JPWO2014045383A1 - 加工工程決定方法および加工工程設計装置 - Google Patents

加工工程決定方法および加工工程設計装置 Download PDF

Info

Publication number
JPWO2014045383A1
JPWO2014045383A1 JP2014536485A JP2014536485A JPWO2014045383A1 JP WO2014045383 A1 JPWO2014045383 A1 JP WO2014045383A1 JP 2014536485 A JP2014536485 A JP 2014536485A JP 2014536485 A JP2014536485 A JP 2014536485A JP WO2014045383 A1 JPWO2014045383 A1 JP WO2014045383A1
Authority
JP
Japan
Prior art keywords
machining
processing
surface accuracy
unit
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014536485A
Other languages
English (en)
Other versions
JP5890907B2 (ja
Inventor
大輔 堤
大輔 堤
麗子 井上
麗子 井上
洋一 野中
洋一 野中
隆宏 中野
隆宏 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of JP5890907B2 publication Critical patent/JP5890907B2/ja
Publication of JPWO2014045383A1 publication Critical patent/JPWO2014045383A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)

Abstract

本発明の目的は、3次元形状加工において、各工程の面精度に基づき複数工程の工程順序を決定する方法を提供する。複数の工程からなり、素材の形状を設計形状へと加工するための加工工程を決定する方法において、加工工程設計のための入力項目として、各工程における加工後の面精度に加え、被切削面の加工前の面精度(加工前要求面精度)を定義し、工程毎に工具と被削材の幾何要素から加工後の面精度を求め、加工後の面精度が最終要求面精度を満たすかを判定し、上記を満たさない場合には、加工前要求面精度を満たす工程候補から次工程を選択することで、複数工程からなる加工工程の組み合わせと順序を決定することを特徴とする。

Description

本発明は、CAM(コンピュータ支援加工)システムに好適な、複数の工程からなる加工工程を決定する方法および加工工程設計装置に関する。
NC加工機により構成される機械加工生産ラインでは、生産すべき製品のCADモデルに対して、実際の加工の準備として、CAMを用いて、加工機の選択、工具の回転数や送り速度といった加工条件、工具と加工条件を用いてCADモデルの加工範囲を指定する加工領域を設定し、工具の軌跡情報であるツールパスを作成した後に、NC加工機別にNC加工機の動作を制御するNCデータを作成する必要がある。CAMにより作成したNCデータをNC加工機に転送し、実際の加工を実施する。
CAMにおいて工程設計を実施する際には、粗加工で高い材料除去率が要求され、さらに仕上げ加工では高い表面の品質が要求される。一般には、粗加工、および仕上げ加工の複数工程によって機械加工工程が設計されるが、被加工形状によっては、粗加工による最大削り残し量が仕上げ加工用の工具の加工許容値を超えて、仕上げ加工用の工具の欠損、仕上げ面の劣化などの危険性が高まることが起こる。このような不具合を回避するために、粗加工と仕上げ加工の間に、中粗加工を余裕を見て挿入する工程設計が行なわれることが多いが、機械加工の生産性を高める上で、最適な加工工程を決定する方法が望まれている。
本技術分野の背景技術として、特許文献1がある。この公報には、「等高線加工法による荒加工方法において、被加工物仕上がり面の傾斜角度ごとに被加工面を分類して、分類した面ごとに使用する工具による最大削り残し量を算出し、算出した最大削り残し量が許容値を超える場合に、その部分に再加工位置を設定する」と記載されている(要約参照)。
また、特許文献2がある。この公報には、「複数の工程候補の中から加工能力の高い順に工程候補を選定し、その工程候補によって加工することのできる最大加工領域を加工前の形状と加工後の形状から求め、最大加工領域と加工後の形状の差分を求め、その差分が許容値以下になるまで工程候補の選定を繰り返す。選定した工程候補を配列して、最後に選定した工程候補を最終の工程とする複数の工程順序候補を生成する。各工程順序候補について、各工程の加工能力、加工量と負荷時間から実効加工時間を求め、各工程の実効加工時間を総和して総実効加工時間を求め、総実効加工時間が最短になる工程順序候補を加工工程に決定する」と記載されている。
また、特許文献3がある。この公報には、「3次元CAD装置H1から3次元素材形状データM3及び3次元製品形状データM1を読み込み、3次元素材形状データM3から複数の工程を経て3次元製品形状データM1を作成するための加工工程を決定するものであり、仕上げ代46及び加工条件の判断に必要な閾値が格納された加工知識データベースD1と、各種工具情報が格納された工程候補データベースD2と、3次元製品形状データM1に仕上げ代46を肉盛りして3次元形状データM2を作成し、これを加工目標として各種工具情報を用いて複数工程の中から加工精度及び加工能率を高くするための加工工程の順序を決定する工程設計モジュールE1とを備える」と記載されている。
特開2003−108207号公報 特許第4748049号公報 特開2009−274160号公報
しかしながら、特許文献1に記載の加工工程設計方法は、複数工程からなる加工工程が考慮されておらず、削り残しについてもスカラップ高さ(スカラップ高さは面精度の指標として使用される。例えば、図8(a)に示すように、加工工具の隣り合うツールパスの間に削り残し部分が出来るが、製品形状である最終仕上げ面に垂直方向に測った最大高さと定義される。最終形状800が斜面で表される図8(b)の場合には、スカラップ高さは斜面に垂直方向に測られる。)のみを定義している。
また、特許文献2に記載のものは、最終面以外の面精度は考慮されておらず、工程間での面精度が考慮されていない。そのため、前工程の加工後形状が後工程に影響を与えてしまい、工具の異常摩耗など実加工での不具合懸念を排除できないという課題がある。
また、特許文献3に記載のものは、最終面精度は仕上げ代として一意に定義し、仕上げ工程前の面精度は考慮せず穴加工など特定フィーチャの前工程要否をデータベース化した加工知識から判断しており、3次元の自由曲面加工には対応していないという課題がある。
そこで本発明の目的は、3次元形状加工において、各工程の面精度に基づき複数工程の工程順序を決定する方法を提供することにある。
例えば、切削加工における加工工程は、一般に大径工具を用いることで加工能率が高くなるが、工具が大きい分、干渉や工具形状の制約により削り残しが生じる。すなわち、1つの工具および工程だけでは、要求される面精度を満たすことができない場合が多く、複数の工程を組み合わせ、面精度を満たす必要がある。この工程の組み合わせ、および順序の決定は、決定の煩雑さから実際の運用においては、加工対象の製品や部位ごとにテンプレート化して利用されることも多い。しかしながら、テンプレートの利用では詳細な設計形状ごとに加工工程を最適化することはできない。本発明では、精度と能率(生産性)のトレードオフに対して、精度を満たし能率の高い工程の組み合わせを決定し、その順序を決定する方法を提供することを目的とする。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
上記課題を解決するために本発明では、素材の形状を設計形状へと加工するための複数の工程からなる機械加工工程を決定する方法において、少なくとも加工機、工具、加工諸元、加工方法の各データ項目に加えて、被切削面の加工前の面精度(加工前要求面精度)のデータ項目を有する工程候補データテーブルを作成し、工程設計対象製品CADモデル、素材CADモデルより加工領域モデルを作成し、該加工領域モデルを加工能率が高く加工が可能な初期工程候補を前記工程候補データテーブルより選択し、前記加工領域モデルを前記選択した工程候補により加工を行うツールパスデータを作成し、該ツールパスデータ、および工具と被削材の幾何要素データを使用して、加工後の面精度を算出し、該加工後の面精度が最終要求面精度を満たすか否かを判定し、満たさない場合には、前記加工後の面精度を満たす加工前要求面精度を持つ工程候補を前記工程候補データテーブルから次工程として選択し、該次工程により前記加工領域モデルの削り残し領域を加工するシミュレーションにより、加工後の面精度が最終要求面精度を満たすか否かを判定する工程までを繰り返すようにした。
また、上記課題を解決するために本発明では、少なくとも工程名称、加工機、工具、加工諸元、加工方法、加工前要求面精度のデータ項目を有する工程候補記憶テーブルを記憶する記憶部と、演算部と、入力部と、出力部と、通信部とを備え、前記演算部は、素材形状と最終形状の差分から切削加工で除去すべき領域を抽出する加工領域算出部と、前記記憶部に記憶されている工程候補データから工程の組み合わせと順序を決定し、加工工程設計案を作成する加工工程設計部と、製品CADモデルデータ、素材CADモデルデータ、加工領域モデルデータ、および工程候補データに従って3次元CAMが作成したツールパスデータを使用して、工程毎に工具と被削材の幾何要素から加工後の面精度を算出する加工後面精度算出部と、前記加工後面精度と、設計要求である最終要求面精度とを比較し、加工後の面精度が、最終要求面精度を満たすか否かを判定する、および前記加工後面精度算出部で算出した加工後面精度と、前記記憶部に記憶されている前記工程候補記憶テーブルの加工前要求面精度とを比較し、加工前要求面精度を満たす工程候補を選別する面精度比較処理部と、前記加工工程設計部で作成した工程設計案に対して、加工時間を算出する加工時間算出部とを有することを特徴とする加工工程設計装置を構成した。
本発明によれば、3次元形状加工において、各工程の面精度に基づき複数工程の工程順序を決定する方法を提供することができる。
例えば、被切削面の面精度に基づき総加工時間の短い工程組み合わせを決定することにより加工時間が削減される。また、工程組み合わせ探索による工程設計の自動化により、準備工数が低減される。また、工程間の面精度考慮による加工不具合の事前考慮により、安全性が向上する。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施の形態に係る加工工程設計方法を実施する加工工程設計装置の構成図である。 (a)〜(c)は、加工能率と面精度に着目した工程設計において考慮する加工前要求面精度、加工後面精度、および最終要求面精度の関係を説明するための図面である。 本発明の一実施の形態に係る工程候補記憶テーブル構成例である。 加工機データテーブルの構成例を示す図である。 本発明の一実施の形態に係る加工工程設計方法の概要を示すフローチャートである。 本発明の一実施の形態に係る加工後面精度に基づき加工領域を分割する方法を示すフローチャートである。 本発明の一実施の形態に係る加工工程設計方法による可能な組み合わせを探索する方法を示すフローチャートである。 スカラップ高さの定義を説明するための図である。 本発明の一実施の形態に係るCAM設定画面の一例を示す図である。 本発明の一実施の形態に係るCAM設定画面の加工工程一覧画面の工程順序のエラーを表示する例を示す図である。 本発明の一実施の形態に係るCAM設定画面の加工工程一覧画面の加工後面精度の設定方法を変更した例を示す図である。
(1)発明の概要
まず、本発明の概要について説明する。
発明が解決しようとする課題でも述べたように、実際の機械加工においては、加工能率が高い工程だけでは要求される面精度を満たせない場合が多く、加工能率の異なる複数の工程を組み合わせて加工が行われる。この工程の組み合わせ、および順序を決定することを工程設計と呼び(加工工程設計、加工戦略立案などと呼ぶこともある)、決定された組み合わせ、および順序を工程設計案と呼ぶ。
図2(a),(b),(c)に、横軸に加工能率、縦軸に面精度を取ったグラフを示す。以下、このグラフを用いて、工程設計で考慮すべき事項を述べる。
図2(a)において、加工能率の高い大粗工程(被加工面を複数工程にて加工する場合に、最も加工能率を重視して設定された最前加工工程)201では、加工後の面精度が設計で要求される最終面精度(最終要求面精度)よりも粗いため、追加の工程が必要である。最終要求面精度を満たすには、仕上げ工程(被加工面を複数工程にて加工する場合に、最終要求面精度を満たすように面精度を重視して設定された最終加工工程)203が必要となるが、仕上げ工程203の加工を行うためには、その前工程の加工後面精度が、仕上げ工程203の加工前要求面精度を満たす必要がある。
ここで加工前要求面精度とは、ある工程を実施するにあたり要求される被切削面の加工前の面精度であり、例えば、面が粗い状態で仕上げ工程を行うと仕上げ用の工具が欠損してしまうことなどを考慮して設定される条件である。
例えば、図2(a)では、大粗工程201による加工の結果である加工後面精度では、仕上げ工程203の加工前要求面精度を満たしていないことを表わしており、このために、図2(b)に示すように、大粗工程201と仕上げ工程203の間に、中粗工程(大粗工程による削り残しの面精度を、加工前要求面精度が満たし、仕上げ工程の加工前要求面精度よりも細かい面精度に加工することが可能な加工工程)202を追加することで工程設計案を完成させる。
図2(a)のように大粗工程201と仕上げ工程203の組み合わせだけでは、加工不具合が生じる可能性があることを明示すること、及び加工不具合が起きないよう図2(b)のように中粗工程202を追加すること、などが工程設計において必要な考慮事項である。
また、同一の工程でも加工領域によっては工具と被削材の幾何的な接触状況の違いにより、図2(c)に示すように、加工能率が高い工程でも最終要求面精度を満たすことがある。そのため、加工後面精度を加工前に算出することで、冗長な追加工程を廃することも工程設計において加工時間短縮の効果が大きい。
本発明は、その一実施の形態において、例えば、加工後面精度と加工前要求面精度に着目し、加工工程設計を行う方法を提供する。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
(2)加工工程設計方法を実施する加工工程設計装置の構成
図1に、本発明の一実施の形態に係る加工工程設計方法を実施する加工工程設計装置100の構成図を示す。
図1において、加工工程設計装置100は、演算部101、記憶部102、入力部103、出力部104、通信部105から構成されている。加工工程設計装置100は、通信部105、ネットワーク170を介して、3次元CAM130、NC工作機械140、3次元CAD150、NCシミュレータ160が接続される。
なお、加工工程設計装置100が3次元CAM130の一機能として同一の装置内に構成されてもよい。また、入力部103および出力部104は加工工程設計装置100内に独立の構成として保有されず、例えばNC工作機械140が保有する入出力装置を用いてもよい。
入力部103は例えばキーボードやマウスであり、出力部104は例えばディスプレイやプリンタであり、演算部101は、例えばCPUなどのプロセッサであり、記憶部220は例えばHDDや半導体メモリである。
入力部103は、ユーザの指示の入力を受け付け、出力部104は、本コンピュータシステムの処理結果を表示したり印刷したりする。
3次元CAD150は、加工を行う製品の素材形状(素材CADモデル)、および最終形状(製品CADモデル)を3次元形状データとして作成する。3次元データとして、素材形状、最終形状の他に、加工の中間形状を作成することもある。
3次元CAM130は、3次元CAD150で作成された3次元形状データまたは外部から入力された3次元形状データに対して、加工領域の決定、加工条件の設定、工具の選定、加工パスの作成を行い、作成した加工パスからNCプログラムを作成する。前記加工パス作成までの処理は、3次元CAM130と加工工程設計装置100の演算部101、および記憶部102とのデータのやりとりによって処理することができる。また、前記処理にNCシミュレータ160とのデータのやりとりが加えられても構わない。
NCシミュレータ160は、3次元CAM130で作成されたNCプログラム、または加工工程設計装置100の記憶部102に記憶されたNCプログラムをロードして、加工シミュレーションを実行して、結果を回答する。
演算部101は、その上で記憶部102などに記憶されたプログラムを実行することによって、加工領域算出部110、加工工程設計部111、加工後面精度算出部112、面精度比較処理部113、加工時間算出部114、加工工程面精度チェック部115として機能する。
加工領域算出部110は、素材形状と最終形状の差分から切削加工で除去すべき領域を抽出する。ここで、前記素材形状および最終形状は加工の中間形状と置き換えられても構わない。
加工工程設計部111は、記憶部102に保持されている工程候補データから工程の組み合わせと順序を決定し、工程設計案を作成する。前記処理は、加工後面精度算出部112、面精度比較処理部113、および加工時間算出部114での処理結果に基づき実施される。加工工程設計部の処理の詳細については、図5〜7のフローチャートを用いて後述する。
加工後面精度算出部112は、製品CADモデルデータ、素材CADモデルデータ、加工領域モデルデータ、および工程候補データに従って3次元CAMが作成したツールパスデータを使用して、工程毎に工具と被削材の幾何要素から加工後の面精度を算出する。ここで幾何要素とは、少なくとも、工具刃先R、軸切込みAp、工具と被削材の傾斜角θを含む。また、加工後面精度算出部112は、NCシミュレータ160に加工シミュレーションの実行を依頼して、その結果に基づいて加工後の面精度を算出することもできる。
加工後面精度算出部112は、加工後の面精度の指標としては、少なくともスカラップ高さを算出する。スカラップ高さは、図8(a)に示すように、加工工具の隣り合うツールパスの間に削り残し部分が出来るが、製品形状である最終仕上げ面に垂直方向に測った最大高さと定義される。最終形状800が斜面で表される図8(b)の場合には、スカラップ高さは斜面に垂直方向に測られる。スカラップ高さの他の指標としては、例えば、JISに記載の表面粗さ(Ra:中心線平均粗さ、Rmax:最大高さ、Rz:十点平均粗さ、など)などを算出してもよい。
面精度比較処理部113は、加工後面精度算出部112で算出した加工後面精度と、設計要求である最終要求面精度とを比較し、加工後の面精度が、最終要求面精度を満たすかどうかを判定する。また、加工後面精度算出部112で算出した加工後面精度と、記憶部102に記憶されている加工前要求面精度とを比較し、加工前要求面精度を満たす工程候補を選別する。
加工時間算出部114は、加工工程設計部111で作成した工程設計案に対して、加工時間を算出する。ここで加工時間は、例えば3次元CAM130で作成した加工パスの長さと送り速度から算出できる。また、NCシミュレータ160を用いて、工作機械の各軸の最大速度、加減速、工具交換時間、などを考慮した加工時間を算出することもできる。
以上示したように、本実施例における演算部101では、面精度として、各工程での加工前要求面精度、各工程での加工後面精度、および、設計要求である最終要求面精度、が定義されている。
(3)記憶部の構成
記憶部102は、工程候補データ記憶領域120、加工機データ記憶領域121、製品CADモデル記憶領域122、素材CADモデル記憶領域123、加工領域モデル記憶領域124、NCプログラム記憶領域125、加工工程設計案記憶領域126とを有する。各記憶領域のデータは、3次元CAM130の記憶部のデータと共通させてもよく、その場合には3次元CAM130の記憶部にデータが格納されることも考えられる。
工程候補データ記憶領域120は、図3に示す工程候補記憶テーブル301を記憶する。工程候補記憶テーブル301は、テーブルの構成要素として、例えば、工程名称311、加工機312、工具313、加工諸元314、加工方法315、加工前要求面精度316などを持つ。この他に、例えば、加工後の要求面精度(スカラップ高さなど加工後面精度算出部112で算出するものと同等のものを含む)や、工具の進入、退出方法(エンゲージ、リトラクト)など、一般的なCAMに含まれる設定項目を構成要素として持ってもよい。
工程名称311により特定される各データレコードは、1つの工程候補を表すデータであり、予めテーブルに想定される工程候補として登録しておく。
加工機312は、工程名称311で特定される工程候補が実施される加工機を特定する名称、識別IDを保持する。
工具313は、例えば、工具材種(超硬、ハイス、セラミックなど)、工具形状種別(ブルノーズ、ボールエンド、総型など)、工具径、工具刃先R、刃数などの情報を保持する。
同一工具でも、加工諸元や加工方法の異なる工程案を候補として複数保持してもよい。
加工諸元314は、例えば、切削速度V(m/分)、一刃送りfz(mm/刃)などの情報を保持する。主軸回転数S(rpm)や送り速度F(mm/分)など工作機械に指令する際に用いる条件値を保持してもよい。テーブル構成要素として対象被削材の材種を追加し、材種ごとに加工諸元を保持してもよい。
加工方法315は、例えば、工具の動作に基づく加工方法(等高線加工、パート従属加工、トロコイド加工など)や、工具と被削材の接触量(軸切込み量(ap)、径切込み量(ae)など)などの情報を保持する。工具と被削材の接触量を規定せず、例えば、スカラップ高さなど加工後面精度を条件として設定し、3次元CAM130で設定条件を満たす工具の切込み量を設定させてもよい。
加工前要求面精度316は、ある工程を実施するにあたり要求される被切削面の加工前の面精度であり、例えば、スカラップ高さ、パートストック(スカラップ底面から加工面までの一定厚さ)、最大切込み高さ、最大単位除去体積などで定義する。また、例えば、JISに記載の表面粗さ(Ra:中心線平均粗さ、Rmax:最大高さ、Rz:十点平均粗さ、など)などで定義してもよい。
工程候補の工具(例えば、初期欠損に強い工具や、切込み高さが著しく高いラフィング工具など)や加工諸元(面精度が悪い箇所を加工することを前提とした低い諸元など)などによっては、加工前要求面精度を保持しない工程候補があっても構わない。
加工前要求面精度316を工程候補記憶テーブル301の構成要素として保持することで、複数の工程からなる加工工程設計において、工程の前提条件を満たす工程順序案を生成することができる。工程候補データ記憶領域の加工前要求面精度は本発明の特徴である。
加工機データ記憶領域121は、機械加工ショップに在る全ての加工機の装置情報を記憶する。例えば、本実施形態においては、図4に示すような加工機データテーブル401を記憶する。
図示するように加工機データテーブル401は、加工機を特定する識別情報である加工機番号欄411と、加工機の加工機名を特定する情報を格納する加工機欄412と、加工機の軸構成を特定する情報を格納する軸構成欄413と、加工機の各軸のストロークを特定する情報を格納するストローク欄414と、加工機を段取り換えする平均時間を格納する段取時間欄415とを有する。
製品CADモデル記憶領域122は、3次元CAD装置150で作成された製品毎の最終加工形状を表す製品CADモデルデータを、ネットワーク170、通信部105を介して受け付けて、記憶する。
製品CADモデルデータは、例えばDXFファイル形式にて格納しており、フェイスモデルは要素定義部(ENTITIES)に図面を構成する各図形要素として定義されており、ソリッドモデルはブロック定義部(BLOCKS)にブロック図形要素として定義されている。本実施例では、CADファイル形式は特に限定はしない。
また、本実施例では、製品の形状の面精度として、最終要求面精度データを製品CADモデルに付加している。このデータは、3次元CAD装置150で作成されたデータを採用する場合と、加工工程設計装置100において、製品CADモデルデータを登録する際に最終要求面精度データを付加する場合がある。
素材CADモデル記憶領域123は、製品毎の素材形状を表わす3次元CADデータを記憶する。フェイスモデル、ソリッドモデルのいずれか、または両形式のデータを記憶する。3次元CAD装置150において作成された3次元CADデータを通信部を介して受信して、格納する。素材CADモデル記憶領域123のファイル形式についても、前記した製品CADモデル記憶領域122と同じファイル形式にて格納する。
加工領域モデル記憶領域124は、加工領域算出部110が素材CADモデルと製品CADモデルの差分から切削加工で除去すべき加工領域を抽出して作成した加工領域モデルを記憶する。または、3次元CAM130で作成した加工領域モデルデータを受信して記憶する。加工領域モデル記憶領域のファイル形式についても、前記した製品CADモデル記憶領域122と同じファイル形式にて格納する。
NCプログラム記憶領域125は、3次元CAM130で作成されてNC工作機械140の入力となるNCプログラムが工程設計案と関連付けられて保持される。
加工工程設計案記憶領域126は、加工工程設計部111で作成した工程設計案データを記憶する。工程設計案データは、図9の加工工程一覧画面903に表示されているように、工程順番号欄911、工程名称を特定する工程名欄912、使用する工具の情報を格納する工具欄913、使用する加工諸元の情報を格納する加工諸元欄914、加工前要求面精度を工程候補記憶テーブル301より読み出して記録する加工前要求面精度欄915、加工後面精度算出部112が算出した加工後面精度を記録する。
(4)加工工程設計方法の概要
次に、図5により、本発明の一実施の形態に係る加工工程設計方法の概要について説明する。図5は加工工程設計装置100の加工工程設計部111で実行される加工工程設計方法の概要を示すフローチャートである。
まず、ステップS501では、工程設計者が工程設計対象製品を入力部103より指定した入力を受け付けて、記憶部102に格納されている製品CADモデルデータ、素材CADモデルデータ、および加工領域モデルデータを読み出す。該当データが記憶部102に登録されていない場合には、3次元CAM130の記憶部に格納されているデータを読み出す。
ここで加工領域モデルデータは、例えば、入力部103または3次元CAM130に加工領域モデルの作成を指示して、作成された加工領域モデルデータを受け付けて、加工領域モデル記憶領域124に記憶したものである。または、3次元CAD150で作成した形状データに基づき、加工領域算出部110で算出された加工領域を加工領域モデル記憶領域124に記憶したものである。
ステップS502では、設計対象の製品CADモデルデータ、素材CADモデルデータ、および加工領域モデルデータに対して、記憶部102の工程候補データ記憶領域120に記憶されている工程候補の中から、最も加工能率の高い工程を初期工程として選択する。
ステップS503では、対象加工領域を前ステップで選択された工程候補のデータレコードに登録されている加工機、工具、加工諸元、加工方法の各データに従って加工するツールパスの生成を3次元CAM130に指示して、3次元CAMで生成されたツールパスデータをネットワーク170、通信部105を介して入力する。
ステップS504では、加工後面精度算出部112の処理により、ステップS502またはステップS507で選択した工程候補のデータ、および前ステップで入力したツールパスデータを用いて加工領域モデルを加工した後の面精度(加工後面精度)αを算出する。
ステップS505では、面精度比較処理部113の処理により、前ステップS504で算出した加工後面精度αが製品の最終要求面精度(製品CADモデル)を満たすか判断する。最終要求面精度を満たしていれば、工程設計を終了する。最終要求面精度を満たさない場合には、ステップS506に進む。
ステップS506では、次工程が必要であるので、次工程の削り代余裕を残すように、ステップS503で作成した前工程のツールパスを修正する指示を3次元CAM130へ送り、3次元CAMで修正されたツールパスデータを入力する。なお、ツールパスの修正が必要でないと判定された場合には、本ステップは省略される。
ステップS507では、記憶部102の工程候補データ記憶領域120に記憶されている工程候補の中から、加工前要求面精度がステップS504で算出した加工後面精度αより高いという制約を満たす工程候補を選別し、対象加工領域モデルから前工程のツールパスにより切削された残りの加工領域に対して、加工能率が高い工程を選択する。
ステップS507での工程の選択は、例えば、加工能率が最も高い工程を選択するだけでなく、加工能率が平均より高い工程の中からランダムに選択する方法などを用いても構わない。
また、ステップS507での工程の選択は、加工能率の高い工程ではなく、加工後面精度が高い工程などの評価指標を用いてもよい。
ステップS507で工程が選択された後、ステップS503に戻り、ステップS505の条件を満たすまで上記処理を繰り返し、工程順序を決定する。
図5に示すフローチャートにより、複数工程からなる加工工程において、工程前後の面精度に加工上の不具合が生じない工程順序案を決定することができる。
(5)加工後面精度に基づき加工領域を分割する加工工程設計方法
次に、図6により、本発明の一実施の形態に係る加工後面精度に基づき加工領域を分割する方法について説明する。図6は加工工程設計部111で実行される加工後面精度に基づき加工領域を分割する方法を示すフローチャートである。
図6のフローチャートは、図5のフローチャートに対して、ステップ間に新たな処理を追加したフローチャートである。図6中のステップS501〜S507は、前記図5に示された同一の符号を付された処理と同一の機能を有するので、それらの説明は省略する。
ステップS601では、ステップS504で算出した加工後面精度αの値が、加工領域中でばらつきを持つ場合において、αの値に基づき、任意の閾値(例えば、記憶部102の工程候補データ記憶領域120に記憶されている工程候補に設定されている加工前要求面精度など)の範囲ごとに加工領域を分割する。分割後、閾値範囲内でのαの最大値(すなわち最も面精度が悪い箇所の値)を分割された加工領域のαとして、それぞれ分割された加工領域と共に加工領域モデル記憶領域124に記憶する。
ステップS602では、ステップS601で分割された加工領域を一つ選択し、ステップS505へ進む。
ステップS505では、面精度比較処理部113の処理により、ステップS504で算出した加工後面精度αが製品の最終要求面精度を満たすか判断する。最終要求面精度を満たさない場合には、前記図5の処理と同様、ステップS506に進む。最終要求面精度を満たしていれば、当該分割加工領域の工程設計は終了となり、ステップS603に進む。
ステップS603では、ステップS601で分割された加工領域のうち、全ての分割加工領域において工程設計の処理が終了したかを判断する。処理が終了していれば、工程設計を終了する。処理が終了していない分割加工領域があれば、ステップS604に進む。
ステップS604では、ステップS601で分割された加工領域のうち、工程設計が終了していない分割加工領域を一つ選択し、ステップS505へ進む。
図6に示すフローチャートにより、初期に設定された加工領域において、加工後面精度αのばらつきが大きい場合に、加工後面精度に基づき加工領域を分割することで、分割加工領域ごとに適切な工程候補を選択し、工程設計を行うことが可能となる。
(6)工程順序決定処理において可能な組み合わせを探索する方法
次に、図7により、本発明の一実施の形態に係る加工工程設計方法において、工程候補の中から可能な組み合わせを探索する方法について説明する。図7は本発明の一実施の形態に係る加工工程設計方法による可能な組み合わせを探索する方法を示すフローチャートである。
まず、ステップS701では、設計者が設計対象製品を入力部103より指定した入力を受け付けて、記憶部102に格納されている製品CADモデルデータ、素材CADモデルデータ、および加工領域モデルデータを読み出す。該当データが記憶部102に登録されていない場合には、3次元CAM130の記憶部に格納されているデータを読み出す。
ここで加工領域モデルデータは、例えば、入力部103または3次元CAM130に加工領域モデルの作成を指示して、作成された加工領域モデルデータを受け付けて、加工領域モデル記憶領域124に記憶したものである。または、3次元CAD150で作成した形状データに基づき、加工領域算出部110で算出された加工領域を加工領域モデル記憶領域124に記憶したものである。
ステップS702では、設計対象の製品CADモデルデータ、素材CADモデルデータ、および加工領域モデルデータに対して、記憶部102の工程候補データ記憶領域120に記憶されている工程候補の中から、初期工程として選択可能な工程を一つ選択する。ここで、初期工程として選択可能な工程とは、例えば、加工前要求面精度を持たない初期欠損に強い工具を用いた工程や、初期工程として使用できるよう、加工条件を通常よりも低めに設定した工程などである。
ステップS703では、ステップS702で選択した工程を初期工程として、工程設計を行う。工程設計は、前記図5のフローチャートのステップS502〜S507において、ステップS502を図7のステップS712に置き換えることで実行される。または、前記図6のフローチャートのステップS502〜S604において、ステップS502を図7のステップS712に置き換えることで実行されてもよい。
ステップS704では、加工時間算出部114の処理により、ステップS703により作成された工程設計案の加工時間を見積もる。
ステップS705では、記憶部102の工程候補データ記憶領域120に記憶されている工程候補の中に、初期工程として選択可能な工程があるかを判断する。工程候補が残っていればステップS702に戻り、残っている工程候補の中から一つを選択し、処理を継続する。工程候補が残っていなければ、ステップS706に進む。
ステップS706では、前ステップまでの処理で作成された工程設計案の中から、加工時間が最短となる工程設計案を選択する。
図7に示すフローチャートにより、複数工程からなる加工工程において、工程前後の面精度に加工上の不具合が生じない工程順序案、かつ、加工時間が最短となる工程候補の組み合わせを決定することができる。
(7)画面表示の例
次に、図9〜11により、本発明の一実施の形態に係る画面表示例について説明する。図9は本発明の一実施の形態に係るCAM設定画面901の一例を示す図、図10は本発明の一実施の形態に係るCAM設定画面の加工工程一覧画面の工程順序のエラーを表示する例を示す図、図11は本発明の一実施の形態に係るCAM設定画面の加工工程一覧画面の加工後面精度の設定方法を変更した例を示す図である。
図9に示すように、CAM設定画面901は、例えば、モデル表示画面902、加工工程一覧画面903などから構成される。CAM設定画面901は、加工工程設計装置100を使用して工程設計者が工程設計を実施する際のマン・マシンインタフェースを提供する画面であり、出力部104(加工工程設計装置100と3次元CAM130が同一装置上に実装される場合は、3次元CAMの出力部となる)に表示される。工程設計者が設計対象製品を入力部103より指定した入力に対応する製品CADモデル、素材CADモデル、および加工領域モデルを加工工程設計装置100が画面に表示する、または3次元CAM130に加工領域の決定、ツールパスの生成を指示して、その結果を受けて、画面に表示して工程設計者の確認を支援する機能を持つモデル表示画面902がある。また、加工工程設計装置100が作成した加工工程設計案を工程設計者に表示して確認を支援する加工工程一覧画面903がある。
モデル表示画面902は、各工程での加工領域、加工パスなどを2次元または3次元のモデルで表示する。例えば、素材形状、設計形状、中間形状、工具の移動軌跡、工具軸の傾き、などを表示する。製品CADモデル上に加工領域を定義するために、カーソル904などを使用して加工領域の選択を可能とする。また、加工工程一覧画面903と連動し、加工工程一覧画面903で選択した加工工程に該当する加工領域や加工パスを色変更や点滅表示により強調して明示的に示してもよい。
加工工程一覧画面903は、加工工程設計案を加工工程の一覧として表示する。加工工程一覧の構成要素として、例えば、工程順序911、工程名912、工具913、加工諸元914、加工前要求面精度915、加工後面精度916などを持つ。この他に、工程候補記憶テーブル301の構成要素などを、構成要素として持ってもよい。また、加工諸元データを記憶部102の工程候補記憶テーブル301によって工具と関連付けて記憶する場合などは、加工諸元914などを省略してもよい。
また、加工後面精度916は、工程設計において、例えば、加工工程設計装置100の加工後面精度算出部112などによって算出された値(加工後の算出面精度)ではなく、3次元CAM130の設定として受け付けた入力値(加工後の要求面精度)を表示してもよい。また、加工後の算出面精度と加工後の要求面精度の両方を表示してもよい。
工程設計者は、加工工程一覧画面903に表示された加工工程設計案で良いと判断した場合には、3次元CAM130へNCプログラムの作成を指示して、加工工程設計装置100は、作成されたNCプログラムを受け付けて、NCプログラム記憶領域125に加工工程設計案と対応付けて記憶する。記憶されたNCプログラムは、NCシミュレータ160に送られて、加工シミュレーションにより良否を確かめることができる。シミュレーション結果は、モデル表示画面902に表示される。良否が確かめられたNCプログラムは機械ショップのNC工作機械140へダウンロードされて、製造が行われる。
CAMの設定画面において、各工程での加工後の要求面精度の設定を受け付けることは市販CAMソフトウェアなどからも公知であるが、加工前要求面精度915の設定を受け付けることは、本実施例によるCAM設定画面901に顕著な特徴である。
図10に、加工工程一覧画面903の異なる形態の一例を示す。加工工程一覧の構成要素として、面精度チェック1001の項目があり、例えばOK、NGなどのチェック結果を表示する。図10の例では、工程1011の加工後面精度は1.8であり、次工程の工程1012の加工前要求面精度は1.6と設定されている。そのため工程1011の加工後面精度が工程1012の加工前要求精度を満たしておらず、工程1012で加工不具合が生じる可能性がある。このような工程順序に対して、加工工程面精度チェック部115が実施する本実施例の面精度チェック1001では、工程1012にNGを表示し、工程1012またはその前後の工程の修正要求を明示的に示すことができる。
前記図5〜7に記載の加工工程設計方法を用いた場合には、図10に示すような面精度を満たさない工程設計案は生成されないが、一般的なCAMで行われるように工程設計を一工程ずつ作成した場合や、工程順序や工程候補を一部変更した場合などに、本実施例による面精度チェック1001での評価およびその結果表示によって、加工不具合を未然に防止する効果が得られる。
図11に、加工工程一覧画面903の異なる形態の一例を示す。加工工程一覧の構成要素である加工後面精度1101の項目において、加工後面精度の設定を、各工程ではなく複数の工程にまとめて設定できるようにした例である。例えば、工程1111で加工後面精度0.05を満たす領域は後工程である工程1112および工程1113を省略することが可能となる。
なお、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
また、上記の各構成、機能、処理部、処理手段等は、それらの一部または全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
100 加工工程設計装置
101 演算部
102 記憶部
103 入力部
104 出力部
105 通信部
110 加工領域算出部
111 加工工程設計部
112 加工後面精度算出部
113 面精度比較処理部
114 加工時間算出部
115 加工工程面精度チェック部
120 工程候補データ記憶領域
121 加工機データ記憶領域
122 製品CADモデル記憶領域
123 素材CADモデル記憶領域
124 加工領域モデル記憶領域
125 NCプログラム記憶領域
126 加工工程設計案記憶領域
130 3次元CAM
140 NC工作機械
150 3次元CAD
160 NCシミュレータ
201 大粗工程
202 中粗工程
203 仕上げ工程
301 工程候補記憶テーブル
311 工程名称
312 加工機
313 工具
314 加工諸元
315 加工方法
316 加工前要求面精度
401 加工機データテーブル
411 加工機番号欄
412 加工機名欄
413 軸構成欄
414 ストローク欄
415 段取時間欄
800 最終形状
901 CAM設定画面
902 モデル表示画面
903 加工工程一覧画面
904 加工領域を定義するためのカーソル
1001 面精度チェック欄
1011,1012 工程
1101 加工後面精度欄
1111〜1113 工程
上記課題を解決するために本発明では、素材の形状を設計形状へと加工するための複数の工程からなる機械加工工程を決定する方法において、少なくとも加工機、工具、加工諸元、加工方法の各データ項目に加えて、被切削面の加工前の面精度(加工前要求面精度)のデータ項目を有する工程候補データテーブルを作成し、工程設計対象製品CADモデル、素材CADモデルより加工領域モデルを作成し、該加工領域モデルを加工能率が高く加工が可能な初期工程候補を前記工程候補データテーブルより選択し、前記加工領域モデルを前記選択した工程候補により加工を行うツールパスデータを作成し、該ツールパスデータ、および工具と被削材の幾何要素データを使用して、加工後面精度を算出し、該加工後面精度が最終要求面精度を満たすか否かを判定し、満たさない場合には、前記加工後面精度を満たす加工前要求面精度を持つ工程候補を前記工程候補データテーブルから次工程として選択し、該次工程により前記加工領域モデルの削り残し領域を加工するシミュレーションにより、加工後面精度が最終要求面精度を満たすか否かを判定する工程までを繰り返すようにした。
また、上記課題を解決するために本発明では、少なくとも工程名称、加工機、工具、加工諸元、加工方法、加工前要求面精度のデータ項目を有する工程候補記憶テーブルを記憶する記憶部と、演算部と、入力部と、出力部と、通信部とを備え、前記演算部は、素材形状と最終形状の差分から切削加工で除去すべき領域を抽出する加工領域算出部と、前記記憶部に記憶されている工程候補データから工程の組み合わせと順序を決定し、加工工程設計案を作成する加工工程設計部と、製品CADモデルデータ、素材CADモデルデータ、加工領域モデルデータ、および工程候補データに従って3次元CAMが作成したツールパスデータを使用して、工程毎に工具と被削材の幾何要素から加工後面精度を算出する加工後面精度算出部と、前記加工後面精度と、設計要求である最終要求面精度とを比較し、加工後面精度が、最終要求面精度を満たすか否かを判定する、および前記加工後面精度算出部で算出した加工後面精度と、前記記憶部に記憶されている前記工程候補記憶テーブルの加工前要求面精度とを比較し、加工前要求面精度を満たす工程候補を選別する面精度比較処理部と、前記加工工程設計部で作成した工程設計案に対して、加工時間を算出する加工時間算出部とを有することを特徴とする加工工程設計装置を構成した。

Claims (9)

  1. 素材の形状を設計形状へと加工するための複数の工程からなる機械加工工程を決定する方法において、
    少なくとも加工機、工具、加工諸元、加工方法の各データ項目に加えて、被切削面の加工前の面精度(加工前要求面精度)のデータ項目を有する工程候補データテーブルを作成し、
    工程設計対象製品CADモデル、素材CADモデルより加工領域モデルを作成し、
    該加工領域モデルを加工能率が高く加工が可能な初期工程候補を前記工程候補データテーブルより選択し、
    前記加工領域モデルを前記選択した工程候補により加工を行うツールパスデータを作成し、
    該ツールパスデータ、および工具と被削材の幾何要素データを使用して、加工後の面精度を算出し、
    該加工後の面精度が最終要求面精度を満たすか否かを判定し、
    満たさない場合には、前記加工後の面精度を満たす加工前要求面精度を持つ工程候補を前記工程候補データテーブルから次工程として選択し、
    該次工程により前記加工領域モデルの削り残し領域を加工するシミュレーションにより、加工後の面精度が最終要求面精度を満たすか否かを判定する工程までを繰り返す、
    ことを特徴とする加工工程の決定方法。
  2. 請求項1に記載の加工工程の決定方法において、
    前記加工後の面精度を満たす加工前要求面精度を持つ工程候補を前記工程候補データテーブルより複数候補を選択して、それらの工程候補から加工能率の高い工程を選択することで、総加工時間の短い加工工程を決定することを特徴とする加工工程の決定方法。
  3. 請求項1に記載の加工工程の決定方法において、
    前記加工領域内で、加工後面精度がばらつきを持つ場合に、加工後面精度に基づき加工領域を分割し、分割した加工領域ごとに前記工程候補データテーブルより工程候補を選択することを特徴とする加工工程の決定方法。
  4. 請求項1に記載の加工工程の決定方法において、
    前記加工領域モデルを加工可能な前記工程候補データテーブルより検索した初期工程候補の全てに対して、各工程候補を初期工程として、前記加工領域モデルを加工後の面精度が最終要求面精度を満たすまで加工工程を設計し、
    設計された加工工程による加工時間を算出し、
    前記全ての初期工程候補のそれぞれに対する加工工程の加工時間が最短となる加工工程設計案を選択する
    ことを特徴とする加工工程の決定方法。
  5. 請求項1乃至4のいずれかの請求項に記載の加工工程の決定方法において、
    加工前要求面精度の指標として採用する面精度としては、スカラップ高さ、パートストック、最大切込み高さ、最大単位除去体積、およびJISに記載の表面粗さ(Ra:中心線平均粗さ、Rmax:最大高さ、Rz:十点平均粗さ)のいずれかを有することを特徴とする加工工程の決定方法。
  6. 少なくとも工程名称、加工機、工具、加工諸元、加工方法、加工前要求面精度のデータ項目を有する工程候補記憶テーブルを記憶する記憶部と、
    演算部と、入力部と、出力部と、通信部とを備え、
    前記演算部は、
    素材形状と最終形状の差分から切削加工で除去すべき領域を抽出する加工領域算出部と、
    前記記憶部に記憶されている工程候補データから工程の組み合わせと順序を決定し、加工工程設計案を作成する加工工程設計部と、
    製品CADモデルデータ、素材CADモデルデータ、加工領域モデルデータ、および工程候補データに従って3次元CAMが作成したツールパスデータを使用して、工程毎に工具と被削材の幾何要素から加工後の面精度を算出する加工後面精度算出部と、
    前記加工後面精度と、設計要求である最終要求面精度とを比較し、加工後の面精度が、最終要求面精度を満たすか否かを判定する、および前記加工後面精度算出部で算出した加工後面精度と、前記記憶部に記憶されている前記工程候補記憶テーブルの加工前要求面精度とを比較し、加工前要求面精度を満たす工程候補を選別する面精度比較処理部と、
    前記加工工程設計部で作成した工程設計案に対して、加工時間を算出する加工時間算出部と、
    を有することを特徴とする加工工程設計装置。
  7. 前記演算部は、ネットワークを介して3次元CAM、3次元CAD、NCシミュレータ、NC工作機械と接続しており、
    または、前記演算部、前記記憶部、前記入力部、前記出力部、および前記通信部が前記3次元CAMと同一の装置内に実装されていることを特徴とする請求項6に記載の加工工程設計装置。
  8. 前記出力部に、各工程での加工領域、加工パスなどを2次元または3次元のモデルで表示するモデル表示画面と、加工工程設計案を加工工程の一覧として表示する加工工程一覧画面とを表示することを特徴とする請求項6に記載の加工工程設計装置。
  9. 前記演算部に、作成、または入力された加工工程設計案の連続する各工程の加工前要求面精度、および加工後面精度をチェックして、前工程の加工後面精度が後工程の加工前要求面精度に対して高いか否かを判定して、前工程の加工後面精度が後工程の加工前要求面精度より高い場合には加工不具合が生じる可能性有りと判定結果を出力する加工工程面精度チェック部を更に備え、
    前記出力部に、加工工程設計案を加工工程の一覧として表示する加工工程一覧画面において、加工不具合が生じる可能性有りと判定された工程の修正要求を明示的に示すことを特徴とする請求項6に記載の加工工程設計装置。
JP2014536485A 2012-09-21 2012-09-21 加工工程決定方法および加工工程設計装置 Active JP5890907B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/074166 WO2014045383A1 (ja) 2012-09-21 2012-09-21 加工工程決定方法および加工工程設計装置

Publications (2)

Publication Number Publication Date
JP5890907B2 JP5890907B2 (ja) 2016-03-22
JPWO2014045383A1 true JPWO2014045383A1 (ja) 2016-08-18

Family

ID=50340737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014536485A Active JP5890907B2 (ja) 2012-09-21 2012-09-21 加工工程決定方法および加工工程設計装置

Country Status (2)

Country Link
JP (1) JP5890907B2 (ja)
WO (1) WO2014045383A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805108A (zh) * 2018-10-26 2021-05-14 西铁城时计株式会社 机床以及控制装置
US11947332B2 (en) 2019-09-05 2024-04-02 Kitamura Machinery Co., Ltd. CAD data-based automatic operation device of machining center

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6557036B2 (ja) * 2015-03-30 2019-08-07 オークマ株式会社 シミュレーション装置
JP6606030B2 (ja) * 2016-07-15 2019-11-13 株式会社日立製作所 製造装置、製造システム、及び製造方法
JP6592038B2 (ja) 2017-06-23 2019-10-16 ファナック株式会社 加工技術管理システム及び加工技術管理方法
JP7106321B2 (ja) 2018-03-29 2022-07-26 三菱重工業株式会社 工具選定装置、方法、及びプログラム、並びにncプログラム作成システム
JP6871210B2 (ja) * 2018-09-07 2021-05-12 ファナック株式会社 数値制御装置
WO2021029037A1 (ja) * 2019-08-14 2021-02-18 駿河精機株式会社 機械学習装置、データ処理システム及び機械学習方法
WO2021029038A1 (ja) * 2019-08-14 2021-02-18 駿河精機株式会社 データ処理システム
WO2021029036A1 (ja) * 2019-08-14 2021-02-18 駿河精機株式会社 機械学習装置、データ処理システム及び機械学習方法
JP7397767B2 (ja) 2020-06-29 2023-12-13 株式会社日立製作所 製造工程設計システム、製造工程設計方法、及び製造工程設計プログラム
CN113626948B (zh) * 2021-08-06 2024-02-09 金航数码科技有限责任公司 一种基于知识推理的自动工步设计方法
CN115945743B (zh) * 2022-12-23 2023-10-20 深圳市台钲精密机械有限公司 一种对非标零件试加工的方法及系统
CN115993803B (zh) * 2023-03-22 2023-06-09 中科航迈数控软件(深圳)有限公司 基于数控机床的加工参数调整方法及相关设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131824A (ja) * 1984-11-28 1986-06-19 Hitachi Denshi Ltd 数値制御装置
JPS6257852A (ja) * 1985-09-04 1987-03-13 Toyoda Mach Works Ltd 自動プログラミング装置
JP2003140717A (ja) * 2001-11-02 2003-05-16 Mori Seiki Co Ltd 自動プログラミング装置
JP4063180B2 (ja) * 2003-09-01 2008-03-19 株式会社ジェイテクト 金型加工工程決定装置、金型加工工程決定方法、金型加工工程決定プログラム、そのプログラムを記録したコンピュータ読取り可能な記録媒体、ncデータ作成装置、及び工作機械制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805108A (zh) * 2018-10-26 2021-05-14 西铁城时计株式会社 机床以及控制装置
CN112805108B (zh) * 2018-10-26 2023-09-26 西铁城时计株式会社 机床以及控制装置
US11977363B2 (en) 2018-10-26 2024-05-07 Citizen Watch Co., Ltd. Machine tool and control device
US11947332B2 (en) 2019-09-05 2024-04-02 Kitamura Machinery Co., Ltd. CAD data-based automatic operation device of machining center

Also Published As

Publication number Publication date
WO2014045383A1 (ja) 2014-03-27
JP5890907B2 (ja) 2016-03-22

Similar Documents

Publication Publication Date Title
JP5890907B2 (ja) 加工工程決定方法および加工工程設計装置
US11429076B2 (en) Automatic strategy determination for computer aided manufacturing
US10061299B2 (en) Method for implementing design-for-manufacturability checks
CN101334657B (zh) 图形化交互式数控车削自动编程方法及系统
US20210247736A1 (en) Machining based on strategies selected based on prioritized aspects of manufacturing
US7487005B2 (en) Process planning method, process planning apparatus and recording medium
JP5792649B2 (ja) Ncプログラム生成方法
JP6033668B2 (ja) Cam装置及び製品形状加工方法
JP7106321B2 (ja) 工具選定装置、方法、及びプログラム、並びにncプログラム作成システム
JP4512754B2 (ja) 工程設計支援システム及び工程設計支援方法
WO2013051432A1 (ja) 生産計画装置および生産計画方法
Michalik et al. CAM software products for creation of programs for CNC machining
US11307559B2 (en) Generation of holding tabs for fixing a part during machining
JP5969882B2 (ja) 加工データ一貫生成装置、加工データ一貫生成プログラム及び加工データ一貫生成方法
CN111598364B (zh) 用于机械零部件的数字化工艺编排系统
JP5983268B2 (ja) 加工工程決定装置、加工工程決定プログラム及び加工工程決定方法
El-Midany et al. Optimal CNC plunger selection and toolpoint generation for roughing sculptured surfaces cavity
Chan et al. A high-efficiency rough milling strategy for mould core machining
Schützer et al. Using advanced CAM-systems for optimized HSC-machining of complex free form surfaces
Derelİ* et al. OPPS-PRI 2.0: an open and optimized process planning system for prismatic parts to improve the performance of SMEs in the machining industry
CN100371837C (zh) 数值控制机械
Asano et al. Proposal of a machining feature recognition method to reflect product and manufacturing information
Ding et al. Optimal cutter selection for complex three-axis NC mould machining
Ferreira et al. A method for generating tool paths for milling pockets in prismatic parts using multiple tools
Sedighi et al. Classification of the feed-rate optimization techniques: a case study in minimizing CNC machining time

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160219

R150 Certificate of patent or registration of utility model

Ref document number: 5890907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150