの構築が求められている。
省エネルギーを図るため第1の従来技術として、特許文献1(特開2012−13266公報)に記載の発電システムおよび火葬炉があり、火葬システムに発電システムを組み込み、火葬炉で発生した高温の熱エネルギーを用いて熱交換器で蒸気を発生し、この蒸気で蒸気タービンを駆動して発電することにより火葬炉で発生した熱エネルギーを有効に利用することが記載されている。
次に図10を参照して第1の従来技術について詳細に説明する。図10において火葬炉101はボイラとしての機能を備えており、給水ポンプ106によって供給された水は火葬炉101内の高温の熱で気化し、水蒸気が汽水分離器102に送られる。汽水分離器102により水滴が除かれた蒸気は、発電機103に送られて蒸気タービンを駆動し発電を行う。蒸気タービンを駆動するのに用いた後の低圧の蒸気は、冷却塔105から冷却水の供給を受ける復水器104に送られて凝縮して水となり、ホットウェルタンク107に送られ火葬炉101へと循環する。このように本公報記載の火葬炉は焼却炉そのものをボイラ化して熱効率を向上させている。
また発電装置を組み込んだ火葬設備の第2の従来技術として、特許文献2(特開2010−133693公報)に記載の移動式一体型火葬設備があり、図11を参照して説明する。本公報において、電気供給装置115は、焼却炉111、冷却装置112a,112b、集塵装置113a,113b、及び排熱排出装置114を運転する電力を供給している。これにより外部から電力を受ける必要がないので、移動式一体型火葬設備を実現している。
また低温かつ小容量の排熱を有効利用して発電する第3の従来技術として、特許文献3(特許第4875546号公報)に記載の排熱発電装置、排熱発電装置の作動媒体蒸気加熱度制御方法について図12を参照して説明する。
図12は本公報記載の排熱発電装置の構成図であり、排熱源129からの温水を蒸気発生器121に供給して作動媒体液を加熱し作動媒体蒸気を生成する。そして次に、この作動媒体蒸気を液滴分離器122に供給する。この作動媒体蒸気の圧力と温度をそれぞれ圧力センサ126と温度センサ127とで測定し、これらの情報を制御盤128に伝達する。そして制御盤128により圧力と温度が制御された作動媒体蒸気は、タービン123を回転しタービンに連結した高速発電機を駆動して発電する。
タービン123からの作動媒体蒸気は凝縮器124で冷却されて液体となり、給液ポンプ125を介して蒸気発生器121に送られ、再度、作動媒体蒸気が生成される。このようにして、低沸点(40℃程度)の作動媒体の循環が行われる。この排熱発電装置は圧力センサ126と温度センサ127からの圧力と温度を参照して加熱度を演算し、この演算値が予め設定した加熱度に一致するように給液ポンプ125の回転速度を増減し作動媒体液の流量を制御する。このような制御を行うことで加熱度を一定に保って効率的に排熱を回収し、発電を行っている。
さらに排熱流量あるいは排熱温度の変化によらず安定した発電出力を得る第4の従来技術として、特許文献4(特開平10−184316号公報)に記載の廃熱利用の発電制御装置について図13を参照して説明する。
図13は本公報記載の発電プラントのブロック図であり、蒸気タービン131に流入する蒸気流量を制御する為の蒸気流量制御系と、蒸気タービンの入口圧力を制御する蒸気圧力制御系と、各蒸気分離器132a〜132cの各熱水レベルを制御する熱水レベル制御系とを有している。また高圧、中圧、低圧の各蒸気分離器132a〜132cの余剰熱水の温度を制御する熱水温度制御系と、復水器133の水位レベルを制御する復水器レベル制御系と、冷水塔134の水位レベルが設定値となるように冷却塔134へ補給する補給水量を制御する補給水量制御系と、冷却塔134の冷却水温度を制御する機内温度制御系と、を備えている。そしてこれらの制御系を用いて、電力負荷変動、蒸気タービンに流入する蒸気流量の変動、排熱蒸気流量変動および圧力変動、復水器の機内温度変動、冷却水量及び排熱熱交換機出口の温度変動、冷却塔のレベル変動などを安定化し高効率の発電を行うとしている。
またバイナリー発電を用いて熱源エネルギーの利用効率を改善した第5の従来技術として、特許文献5(特開2009−221961公報)に記載のバイナリー発電システムについて図14を参照して説明する。
図14は本公報記載のバイナリー発電システムのブロック図であり、熱源流体141と熱交換して蒸発した低沸点作動媒体149の蒸気を蒸気タービン144に導入して発電を行う。作動媒体を予熱する予熱器143と蒸発器142A、142B、蒸気タービン144、熱回収器148、凝縮器146、媒体送液ポンプ147A、147Bを直列的に構成して閉ループを形成する。本公報のバイナリー発電システムは、作動媒体の蒸発温度、圧力が異なる複数段の蒸発器142A、142Bを設け、各段で生成した各蒸気を蒸気タービン(混圧タービン)144の高圧段、低圧段に流入させてタービン発電機145を駆動する。このような構成により、単一段のみの蒸発器から生成した作動媒体の蒸気で蒸気タービンを駆動する方式と比して、熱源流体の保有する熱エネルギーの利用効率を高めている。
特開2012−13266公報
特開2010−133693公報
特許第4875546号公報
特開平10−184316号公報
特開2009−221961公報
特許文献1記載の第1の従来技術は、火葬炉の内部にパネル状の熱交換器を配設し火葬炉そのものをボイラ化しているので、熱交換器が高温にさらされ信頼性上問題がある。また本公報記載の発電システムでは一定期間毎に熱交換器のメンテナンスや修理、新品への交換を行う必要がある。
また火葬システムに発電システムを組み込んだ場合の特有な問題として、火葬炉の運転サイクル、すなわち、急加熱→焼却→冷却の各工程で火葬炉内の温度が大幅に変動する。また一般的に夜間は火葬が行われないので火葬炉の温度は低温状態となり、高温の水蒸気で蒸気タービンを駆動する方式では、火葬炉が所定の温度よりも低温になると発電することが出来ない。
このように、蒸気タービンを駆動するための熱エネルギーが大幅に変動するため発電機からの出力電力が安定せず、また夜間においては発電システムを停止せざるを得ない為、発電システムの運転状態が極めて不安定となり、発電システムを構成する各装置が劣化し易いという問題がある。
また特許文献2記載の第2の従来技術は、移動式一体型火葬設備に電気供給装置115を設けて、焼却炉111などの装置を運転するための電力を供給することは記載されているものの、どのようにして発電を行うかについては記載されていない。図11から推定すると、電気供給装置115は液体燃料を用いたエンジン式の発電機と考えられる。換言すると、本公報においては火葬システム全体としてのエネルギー効率を改善するために、火葬炉から排出される排ガスの熱エネルギーを再利用する技術思想の記載、または示唆については開示されていない。
さらに特許文献3記載の第3の従来技術は、沸点が40℃前後の低沸点の作動媒体を30℃〜80℃程度の温水と熱交換して作動媒体蒸気を生成し、この作動媒体蒸気をタービン123に供給することにより発電している。またこの従来技術では、作動媒体の循環直後で温水温度や媒体温度が安定しておらず制御が不安定になるのを防ぐために、作動媒体の循環を開始してから一定の時間が経過するまで、加熱度の目標値を本来の目標値より低く設定して作動媒体液流量の増減を制御している。
しかしながら第3の従来技術による排熱発電装置は、排熱源として工場排熱、温泉水(地熱)、太陽光など比較的安定した排熱源を想定しており、火葬炉から排出される排ガスのように短時間に大きく熱量が変化する排熱源を想定していない。この為、排熱源の熱量が安定しており、発電機で発生した電力とこの電力を消費する各装置の総合的な消費電力とのバランスがとれている場合は、本従来技術のポイントである加熱度を目安とする帰還制御が有効であるが、火葬システムに本公報の排熱発電装置を組み込んで火葬システムを運転した場合、排熱源からの熱量が大きく変動するため、加熱度に注目した制御では火葬システム全体を安定して運転することが出来ないという問題が生じる。
より具体的に説明すると、火葬の初期段階(〜約10分)、中期段階(約10分〜約25分)、後期段階(約25分〜)では燃焼する対象物、発生する熱量、排ガス流量、火葬炉の温度などが大きく変動し、火葬システムに発電システムを組み込んだ場合はこれらの要因を考慮して設計することが必須である。一方、第3の従来技術による排熱発電装置では、これらの要因と対応する制御方法については何ら記載されておらず、火葬システムに第3の従来技術による排熱発電装置を組み込んだ場合は、排熱発電装置からの電力を用い火葬システムを安定して運転することが出来ないという問題がある。
また特許文献4記載の第4の従来技術は、工業用プラント等からの排熱流量あるいは排熱温度が変化した場合、蒸気流量制御系、蒸気圧力制御系、熱水レベル制御系など様々な制御系を駆使して常に安定した発電機出力を得るとしているが、作動媒体が水であり、排ガス温度が低温になると実質的に発電することが出来なくなり、火葬システム用途の発電システムとしては適さない。
さらに工業用プラント等からの排熱流量あるいは排熱温度が比較的長時間安定している場合は、この第4の従来技術による各種制御系が有効であるが、上述したように火葬システムでは排熱流量あるいは排熱温度が短時間で大きく変動するため、第4の従来技術による各種制御系が有効に機能せず、発電機からの電力を用い火葬システムを安定して運転することが出来ないという問題がある。
また特許文献5記載のバイナリー発電システムは、低沸点作動媒体(炭化水素、アンモニアなど)を蒸気化して蒸気タービンを駆動し発電するバイナリー発電システムであり、バイナリー発電の特徴である低温の熱源からも熱交換により発電する一方、混圧タービンを用いて効率よく発電するとしている。しかしながら、熱源としては比較的安定している地熱流体(熱水または蒸気)や工場設備の温排水を想定しており、火葬システムのように排熱流量あるいは排熱温度が短時間で大きく変動するシステムにこの従来技術によるバイナリー発電システムを組み込むと、変動が小さい場合は機能するものの変動が大きくなった場合、混圧タービンによる制御だけでは安定した火葬システムの運転を行うことが出来ないという問題がある。
本発明は上記課題を好適に解決した火葬システムを提供する。
本発明の火葬システムは、遺体を燃焼するための燃焼炉と、前記燃焼炉からの排ガスが流入し、前記排ガスの熱を媒体と熱交換する排ガス/媒体熱交換器と、前記媒体が注入され、この媒体の温度変動を抑制する第1のバッファタンクと、前記第1のバッファタンクからの前記媒体の熱により低沸点作動媒体を加熱・蒸発させ作動媒体蒸気を生成する蒸発器と、前記作動媒体蒸気により駆動される媒体タービンと、前記媒体タービンにより駆動され発電する発電機と、火葬システムを構成する各装置に前記発電機で発電した電力と、前記各装置で必要とする電力の不足電力を外部電源から供給する電力制御装置とを備えている。
また、前記蒸発器から流出する前記媒体が注入され、この媒体の温度変動を抑制して前記媒体を前記排ガス/媒体熱交換器に供給する第2のバッファタンクを設けるように構成しても良い。
さらに、前記第1のバッファタンク及び前記第2のバッファタンク内の前記媒体の温度がそれぞれ設定温度を超えると、前記各バッファタンク内の前記媒体を冷却するための冷却媒体が前記第1のバッファタンク及び前記第2のバッファタンク内に注入されるように構成しても良い。
また、前記第1のバッファタンクと前記蒸発器の間に設けられた前記媒体を流す媒体流路に、前記媒体を冷却するための冷却媒体を注入する冷却媒体注入手段を有し、前記蒸発器に流入する前記媒体の温度が設定温度範囲内となるよう前記冷却媒体注入手段を制御する構成であっても良い。
また、前記第1のバッファタンクと前記蒸発器との間に設けた第1の流量調整バルブと、前記第1のバッファタンクと前記蒸発器との間から前記排ガス/媒体熱交換器に前記媒体を帰還するバイパス流路と、前記バイパス流路に設けた第2の流量調整バルブと、を備え、前記蒸発器から流出する前記媒体の温度が設定温度範囲内となるように前記第1の流量調整バルブと前記第2の流量調整バルブとを制御するように構成しても良い。
また、前記第1のバッファタンクから流出する前記媒体を吸引して前記蒸発器に送出する第1の媒体循環ポンプと、前記第2のバッファタンクから流出する前記媒体を吸引して前記前記排ガス/媒体熱交換器に送出する第2の媒体循環ポンプと、前記第1のバッファタンク及び前記第2のバッファタンク内の各前記媒体の第1液面高さ及び第2液面高さをそれぞれ測定する第1レベルメータ及び第2レベルメータと、を備え、前記第1液面高さと前記第2液面高さの差が一定値となるように、前記第1の媒体循環ポンプ及び前記第2の媒体循環ポンプがそれぞれ前記媒体の流速を制御するように構成しても良い。
また、前記第1レベルメータ及び第2レベルメータからの信号を参照し、前記第1液面高さと前記第2液面高さがそれぞれ設定値に達したと判断された場合、前記第1のバッファタンク及び前記第2のバッファタンクに設けられた排出バルブが開き、前記第1のバッファタンク及び前記第2のバッファタンク内の前記媒体が排出されるように構成しても良い。
また、前記火葬システムに設けた各種センサからの情報を演算して制御信号を生成し、この制御信号により前記火葬システムを構成する各装置のうちの少なくとも一つの装置を制御する電力情報処理装置を設けるように構成しても良い。
また、前記火葬炉が並列に複数設けられ、前記火葬炉からの各排ガスが共通の前記排ガス/媒体熱交換器に流入するように構成しても良い。
また、前記排ガス/媒体熱交換器から排出された排ガスの熱を空気と熱交換し熱風を生成する熱風回収熱交換器と、前記熱風を前記火葬炉に送出する熱風回収路とを備えるように構成しても良い。
また、前記火葬炉の燃焼段階の情報を参照して、前記排ガス/媒体熱交換器、前記蒸発器、前記媒体タービン、前記発電機、前記冷却媒体注入手段、前記第1の流量調整バルブ、前記第2の流量調整バルブ、前記第1の媒体循環ポンプ、前記第2の媒体循環ポンプ、前記第1のバッファタンク及び前記第2のバッファタンクに前記冷却媒体を注入する手段の少なくとも一つを制御するように構成しても良い。
また、前記外部電源に異常が発生した場合に備えるバックアップ電源を設け、前記外部電源からの電力が停止又は低下した場合は、前記外部電源から前記バックアップ電源に切り替えるように構成しても良い。
本発明による火葬システムは、火葬炉からの排ガスを熱交換器に通すことにより排ガスの熱エネルギーを温水の熱エネルギーに変換し、さらに、この温水をバッファタンクを介して蒸発器に通して低沸点作動媒体を蒸気化させ、発生した作動媒体蒸気により蒸気タービンを駆動し発電するバイナリー発電方式を用いている。そして発電した電力を火葬システムを構成する各装置に供給することにより、火葬システムの消費電力を大幅に低減することが出来る。
また火葬炉から排出される排ガスは短時間に大きく熱量が変化するという特徴があるが、本発明による火葬システムは安定して発電を行い、かつ、火葬システムで必要とする不足電力を外部電源またはバックアップ電源から供給することにより安定して火葬システムを運転することが出来る。
また火葬炉からの排熱流量、排熱温度、温度上昇率などの情報が予め予測可能なので、この予測情報を用いて発電システムを効率よくかつ安定的に制御することが出来る。
さらに本発明の発電システムとしては、低沸点媒体を蒸気化させて媒体タービンを駆動するバイナリー発電方式を用いているので、火葬炉から排出される排ガス温度が低下した場合においても発電可能であり、一日当たりの発電期間を長くすることが可能である。この為、発電効率を向上することが出来る。
また排ガス/温水熱交換器からの温水の温度が設定値を超えないように、蒸発器に流入する温水の熱量の制御を行うため蒸発器の安全性が保たれ、火葬システム特有の問題である過酷な温水の変動に対してもバイナリー発電を安定して運転することが出来る。
さらに排ガス/温水熱交換器からの温水の温度が指定した規定値に達すると、注水装置から冷却水が蒸発器に流入する温水に注入され、温水の温度を低下するように制御を行う。従って、火葬炉の異常燃焼などにより排ガス温度が異常に高くなった場合でも、バイナリー発電システムが緊急停止するようなことは無く、過酷な温水の変動に対してもバイナリー発電を安定して運転することが出来る。
また排ガス/温水熱交換器からの高温の温水が一度第1のバッファタンクに流入し、第1のバッファタンク内の温水温度と平均化された後にこの温水が蒸発器に供給されるので、排ガスの排熱量が大幅に変化しても安定して発電することが出来る。
また第1のバッファタンクとは別に、蒸発器からの温水が第2のバッファタンクに流入し、第2のバッファタンク内の温水温度と平均化された後にこの温水が排ガス/温水熱交換器に戻されるので、排ガス/温水熱交換器内の温水温度が過剰に上昇することがない。この為、排ガス/温水熱交換器の信頼性が高く、かつ、排ガス/温水熱交換器からの温水温度の変動がより小さくなるので、安定した運転により効率の良い発電を行うことができるという特徴がある。
さらに上記2つのバッファタンク内に設けられた温度計の温水温度が上限設定値に達すると、注水装置から上記2つのバッファタンクに各注水バルブを介して冷却水が注入され、バッファタンク内の温水温度が上限設定値以下となるように電力情報処理装置により各注水バルブが自動的に制御される。
また第1及び第2のバッファタンクに各温水の液面レベルを測定するためのレベルメータがそれぞれ設けられ、これらのセンサーからの信号を用いて第1及び第2のバッファタンクの液面レベルの差がほぼ一定となるように、温水循環ポンプを常時制御する。これにより、2つの温水循環ポンプの吐出量の性能が完全に同一で無くアンバランスであっても、一方のバッファタンクの温水残量が増大し続け、他方のバッファタンクの温水残量が減少し続ける不具合は生じず、安定して発電システムを運転することが出来る。
またバッファタンクの下部に排出バルブを設け、バッファタンク内に設けられた各レベルメータの測定値が設定値に達すると排出バルブが開き、バッファタンクの温水を自動排出するように制御してバッファタンクの温水がオーバーフローしないように構成している。さらに、排出バルブによっても温水の排出が十分でない場合は、各バッファタンクの側面上部に設けられたオーバーフローノズルを介してバッファタンク内の温水が排出されるように構成されており、2重のオーバーフロー対策が施されている。
また、火葬炉からの排ガスを熱交換器に通すことにより排ガスの熱エネルギーを温水の熱エネルギーに変換し、さらに、この温水を蒸発器に通して低沸点媒体を蒸気化させ、発生した蒸気により媒体タービンを駆動し発電するバイナリー発電方式を用いているので、ダストが大量に含まれる火葬炉からの排気ガスが直接蒸発器に流入することが無く、この為、ダストが大量に含まれる火葬炉からの排気ガスの熱量を効率的に電気エネルギーとして回収することが出来る。
本発明の第1の実施の形態に係わる火葬システムを示す構成図である。 本発明の第1の実施の形態に係わる火葬システムを構成するバイナリー発電システムの構成図である。 本発明による火葬システムの電力制御動作を説明するためのブロック図である。 主燃炉での燃焼方法を説明するための説明図である。 再燃炉温度の時間変化を表すグラフである。 再燃炉からの排ガス流量の時間変化を表すグラフである。 蒸発器の流入口における温度の時間変化を表すグラフである。 本発明の火葬システムで発電した発電量と、火葬システムを構成する各設備の設備使用電力を合計した総設備使用電力の時間変化を表すグラフである。 本発明の第2の実施の形態による係わる火葬システムを示す構成図である。 第1の従来技術による発電システムの構成例を示す系統図である。 第2の従来技術による移動式一体型火葬設備を示す斜視図である。 第3の従来技術による排熱発電装置の構成図である。 第4の従来技術による廃熱利用の発電プラントの構成を示すブロック図である。 第5の従来技術によるバイナリー発電システムのブロック図である。
次に本発明の実施の形態について図1〜図4を参照して詳細に説明する。
<第1の実施の形態>
図1は本発明の第1の実施の形態に係わる火葬システムの構成図、図2は火葬システムを構成するバイナリー発電システム19の構成図、図3は本発明による火葬システムの電力制御動作を説明するためのブロック図であり、図4は主燃炉11での燃焼方法を説明するための説明図である。本発明による火葬システムは、棺17を載置するお別れ台16と、主燃バーナ12を用いて遺体や副葬品、棺などの燃焼を行う主燃炉11と、主燃炉11からの排ガスを完全燃焼させるための再燃炉13と、棺17を主燃炉12に自動で納棺可能とする自動納棺装置15とを備えている。
また主燃炉11からの排ガスは、再燃炉13に連通した共通煙道18A及び排気ダクト18Bを通って、バイナリー発電システム19に導かれる。また共通煙道18Aからの排ガスを冷却するためと火葬システムに異常な燃焼などが生じた場合に備えて、排ガス補助冷却装置兼非常排気ダクト18Cを設けている。バイナリー発電システム19を構成する図2に記載の排ガス/温水熱交換器21に導かれた排ガスは、排ガス/温水熱交換器21内のパイプの外側を流れる冷媒(水)と熱交換して熱エネルギーを伝達し、さらに、熱風回収熱交換器110に流入する。流入した排ガスは空気と熱交換し、排ガスにより熱せられた熱風は熱風回収路116を介して主燃炉11に導かれる。これにより主燃炉11の燃焼効率を高めるとともに、燃料の節減と燃焼時間の短縮を図ることが出来る。また排ガス/温水熱交換器21からは図2の上矢印の向きに排ガスが排出され、図1の熱風回収熱交換器110に流入する。なお冷媒は水に限らず、排ガスと熱交換する媒体であればよい。
熱風回収熱交換器110から流出した排ガスは、排ガスの温度を下げるため吸気口111から取り入れた外気とともに電気集塵機112に流入し、ここで排ガス中に含まれるダストが除去される。次に電気集塵機112から流出した排ガスは触媒装置113に送られ、ここで排ガス中に含まれる窒素酸化物、臭気成分、ポリ塩素化ジベンゾダイオキシンやポリ塩素化ジベンゾフラン等のダイオキシン類が除去される。触媒装置113から流出した排出ガスは、排風機114により吸引され排気筒115を介して大気中に排出される。
このようにして本発明による火葬システムは、主燃炉11で生じた大量のダスト及びダイオキシン類などの有害物質を除去しクリーンな空気に再生して大気中に還元するとともに、排ガスが有する高温の熱エネルギーをバイナリー発電システムを用いて発電し、発電した電力を火葬システムを構成する各装置に供給することにより、各装置で必要とする電力の一部又は全てをまかなうことが可能となり、火葬システム全体としての省エネルギー化を大幅に向上することが出来る。
前述したように火葬炉からの排ガス温度、排熱量および排ガス流量は火葬時に大きく変化し、これが、さらなる省エネルギー化を目指した次世代火葬システムを構築する上で極めて重要なポイントである。次に図4を参照して、火葬炉の燃焼方法について具体的に説明する。
火葬方法は大きく4つの段階に分けられ、初期段階、中期段階、後期段階、終了段階の順に進み、火葬開始から収骨まで約1時間を要し、このサイクルが1日1炉当たり1〜7回繰り返して行われる。初期段階(燃焼開始〜約10分)では、主燃バーナ12の火炎を最大にして着火を促進するとともに、主燃炉11の側壁から供給される2次空気、3次空気を多めに供給し主として棺を燃焼させる。このような燃焼方法により、棺は遺体の場合に比して急激に燃焼する。このため、排ガスの温度は急上昇し、また大量の排ガスが一時的に発生する。
次に中期段階では燃焼する対象が棺から遺体及び副葬品になり、遺体の脂肪の多寡により燃焼の仕方および排ガス流量が大きく変化する。脂肪の多い遺体の場合は激しく燃焼するので、主燃バーナ12の火炎の大きさを極力小さくし、主燃炉11側壁からの2次空気、3次空気を最大にして供給し自燃による燃焼が暴走しないように制御する。このような燃焼方法により、脂肪の多い遺体の場合排ガス流量は大きくなる一方、脂肪が少ない遺体の場合は脂肪の多い遺体の場合に比して燃焼が弱く、排ガス流量は脂肪の多い遺体を燃焼した場合と比して、およそ半分以下となることが経験上わかっている。
次に後期段階では遺骨周りに残っている部分遺体を燃焼させるが、主燃バーナ12の火炎が強すぎると遺骨が砕けて収骨することが困難となるので、火炎と主燃炉11側壁からの2次空気と3次空気の供給をともに絞るように制御する。このような燃焼方法により、排ガス流量はピーク時の約1/2〜1/3に低減する。
次に終了段階では、主燃炉11を空気冷却し骨受皿(図示せず)上の遺骨を前室14、さらにお別れ台16に引き出し収骨が行われる。このとき排ガス流量は0レベルまで低下する。一つの火葬炉は上述した4つの段階を順次繰り返して作業が行われるが、実際の火葬システムでは一般的に2つ〜4つの火葬炉が一系統として一体的に構成される。すなわち、2つ〜4つの主燃炉11、再燃炉13、共通煙道18A、排気ダクト18B、排ガス補助冷却装置兼非常排気ダクト18Cがそれぞれ独立して設けられ、2つ〜4つの排気ダクト18Bから排出される排ガスが、ともに共通の排ガス/温水熱交換器を備えたバイナリー発電システム19に流入するように構成される。
各火葬炉の火葬開始時刻はまちまちであり、各火葬炉の火葬段階(初期段階〜終了段階)は異なるものの、一系統の各火葬炉ではそれぞれ平行して火葬が行われる。従って、各火葬炉の火葬開始時刻が重なった場合は、バイナリー発電システム19に流入する排ガスの熱量が火葬炉一つの場合に比べて数倍の大きさで変動する。火葬開始時刻を意図的にずらせばバイナリー発電システム19に流入する排ガスの熱量の変動を抑制することが可能であるが、実際上、火葬開始時刻を意図的にずらすことは困難である。従って本発明の火葬システムでは、各火葬炉が火葬段階のどの段階(初期段階〜終了段階)にあるのかを把握し、電力情報処理装置211Bがこの情報を用いて、バイナリー発電システム19が安定かつ効率的に発電するように制御しても良い。
なお説明を簡単にするために上記において火葬を4つの段階に分けて説明したが、実際はより多くの段階に細かく分けて制御を行っている。また、主燃炉11、再燃炉13の温度を測定するための温度計、圧力を測定するための圧力計、酸素濃度を測定するための酸素濃度計、排煙濃度を測定するための排煙濃度計を設け、電力情報処理装置211Bがこれらのセンサからの情報を用いて、バイナリー発電システム19が安定かつ効率的に発電するように制御するように構成しても良い。
次に図2を参照して、バイナリー発電システム19について詳細に説明する。排気ダクト18Bからの排ガスは排ガス/温水熱交換器21で冷媒(水)と熱交換して冷媒を温水化する。排ガス/温水熱交換器21で生成された温水は、バッファタンク215Aの上方からバッファタンク215A内へ注水され、さらにバッファタンク215Aの下方から温水循環ポンプ22Aで吸引され流量調整バルブ212Bを介して蒸発器23に送出(吐出)される。
蒸発器23から流出した温水は、バッファタンク215Bの上方からバッファタンク215B内へ注水され、さらにバッファタンク215Bの下方から温水循環ポンプ22Dで吸引され排ガス/温水熱交換器21に送出(吐出)される。このようにして温水は、排ガス/温水熱交換器21→バッファタンク215A→温水循環ポンプ22A→流量調整バルブ212B→蒸発器23→バッファタンク215B→温水循環ポンプ22D→排ガス/温水熱交換器21の経路で循環する。
蒸発器23では、アンモニア、炭化水素、イソブタンなどの低沸点作動媒体と温水との間で熱交換が行われて作動媒体が加熱され、作動媒体が蒸気化する。蒸発器23で生成された作動媒体蒸気は、媒体タービン24に送られ媒体タービン24を駆動する。さらに媒体タービン24の駆動軸が回転することにより駆動軸と連結した発電機の駆動軸が回転し発電機25が発電する。なお図2では媒体タービン24と発電機25を独立した装置として構成した場合を示したが、媒体タービン24と発電機25とを一軸一体構成としてもよい。このような構成により、バイナリー発電システムの小型化を図ることが出来る。
発電機25で生成された交流電力は高周波整流器26で直流に変換され、さらにDC/ACコンバータで50Hz又は60Hzなどの商用電力に変換され電力出力端子28に出力される。なお発電機25の出力側にインバータを設け、このインバータにより発電機25に制動をかけ、発電機25の回転数を制御しながら発電効率を最大化するように制御しても良い。
一方媒体タービン24からの作動媒体蒸気は凝縮器29に流入し、ここで作動媒体蒸気と冷却水との熱交換が行われ、作動媒体蒸気が凝縮し液化する。冷却水は、冷却水循環ポンプ22Cにより凝縮器29と冷却塔210との間を循環する。凝縮器29で温度上昇した冷却水は冷却塔210で冷却されて凝縮器29に戻りこのサイクルを繰り返し、凝縮器29で作動媒体蒸気との熱交換を安定して継続する。このとき冷却水循環ポンプ22Cは、電力情報処理装置211Bからの制御信号を受けて冷却水の流量を制御する。すなわち電力情報処理装置211Bは、凝縮器29に設けられた温度センサ及び圧力センサからの信号により、発電が安定して最大効率化するように制御を行う。
凝縮器29から流出した作動媒体は作動媒体ポンプ22Bで吸入され、蒸発器23に送出されて再度温水と熱交換を行い蒸気化する。このようなサイクルを繰り返して、バイナリー発電が継続的に行われる。なお電力情報処理装置211Bは、凝縮器29に設けられた温度センサ及び圧力センサからの信号により作動媒体ポンプ22Bを用いて作動媒体の流量を制御し、発電機25の出力電力が安定し最大効率化するように制御を行う。
排ガス/温水熱交換器21から蒸発器23に送出される温水の温度は、一般的には排ガス/温水熱交換器21に送出される排ガス温度および熱量などに従って変化するため、排ガス/温水熱交換器21に送出される排ガス温度および熱量などの変化に伴って、温水の温度は大きく変化する。この為、蒸発器23に流入する温水の温度が許容値を超えると、バイナリー発電システムの運転が不安定になったり、最悪の場合、作動媒体蒸気の圧力が極端に高まり蒸発器23などが破壊する恐れがある。
この防止対策として本発明の火葬システムでは、2系統のバッファタンク215A、215Bを設け、このバッファタンク215A、215Bに流入する温水の温度をバッファタンク215A、215B内の温水温度と平均化して、流入する温水温度の変動を大幅に低減するように構成している。図2を参照して具体的に説明すると、排ガス/温水熱交換器21と温水循環ポンプ22Aとの間にバッファタンク215Aが設けられ、蒸発器23と温水循環ポンプ22Dとの間にバッファタンク215Bが設けられる。各バッファタンク215A、215Bには、バッファタンク215A、215B内の温水の残量、換言すると、温水の液面高さを測定するためのレベルメータ216A、216Bがそれぞれ設けられ、またバッファタンク215A、215B内の温水温度を測定するための温度計217A、217Bがそれぞれ設けられている。温度計217A、217Bからの温度信号は電力情報処理装置211Bに出力されるが、図2ではこの信号線を省略している。なお、温度計217C、217Dについても同様に信号線を省略している。
排ガス/温水熱交換器21からの温水はバッファタンク215Aの上方から注入され、バッファタンク215Aの下方から温水循環ポンプ22Aにより蒸発器23に供給される。一方、蒸発器23からの温水はバッファタンク215Bの上方から注入され、バッファタンク215Bの下方から温水循環ポンプ22Dにより排ガス/温水熱交換器21に供給される。このとき、電力情報処理装置211Bは、レベルメータ216A,216Bからの測定信号によりバッファタンク215A、215B内の温水残量、すなわち温水の液面高さを常時監視し、これらの温水残量が等しくなるように、平均流速に対する変化量を温水循環ポンプ22A、22Dによりそれぞれダイナミックに制御する。すなわち、バッファタンク215A、215B内の温水の液面高さをそれぞれH1,H2とすると、H1=H2となるよう温水の単位時間当たりの流量、すなわち流速を温水循環ポンプ22A、22Dによりダイナミックに制御する。
具体的にはH1>H2の場合、温水循環ポンプ22Aの回転数を上げ、バッファタンク215Aからの流出量を増大する一方、温水循環ポンプ22Bの回転数を下げ、バッファタンク215Bからの流出量を減少する。また、H1<H2の場合は、上記の場合と逆の制御を行う。このような制御により、温水循環ポンプ22A,22Bの性能が完全に同一で無くアンバランスの場合に、ポンプの吐出量が2つの温水循環ポンプ22A,22Bで異なり、一方のバッファタンクの温水残量が増大し続け、ついには温水がバッファタンクからオーバーフローをおこし、他方のバッファタンクの温水残量が減少し続け、バッファタンクの温水残量が空になるという不具合を防止することができる。なお上記の説明において、H1=H2となるよう制御するとして説明したが、必ずしもこのように制御を限定する必要はなく、ΔH=|H1−H2|が一定値となるように制御すれば同様な効果が得られる。
またバッファタンク215A、215Bの下部に排出バルブ(図示せず)を設け、バッファタンク内に設けられたレベルメータ216A、216Bの測定値が設定値に達すると、排出バルブが開き、バッファタンク216A、216Bの温水を排出するよう自動制御しバッファタンク216A、216Bの温水がオーバーフローしないように構成している。さらに、排出バルブによっても温水の排出が十分でない場合は、各バッファタンク216A、216Bの側面上部に設けられたオーバーフローノズル(図示せず)を介してバッファタンク216A、216B内の温水が排出されるように構成されており、2重のオーバーフロー対策が施されている。
次に温水温度の制御について説明する。電力情報処理装置211Bは温度計217A,217Bを参照して、これらの温度が上昇し各設定値に達すると、注水バルブ214A又は注水バルブ214Bを開いて、注水装置213から冷水をバッファタンク215A又は/及びバッファタンク215Bに注入し、バッファタンク215A及びバッファタンク215B内の温水温度が各設定値以下となるように制御する。さらに、蒸発器23に流入する温水の温度を測定する温度計217Cを参照して、この温度が上昇し設定値に達すると、注水バルブ214Cを開きバッファタンク215Aからパイプを介して温水循環ポンプ22Aへ流れる温水へ冷水を注入し、蒸発器23に流入する温水の温度が設定値以下となるように制御する。この機構により、何らかの異常により温水が高温となって蒸発器23に流入するような場合は、温水循環ポンプ22Aに接続するパイプに直接冷水が注水されて温水温度は一気に低下するので、異常時においても火葬システム全体を安定して運転することが出来る。なお上記において、注水装置213から冷水をバッファタンク215A又は/及びバッファタンク215B、温水循環ポンプ22Aに接続するパイプに注入するとして説明したが、冷水に限らず、高温の媒体を冷却する媒体、例えば排ガス/温水熱交換器21で排ガスと熱交換する媒体であっても良い。
次に本発明のバイナリー発電システム19の別の温水温度安定化方法について説明する。バッファタンク215Aと蒸発器23との間にバイパス流路が設けられており、バッファタンク215Aからの温水の温度又は熱量が設定値を超えないように、電力情報処理装置211Bにより流量調整バルブ212Aと流量調整バルブ212Bを用いて、蒸発器23に流入する温水の流速が制御される。具体的には蒸発器23から流出する温水の温度Toutを測定する温度計217Dを参照して、この温度Toutが常時設定温度Tout(設定値)となるように、流量調整バルブ212A、212Bを制御する。すなわち、温度ToutがTout(設定値)を超えると、流量調整バルブ212Bを絞り蒸発器23に流入する温水の流量を抑制し、逆に、流量調整バルブ212Aを開いて排ガス/温水熱交換器21に直接戻る温水の流量を増大するように制御する。上記と逆に、温度ToutがTout(設定値)より低下した場合は、流量調整バルブ212Bを開き蒸発器23に流入する温水の流量を大きくし、逆に、流量調整バルブ212Aを絞って排ガス/温水熱交換器21に直接戻る温水の流量を抑制するように制御する。上記の制御により、火葬システム特有の問題である過酷な温水の変動に対しても、蒸発器23に流入する温水の温度変動を大幅に抑制することが可能であり、バイナリー発電を安定して運転することが出来る。
また排ガス/温水熱交換器21からの温水の温度が低下した場合、一般的なバイナリー発電システムでは発電が停止してしまうが、本発明の火葬システムでは、電力情報処理装置211Bが流量調整バルブ212Aと流量調整バルブ212Bを制御して、蒸発器23に流入する温水の流量を増大させ、流量調整バルブ212Bを介して排ガス/温水熱交換器21に戻る温水の流量を抑制するように制御する。このような制御を行うことにより、バッファタンク215Aからの温水の温度が低下した場合、蒸発器23に流入する温水の温度が低下しないように制御することが出来る。換言すると、排ガスの温度、および熱量が大幅に変化しても本発明による火葬システムは、蒸発器23に流入する温水の温度又は熱量が一定となるように制御されるので安定して発電を行うことが出来、発電した電力を火葬システムを構成する各装置に安定的に供給することにより、火葬システム全体を常に安定して運転することが出来る。
なお上記の説明において、電力情報処理装置211Bは温度計217A、217B、217Cからの温度情報を用いて、注水バルブ214A、214B、214Cを制御するとして説明したが、火葬炉からの排ガスの温度及び熱量は図4を用いて説明したように火葬開始時間からの時間によっておおよそ推定することが出来るので、電力情報処理装置211Bはこれらの情報を用いて予め制御データを演算しておき、注水バルブ214A、214B、214Cを制御するようにしても良い。
次に図3を参照して、主としてバイナリー発電システム19で発電した電力の火葬システムを構成する各装置への供給と、各装置から電力情報処理装置211Bに入力する各種情報を用いて行う本発明の火葬システムの電力制御について説明する。
図3において太線は電力の流れを、細線は制御信号を、破線は各装置に搭載した各種センサからの検知信号を示す。なお、116は熱風回収熱交換器110で発生した熱風を主燃炉11に送風するための熱風回収路を示す。また図3で、電力制御装置211Aと電力情報処理装置211Bはバイナリー発電システム19の外部に存在する装置として記載しているが、電力制御装置211Aと電力情報処理装置211Bはバイナリー発電システム19の一部として構成しても良く、また電力制御装置211Aと電力情報処理装置211Bを火葬システム制御装置31の一部として構成しても良い。さらに、電力制御装置211Aと電力情報処理装置211Bとを一体的に構成しても良い。すなわち、電力制御装置211A、電力情報処理装置211B、火葬システム制御装置31の組み合わせ構成は、ハードウェア、ソフトウェア、ファームウエアの構成に合わせて柔軟に行うことが出来る。また、電力情報処理装置211B、火葬システム制御装置31の制御はソフトウェアでの制御が主であるが、一部ハードウェアで制御する構成であっても良い。
図3において、主として電力を制御する電力制御装置211Aと、主としてアナログ信号又はデジタル信号を処理する電力情報処理装置211Bとを分けた構成について説明したが、この理由について説明する。電力制御装置211Aは大電力を処理しているのでノイズを周辺に放射するが、このノイズが電力情報処理装置211B内部のアナログ回路又はノイズ耐性が弱い回路に混入すると、これらの回路が誤動作をおこし、電力情報処理装置211Bの制御が誤動作または不安定となる恐れがある。そこで、電力制御装置211Aと電力情報処理装置211Bとの電源ラインの分離や電力情報処理装置211Bに対してシールドを施すなどを行い、電力制御装置211Aから大量に発生するノイズが電力情報処理装置211Bに混入して電力情報処理装置211Bが誤動作をおこさないようにしている。
次に図3を参照して具体的に説明すると、バイナリー発電システム19で発電した電力は電力制御装置211Aが、火葬システムを構成する各装置、具体的には、主燃炉11、再燃炉13、バイナリー発電システム19を構成する温水循環ポンプ22Aなどの電気機器、熱風回収熱交換器110、電気集塵機112、触媒装置113、排風機114、電力情報処理装置211Bを構成するCPU、メモリなどの電子機器、火葬システムの他の装置30、具体的には図1に記載の主燃バーナ12、自動納棺装置15などに供給される。
一方、主燃炉11、再燃炉13、バイナリー発電システム19、熱風回収熱交換器110、電気集塵機112などに搭載された各種センサ、具体的には流量計、各種温度計、圧力計、酸素濃度計、排煙濃度計等からの信号はそれぞれ電力情報処理装置211Bに入力し、これらの情報を用いて電力情報処理装置211Bで演算処理され、演算結果を基にして生成した制御信号を電力制御装置211Aに出力する。
前述したように主燃炉11及び再燃炉13から排出される排ガスの温度及び熱量は大きく変動し、本発明によるバイナリー発電システム19はこの変動による電力変動を極力抑制するように制御を行うが、ある程度の変動は避けられない。そこで、各装置で必要とする電力を算出し、不足分の電力については外部電源32からの電力をバイナリー発電システム19で発電した電力に加えて各装置に電力を供給し、各装置への電力供給が安定するように制御する。
またバイナリー発電システム19で発電する電力、及び各装置が必要とする電力は火葬炉の運用状況から予め算出が可能であり、このことから電力情報処理装置211Bは算出した電力情報を用いて、火葬システム全体及び火葬システムを構成する各装置が電力不足にならないように制御を行うように構成しても良い。
またバックアップ電源33は、外部電源32が事故あるいは自然災害などで一時的に使用できない場合に備えて、バックアップする役割を有している。すなわち、外部電源32からの電源供給が停止した場合、電力情報処理装置211Bからの制御信号又は外部電源32からの信号により直ちにバックアップ電源33が起動し、電力制御装置211Aへの電力供給を外部電源32からバックアップ電源33に切り替える。火葬システムの特徴として、いかなる場合であっても火葬が安定して行われることが必要であり、バックアップ電源33は非常時に有効であるが本火葬システムには必須の装置ではない。
次に図5〜図8を参照して本発明の火葬システムにおける実験データについて説明する。図5は、図1に示す再燃炉13における再燃炉温度の時間変化を表すグラフであり、並列運転する2つの火葬炉、A号炉とB号炉をほぼ同時に運転した場合について、A号炉の温度変化を破線でB号炉の温度変化を実線で示している。ここで、A号炉の共通煙道からの排ガスとB号炉の共通煙道からの排ガスとは共通の排気ダクト18Bに排出され、バイナリー発電システム19の排ガス/温水熱交換器21に流入する。
一日の火葬運転の開始に先立って、主燃バーナ12と再燃バーナを共に稼働し、A号炉とB号炉の暖気運転を行う。実験では、A号炉、B号炉の暖気運転をそれぞれt51,t51’時間だけ運転し、これらの暖気運転により各再燃炉の温度は再燃炉の設定温度T2近くまで上昇する。
暖気運転の後、主燃バーナ12と再燃バーナの稼働停止に伴い各再燃炉13の温度はいったん低下するが、その後、時刻t55でA号炉の運転が開始され、時刻t55’でB号炉の運転が開始されると、各再燃炉13の温度はふたたび温度T2近辺まで上昇する。そして、A号炉、B号炉でそれぞれt52,t52’時間だけ運転継続した後2つの火葬炉の運転停止に伴い、主燃炉11の前面に設けられた断熱扉が開放され、外気が主燃炉11及び再燃炉13に流入し各再燃炉13の温度が急速に低下する。その後、2回目の火葬に備えた暖気運転が再度時刻t56’,t56で開始し、以降は前述の作業が繰り返される。2回目の暖気運転は、主燃炉11及び再燃炉13とも一定温度以上に暖まった状態となっているので、暖気運転期間t53,t53’は1回目の暖気運転期間t51,t51’よりも大幅に短い。
次に図6を参照して、A号炉、B号炉の各再燃炉13からの排ガス流量の時間変化について説明する。横軸は図5と同一の時間軸であり、暖気運転、A号炉、B号炉の稼働/停止の各タイミングも図5と同一であり、これは図7及び図8においても同様である。また縦軸はA号炉、B号炉の各再燃炉13からの各排ガス流量を加算した排ガス流量を表す。前述したように、初期段階では排ガスが一時的に大量発生するが、グラフからも時刻t62,t63で排ガスが急増し、その後急減することが読み取れる。なお時刻t61で見かけ上の排ガス流量が急増しているのは、棺17を主燃炉11に入れる際に主燃炉11前面の断熱扉を開くが、このときに一時的に空気が主燃炉11および再燃炉13に流入するためである。
次に図7を参照して蒸発器23の流入口における温度、すなわち温度Tinの時間変化について説明する。温度Tinは暖気運転に伴い上昇し続け、A号炉及びB号炉の運転開始に伴ってさらに急上昇し、温度T72に達する。すなわち、図6からわかるように、火葬開始初期において大量の排ガス熱量が発生し、この熱量により火葬開始から時刻t71まで温度Tinが急上昇する。その後排ガス熱量の低下に伴って温度Tinは低下し続け、暖気運転の開始と共に一定温度T71となり、その後A号炉及びB号炉の運転開始に伴って上昇し、前述した動作を繰り返す。
本発明の火葬システムでは、排ガスの温度及び排ガス流量が大幅に変化し、排ガスの熱量が大幅に変化しても、上述した機構により蒸発器23に流入する温水温度を安定化するよう制御している。次に、排ガスの熱量変化に対して、温度Tinの変動率がどの位抑制されるのかについて概算する。
1)排ガス温度の変動
図5から排ガス温度は温度T1〜T2の範囲で変動することから、変動率はT2/((T1+T2)/2)≒44%となる。
2)排ガス流量の変動率
図6から排ガス流量は流量Q1〜Q2の範囲で変動することから、変動率はQ2/((Q1+Q2)/2)≒70%となる。
3)排ガス熱量の変動率
排ガス熱量が(排ガス温度)×(排ガス流量)に比例すると、排ガス熱量の変動率は、44%+70%=114%となる。
4)温水温度を安定化する制御を行わないときの温水温度の変動率
排ガス熱量の変動率が温水温度の変動率に比例すると、温水温度を安定化する制御を行わないときの温水温度の変動率は114%となる。
一方、図7から温度Tinの変動率は、T72/((T71+T72)/2)≒9%となる。このことから、本発明による温水温度の安定化制御により、温水温度を安定化する制御を行わないときの温水温度の変動率に対して9%/114%≒8%程度に変動を抑制できることがわかる。
次に図8を参照して、本発明の火葬システムで発電した発電量と、火葬システムを構成する各設備の設備使用電力を合計した総設備使用電力の時間変化をについて説明する。図8において、破線はバイナリー発電システム19で発電した発電量を示し、実線は総設備使用電力を示している。発電量はA号炉、B号炉の暖気運転終了と火葬開始時刻t55,t55’との間のタイミングで上昇し始め、図7の温度Tinがピークに達する時刻から5分〜15分程遅れて、時刻t81近辺でピークに達する。その後は図7からわかるように温度Tinが低下し、これに応答して発電量も低下し、2回目の暖気運転が開始されるとふたたび発電量が増加し、以降はこのサイクルを繰り返す。
一方、総設備電力はA号炉及びB号炉の火葬開始に伴って急激にピークに達する。これは図6からわかるように、この期間に排ガス流量がピークに達し、この大量の排ガスを処理するため排風機114の使用電力が急増するためである。その後、総設備電力は各設備の稼働に応じて増減するが、平均的には火葬終了に向かって次第に減少する。
次に発電量を時間積分した発電積算量と、総設備電力を時間積分した総設備電力積算量との比、すなわち電気収支(=発電積算量/総設備電力積算量)について説明する。図8から1回目の火葬における電気収支は53%、2回目の火葬における電気収支は46%となり、1回目と2回目の電気収支の平均は50%と、高効率のバイナリー発電システム19を実現していることがわかる。なお、2回目の電気収支が1回目の電気収支よりも見かけ上低いのは、図7からわかるように2回目の暖気運転の期間が短いことによる2回目の暖気運転中の温度Tinの低下に起因しており、火葬運転時における実質的な電気収支の低下を意味するものではない。
<第2の実施の形態>
次に図9を参照して本発明による火葬システムの第2の実施の形態について説明する。上記においてA号炉とB号炉を同時運転する場合について説明したが、より一般的に、運転のタイミングが独立した2炉以上の複数の火葬炉を並列的に配置し、これらを1セットとして構成するようにしても良い。
図9は本発明の第2の実施の形態に係わる火葬システムの構成図であり、主燃炉11−1〜11−nと再燃炉13−1〜13−nが複数並列的に設けられ、再燃炉13−1〜13−nからの排ガスがまとめてバイナリー発電システム19’に流入するように構成される。本実施の形態による火葬システムでは、各火葬炉が図4に記載の火葬段階のどの段階(初期段階〜終了段階)にあるのかをセンサからの情報を参照して把握し、電力情報処理装置211B’がこの情報を用いて、バイナリー発電システム19’が安定してかつ効率的に発電するように制御を行っても良い。
なお上記において、バッファタンク215A、215Bの温水温度を測定する温度計として、それぞれ温度計217A、217Bを設ける場合について説明したが、バッファタンク215A、215Bの各温水流入口での温水温度と、バッファタンク215A、215Bの各温水流出口での温水温度とを別々に測定するように、各温水流入口と各温水流出口に別々の温度計を設けるように構成しても良い。これにより、バッファタンク215A、215Bにおける温度平滑化の効果をリアルタイムで常時確認することが可能であり、温度制御が正常に行われているか否かを迅速に把握することが出来る。
11,11−1〜11−n 主燃炉
12 主燃バーナ
13, 13−1〜13−n再燃炉
14 前室
15 自動納棺装置
16 お別れ台
17 棺
18A 共通煙道
18B 排気ダクト
18C 排ガス補助冷却装置兼非常排気ダクト
19,19’ 排ガス/温水熱交換器を備えたバイナリー発電システム
110 熱風回収熱交換器
111 吸気口
112 電気集塵機
113 触媒装置
114 排風機
115 排気筒
116,116’ 熱風回収路
21 排ガス/温水熱交換器
22A、22D 温水循環ポンプ
22B 作動媒体ポンプ
22C 冷却水循環ポンプ
23 蒸発器
24 媒体タービン
25 発電機
26 高周波整流器
27 DC/ACコンバータ
28 電力出力端子
29 凝縮器
210 冷却塔
211A,211A’ 電力制御装置
211B,211B’ 電力情報処理装置
212A,212B 流量調整バルブ
213 注水装置
214A、214B、214C 注水バルブ
215A、215B バッファタンク
216A、216B レベルメータ
217A、217B、217C、217D 温度計
30 火葬システムの他の装置
31 火葬システム制御装置
32 外部電源
33 バックアップ電源

Claims (12)

  1. 遺体を燃焼するための燃焼炉と、
    前記燃焼炉からの排ガスが流入し、前記排ガスの熱を媒体と熱交換する排ガス/媒体熱交換器と、
    前記媒体が注入され、この媒体の温度変動を抑制する第1のバッファタンクと、
    前記第1のバッファタンクからの前記媒体の熱により低沸点作動媒体を加熱・蒸発させ作動媒体蒸気を生成する蒸発器と、
    前記作動媒体蒸気により駆動される媒体タービンと、
    前記媒体タービンにより駆動され発電する発電機と、
    火葬システムを構成する各装置に前記発電機で発電した電力と、前記各装置で必要とする電力の不足電力を外部電源から供給する電力制御装置と、
    を備える火葬システム。
  2. 前記蒸発器から流出する前記媒体が注入され、この媒体の温度変動を抑制して前記媒体を前記排ガス/媒体熱交換器に供給する第2のバッファタンクを設けることを特徴とする請求項1記載の火葬システム。
  3. 前記第1のバッファタンク及び前記第2のバッファタンク内の前記媒体の温度がそれぞれ設定温度を超えると、前記各バッファタンク内の前記媒体を冷却するための冷却媒体が前記第1のバッファタンク及び前記第2のバッファタンク内に注入されることを特徴とする請求項2記載の火葬システム。
  4. 前記第1のバッファタンクと前記蒸発器の間に設けられた前記媒体を流す媒体流路に、前記媒体を冷却するための冷却媒体を注入する冷却媒体注入手段を有し、
    前記蒸発器に流入する前記媒体の温度が設定温度範囲内となるように前記冷却媒体注入手段を制御することを特徴とする請求項1乃至請求項3記載の火葬システム。
  5. 前記第1のバッファタンクと前記蒸発器との間に設けた第1の流量調整バルブと、
    前記第1のバッファタンクと前記蒸発器との間から前記排ガス/媒体熱交換器に前記媒体を帰還するバイパス流路と、
    前記バイパス流路に設けた第2の流量調整バルブと、を備え、
    前記蒸発器から流出する前記媒体の温度が設定温度範囲内となるように前記第1の流量調整バルブと前記第2の流量調整バルブとを制御することを特徴とする請求項1乃至請求項4記載の火葬システム。
  6. 前記第1のバッファタンクから流出する前記媒体を吸引して前記蒸発器に送出する第1の媒体循環ポンプと、
    前記第2のバッファタンクから流出する前記媒体を吸引して前記前記排ガス/媒体熱交換器に送出する第2の媒体循環ポンプと、
    前記第1のバッファタンク及び前記第2のバッファタンク内の各前記媒体の第1液面高さ及び第2液面高さをそれぞれ測定する第1レベルメータ及び第2レベルメータと、を備え、
    前記第1液面高さと前記第2液面高さの差が一定値となるように、前記第1の媒体循環ポンプ及び前記第2の媒体循環ポンプがそれぞれ前記媒体の流速を制御することを特徴とする請求項2乃至請求項5記載の火葬システム。
  7. 前記第1レベルメータ及び第2レベルメータからの信号を参照し、前記第1液面高さと前記第2液面高さがそれぞれ設定値に達したと判断された場合、前記第1のバッファタンク及び前記第2のバッファタンクに設けられた排出バルブが開き、前記第1のバッファタンク及び前記第2のバッファタンク内の前記媒体が排出されることを特徴とする請求項6記載の火葬システム。
  8. 前記火葬システムに設けた各種センサからの情報を演算して制御信号を生成し、この制御信号により前記火葬システムを構成する各装置のうちの少なくとも一つの装置を制御する電力情報処理装置を設けることを特徴とする請求項1乃至請求項7記載の火葬システム。
  9. 前記火葬炉が並列に複数設けられ、前記火葬炉からの各排ガスが共通の前記排ガス/媒体熱交換器に流入することを特徴とする請求項1又は請求項8記載の火葬システム。
  10. 前記排ガス/媒体熱交換器から排出された排ガスの熱を空気と熱交換し熱風を生成する熱風回収熱交換器と、
    前記熱風を前記火葬炉に送出する熱風回収路と、を備える請求項1乃至請求項9記載の火葬システム。
  11. 前記火葬炉の燃焼段階の情報を参照して、前記排ガス/媒体熱交換器、前記蒸発器、前記媒体タービン、前記発電機、前記冷却媒体注入手段、前記第1の流量調整バルブ、前記第2の流量調整バルブ、前記第1の媒体循環ポンプ、前記第2の媒体循環ポンプ、前記第1のバッファタンク及び前記第2のバッファタンクに前記冷却媒体を注入する手段の少なくとも一つを制御することを特徴とする請求項6記載の火葬システム。
  12. 前記外部電源に異常が発生した場合に備えるバックアップ電源を設け、前記外部電源からの電力が停止又は低下した場合は、前記外部電源から前記バックアップ電源に切り替えることを特徴とる請求項1乃至請求項11記載の火葬システム。
JP2014514995A 2012-12-03 2013-11-25 火葬システム Active JP5579346B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014514995A JP5579346B1 (ja) 2012-12-03 2013-11-25 火葬システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012263922 2012-12-03
JP2012263922 2012-12-03
JP2014514995A JP5579346B1 (ja) 2012-12-03 2013-11-25 火葬システム
PCT/JP2013/081618 WO2014087864A1 (ja) 2012-12-03 2013-11-25 火葬システム

Publications (2)

Publication Number Publication Date
JP5579346B1 JP5579346B1 (ja) 2014-08-27
JPWO2014087864A1 true JPWO2014087864A1 (ja) 2017-01-05

Family

ID=50883287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014514995A Active JP5579346B1 (ja) 2012-12-03 2013-11-25 火葬システム

Country Status (6)

Country Link
US (1) US9822972B2 (ja)
EP (1) EP2940385B1 (ja)
JP (1) JP5579346B1 (ja)
KR (1) KR101726730B1 (ja)
CN (1) CN104870899B (ja)
WO (1) WO2014087864A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2736159B2 (es) * 2019-10-30 2022-12-22 Univ La Rioja Procedimiento de operación de un horno crematorio energéticamente mejorado y urna funeraria acumuladora de energía eléctrica
KR102417097B1 (ko) * 2021-10-26 2022-07-06 최병렬 천연가스를 이용한 블루수소 생산장치와 원료 연소시 발생한 폐가스의 액화 장치, 고온의 증기를 이용한 증기 터빈 발전장치

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1800959A (en) * 1925-04-29 1931-04-14 Ruths Accumulator Aktiebolag Steam plant
FR2166505A5 (en) 1971-12-28 1973-08-17 Rhone Poulenc Sa Carbone from alpha-pinene - by oxidn with performic acid to hydroxy-8-carvotanacetone and dehydration
JPS526853A (en) 1975-07-07 1977-01-19 Shigeji Sugaya Constant output electric generating technique and plant by burninc up city trashes
CN86206663U (zh) * 1986-09-03 1987-07-29 中国人民解放军7433工厂 移动式火化车
JP2957627B2 (ja) * 1990-03-15 1999-10-06 大阪瓦斯株式会社 都市ゴミ焼却溶融設備
JPH0518212A (ja) * 1991-07-11 1993-01-26 Toshiba Corp 排熱利用発電制御装置
JPH10184316A (ja) 1996-12-24 1998-07-14 Toshiba Corp 排熱利用の発電制御装置
JP3847962B2 (ja) * 1997-07-30 2006-11-22 株式会社東芝 発電プラントの給水加熱システム
US6973789B2 (en) * 1998-11-10 2005-12-13 Ormat Technologies, Inc. Method of and apparatus for producing power in remote locations
JP2002060759A (ja) 2000-08-22 2002-02-26 Toshiba Corp 廃プラスチック処理装置
US6436337B1 (en) * 2001-04-27 2002-08-20 Jupiter Oxygen Corporation Oxy-fuel combustion system and uses therefor
JP2003314365A (ja) * 2002-04-18 2003-11-06 Ishikawajima Harima Heavy Ind Co Ltd 熱分解ガスの再利用方法及び装置
JP4186181B2 (ja) * 2002-08-29 2008-11-26 株式会社日立製作所 熱電併給方法及び熱電併給システム
JP4875546B2 (ja) 2007-06-13 2012-02-15 株式会社荏原製作所 排熱発電装置、排熱発電装置の作動媒体蒸気過熱度制御方法
JP2009221961A (ja) 2008-03-17 2009-10-01 Fuji Electric Holdings Co Ltd バイナリー発電システム
US20100139533A1 (en) 2008-12-05 2010-06-10 Jin-shin Park Movable integrated cremation device
JP2012013266A (ja) * 2010-06-29 2012-01-19 Taisho Densetsu Co Ltd 発電システム、および火葬炉
KR101027045B1 (ko) * 2010-12-09 2011-04-06 주식회사 대경에스코 통합형 화장로 시스템
CA3169637A1 (en) * 2011-03-14 2012-09-20 Pyrogenesis Canada Inc. Method to maximize energy recovery in waste-to-energy processes
JP5843391B2 (ja) 2011-12-14 2016-01-13 株式会社タクマ 廃棄物発電システム

Also Published As

Publication number Publication date
EP2940385A1 (en) 2015-11-04
EP2940385A4 (en) 2016-10-26
KR101726730B1 (ko) 2017-04-13
CN104870899A (zh) 2015-08-26
EP2940385B1 (en) 2019-04-10
KR20150092195A (ko) 2015-08-12
US20150308678A1 (en) 2015-10-29
WO2014087864A1 (ja) 2014-06-12
CN104870899B (zh) 2017-03-08
JP5579346B1 (ja) 2014-08-27
US9822972B2 (en) 2017-11-21

Similar Documents

Publication Publication Date Title
US9476325B2 (en) Method and apparatus of producing and utilizing thermal energy in a combined heat and power plant
JP4554527B2 (ja) 廃熱利用の省エネルギー設備
JP6034154B2 (ja) 廃熱回収設備、廃熱回収方法及び廃棄物処理炉
JP5579346B1 (ja) 火葬システム
JP5438146B2 (ja) 加圧流動炉システム
CN104633634A (zh) 用于管理锅炉的关闭的方法
JP2012189297A (ja) ボイラ設備及びその出口ガス温度の制御方法
JP2006207882A (ja) 吸収ヒートポンプ
JP2011149434A (ja) ガスタービン複合発電システム
JP5605557B2 (ja) ヒートポンプ式蒸気発生装置
TWI613399B (zh) 火葬系統
JP5491550B2 (ja) 加圧流動炉システム及びその制御方法
JP2012037196A (ja) ヒートポンプ式蒸気発生装置
JP2013100726A (ja) 余熱低沸点発電システム
JP5807903B2 (ja) 間欠運転式のごみ焼却施設の熱回収利用方法及び熱回収利用システム
KR101059537B1 (ko) 흡수식 냉방 시스템
JP2001041431A (ja) 廃熱ボイラのダスト排出装置
CN110925594A (zh) 一种提高氮气汽化器汽化率的氮气汽化系统及方法
JP2021059990A (ja) ごみ焼却炉の蒸気発電システム
JP2001021273A (ja) 廃棄物処理設備の高圧蒸気復水器の負荷平準化方法及び負荷平準化装置
OA16509A (en) Method and apparatus of producing and utilizing thermal energy in a combined heat and power plant.
JP2010196656A (ja) ガスタービンプラント

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140708

R150 Certificate of patent or registration of utility model

Ref document number: 5579346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250