JPWO2014030736A1 - Electric module manufacturing method and electric module - Google Patents

Electric module manufacturing method and electric module Download PDF

Info

Publication number
JPWO2014030736A1
JPWO2014030736A1 JP2014531680A JP2014531680A JPWO2014030736A1 JP WO2014030736 A1 JPWO2014030736 A1 JP WO2014030736A1 JP 2014531680 A JP2014531680 A JP 2014531680A JP 2014531680 A JP2014531680 A JP 2014531680A JP WO2014030736 A1 JPWO2014030736 A1 JP WO2014030736A1
Authority
JP
Japan
Prior art keywords
electrode
substrate
conductive film
transparent conductive
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014531680A
Other languages
Japanese (ja)
Other versions
JP5702897B2 (en
Inventor
智弘 大塚
智弘 大塚
中嶋 節男
節男 中嶋
俊介 功刀
俊介 功刀
秀康 中嶋
秀康 中嶋
聡 與口
聡 與口
尚洋 藤沼
尚洋 藤沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2014531680A priority Critical patent/JP5702897B2/en
Application granted granted Critical
Publication of JP5702897B2 publication Critical patent/JP5702897B2/en
Publication of JPWO2014030736A1 publication Critical patent/JPWO2014030736A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2081Serial interconnection of cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/50Forming devices by joining two substrates together, e.g. lamination techniques
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

第一基板の板面に透明導電膜が成膜され、前記透明導電膜の表面に半導体層が形成された第1電極と、第二基板の板面に前記透明導電膜に対向するように対向導電膜が成膜された第2電極とを備え、これら第1電極と第2電極との間に形成された空間に電解質が封止された電気モジュールの製造方法おいて、前記透明導電膜と前記対向導電膜とを対向させて前記第1電極と前記第2電極とを貼り合せる貼り合わせ工程と、前記透明導電膜が成膜された前記第一基板の裏面又は前記対向導電膜が成膜された前記第二基板の裏面のいずれか一方から超音波振動を付与し、この超音波振動が付与された箇所に位置する前記第一基板及び前記第二基板の互いに対向する板面を当接させて絶縁するとともにこれら第一基板と第二基板とを溶着することにより、前記第1電極と前記第2電極とを分割する分割工程とを有することを特徴とする電気モジュールの製造方法。A first electrode having a transparent conductive film formed on the plate surface of the first substrate and a semiconductor layer formed on the surface of the transparent conductive film, and a plate surface of the second substrate opposed to the transparent conductive film. A method of manufacturing an electric module comprising: a second electrode on which a conductive film is formed; and an electrolyte sealed in a space formed between the first electrode and the second electrode. A bonding step of bonding the first electrode and the second electrode with the counter conductive film facing each other, and a back surface of the first substrate on which the transparent conductive film is formed or the counter conductive film is formed The ultrasonic vibration is applied from any one of the back surfaces of the second substrate, and the first substrate and the second substrate that are located at a position where the ultrasonic vibration is applied are brought into contact with each other. To insulate and weld these first and second substrates together Ri, the method of manufacturing an electro-module; and a dividing step of dividing the first electrode and the second electrode.

Description

本発明は、電気モジュールの製造方法及び電気モジュールに関する。
本願は、2012年8月24日に日本に出願された、特願2012−185875号、及び2013年2月12日に日本に出願された、特願2013−025019に基づき優先権主張し、その内容をここに援用する。
The present invention relates to an electrical module manufacturing method and an electrical module.
This application claims priority based on Japanese Patent Application No. 2012-185875 filed in Japan on August 24, 2012, and Japanese Patent Application No. 2013-025019 filed in Japan on February 12, 2013. The contents are incorporated herein.

近年、化石燃料に代わるクリーンエネルギーの発電装置として太陽電池が注目され、シリコン(Si)系太陽電池、および色素増感型太陽電池の開発が進められている。とりわけ色素増感型太陽電池は、安価で量産しやすいものとして、その構造及び製造方法が広く研究開発されている(例えば下記特許文献1)。
図12Dに示すように、特許文献1に記載された色素増感型太陽電池50は、透明基板51の板面に透明導電膜52が成膜され、透明導電膜52の表面に色素を担持させた半導体層53が形成された第1電極板54と、対向基板55に、透明導電膜52に対向配置される対向導電膜56が成膜された第2電極板57と、半導体層53との間に隙間Rを形成してこの半導体層53を囲繞するとともに、第1電極板54と第2電極板57とを貼り合わせて密封されたセルSを形成する封止材58と、セルS内に注入された電解液59とを備えた構成となっている。
In recent years, solar cells have attracted attention as clean energy power generation devices that replace fossil fuels, and silicon (Si) solar cells and dye-sensitized solar cells have been developed. In particular, dye-sensitized solar cells have been widely researched and developed for their structures and manufacturing methods as being inexpensive and easy to mass-produce (for example, Patent Document 1 below).
As shown in FIG. 12D, the dye-sensitized solar cell 50 described in Patent Document 1 has a transparent conductive film 52 formed on the plate surface of the transparent substrate 51, and the dye is supported on the surface of the transparent conductive film 52. A first electrode plate 54 having a semiconductor layer 53 formed thereon, a second electrode plate 57 having a counter substrate 55 and a counter conductive film 56 disposed opposite to the transparent conductive film 52, and the semiconductor layer 53. A sealing material 58 that forms a sealed cell S by forming a gap R therebetween to surround the semiconductor layer 53 and bonding the first electrode plate 54 and the second electrode plate 57 together, and the inside of the cell S And an electrolytic solution 59 injected into the.

そして、上記色素増感型太陽電池50の製造は、次のようにして行われる。すなわち、図12A〜図12Dに示すように、透明基板51に不図示のマスクをして印刷法等によりこの透明基板51上に透明導電膜52をパターニングし、透明導電膜52を成膜した後、更に透明導電膜52上に、半導体層53を形成するペーストを透明導電膜52と同様に塗工し第1電極板(いわゆる光電極)54を作製する。また、第1電極板54に対向配置させる対向導電膜56を透明導電膜52と同様にして対向基板55に成膜し第2電極板57を作製する。そして、半導体層53との間に隙間Rを設けて半導体層53を囲繞するように封止材58を透明導電膜52の表面に配し、第1電極板54と第2電極板57とを導電膜52,56同士を対向させて貼り合わせ、電解液59を注入し、色素増感型太陽電池50としている。   And manufacture of the said dye-sensitized solar cell 50 is performed as follows. That is, after the transparent conductive film 52 is patterned on the transparent substrate 51 by a printing method or the like using a mask (not shown) on the transparent substrate 51 as shown in FIGS. 12A to 12D, the transparent conductive film 52 is formed. Further, a paste for forming the semiconductor layer 53 is applied on the transparent conductive film 52 in the same manner as the transparent conductive film 52 to produce a first electrode plate (so-called photoelectrode) 54. In addition, a counter conductive film 56 disposed opposite to the first electrode plate 54 is formed on the counter substrate 55 in the same manner as the transparent conductive film 52 to produce the second electrode plate 57. Then, a sealing material 58 is disposed on the surface of the transparent conductive film 52 so as to surround the semiconductor layer 53 by providing a gap R between the first electrode plate 54 and the second electrode plate 57. The conductive films 52 and 56 are bonded to each other, and an electrolytic solution 59 is injected to form a dye-sensitized solar cell 50.

特開2011−49140号公報JP 2011-49140 A

ところで、上記特許文献1の電気モジュール50は、透明導電膜52,半導体層53及び対向導電膜56をそれぞれパターニングした上で封止材58及び導通材を配置する工程を要する。そして、第1電極板54及び第2電極板57それぞれのパターニングの位置,封止材58の位置及び導通材の位置が合致するように、第1電極板54と第2電極板57とを精度高く貼り合わせる工程が必要であった。したがって、精巧にパターニングされたセルを形成し、直列あるいは並列構造とするには、複雑で精度の高い製造工程が必要になり、太陽電池の生産性を低下させたり製造コストが高くなったりするという問題があった。
そこで、本発明は、上記課題に鑑み、セルの形成が容易かつ的確な電気モジュールの製造方法及び電気モジュールを提供することを課題とする。
By the way, the electric module 50 of the said patent document 1 requires the process of arrange | positioning the sealing material 58 and the electrically conductive material after patterning the transparent conductive film 52, the semiconductor layer 53, and the opposing conductive film 56, respectively. Then, the first electrode plate 54 and the second electrode plate 57 are accurately aligned so that the patterning position of each of the first electrode plate 54 and the second electrode plate 57, the position of the sealing material 58, and the position of the conductive material match. A process of high bonding was necessary. Therefore, in order to form elaborately patterned cells and have a serial or parallel structure, a complicated and highly accurate manufacturing process is required, which reduces the productivity of the solar cell and increases the manufacturing cost. There was a problem.
In view of the above-described problems, an object of the present invention is to provide an electric module manufacturing method and an electric module in which cells can be easily and accurately formed.

本発明は、第一基板の板面に透明導電膜が成膜され、前記透明導電膜の表面に半導体層が形成された第1電極と、第二基板の板面に前記透明導電膜に対向するように対向導電膜が成膜された第2電極とを備え、これら第1電極と第2電極との間に形成された空間に電解質が封止された電気モジュールの製造方法おいて、前記透明導電膜と前記対向導電膜とを対向させて前記第1電極と前記第2電極とを貼り合せる貼り合わせ工程と、前記透明導電膜が成膜された前記第一基板の裏面又は前記対向導電膜が成膜された前記第二基板の裏面のいずれか一方から超音波振動を付与し、この超音波振動が付与された箇所に位置する前記第一基板及び前記第二基板の互いに対向する板面を当接させて絶縁するとともにこれら第一基板と第二基板とを溶着することにより、前記第1電極と前記第2電極とを分割する分割工程とを有することを特徴とする。
本発明によれば、透明導電膜と対向導電膜とを対向させて、第1電極と第2電極とを貼り合せた状態で超音波振動により第一基板と第二基板とを絶縁するとともに溶着する。すなわち、第一基板の透明導電膜と第二基板の対向導電膜とを対向する位置でこれらを同時にパターニングするとともに、第1電極と第2電極とをパターニングされた位置で溶着し複数のセル及び/または電気モジュールを形成する。
The present invention provides a first electrode in which a transparent conductive film is formed on a plate surface of a first substrate and a semiconductor layer is formed on the surface of the transparent conductive film, and a surface of the second substrate facing the transparent conductive film. In the method of manufacturing an electrical module comprising the second electrode on which the opposing conductive film is formed, and an electrolyte sealed in a space formed between the first electrode and the second electrode, A bonding step of bonding the first electrode and the second electrode with the transparent conductive film and the counter conductive film facing each other; and the back surface of the first substrate on which the transparent conductive film is formed or the counter conductive film Plates that apply ultrasonic vibration from one of the back surfaces of the second substrate on which the film is formed, and the first substrate and the second substrate that are located at the position where the ultrasonic vibration is applied, face each other. Insulate the surfaces by contacting them and weld the first and second substrates together By Rukoto, and having a dividing step of dividing the first electrode and the second electrode.
According to the present invention, the first substrate and the second substrate are insulated and welded by ultrasonic vibration in a state where the transparent conductive film and the counter conductive film are opposed to each other and the first electrode and the second electrode are bonded together. To do. That is, the transparent conductive film of the first substrate and the opposing conductive film of the second substrate are simultaneously patterned at positions facing each other, and the first electrode and the second electrode are welded at the patterned positions to form a plurality of cells and / Or forming an electrical module.

また、本発明は、帯状に一方向に延在させた前記第一基板の板面に、前記一方向に連続して成膜された前記透明導電膜及び前記半導体層が前記第一基板の幅方向に一又は複数成膜された前記第1電極と、帯状に一方向に延在させた前記第二基板の板面に、前記一方向に連続して成膜された前記対向導電膜が前記第一基板の幅方向に一又は複数連続して成膜された前記第2電極とを貼り合せて前記幅方向両端を接着し、前記貼り合わされた前記第1電極と前記第2電極とに超音波振動を付与してこれら第1電極と第2電極とを前記延在する方向に対し交叉する方向に絶縁かつ溶着するとともに切断して分割した単位毎に封止及び切断してもよい。
本実施態様によれば、第1電極と第2電極との絶縁かつ溶着とセル又は電気モジュールごとの切断とが同時に行われるため、作業工数が削減されるとともに、第1電極と第2電極との前記延在する方向の位置合わせの必要がなくなる。また、超音波振動を付与して貼り合わせた第1電極と第2電極とを封止及び切断するタイミングで、セル又は電気モジュールの前記延在する方向の長さ寸法を設定することができる。
In the present invention, the transparent conductive film and the semiconductor layer continuously formed in the one direction on the plate surface of the first substrate extended in one direction in a band shape may have a width of the first substrate. The counter conductive film continuously formed in the one direction on the plate surface of the second substrate extended in one direction in the direction of the first electrode formed in one or more directions. One or a plurality of the second electrodes formed in succession in the width direction of the first substrate are bonded together, and both ends in the width direction are bonded, and the bonded first electrode and the second electrode are super The first electrode and the second electrode may be insulated and welded in a direction crossing the extending direction by applying sonic vibration, and sealed and cut for each divided unit.
According to this embodiment, since the insulation and welding between the first electrode and the second electrode and the cutting for each cell or electric module are performed at the same time, the work man-hour is reduced, and the first electrode and the second electrode There is no need for alignment in the extending direction. In addition, the length dimension of the cell or the electric module in the extending direction can be set at the timing of sealing and cutting the first electrode and the second electrode bonded together by applying ultrasonic vibration.

前記超音波振動は、前記第1電極と前記第2電極とを絶縁,溶着及び切断する箇所の全体に同時に及ぶように付与し、前記絶縁かつ溶着する箇所を同時に絶縁,溶着及び切断してもよい。
本実施態様によれば、セル又は電気モジュールの形成がより容易となるとともに、第1電極と第2電極との間に空間を形成するとともにその空間部位に電解質を充填して封止し、一の電気モジュールとした後で、この一の電気モジュールの前記空間を超音波振動により絶縁かつ溶着及び切断して複数の電気モジュールに細分化することができる。
The ultrasonic vibration is applied so that the first electrode and the second electrode are simultaneously covered, welded and cut, and the insulating and welded portions are simultaneously insulated, welded and cut. Good.
According to this embodiment, the cell or the electric module can be formed more easily, a space is formed between the first electrode and the second electrode, and the space portion is filled with the electrolyte and sealed. Then, the space of the one electric module can be subdivided into a plurality of electric modules by insulating, welding and cutting by ultrasonic vibration.

また、本発明は、第一基板の板面に透明導電膜が成膜され、前記透明導電膜の表面に半導体層が形成された第1電極と、第二基板に前記透明導電膜に対向するように対向導電膜が成膜された第2電極とを備え、これら第1電極と第2電極との間に形成された空間に電解質が充填された電気モジュールにおいて、前記第一基板の板面と前記第二基板の板面とが直接当接し、超音波振動により絶縁かつ溶着されていることを特徴とする。
本発明によれば、電気モジュールが封止材を用いずに第1電極の基板と第2電極の基板とを直接当接させ溶着、絶縁、分割されている。
The present invention also provides a first electrode having a transparent conductive film formed on the plate surface of the first substrate and a semiconductor layer formed on the surface of the transparent conductive film, and a second substrate facing the transparent conductive film. In the electric module comprising the second electrode on which the opposing conductive film is formed as described above, and an electrolyte is filled in a space formed between the first electrode and the second electrode, the plate surface of the first substrate And the plate surface of the second substrate are in direct contact with each other, and are insulated and welded by ultrasonic vibration.
According to the present invention, the electrical module is welded, insulated, and divided by directly contacting the substrate of the first electrode and the substrate of the second electrode without using a sealing material.

また、本発明は、前記半導体層が前記第一基板の幅方向に複数形成されており、前記第一基板の板面と前記第二基板の板面とが前記幅方向に対し交叉する方向に超音波振動により絶縁かつ溶着されていてもよい。
本実施態様では、第1電極と第2電極を延在させた状態で複数の電気モジュールを連続的に作製することができる。
In the present invention, a plurality of the semiconductor layers are formed in the width direction of the first substrate, and the plate surface of the first substrate and the plate surface of the second substrate intersect in the width direction. It may be insulated and welded by ultrasonic vibration.
In this embodiment, it is possible to continuously produce a plurality of electric modules with the first electrode and the second electrode extended.

本発明によれば、少なくとも第一基板の透明導電膜及び第二基板の対向導電膜の絶縁すなわちパターニング及びパターニングされた位置における溶着を一の動作で行うことができ、製造工程を簡略化することができる。また、第1電極と第2電極とを貼り合せた後で、第一基板の透明導電膜及び第二基板の対向導電膜のパターニングを互いに対向する位置で同時に行うため、第1電極と第2電極との貼り合せ時の位置合わせが不要となる。したがって、貼り合せ工程の容易化、パターニング及び封止工程の簡略化及び短時間化を図って、電気モジュールの生産効率を大きく向上させることができるという効果を奏する。   According to the present invention, at least the transparent conductive film of the first substrate and the opposing conductive film of the second substrate can be insulated, that is, patterned and welded at the patterned position can be performed in one operation, thereby simplifying the manufacturing process. Can do. In addition, after the first electrode and the second electrode are bonded, the patterning of the transparent conductive film of the first substrate and the opposing conductive film of the second substrate is simultaneously performed at positions facing each other. Positioning at the time of bonding with the electrode becomes unnecessary. Therefore, it is possible to greatly improve the production efficiency of the electric module by facilitating the bonding process, simplifying the patterning and sealing process, and shortening the time.

本発明の第1の実施形態として示した電気モジュールを模式的に示した断面図である。It is sectional drawing which showed typically the electric module shown as the 1st Embodiment of this invention. 本発明の第1の実施形態として示した電気モジュールの製造工程の一部であって、第1電極と第2電極とを対向配置させた状態を示す断面図である。FIG. 5 is a cross-sectional view showing a part of the manufacturing process of the electric module shown as the first embodiment of the present invention, in which the first electrode and the second electrode are arranged to face each other. 本発明の第1の実施形態として示した電気モジュールの製造工程の一部であって、第1電極を示した断面図である。It is a part of manufacturing process of the electric module shown as the 1st Embodiment of this invention, Comprising: It is sectional drawing which showed the 1st electrode. 本発明の第1の実施形態として示した電気モジュールの製造工程の一部を示した断面図である。It is sectional drawing which showed a part of manufacturing process of the electric module shown as the 1st Embodiment of this invention. 本発明の第1の実施形態として示した電気モジュールの製造工程の一部を示した第1電極の底面図である。It is a bottom view of the 1st electrode which showed a part of manufacturing process of the electric module shown as a 1st embodiment of the present invention. 本発明の第1の実施形態として示した電気モジュールの製造工程の一部を示した平面図である。It is the top view which showed a part of manufacturing process of the electric module shown as the 1st Embodiment of this invention. 本発明の第1の実施形態として示した電気モジュールの製造工程の一部を示した平面図である。It is the top view which showed a part of manufacturing process of the electric module shown as the 1st Embodiment of this invention. 本発明の第1の実施形態として示した電気モジュールの製造工程の一部を示した平面図である。It is the top view which showed a part of manufacturing process of the electric module shown as the 1st Embodiment of this invention. 本発明の第1の実施形態として示した電気モジュールの製造工程の一部を示した平面図である。It is the top view which showed a part of manufacturing process of the electric module shown as the 1st Embodiment of this invention. 本発明の第1の実施形態として示した電気モジュールの製造工程の一部を示した平面図である。It is the top view which showed a part of manufacturing process of the electric module shown as the 1st Embodiment of this invention. 本発明の第1の実施形態として示した電気モジュールを図8に示すX1−X1において矢視した断面図である。It is sectional drawing which looked at the electric module shown as the 1st Embodiment of this invention in X1-X1 shown in FIG. 本発明の第1の実施形態として示した電気モジュールを図8に示すX2−X2線において矢視した断面図である。It is sectional drawing which looked at the electric module shown as the 1st Embodiment of this invention in the X2-X2 line | wire shown in FIG. 本発明の第2の実施形態として示した電気モジュールの製造工程を模式的に示した斜視図である。It is the perspective view which showed typically the manufacturing process of the electrical module shown as the 2nd Embodiment of this invention. 本発明の第3の実施形態として示した電気モジュールの製造工程を模式的に示した斜視図である。It is the perspective view which showed typically the manufacturing process of the electrical module shown as the 3rd Embodiment of this invention. 本発明の第3の変形実施形態として示した電気モジュールの製造工程を模式的に示した斜視図である。It is the perspective view which showed typically the manufacturing process of the electrical module shown as the 3rd deformation | transformation embodiment of this invention. 従来の電気モジュールの製造工程における一工程を示した図である。It is the figure which showed one process in the manufacturing process of the conventional electrical module. 従来の電気モジュールの製造工程における一工程を示した図である。It is the figure which showed one process in the manufacturing process of the conventional electrical module. 従来の電気モジュールの製造工程における一工程を示した図である。It is the figure which showed one process in the manufacturing process of the conventional electrical module. 従来の電気モジュールの製造工程における一工程を示した図である。It is the figure which showed one process in the manufacturing process of the conventional electrical module.

以下、図を参照して本発明の電気モジュールの第1の実施形態について、色素増感型太陽電池1Aの製造方法を例として説明する。
なお、本明細書において、「セル」とは、単一の色素増感型太陽電池を意味する。また、本明細書及び請求の範囲において、「電気モジュール」とは、複数のセルを備えたユニットを意味する。第1の実施形態は、本発明を簡易に説明するために、便宜上単一のセルを分割して得られる電気モジュールの態様を示しているが、本発明はこれに限定されるものではない。
図1に示すように、色素増感型太陽電池1Aは、第一基板2上に透明導電膜3と半導体層4とを備えた第1電極5と、第二基板6上に対向導電膜7及び触媒層8を備えた第2電極9とを備えている。そして、第1電極5と第2電極9との間が、セパレータ12を介装させた状態で、第一基板2の端縁と第二基板6の端縁とにおいて封止材11により枠状に封止されているとともに、封止材11により囲繞された空間が第一基板2と第二基板6との溶着により複数のセルCに分割されている。そして更に、各セルC内に電解液13が充填されている。
なお、本発明においては、色素増感型太陽電池1Aは、セパレータ12を備えていなくてもよい。
Hereinafter, a first embodiment of the electric module of the present invention will be described with reference to the drawings, taking as an example a method for manufacturing the dye-sensitized solar cell 1A.
In the present specification, the “cell” means a single dye-sensitized solar cell. In the present specification and claims, the “electric module” means a unit having a plurality of cells. The first embodiment shows an aspect of an electric module obtained by dividing a single cell for the sake of convenience in order to explain the present invention. However, the present invention is not limited to this.
As shown in FIG. 1, a dye-sensitized solar cell 1 </ b> A includes a first electrode 5 having a transparent conductive film 3 and a semiconductor layer 4 on a first substrate 2, and a counter conductive film 7 on a second substrate 6. And a second electrode 9 provided with a catalyst layer 8. And between the 1st electrode 5 and the 2nd electrode 9, it is a frame shape with the sealing material 11 in the edge of the 1st board | substrate 2 and the edge of the 2nd board | substrate 6 in the state which interposed the separator 12. The space surrounded by the sealing material 11 is divided into a plurality of cells C by welding the first substrate 2 and the second substrate 6. Further, the electrolyte solution 13 is filled in each cell C.
In the present invention, the dye-sensitized solar cell 1 </ b> A may not include the separator 12.

第一基板2及び第二基板6は、それぞれ透明導電膜3及び対向導電膜7の基台となる部材であり、例えば、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)等の透明の熱可塑性樹脂による平板状部材を略矩形に切断したものである。なお、第一基板2及び第二基板6は、フィルム状に形成されたものであってもよい。   The 1st board | substrate 2 and the 2nd board | substrate 6 are members used as the base of the transparent conductive film 3 and the opposing conductive film 7, respectively, For example, transparent thermoplastics, such as a polyethylene naphthalate (PEN) and a polyethylene terephthalate (PET) A flat plate member made of resin is cut into a substantially rectangular shape. The first substrate 2 and the second substrate 6 may be formed in a film shape.

透明導電膜3は、第一基板2の板面2aの略全体に成膜されている。
透明導電膜3の材料には、例えば、酸化インジウムスズ(ITO)、酸化亜鉛等が用いられている。
The transparent conductive film 3 is formed on substantially the entire plate surface 2 a of the first substrate 2.
As the material of the transparent conductive film 3, for example, indium tin oxide (ITO), zinc oxide or the like is used.

半導体層4は、後述する増感色素から電子を受け取り輸送する機能を有するものであり、金属酸化物からなる半導体により透明導電膜3の表面3aに設けられている。金属酸化物としては、例えば、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化スズ(SnO)、等が用いられる。The semiconductor layer 4 has a function of receiving and transporting electrons from a sensitizing dye described later, and is provided on the surface 3 a of the transparent conductive film 3 by a semiconductor made of a metal oxide. Examples of the metal oxide include titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), and the like.

半導体層4は、増感色素を担持している。増感色素は、有機色素または金属錯体色素で構成されている。有機色素としては、例えば、クマリン系、ポリエン系、シアニン系、ヘミシアニン系、チオフェン系、等の各種有機色素を用いることができる。金属錯体色素としては、例えば、ルテニウム錯体等が好適に用いられる。
このように、第一基板2の一方の板面2aに透明導電膜3を成膜し、透明導電膜3の表面3aに形成された半導体層4を設けて第1電極5が構成されている。
The semiconductor layer 4 carries a sensitizing dye. The sensitizing dye is composed of an organic dye or a metal complex dye. Examples of organic dyes include various organic dyes such as coumarin, polyene, cyanine, hemicyanine, and thiophene. As the metal complex dye, for example, a ruthenium complex is preferably used.
Thus, the first electrode 5 is configured by forming the transparent conductive film 3 on one plate surface 2 a of the first substrate 2 and providing the semiconductor layer 4 formed on the surface 3 a of the transparent conductive film 3. .

対向導電膜7は、第二基板6の板面6a全体に成膜されている。
対向導電膜7の材料には、例えば、酸化インジウムスズ(ITO)、酸化亜鉛等が用いられている。また、対向導電膜7の表面7aには、カーボンペースト,プラチナ等からなる触媒層8が成膜されている。
このように、第二基板6の一方の板面6aに対向導電膜7を成膜し、対向導電膜7の表面7aに触媒層8を成膜させて第2電極9が構成されている。
この第2電極9は、対向導電膜7を透明導電膜3に対向させて、第1電極5と対向配置されている。
The counter conductive film 7 is formed on the entire plate surface 6 a of the second substrate 6.
For example, indium tin oxide (ITO), zinc oxide, or the like is used as the material of the counter conductive film 7. A catalyst layer 8 made of carbon paste, platinum or the like is formed on the surface 7 a of the counter conductive film 7.
In this way, the second electrode 9 is configured by forming the counter conductive film 7 on one plate surface 6 a of the second substrate 6 and forming the catalyst layer 8 on the surface 7 a of the counter conductive film 7.
The second electrode 9 is disposed opposite to the first electrode 5 with the opposing conductive film 7 facing the transparent conductive film 3.

封止材11としては、ホットメルト樹脂等が用いられている。
この封止材11は、後述するセルCが形成されていない図4に示す帯状に配置された第1電極5の端縁R1〜R4の全周に沿って、透明導電膜3の表面に枠状に配され、加熱プレスされて第1電極5と第2電極9との間を接着している。なお、封止材11は、第2電極9の端縁の全周に沿って又は第1電極5と第2電極9との双方に配されてもよい。また、本発明においては、封止材11は、第1電極5の端縁R1〜R4の一部にのみ配されていてもよい。例えば、後述する第3の実施形態のように、封止材11は、第1電極5又は第2電極9の端縁R1,R2に沿って配し、端縁R3,R4に沿っては配しない構成にしてもよい。
As the sealing material 11, hot melt resin or the like is used.
This sealing material 11 has a frame on the surface of the transparent conductive film 3 along the entire circumference of the edges R1 to R4 of the first electrode 5 arranged in a strip shape shown in FIG. The first electrode 5 and the second electrode 9 are adhered to each other by being heated and pressed. The sealing material 11 may be disposed along the entire circumference of the edge of the second electrode 9 or on both the first electrode 5 and the second electrode 9. In the present invention, the sealing material 11 may be disposed only on a part of the edges R <b> 1 to R <b> 4 of the first electrode 5. For example, as in a third embodiment to be described later, the sealing material 11 is disposed along the edges R1 and R2 of the first electrode 5 or the second electrode 9, and is disposed along the edges R3 and R4. You may make it the structure which does not.

図1に示すセパレータ12には、封止材11及び電解液(電解質)13を通過させる多数の孔(不図示)を有する不織布等のシート材が用いられている。
ただし、後述するように、本発明においては、セパレータ12を用いなくてもよい。
For the separator 12 shown in FIG. 1, a sheet material such as a nonwoven fabric having a large number of holes (not shown) through which the sealing material 11 and the electrolytic solution (electrolyte) 13 pass is used.
However, as will be described later, the separator 12 may not be used in the present invention.

電解液13としては、例えば、アセトニトリル、プロピオニトリル等の非水系溶剤;ヨウ化ジメチルプロピルイミダゾリウム又はヨウ化ブチルメチルイミダゾリウム等のイオン液体などの液体成分に、ヨウ化リチウム等の支持電解液とヨウ素とが混合された溶液等が用いられている。また、電解液13は、逆電子移動反応を防止するため、t−ブチルピリジンを含むものでもよい。   Examples of the electrolytic solution 13 include non-aqueous solvents such as acetonitrile and propionitrile; liquid components such as ionic liquids such as dimethylpropylimidazolium iodide or butylmethylimidazolium iodide; and a supporting electrolytic solution such as lithium iodide. A solution or the like in which iodine and iodine are mixed is used. Moreover, in order to prevent reverse electron transfer reaction, the electrolyte solution 13 may contain t-butylpyridine.

次に、色素増感型太陽電池1Aの製造方法について図2A〜図9Bを用いて説明する。
第1の実施形態の色素増感型太陽電池1Aの製造方法は、透明導電膜3と対向導電膜7とを対向させて第1電極5と第2電極9とを貼り合せる貼り合わせ工程と、透明導電膜3及び半導体層4が成膜された第一基板2の裏面又は対向導電膜7が成膜された第二基板6の裏面のいずれか一方から超音波振動を付与し、この超音波振動が付与された箇所に位置する第一基板2及び第二基板6の互いに対向する板面2a,6aを当接させて絶縁するとともに、溶着することにより互いに分割された複数のセルCを形成する分割工程とを備えている。また、本実施形態の製造方法においては、貼り合わせ工程(II)の前に、(I)電極板形成工程を備え、更に、分割工程(III)の後に、(IV)電気的接続工程、(V)注液孔形成工程、(VI)注液工程及び(VII)注液孔封止工程を備えている。以下、各工程について説明する。
Next, the manufacturing method of 1 A of dye-sensitized solar cells is demonstrated using FIG. 2A-FIG. 9B.
The manufacturing method of the dye-sensitized solar cell 1A of the first embodiment includes a bonding step of bonding the first electrode 5 and the second electrode 9 with the transparent conductive film 3 and the counter conductive film 7 facing each other, Ultrasonic vibration is applied from either the back surface of the first substrate 2 on which the transparent conductive film 3 and the semiconductor layer 4 are formed or the back surface of the second substrate 6 on which the counter conductive film 7 is formed. A plurality of cells C divided from each other are formed by abutting and insulating the mutually opposing plate surfaces 2a and 6a of the first substrate 2 and the second substrate 6 located at a place where vibration is applied, and welding them. And a dividing step. Further, in the manufacturing method of the present embodiment, (I) an electrode plate forming step is provided before the bonding step (II), and (IV) an electrical connection step is further provided after the dividing step (III). V) A liquid injection hole forming step, (VI) a liquid injection step, and (VII) a liquid injection hole sealing step are provided. Hereinafter, each step will be described.

(I)<電極板形成工程>
電極板形成工程においては、図2Aに示すように、第一基板2の一方の板面2aに透明導電膜3を成膜し、透明導電膜3の表面3aに半導体層4が形成された第1電極5と、第二基板6の一方の板面6aに対向導電膜7が形成され、更に触媒層8が成膜された第2電極9とを形成する。具体的には、第1電極5及び第2電極9は以下のようにして形成される。
(I) <Electrode plate forming step>
In the electrode plate forming step, as shown in FIG. 2A, a transparent conductive film 3 is formed on one plate surface 2a of the first substrate 2, and a semiconductor layer 4 is formed on the surface 3a of the transparent conductive film 3. The first electrode 5 and the second electrode 9 on which the opposing conductive film 7 is formed on one plate surface 6a of the second substrate 6 and the catalyst layer 8 is further formed are formed. Specifically, the first electrode 5 and the second electrode 9 are formed as follows.

図2Aに示すように、第一基板2として、PET等からなる基板を用いる。
第一基板2の板面2aの全体に酸化インジウムスズ(ITO)等をスパッタリングし透明導電膜3を成膜する。
半導体層4は、例えばエアロゾルデポジション法、コールドスプレー法等の焼成を要しない低温成膜法により、多孔質となるように透明導電膜3の表面3aに形成する。この際、半導体層4は、図4に示すように、封止材11を塗布する端縁R1〜R4を残して、或いは電流の取り出し、又は封止材を配するために、第一基板2の少なくとも一端縁R1を残して半導体層4を形成する。
As shown in FIG. 2A, a substrate made of PET or the like is used as the first substrate 2.
A transparent conductive film 3 is formed by sputtering indium tin oxide (ITO) or the like over the entire plate surface 2a of the first substrate 2.
The semiconductor layer 4 is formed on the surface 3a of the transparent conductive film 3 so as to be porous by a low temperature film forming method that does not require firing, such as an aerosol deposition method or a cold spray method. At this time, as shown in FIG. 4, the semiconductor layer 4 leaves the edges R <b> 1 to R <b> 4 to which the sealing material 11 is applied, takes out the current, or arranges the sealing material 2. The semiconductor layer 4 is formed leaving at least one edge R1.

半導体層4を形成した後、図2Bに示すように、増感色素を溶剤に溶かした増感色素溶液に半導体層4を浸漬させ、該半導体層4に増感色素を担持させる。なお、半導体層4に増感色素を担持させる方法は、上記に限定されず、増感色素溶液中に半導体層4を移動させながら連続的に投入・浸漬・引き上げを行う方法なども採用される。
以上により、図2Bに示す第1電極5が得られる。
After forming the semiconductor layer 4, as shown in FIG. 2B, the semiconductor layer 4 is immersed in a sensitizing dye solution in which a sensitizing dye is dissolved in a solvent, and the sensitizing dye is supported on the semiconductor layer 4. The method for supporting the sensitizing dye on the semiconductor layer 4 is not limited to the above, and a method of continuously charging, dipping and pulling up while moving the semiconductor layer 4 in the sensitizing dye solution is also employed. .
Thus, the first electrode 5 shown in FIG. 2B is obtained.

第2電極9は、図2Aに示すように、ポリエチレンテレフタレート(PET)等よりなる第二基板6の一方の板面6aにITO、酸化亜鉛又はプラチナ等をスパッタリングして対向導電膜7を成膜する。対向導電膜7は、印刷法やスプレー法等にて形成されたものであってもよい。対向導電膜7の表面7aの全体には、カーボンペースト等を成膜して触媒層8を形成する。   As shown in FIG. 2A, the second electrode 9 is formed by forming a counter conductive film 7 by sputtering ITO, zinc oxide, platinum or the like on one plate surface 6a of the second substrate 6 made of polyethylene terephthalate (PET) or the like. To do. The counter conductive film 7 may be formed by a printing method, a spray method, or the like. A carbon paste or the like is formed on the entire surface 7 a of the counter conductive film 7 to form the catalyst layer 8.

(II)<貼り合わせ工程>
図3に示すように、貼り合わせ工程は、第1電極5と第2電極9とを対向配置させて貼り合せ、必要に応じてそれぞれの端縁R1〜R4(図4参照)を封止材11により封止する工程である。
[封止材及び注液孔形成用部材の配置]
具体的には、図4に示すように、未分割の半導体層4に沿う透明導電膜3の端縁R1〜R4の全周に、所定の幅寸法を有する枠形状に形成されたシート状の封止材11を配して半導体層4を囲繞する。ただし、上述したように、本発明においては、封止材11は、第1電極5の端縁R1〜R4の一部にのみ配されていてもよい(例えば第3の実施形態を参照)。
(II) <Lamination process>
As shown in FIG. 3, in the bonding step, the first electrode 5 and the second electrode 9 are bonded to each other and bonded, and if necessary, the respective edges R1 to R4 (see FIG. 4) are sealed. 11 is a process of sealing by 11.
[Arrangement of sealing material and injection hole forming member]
Specifically, as shown in FIG. 4, a sheet-like sheet formed in a frame shape having a predetermined width dimension on the entire circumference of the edges R <b> 1 to R <b> 4 of the transparent conductive film 3 along the undivided semiconductor layer 4. The sealing material 11 is disposed to surround the semiconductor layer 4. However, as described above, in the present invention, the sealing material 11 may be disposed only on a part of the edges R1 to R4 of the first electrode 5 (see, for example, the third embodiment).

その後、注液孔形成用部材19を、第1電極5の一端縁R1に対向する端縁R2に所定の間隔をおいて複数配置する。この際、各注液孔形成用部材19は、封止材11に跨って、第一基板2の端縁R2から突出するように配置する。
なお、注液孔形成用部材19としては、短冊状に形成した離型性樹脂シートを用いる。
離型性樹脂シートには、例えば、ポリエステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート等を用いることができる。
また、所定の間隔とは、第1電極5(ないし第2電極9)において隣接するセルC,Cが形成される間隔である。
Thereafter, a plurality of liquid injection hole forming members 19 are arranged at a predetermined interval on the edge R2 facing the one edge R1 of the first electrode 5. At this time, each injection hole forming member 19 is disposed so as to protrude from the edge R <b> 2 of the first substrate 2 across the sealing material 11.
In addition, as the injection hole forming member 19, a releasable resin sheet formed in a strip shape is used.
For the releasable resin sheet, for example, polyester, polyethylene terephthalate, polybutylene terephthalate, or the like can be used.
The predetermined interval is an interval at which adjacent cells C and C are formed in the first electrode 5 (or the second electrode 9).

[基板の貼り合せ]
次に、図3に示すように、セパレータ12を介在させた状態で透明導電膜3と対向導電膜7とを対向させるように、第2電極9を第1電極5に当接させる。なお、本発明においては、後述するように、セパレータ12を用いなくてもよい。
[Board bonding]
Next, as shown in FIG. 3, the second electrode 9 is brought into contact with the first electrode 5 so that the transparent conductive film 3 and the counter conductive film 7 are opposed to each other with the separator 12 interposed. In the present invention, as will be described later, the separator 12 may not be used.

[接着工程]
接着工程では、貼り合わされた第1電極5及び第2電極9の図5に示す一端縁R1を除いて端縁R2〜R4を積層方向に加熱プレスし、接着させる。この際、注液孔形成用部材19は、耐熱温度が封止材11の溶融硬化温度よりも高く、かつ、非接着性に優れているので、注液孔形成用部材19に接する封止材11とは接着しない。従って、注液孔形成用部材19の両表面は、第1電極5とも第2電極9とも接着されていない状態となる。
なお、本実施形態では、注入孔をあらかじめ設け、接着工程後に注液する方法の例を説明したが、本発明はこれに限定されない。例えば、前もって電解液を塗布し、プレス張り合わせや真空張り合わせを用いてもよい。
[Adhesion process]
In the bonding step, the edges R2 to R4 are heated and bonded in the stacking direction except for the edge R1 shown in FIG. 5 of the first electrode 5 and the second electrode 9 that are bonded together. At this time, since the injection hole forming member 19 has a heat-resistant temperature higher than the melt curing temperature of the sealing material 11 and is excellent in non-adhesiveness, the sealing material in contact with the injection hole forming member 19 is used. 11 is not bonded. Therefore, both surfaces of the injection hole forming member 19 are not bonded to the first electrode 5 and the second electrode 9.
In the present embodiment, an example of a method in which the injection hole is provided in advance and the liquid is injected after the bonding step has been described, but the present invention is not limited to this. For example, an electrolytic solution may be applied in advance, and press bonding or vacuum bonding may be used.

(III)<分割工程>
分割工程では、図6に示すように、第1電極5と第2電極9とにより形成される空間を複数のセルC,C・・に区画する境界上、すなわち所望のパターニング箇所P,P・・をたどるように、透明導電膜3が成膜された第一基板2の裏面2b(図3参照)又は対向導電膜7が成膜された第二基板6の裏面6b(図3参照)のいずれか一方から超音波振動を付与する。
(III) <Division process>
In the dividing step, as shown in FIG. 6, the space formed by the first electrode 5 and the second electrode 9 is on the boundary that partitions the cells C, C,. The back surface 2b of the first substrate 2 on which the transparent conductive film 3 is formed (see FIG. 3) or the back surface 6b of the second substrate 6 on which the counter conductive film 7 is formed (see FIG. 3). Ultrasonic vibration is applied from either one.

そうすると、第一基板2に成膜された透明導電膜3及び半導体層4が、超音波振動により拡散するとともに、透明導電膜3に対向する対向導電膜7及び触媒層8が、同様にして超音波振動により拡散する。その結果、図1に示すように、互いに対向する位置において透明導電膜3、半導体層4、対向導電膜7及び触媒層8においてクラックが生じ、第一基板2の板面2aと第二基板6の板面6aとが当接する。そして、さらに、これら第一基板2と第二基板6とは、超音波振動により溶融して互いに溶着し、図6に示すように半導体層4を囲繞するように配置された封止材11の枠内に互いに分割された複数のセルC,C・・を形成する。
なお、超音波振動は、第1電極5と第2電極9をそれぞれ同時かつ確実にパターニングするとともに、溶着できる所定の出力で行う。
Then, the transparent conductive film 3 and the semiconductor layer 4 formed on the first substrate 2 are diffused by ultrasonic vibration, and the opposing conductive film 7 and the catalyst layer 8 facing the transparent conductive film 3 are similarly super Diffuse by sonic vibration. As a result, as shown in FIG. 1, cracks occur in the transparent conductive film 3, the semiconductor layer 4, the counter conductive film 7, and the catalyst layer 8 at positions facing each other, and the plate surface 2 a of the first substrate 2 and the second substrate 6. The plate surface 6a contacts. Further, the first substrate 2 and the second substrate 6 are melted by ultrasonic vibration and welded to each other, and the sealing material 11 arranged so as to surround the semiconductor layer 4 as shown in FIG. A plurality of cells C, C,... Divided into each other are formed in the frame.
The ultrasonic vibration is performed at a predetermined output that can be welded while patterning the first electrode 5 and the second electrode 9 simultaneously and reliably.

(IV)<電気的接続工程>
電気的接続工程では、加熱プレスによる接着をしなかった一端縁R1において、図7Aに示すように隣接するセルC,C間に跨る切欠15を形成し、図7Bに示すようにこの切欠15,15・・に導通部材16,16・・を配して複数のセルC,C間を直列接続させる。その後、一端縁R1を加熱プレスにより接着してこの一側端R1を閉口する。
以上により、注液孔形成用部材19が配された位置を除いて第1電極5と第2電極9とが端縁R1〜R4において接着される。
(IV) <Electrical connection process>
In the electrical connection step, a notch 15 straddling between adjacent cells C and C is formed as shown in FIG. 7A at one end edge R1 which is not bonded by the heating press, and the notch 15 and .. Are provided with conducting members 16, 16... To connect a plurality of cells C, C in series. Thereafter, the one end R1 is bonded by a hot press to close the one end R1.
By the above, the 1st electrode 5 and the 2nd electrode 9 are adhere | attached in edge R1-R4 except the position where the member 19 for liquid injection hole formation was distribute | arranged.

(V)<注液孔形成工程>
注液孔形成工程では、図8に示すように、第一基板2の端縁から突出させた注液孔形成用部材19,19を引き抜き、セルCを開口させて電解液を注入可能な注液孔17,17・・を形成する。
以上の工程により、第1電極5と第2電極9との間にセルC,C・・が形成された接合体1aが得られる。
(V) <Injection hole forming step>
In the liquid injection hole forming step, as shown in FIG. 8, the liquid injection hole forming members 19, 19 protruding from the edge of the first substrate 2 are pulled out, the cell C is opened, and an electrolyte can be injected. Liquid holes 17 are formed.
Through the above steps, a joined body 1a in which cells C, C... Are formed between the first electrode 5 and the second electrode 9 is obtained.

(VI)<注液工程>
注液工程では、前述した工程で得られた第1電極5と第2電極9との接合体1aを減圧雰囲気下に置き、電解液13を保持した容器(不図示)に注液孔17,17を浸漬させて真空引きにより電解液13をセルC内に注入する。
(VI) <Liquid injection process>
In the liquid injection process, the joined body 1a of the first electrode 5 and the second electrode 9 obtained in the above-described process is placed in a reduced pressure atmosphere, and the liquid injection holes 17, 17 is immersed and the electrolytic solution 13 is injected into the cell C by evacuation.

(VII)<注液孔封止工程>
その後、注液孔封止工程では、電解液13の注入後に注液孔17,17・・を接着剤等で閉口しセルCを封止し、複数のセルC,C・・が直列接続された図9A,図9Bに示す色素増感型太陽電池1Aを得る。
(VII) <Injection hole sealing step>
Thereafter, in the injection hole sealing step, after injection of the electrolytic solution 13, the injection holes 17, 17,... Are closed with an adhesive or the like to seal the cell C, and a plurality of cells C, C,. The dye-sensitized solar cell 1A shown in FIGS. 9A and 9B is obtained.

以上のように、色素増感型太陽電池1Aによれば、第1電極5及び第2電極9の絶縁、すなわちパターニングとパターニングされた箇所における溶着とを、超音波振動により一動作すなわち一工程で行うことができる。また、第1電極5と第2電極9とを貼り合わせた後に、超音波振動を用いてパターニングを行えばよいため、第1電極5と第2電極9との貼り合せにおいて、パターニングされる位置P(図7A参照)を予め考慮して位置合わせをする必要がない。したがって、製造工程の簡略化と製造時間の短縮により、複数のセルC,C・・からなる色素増感型太陽電池1Aの製造効率を大幅に向上させることができるという効果が得られる。   As described above, according to the dye-sensitized solar cell 1A, the insulation of the first electrode 5 and the second electrode 9, that is, the patterning and the welding at the patterned part, are performed in one operation, that is, in one step by ultrasonic vibration. It can be carried out. Further, after the first electrode 5 and the second electrode 9 are bonded together, patterning may be performed using ultrasonic vibration. Therefore, in the bonding of the first electrode 5 and the second electrode 9, the patterning position. It is not necessary to perform alignment in consideration of P (see FIG. 7A) in advance. Therefore, the production efficiency of the dye-sensitized solar cell 1A composed of a plurality of cells C, C... Can be greatly improved by simplifying the production process and shortening the production time.

また、第1電極5と第2電極9とを貼り合わせた後に、超音波振動を用いてパターニングを行うため、パターニング及び溶着位置Pが一致する。したがって、セルC,C間の区画を容易かつ的確に行うことができるという効果が得られる。
また、本発明により製作された複数のセルC,C・・を有する色素増感型太陽電池1Aによれば、セルC,C同士の間を封止材を用いずに絶縁した上で絶縁された箇所を溶着して分割することができるため、材料コストを削減できるとともに、電解液13が封止材11に触れることにより劣化することを抑制することができるという効果が得られる。
Further, since the patterning is performed using the ultrasonic vibration after the first electrode 5 and the second electrode 9 are bonded together, the patterning and the welding position P coincide with each other. Therefore, the effect that the division between the cells C and C can be performed easily and accurately is obtained.
In addition, according to the dye-sensitized solar cell 1A having a plurality of cells C, C,... Manufactured according to the present invention, the cells C and C are insulated from each other without using a sealing material. Therefore, it is possible to reduce the material cost and to prevent the electrolyte solution 13 from being deteriorated by touching the sealing material 11.

また、上記第一の実施態様においては、セパレータ12を介在させた状態で透明導電膜3と対向導電膜7とを対向させるように、第2電極9を第1電極5に当接させている。これは、分割工程において、パターニング箇所P及びその近傍に第1電極5と第2電極9とが接触する部分が生じると、当該接触部分において通電し、電池がショートするおそれがあるためである。
しかしながら、本発明においては、超音波振動を用いてパターニングを行うため、パターニング箇所Pの互いに対向する位置において透明導電膜3、半導体層4、対向導電膜7及び触媒層8にクラックが生じる。また、パターニング箇所Pの近傍にもクラックが生じる。そのため、パターニング箇所P及びその近傍において、第1電極5と第2電極9とが接触する部分が生じない。従って、本発明においては、セパレータ12を用いない場合であっても、パターニング箇所Pにおいて確実に第1電極5及び第2電極9の絶縁を行うことができるため、電池がショートするおそれがない。
In the first embodiment, the second electrode 9 is brought into contact with the first electrode 5 so that the transparent conductive film 3 and the counter conductive film 7 are opposed to each other with the separator 12 interposed. . This is because, in the dividing step, if a portion where the first electrode 5 and the second electrode 9 are in contact with each other in the patterning place P and in the vicinity thereof is energized, the battery may be short-circuited.
However, in the present invention, since patterning is performed using ultrasonic vibration, cracks are generated in the transparent conductive film 3, the semiconductor layer 4, the counter conductive film 7, and the catalyst layer 8 at positions where the patterning locations P face each other. Further, cracks are also generated in the vicinity of the patterning portion P. Therefore, there is no portion where the first electrode 5 and the second electrode 9 are in contact with each other in the patterning portion P and the vicinity thereof. Therefore, in the present invention, even when the separator 12 is not used, the first electrode 5 and the second electrode 9 can be reliably insulated at the patterning portion P, so that there is no possibility that the battery is short-circuited.

次に、本発明の第2の実施形態について図10を用いて説明する。本発明では、上述した第1の実施形態と同様の構成及び工程については同一の符号を用いてその構成及び工程の説明を省略し、第1の実施形態と異なる構成及び工程についてのみ説明する。
本実施形態の色素増感型太陽電池1Aの製造方法は、(I)電極板形成工程から(III)分割工程までを、複数の半導体層4が形成されロール状に巻回された長尺な帯状の第1電極5と同様にロール状に巻回された長尺な帯状の第2電極9とを用いて各工程の作業を連続的に行い、色素増感型太陽電池1Aを製造する点で第1の実施形態の色素増感型太陽電池1Aの製造方法と異なっている。
Next, a second embodiment of the present invention will be described with reference to FIG. In the present invention, the same reference numerals are used for the same configurations and steps as those in the first embodiment described above, and the description of the configurations and steps will be omitted, and only the configurations and steps different from those in the first embodiment will be described.
The manufacturing method of the dye-sensitized solar cell 1A according to the present embodiment is a long process in which a plurality of semiconductor layers 4 are formed and wound in a roll from (I) electrode plate forming step to (III) dividing step. The point which manufactures the dye-sensitized solar cell 1A by continuously performing the work of each process using the long strip-shaped second electrode 9 wound in a roll shape like the strip-shaped first electrode 5. This is different from the method for manufacturing the dye-sensitized solar cell 1A of the first embodiment.

(I)電極板形成工程
第1電極5は、ロール状に巻回された帯状の第一基板2を一方向(矢印L方向)に引き出し、所定の位置で板面2aの全体に透明導電膜3を成膜し、更に透明導電膜3の成膜位置より下流側で透明導電膜3の表面3aに、端縁(外周)R1〜R4を残して半導体層4を矢印L方向に間歇的に設けて製作する。なお、半導体層4における増感色素の吸着は、例えばスプレー塗布により行うことができる。
第2電極9は、ロール状に巻回された帯状の第二基板6を一方向(矢印L方向)と反対方向に引き出し、所定の位置で板面6aの全体に対向導電膜7を成膜し、更に対向導電膜7の成膜位置よりも下流側で対向導電膜7の表面7aの全体に触媒層8を成膜することにより製作する。
(I) Electrode plate formation process The 1st electrode 5 pulls out the strip | belt-shaped 1st board | substrate 2 wound by roll shape to one direction (arrow L direction), and it is a transparent conductive film on the whole plate surface 2a in a predetermined position. 3 is formed, and the semiconductor layer 4 is intermittently provided in the direction of the arrow L, leaving edges (outer circumferences) R1 to R4 on the surface 3a of the transparent conductive film 3 on the downstream side of the film formation position of the transparent conductive film 3. Establish and produce. In addition, adsorption | suction of the sensitizing dye in the semiconductor layer 4 can be performed by spray application, for example.
The second electrode 9 draws out the strip-shaped second substrate 6 wound in a roll shape in the direction opposite to the one direction (arrow L direction), and forms the opposing conductive film 7 on the entire plate surface 6a at a predetermined position. Further, the catalyst layer 8 is formed on the entire surface 7 a of the counter conductive film 7 on the downstream side of the film formation position of the counter conductive film 7.

(II)<封止工程>[封止材及び注液孔形成用部材の配置]
封止材11の配置には、第一基板2上に所定の間隔をおいて間歇的に形成された半導体層4を一つずつ囲繞するように枠状に形成されたシート状のものを用いる。この枠状の封止材11で区画された領域が一の色素増感型太陽電池1Aの1単位Tとなる。
注液孔形成用部材19は、帯状の第一基板2の一端縁に沿って延在する封止材11上に前記第1の実施形態で示したとおりに配置する。
(II) <Sealing step> [Arrangement of sealing material and injection hole forming member]
For the arrangement of the sealing material 11, a sheet-like material formed in a frame shape so as to surround the semiconductor layers 4 intermittently formed at predetermined intervals on the first substrate 2 is used. . A region partitioned by the frame-shaped sealing material 11 is one unit T of one dye-sensitized solar cell 1A.
The liquid injection hole forming member 19 is disposed on the sealing material 11 extending along one end edge of the belt-like first substrate 2 as shown in the first embodiment.

[基板の貼り合せ]
上記のようにして形成された帯状の第1電極5及び第1電極5に配された封止材11に、帯状に引き出したセパレータ12を配し、セパレータ12を配した下流側で、更に帯状の第2電極9を配する。なお、第2の実施態様においても、第1の実施態様と同様の理由により、セパレータ12は用いなくてもよい。
[接着工程]は、第1の実施形態と同様に行う。
[Board bonding]
The strip-shaped first electrode 5 formed as described above and the sealing material 11 disposed on the first electrode 5 are provided with a separator 12 drawn in a strip shape, and further on the downstream side where the separator 12 is disposed. The second electrode 9 is disposed. In the second embodiment, the separator 12 may not be used for the same reason as in the first embodiment.
[Adhesion step] is performed in the same manner as in the first embodiment.

(III)<分割工程>
分割工程では、封止材11の枠内を第1電極5及び第2電極9の延在方向に分割するように矢印L方向に直交する方向に超音波振動を付与し、第1電極5と第2電極9との間に複数のセルC,C・・を形成する。
その後、(IV)電気的接続工程の前又は後に(V)切断工程を行う。
切断工程は、一の色素増感型太陽電池1Aの単位T毎に互いに貼着された第1電極5と第2電極9とを切断して行う。
なお、(IV)電気的接続工程、(VI)注液孔形成工程、(VII)注液工程及び(VIII)注液孔封止工程は、第1の実施形態での方法と同様に行う。なお、(VI)注液孔形成工程は、(V)切断工程の前に行われてもよい。
(III) <Division process>
In the dividing step, ultrasonic vibration is applied in a direction orthogonal to the arrow L direction so as to divide the inside of the frame of the sealing material 11 in the extending direction of the first electrode 5 and the second electrode 9, A plurality of cells C, C... Are formed between the second electrode 9.
Then, (IV) cutting process is performed before or after (IV) electrical connection process.
The cutting step is performed by cutting the first electrode 5 and the second electrode 9 that are attached to each other for each unit T of the one dye-sensitized solar cell 1A.
The (IV) electrical connection step, (VI) injection hole forming step, (VII) injection step, and (VIII) injection hole sealing step are performed in the same manner as in the first embodiment. The (VI) injection hole forming step may be performed before the (V) cutting step.

以上のようにして色素増感型太陽電池1Aの製造を、一つの色素増感型太陽電池1Aごとではなく、長尺な帯状の第一基板2及び長尺な帯状の第二基板6において各工程の作業を連続的に行い、その後、帯状の第1電極5と第2電極9とを貼り合わせた上で、図8に示す複数の接合体1a又は図10に示す色素増感型太陽電池1Aを1つずつに切断することにより、効率的に色素増感型太陽電池1Aを製作することが出来るという効果が得られる。   As described above, the production of the dye-sensitized solar cell 1A is performed not on each dye-sensitized solar cell 1A but on each of the long strip-shaped first substrate 2 and the long strip-shaped second substrate 6. The work of the process is performed continuously, and then the first electrode 5 and the second electrode 9 in the form of a band are bonded together, and then a plurality of joined bodies 1a shown in FIG. 8 or the dye-sensitized solar cell shown in FIG. By cutting 1A one by one, the effect that the dye-sensitized solar cell 1A can be efficiently manufactured is obtained.

また、帯状の第1電極5と第2電極9とを貼り合せて封止する工程及び複数のセルC,C・・を形成する工程においても、これら第1電極5と第2電極9との位置決めを考慮することなく簡便に封止し、又はセルC,C間を極めて簡便に絶縁及び溶着することができるため、色素増感型太陽電池1Aの連続的な製造においても非常に効率的となるという効果が得られる。   Also, in the step of bonding and sealing the band-shaped first electrode 5 and the second electrode 9 and the step of forming a plurality of cells C, C..., The first electrode 5 and the second electrode 9 It can be easily sealed without considering positioning, or can be insulated and welded between the cells C and C very easily, so that it is very efficient in continuous production of the dye-sensitized solar cell 1A. The effect of becoming is obtained.

なお、上記第1の実施形態及び第2の実施形態においては、色素増感型太陽電池1A毎の第1電極5と第2電極9との間の封止を、封止材11を用いて行う構成としたが、封止材11による封止に代えて、超音波振動を付与して第1電極5と第2電極9との間を絶縁及び封止して色素増感型太陽電池1Aを形成してもよい。
この場合、色素増感型太陽電池1Aの製作おいて、枠状の封止材11を、半導体層4を囲繞するように配置するという作業を省いて、超音波溶着によってより簡便に封止することができるという効果が得られる。また、電解液を塗布した後に貼り合わせを行うことにより、注入孔を無くすことができる。その場合、注入孔を考慮せず任意の場所で溶着処理が可能となる。
In the first embodiment and the second embodiment, the sealing between the first electrode 5 and the second electrode 9 for each dye-sensitized solar cell 1A is performed using the sealing material 11. Although it was set as the structure performed instead of sealing by the sealing material 11, it applies ultrasonic vibration and insulates and seals between the 1st electrode 5 and the 2nd electrode 9, 1A of dye-sensitized solar cells May be formed.
In this case, in the production of the dye-sensitized solar cell 1A, the frame-shaped sealing material 11 is more easily sealed by ultrasonic welding without the work of arranging the frame-shaped sealing material 11 so as to surround the semiconductor layer 4. The effect that it can be obtained. Further, the injection hole can be eliminated by bonding after applying the electrolytic solution. In this case, the welding process can be performed at an arbitrary place without considering the injection hole.

なお、上記実施形態においては、注液孔形成用部材19を配する位置と導通材を配する位置とを端縁R1,R2とで異ならせているが、注液孔形成用部材19と導通材とを適切に配置することができる限り、これらはR1,R2のいずれか一方に隣り合うように配置されていてもよい。
また、上記実施形態では、導通材を配する位置を端縁R1か端縁R2のいずれかとしたが、端縁R1,R2の両側に導通材を配してセルC,C間を並列接続させたものであってもよい。
In the above-described embodiment, the position where the liquid injection hole forming member 19 is disposed and the position where the conductive material is disposed are different at the edges R1 and R2, but the liquid injection hole forming member 19 is electrically connected. As long as the material can be appropriately disposed, these may be disposed adjacent to either one of R1 and R2.
Moreover, in the said embodiment, although the position which distribute | circulates conduction | electrical_connection material was made into either edge R1 or edge R2, conduction | electrical_connection material was distribute | arranged on both sides of edge R1, R2, and between cells C and C was connected in parallel. It may be.

次に、本発明の第3の実施形態について図11Aを用いて説明する。本発明では、上述した第2の実施形態と同様の構成及び工程については同一の符号を用いてその構成及び工程の説明を省略し、第2の実施形態と異なる構成及び工程についてのみ説明する。
本実施形態の色素増感型太陽電池1Bの製造方法では、(I)電極板形成工程から(III)分割工程までを、半導体層4が一方向に連続して形成された長尺な帯状の第1電極5と長尺な帯状の第2電極9とを用いて各工程の作業を連続的に行う。また、貼り合わされた第1電極5及び第2電極9を絶縁,溶着及び切断工程を超音波振動の付与によって同時に行い、各セルを互いに封止及び分離させる点で第2の実施形態の色素増感型太陽電池1Aの製造方法と異なっている。
Next, a third embodiment of the present invention will be described with reference to FIG. 11A. In the present invention, the same reference numerals are used for the same configurations and processes as those of the above-described second embodiment, and descriptions of the configurations and processes are omitted, and only configurations and processes different from those of the second embodiment will be described.
In the manufacturing method of the dye-sensitized solar cell 1B of the present embodiment, the long band-like shape in which the semiconductor layer 4 is continuously formed in one direction is performed from (I) the electrode plate forming step to (III) dividing step. Using the first electrode 5 and the long strip-shaped second electrode 9, the operations of each process are continuously performed. In addition, the first electrode 5 and the second electrode 9 that are bonded together are simultaneously insulated, welded, and cut by applying ultrasonic vibrations to seal and separate the cells from each other. This is different from the manufacturing method of the sensitive solar cell 1A.

(I)電極板形成工程
上記した第2の実施形態では、透明導電膜3の表面3aに、端縁(外周)R1〜R4を残して半導体層4を矢印L方向に間歇的に設けて製作したが、本実施形態では、端縁R1,R2を残して半導体層4を透明導電膜3の表面3aに連続して(いわゆるべた塗りで)形成する。
(I) Electrode Plate Forming Process In the second embodiment described above, the semiconductor layer 4 is intermittently provided in the arrow L direction on the surface 3a of the transparent conductive film 3 while leaving the edges (outer circumferences) R1 to R4. However, in the present embodiment, the semiconductor layer 4 is formed continuously (so-called solid coating) on the surface 3a of the transparent conductive film 3 while leaving the edges R1 and R2.

(II)<貼り合わせ工程>
また、上記した第2の実施形態では、間歇的に形成された半導体層4を一つずつ囲繞するように枠状に形成されたシート状のものを第1電極5の表面に配し、第2電極9と貼り合わせたが、本実施形態では、封止材11を第1電極5又は第2電極9の端縁R1,R2に沿って、すなわち幅方向両端であってこれらの延在する方向に帯状に配し、第1電極5と第2電極9とを貼り合わせ接着する。なお、第3の実施態様においても、セパレータ12は用いなくてもよい。上記第1の実施形態において説明したように、本発明においては、超音波振動を用いてパターニングを行うため、パターニング箇所Pの互いに対向する位置において透明導電膜3、半導体層4、対向導電膜7及び触媒層8にクラックが生じる。また、パターニング箇所Pの近傍にもクラックが生じる。そのため、パターニング箇所P及びその近傍において、第1電極5と第2電極9とが接触する部分が生じない。従って、本発明においては、セパレータ12を用いない場合であっても、パターニング箇所Pにおいて確実に第1電極5及び第2電極9の絶縁を行うことができるため、電池がショートするおそれがない。
(II) <Lamination process>
In the second embodiment described above, a sheet-like material formed in a frame shape so as to surround the semiconductor layers 4 formed intermittently one by one is arranged on the surface of the first electrode 5, and In this embodiment, the sealing material 11 extends along the edges R1 and R2 of the first electrode 5 or the second electrode 9, that is, at both ends in the width direction. The first electrode 5 and the second electrode 9 are bonded and bonded in a band shape in the direction. Note that the separator 12 may not be used in the third embodiment. As described in the first embodiment, in the present invention, since patterning is performed using ultrasonic vibration, the transparent conductive film 3, the semiconductor layer 4, and the counter conductive film 7 are located at positions facing each other in the patterning portion P. And a crack arises in the catalyst layer 8. Further, cracks are also generated in the vicinity of the patterning portion P. Therefore, there is no portion where the first electrode 5 and the second electrode 9 are in contact with each other in the patterning portion P and the vicinity thereof. Therefore, in the present invention, even when the separator 12 is not used, the first electrode 5 and the second electrode 9 can be reliably insulated at the patterning portion P, so that there is no possibility that the battery is short-circuited.

そして、貼り合わされた第1電極5及び第2電極9の延在方向に直交(交叉)する方向の絶縁、溶着を超音波振動の付与により同時に行う。
なお、絶縁、溶着に加えて切断も同時に行っても良い。以下では、絶縁、溶着に加えて切断も同時に行う場合について説明する。
この際、超音波振動の付与による第1電極5と第2電極9との絶縁,溶着及び切断には、貼り合わされた第1電極5と第2電極9の幅寸法よりも長尺に形成されたホーン20が用いられ、絶縁、溶着及び切断される箇所の全体に同時に超音波振動が付与され、同時に絶縁、溶着及び切断される。
なお、L方向に導通材が配されている場合、ホーン20が導通材を跨ぐ構成とすれば、導通材を破壊することなく第1電極5及び第2電極9の絶縁、溶着及び切断を超音波振動の付与により同時に行うことができる。
本実施形態によれば、電解液を塗布した後に貼り合わせを行うことにより、注入孔を無くすことができる。その場合、注入孔を考慮せず任意の場所で溶着処理が可能となる。
Then, insulation and welding in a direction orthogonal (crossing) to the extending direction of the bonded first electrode 5 and second electrode 9 are simultaneously performed by applying ultrasonic vibration.
In addition to insulation and welding, cutting may be performed simultaneously. In the following, a case where cutting is performed at the same time in addition to insulation and welding will be described.
At this time, the insulation, welding, and cutting between the first electrode 5 and the second electrode 9 by applying ultrasonic vibration are formed longer than the width of the bonded first electrode 5 and second electrode 9. The horn 20 is used, and ultrasonic vibration is simultaneously applied to the entire portion to be insulated, welded and cut, and simultaneously insulated, welded and cut.
In addition, when the conductive material is arranged in the L direction, if the horn 20 is configured to straddle the conductive material, the insulation, welding, and cutting of the first electrode 5 and the second electrode 9 can be performed without destroying the conductive material. It can be performed simultaneously by applying sonic vibration.
According to this embodiment, the injection hole can be eliminated by performing the bonding after applying the electrolytic solution. In this case, the welding process can be performed at an arbitrary place without considering the injection hole.

以上のように、電極板形成工程及び第1電極及び第2電極の絶縁、溶着及び切断工程を上記のように行うことにより、絶縁、溶着及び切断工程を同時に行って製造工程を削減することができるという効果が得られる。
また、第1電極の透明導電膜3及び半導体層4を第一基板の延在する方向に連続して成膜し、第2電極の対向導電膜7及び触媒層8を第二基板6の延在する方向に連続して成膜し、膜が一様な状態(パターニングされていない状態)で第1電極5と第2電極9とを貼り合せることができるため、第1電極5及び第2電極9の延在方向の位置合わせを考慮する必要がなく、任意の位置においてセル又は電気モジュールを分離することが可能となる。したがって、第1電極5と第2電極9との貼り合わせを容易に行うことができ、かつ、色素増感型太陽電池1Bの製造時間を大幅に圧縮することができるという効果が得られる。
As described above, by performing the electrode plate forming step and the insulating, welding, and cutting steps of the first electrode and the second electrode as described above, the insulating, welding, and cutting steps can be simultaneously performed to reduce the manufacturing process. The effect that it can be obtained.
Further, the transparent conductive film 3 and the semiconductor layer 4 of the first electrode are continuously formed in the extending direction of the first substrate, and the opposing conductive film 7 and the catalyst layer 8 of the second electrode are extended to the second substrate 6. Since the first electrode 5 and the second electrode 9 can be bonded together in a state where the film is continuously formed in the existing direction and the film is in a uniform state (not patterned), the first electrode 5 and the second electrode It is not necessary to consider the alignment in the extending direction of the electrode 9, and the cell or the electric module can be separated at an arbitrary position. Therefore, it is possible to easily bond the first electrode 5 and the second electrode 9 and to greatly reduce the manufacturing time of the dye-sensitized solar cell 1B.

また、第1電極5及び第2電極9をロール状に巻回し両者を一方向に延在させて上記諸工程を連続的に行う、いわゆるRoll to Roll生産を行うことが容易となるため、色素増感型太陽電池1Bの生産性を向上させることができるという効果が得られる。   In addition, since it becomes easy to perform so-called Roll to Roll production in which the first electrode 5 and the second electrode 9 are wound in a roll shape and both are extended in one direction and the above-described steps are continuously performed. The effect that the productivity of the sensitized solar cell 1B can be improved is obtained.

また更に、電極板形成工程において、色素増感型太陽電池1Bの寸法を予め決定して封止材を配しておく必要がなく、第1電極5及び第2電極9を形成しこれらを延在方向に貼り合せた後で超音波振動によって延在方向に交叉する方向に同時に絶縁、溶着及び切断することができる。したがって、電極板形成工程で形成された第1電極5及び第2電極9の設計によって色素増感型太陽電池1Bの一方向における寸法が拘束されることがなく、超音波振動の付与時に色素増感型太陽電池1Bの寸法を任意に設定することができるという効果が得られる。   Furthermore, in the electrode plate forming step, it is not necessary to determine the dimensions of the dye-sensitized solar cell 1B in advance and dispose the sealing material, and form the first electrode 5 and the second electrode 9 to extend them. After bonding in the existing direction, insulation, welding, and cutting can be performed simultaneously in the direction crossing the extending direction by ultrasonic vibration. Therefore, the dimensions of the dye-sensitized solar cell 1B in one direction are not restricted by the design of the first electrode 5 and the second electrode 9 formed in the electrode plate forming step, and the dye increase is performed when ultrasonic vibration is applied. The effect that the dimension of the sensitive solar cell 1B can be arbitrarily set is obtained.

また、本実施形態の製造方法によれば、電解質を第1電極5の半導体層4の上部等に塗工あるいは充填させ、続いて、第1電極5と第2電極9とを対向配置させて一のモジュールとし、その後、この一のモジュールに対し超音波振動により同時に絶縁、溶着及び切断して複数の色素増感型太陽電池1Bに再分化することも可能である。このような手法を取ることで、自動生産性が高まり、生産性が更に改善される。   Further, according to the manufacturing method of the present embodiment, the electrolyte is applied or filled on the upper portion of the semiconductor layer 4 of the first electrode 5, and then the first electrode 5 and the second electrode 9 are disposed to face each other. It is also possible to make a single module, and then to insulate, weld, and cut the single module simultaneously by ultrasonic vibration to re-differentiate into a plurality of dye-sensitized solar cells 1B. By adopting such a method, automatic productivity is increased and productivity is further improved.

なお、本実施形態において、第1電極5及び第2電極9の延在方向Lに交叉する方向(すなわち幅方向)の絶縁、溶着及び切断は、超音波振動を付与することにより第一基板2と第二基板6との互いに対向する板面2a,6aを当接させて溶着し、更に局所的に加熱することによって切断したが、その後更に切断箇所を含む色素増感型太陽電池1Bの周に熱可塑性樹脂を配し、色素増感型太陽電池1Bの内部を二重に封止して液密性を向上させるとなおよい。   In the present embodiment, the insulation, welding, and cutting in the direction crossing the extending direction L of the first electrode 5 and the second electrode 9 (that is, the width direction) are performed by applying ultrasonic vibration to the first substrate 2. The plate surfaces 2a, 6a facing each other and the second substrate 6 are brought into contact with each other and welded, and further cut locally by heating, but then the periphery of the dye-sensitized solar cell 1B including the cut portion. More preferably, a thermoplastic resin is disposed on the inner surface of the dye-sensitized solar cell 1B to improve the liquid-tightness.

また、本実施形態において、封止材11をもって第1電極5と第2電極9とを貼り合わせた箇所についても超音波振動によって絶縁及び溶着してもよい。
また、本実施形態において、第1電極5および第2電極9にパターニングされた処理が施されていないが、半導体層4が複数並列となるように、長手延在方向Lに並行な複数のパターンに分割されていてもよい(図11B参照)。また、複数のパターン同士が直列もしくは並列に接続されていてもよい。その場合においても、L方向に第1電極5および第2電極9のフィルム搬送方向に関する位置合わせが不要という本発明の効果を奏する。なお、図11Bにおいては、半導体層4が3つ並列となる実施形態を示したが、本発明はこれに限定されず、半導体層4を所望数のパターンに分割することが可能である。また、分割後のセルを電気的に接続することにより、簡易かつ効率的に電気モジュールを製造することができる。
Moreover, in this embodiment, you may insulate and weld the location which bonded the 1st electrode 5 and the 2nd electrode 9 with the sealing material 11 by ultrasonic vibration.
In the present embodiment, the first electrode 5 and the second electrode 9 are not subjected to the patterned process, but a plurality of patterns parallel to the longitudinal extension direction L so that the semiconductor layers 4 are arranged in parallel. (See FIG. 11B). A plurality of patterns may be connected in series or in parallel. Even in that case, the effect of the present invention that the alignment of the first electrode 5 and the second electrode 9 in the L direction in the film transport direction is unnecessary is achieved. Although FIG. 11B shows an embodiment in which three semiconductor layers 4 are arranged in parallel, the present invention is not limited to this, and the semiconductor layer 4 can be divided into a desired number of patterns. Moreover, an electrical module can be manufactured simply and efficiently by electrically connecting the divided cells.

また更に、本実施形態において、第1電極5及び第2電極9の延在方向Lに交叉する方向(すなわち幅方向)の封止,絶縁及び切断は、超音波振動を付与することにより第一基板2と第二基板6との互いに対向する板面2a,6aを当接すなわち絶縁させて溶着した上で、ホーンの先端を用いて機械的に切断してもよい。   Furthermore, in the present embodiment, sealing, insulation, and cutting in the direction (that is, the width direction) intersecting the extending direction L of the first electrode 5 and the second electrode 9 are performed by applying ultrasonic vibration. The plate surfaces 2a and 6a facing each other between the substrate 2 and the second substrate 6 may be abutted, that is, insulated and welded, and then mechanically cut using the tip of the horn.

また、第1又は第2の実施形態で示された超音波振動の付与による第1電極5と第2電極9との溶着方法と第3の実施形態による第1電極5と第2電極9との絶縁、溶着及び切断方法とを適宜組み合わせて色素増感型太陽電池1A,1Bを製造することもできる。例えば、第3の実施形態では、セルC単位で第1電極5と第2電極9との絶縁、溶着及び切断を行ったが、セルC,C間を絶縁及び溶着し、色素増感型太陽電池1B毎に第1電極5と第2電極9との絶縁、溶着及び切断を行うようにしてもよい。   Further, the welding method of the first electrode 5 and the second electrode 9 by applying the ultrasonic vibration shown in the first or second embodiment, the first electrode 5 and the second electrode 9 according to the third embodiment, The dye-sensitized solar cells 1A and 1B can also be manufactured by appropriately combining the insulating, welding, and cutting methods. For example, in the third embodiment, the first electrode 5 and the second electrode 9 are insulated, welded, and cut in units of cells C. However, the cells C and C are insulated and welded to form a dye-sensitized solar cell. Insulation, welding, and cutting between the first electrode 5 and the second electrode 9 may be performed for each battery 1B.

以下、実施例を用いて本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to examples.

[実施例1]
下記仕様により、図1の色素増感型太陽電池1Aと同様の色素増感型太陽電池を作製した。
<第1電極>
透明電極膜として、酸化インジウムスズ(ITO)がスパッタリング法でPENフィルム上に予め成膜された50×55mmのITO−PENフィルム(尾池工業(株)製)を用いた。
成膜されたITO層の表面に、TiOペースト(ソラロニクス社製(商品名:ソラロニクスD−L)をアプリケーター(テスター産業社製)で40mm角に塗布し、電気炉内で、120℃で30分間、加熱し硬化させた。
その後、色素(商品名:MK−2綜研化学製)をトルエン(関東化学製 特級 トルエン(脱水))を用い、色素濃度が0.02mM〜0.5mMになるように溶かし、同溶液中に上記基材を10分間浸させた。その後、溶液から取り出した基材をエタノールで洗浄・乾燥させた。
[Example 1]
A dye-sensitized solar cell similar to the dye-sensitized solar cell 1A of FIG. 1 was produced according to the following specifications.
<First electrode>
As the transparent electrode film, a 50 × 55 mm ITO-PEN film (manufactured by Oike Kogyo Co., Ltd.) in which indium tin oxide (ITO) was formed in advance on a PEN film by a sputtering method was used.
A TiO 2 paste (manufactured by Solaronics (trade name: Solaronics DL)) was applied to the surface of the deposited ITO layer to a 40 mm square with an applicator (manufactured by Tester Sangyo Co., Ltd.), and 30 ° C. at 120 ° C. in an electric furnace. Heat and cure for minutes.
Thereafter, the dye (trade name: MK-2 manufactured by Soken Chemical Co., Ltd.) is dissolved in toluene (special grade toluene (dehydrated) manufactured by Kanto Chemical) so that the dye concentration is 0.02 mM to 0.5 mM. The substrate was immersed for 10 minutes. Thereafter, the substrate taken out of the solution was washed with ethanol and dried.

<第2電極>
対向電極膜として酸化インジウムスズ(ITO)がスパッタリング法でPENフィルム上に予め成膜された50×55mmのITO−PENフィルム(尾池工業(株)製)を用いた。また、触媒層としてPEDOT/PSS(SIGMA−ALDRICH社製)をITO−PENフィルム上に成膜した。
<Second electrode>
A 50 × 55 mm ITO-PEN film (manufactured by Oike Industry Co., Ltd.) in which indium tin oxide (ITO) was formed in advance on the PEN film by a sputtering method was used as the counter electrode film. Further, PEDOT / PSS (manufactured by SIGMA-ALDRICH) was formed as a catalyst layer on the ITO-PEN film.

<封止材>
封止材として、外形が52mm×52mm、内形が42mm×42mmの枠状のホットメルト樹脂(タマポリ製)を用いた。
[セパレータの配置]
セパレータ(廣瀬製紙製 HOP−6)は、電流取り出し配線箇所を除きITO膜が完全に被覆される寸法となるように52mm×52mmとした。
<Encapsulant>
As the sealing material, a frame-shaped hot melt resin (manufactured by Tamapoly) having an outer shape of 52 mm × 52 mm and an inner shape of 42 mm × 42 mm was used.
[Separator arrangement]
The separator (HOP-6 manufactured by Hirose Paper Co., Ltd.) had a size of 52 mm × 52 mm so that the ITO film was completely covered except for the current extraction wiring portion.

<分割工程>
上記のようにして得られた第1電極と第2電極とを、TiO層と触媒層とを対向配置させ、第1電極,ホットメルト樹脂,セパレータ,ホットメルト樹脂,第2電極の順に積層した。この際、第2電極とホットメルト樹脂との間であって、セルが形成される位置に1mm×10mmの離型性樹脂シート(AS ONE社製 ナフロンシート)を配した。
<Division process>
The first electrode and the second electrode obtained as described above are laminated in the order of the first electrode, the hot melt resin, the separator, the hot melt resin, and the second electrode, with the TiO 2 layer and the catalyst layer disposed opposite to each other. did. At this time, a 1 mm × 10 mm releasable resin sheet (a naflon sheet manufactured by AS ONE) was disposed between the second electrode and the hot melt resin at a position where a cell was formed.

そして、120℃、1.0KN、120秒の条件で、離型性樹脂シートを配した端縁に対向する端縁を除いた3つの端縁を加熱プレスにより接着させた。
その後、超音波溶着機(日本エマソン製)を用いて、離型性樹脂シートを配した端縁を4等分するように、この端縁に直交する方向に40kHz,80Wの超音波振動を加えた(図6参照)。
Then, under the conditions of 120 ° C., 1.0 KN, 120 seconds, the three edges excluding the edge facing the edge where the release resin sheet was arranged were bonded by a hot press.
Then, using an ultrasonic welding machine (manufactured by Nippon Emerson), ultrasonic vibration of 40 kHz and 80 W was applied in a direction perpendicular to the edge so that the edge on which the release resin sheet was arranged was divided into four equal parts. (See FIG. 6).

<直列接続工程>
未硬化の端縁において隣り合うセルを跨ぐように超音波溶着をした箇所を切欠き、この切欠いた箇所に隣り合う電極が導通するように導通材を入れ、未硬化部をホットプレスした(図7AB参照)。
<Series connection process>
A portion that was ultrasonically welded so as to straddle the adjacent cells at the uncured edge was cut out, a conductive material was inserted so that the adjacent electrode was conducted to the notched portion, and the uncured portion was hot pressed (Fig. 7AB).

<注液孔形成工程>
その後、各セルに配置された離型性樹脂シートを引き抜き、電解液の注液孔が形成された接合体を得た(図8参照)。
<注液工程>
得られた接合体をフォルダに取り付けて固定し、前記電解液の注液孔を電解液(ソラロニクス製Iodolyte AN−50)に浸漬させた状態で真空引きを行い、100Paまで引いた後に大気開放して全ての電極に同時に電解液を注入し、その後、注液孔をホットプレスして封止し、取り出し配線を取り付け色素増感型太陽電池とした。
<Liquid injection hole forming step>
Thereafter, the releasable resin sheet disposed in each cell was pulled out to obtain a joined body in which an electrolyte injection hole was formed (see FIG. 8).
<Liquid injection process>
The obtained joined body is fixed by attaching it to a folder, and vacuuming is performed in a state where the injection hole of the electrolytic solution is immersed in an electrolytic solution (Iodolyte AN-50 manufactured by Solaronics). Then, the electrolyte solution was injected into all the electrodes at the same time, and then the injection hole was hot-pressed and sealed, and the takeout wiring was attached to form a dye-sensitized solar cell.

[比較例1]
分割工程の替わりに、以下の工程を行った以外は、実施例1と同様にして色素増感型太陽電池を作製した。
まず、図1のPの位置で第1電極および第2電極のレーザー加工処理の分断を施した。
次いで、TiO電極を前もって図1のPの部分をよけて分割されたパターンで印刷した。図1のPの部分に封止材として、外形が52mm×52mmに、内形が42mm×7mmの長方形が5mm間隔で配置された枠状のホットメルト樹脂(タマポリ製)を用いた。また、第1基板と第2基板を貼り合わせる際に位置決め工程を設けた。
[Comparative Example 1]
A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the following steps were performed instead of the dividing step.
First, the laser processing of the first electrode and the second electrode was divided at the position P in FIG.
Then, a TiO 2 electrode was printed in advance in a pattern divided by avoiding the portion P in FIG. A frame-shaped hot melt resin (manufactured by Tamapoly) having an outer shape of 52 mm × 52 mm and an inner shape of 42 mm × 7 mm arranged at intervals of 5 mm was used as a sealing material in the portion P of FIG. Further, a positioning step is provided when the first substrate and the second substrate are bonded together.

[評価結果]
実施例1及び比較例1をそれぞれ3セットずつ作製し、そして、実施例1及び比較例1の色素増感型太陽電池について3セット蛍光灯下(450lx)に載置し、発電評価をした。
[Evaluation results]
Three sets each of Example 1 and Comparative Example 1 were prepared, and the dye-sensitized solar cells of Example 1 and Comparative Example 1 were placed under three sets of fluorescent lamps (450 lx) for power generation evaluation.

工程における優位性に関して、比較例1の場合は、隣り合うセル間での透明導電膜及び対向導電膜のパターニング工程及び封止材配置工程が各別に必要となるのに対し、実施例1の場合は、透明導電膜及び対向導電膜のパターニング及びパターニングされた箇所の溶着を一工程で、一の動作で行うことができるため、作業が容易となるとともに比較例に対し一工程削減された。   Regarding the superiority in the process, in the case of Comparative Example 1, the patterning process and the sealing material arranging process of the transparent conductive film and the counter conductive film between adjacent cells are required separately, whereas in the case of Example 1 Since the patterning of the transparent conductive film and the counter conductive film and the welding of the patterned portions can be performed in one step and in one operation, the operation is facilitated and the number of steps is reduced compared to the comparative example.

また、隣り合うセル間で、比較例1の場合は、透明導電膜,対向導電膜及び触媒層を間欠的に塗布しなければならないのに対し、実施例1の場合は、透明導電膜,対向導電膜及び触媒層を連続的に塗布することができるため、透明導電膜,対向導電膜及び触媒層の形成工程が大幅に簡略化され、透明導電膜,対向導電膜及び触媒層の形成工程に要する時間が大きく削減された。   Further, in the case of Comparative Example 1, the transparent conductive film, the counter conductive film, and the catalyst layer must be intermittently applied between adjacent cells, whereas in the case of Example 1, the transparent conductive film, Since the conductive film and the catalyst layer can be applied continuously, the process of forming the transparent conductive film, the counter conductive film, and the catalyst layer is greatly simplified. The time required is greatly reduced.

位置合わせに関し、比較例1では、第1電極と第2電極との貼り合せ時に、透明導電膜と対向導電膜とのパターニング位置と、封止材の配置位置と、セパレータの配置位置とを同時に精度よく位置合わせすることが困難であった。しかし、実施例1では、第1電極と第2電極と貼り合せ工程の後にセル間の絶縁処理及び溶着を行うため、第1電極と第2電極と貼り合せを外枠の封止材の配置位置のみを位置合わせすることにより容易に行うことができた。また、透明導電膜と対向導電膜とのパターニング及び溶着とを一つの動作で同時に行うため、的確な位置合わせが容易にできた。   Regarding the alignment, in Comparative Example 1, the patterning position of the transparent conductive film and the counter conductive film, the arrangement position of the sealing material, and the arrangement position of the separator are simultaneously performed when the first electrode and the second electrode are bonded together. It was difficult to align accurately. However, in Example 1, in order to perform insulation treatment and welding between the cells after the first electrode and the second electrode are bonded together, the first electrode and the second electrode are bonded together by arranging the sealing material of the outer frame. This could be done easily by aligning only the position. In addition, since the patterning and welding of the transparent conductive film and the counter conductive film are simultaneously performed in one operation, accurate alignment can be easily performed.

また、実施例1及び比較例1の色素増感型太陽電池の発電評価をそれぞれ行った。その結果、いずれも発電が確認された。   Moreover, the power generation evaluation of the dye-sensitized solar cell of Example 1 and Comparative Example 1 was performed. As a result, power generation was confirmed in all cases.

以上より、本発明によれば、色素増感型太陽電池の作製時に課題となる透明導電膜及び対向導電膜のパターニング及び封止工程を各別に行った上で精巧な貼り合せを行わなくても、少なくとも比較例1によって得られた色素増感型太陽電池と同等の発電性能が得られる色素増感型太陽電池を容易に製造することが可能であることが確認できた。   As described above, according to the present invention, the transparent conductive film and the counter conductive film, which are problems in the production of the dye-sensitized solar cell, are subjected to the patterning and sealing process separately, and it is not necessary to perform elaborate bonding. It was confirmed that it is possible to easily produce a dye-sensitized solar cell capable of obtaining power generation performance equivalent to at least the dye-sensitized solar cell obtained in Comparative Example 1.

[実施例2]
次に、下記仕様により図11Aの色素増感型太陽電池1Bと同様の色素増感型太陽電池を作製した。
<第1電極>
透明電極として酸化インジウムスズ(ITO)がスパッタリング法でPEN上に予め成膜された幅300mm長さ100mのITO−PENフィルム上に、エアロゾルデポジション法(AD法)を用いて半導体粒子を吹き付けて、10μmのTiO層を、幅270mmで製膜した。前記半導体粒子として、平均粒子径が約20nmと約200nmのアナターゼ型TiO粒子を重量比30:70の割合で混合した混合粉体を使用した。ITO−PENフィルムに対して前記混合粉体を吹付けた。AD法の条件は以下の通りであった。
成膜室雰囲気圧力100Pa
吹付けに使用したガス:Nガス
流速6L/min
その後、色素(商品名 :MK−2綜研化学製)をトルエン(関東化学製 特級 トルエン(脱水))で色素濃度が0.02mM〜0.5mMになるように溶かし、TiO2層にスプレー状に噴霧し、乾燥させ(60℃)色素染色を実施した。
[Example 2]
Next, a dye-sensitized solar cell similar to the dye-sensitized solar cell 1B of FIG.
<First electrode>
Semiconductor particles are sprayed on the ITO-PEN film having a width of 300 mm and a length of 100 m on which the indium tin oxide (ITO) is formed in advance on the PEN by a sputtering method as a transparent electrode by using an aerosol deposition method (AD method). A 10 μm TiO 2 layer was formed with a width of 270 mm. As the semiconductor particles, mixed powder in which anatase TiO 2 particles having an average particle diameter of about 20 nm and about 200 nm were mixed at a weight ratio of 30:70 was used. The mixed powder was sprayed on the ITO-PEN film. The conditions of the AD method were as follows.
Deposition chamber atmosphere pressure 100Pa
Gas used for spraying: N 2 gas, flow rate 6 L / min
Thereafter, the dye (trade name: MK-2 manufactured by Soken Chemical Co., Ltd.) is dissolved in toluene (special grade toluene (dehydrated) manufactured by Kanto Chemical Co., Ltd.) so that the dye concentration becomes 0.02 mM to 0.5 mM, and sprayed on the TiO2 layer in a spray form. And dried (60 ° C.) for dye staining.

<第2電極>
対向導電膜として酸化インジウムスズ(ITO)がスパッタリング法でPENフィルム上に予め成膜された幅300mm長さ100mのITO−PENフィルム(尾池工業製)上に、触媒層としてPEDOT/PSS(SIGMA−ALDRICH社製)を成膜した。
<Second electrode>
PEDOT / PSS (SIGMA) as a catalyst layer on an ITO-PEN film (manufactured by Oike Kogyo Co., Ltd.) having a width of 300 mm and a length of 100 m, in which indium tin oxide (ITO) was formed in advance as a counter conductive film on a PEN film by sputtering. -Aldrich Corporation) was formed.

<封止材>
封止材を基板幅方向端部に、5mm幅の帯状に配した。この封止材は、半導体層に接触しないように配した。
<Encapsulant>
The sealing material was arranged in a 5 mm wide strip at the substrate width direction end. This sealing material was arranged so as not to contact the semiconductor layer.

第1電極のTiO層の表面に電解液(Iodolyte50、ソラロニクス社製)を滴下し、その後、第1電極と第2電極とを、TiO層とPEDOT/PSS(SIGMA−ALDRICH社製)とを対向配置させ、第1電極,ホットメルト樹脂,第2電極の順にロールトゥロール法で積層した。
そして、120℃、1KN、120秒の条件で加熱プレスにより接着させた。
An electrolytic solution (Iodolyte 50, manufactured by Solaronics) is dropped on the surface of the TiO 2 layer of the first electrode, and then the first electrode and the second electrode are combined with the TiO 2 layer and PEDOT / PSS (manufactured by SIGMA-ALDRICH). Were placed opposite to each other, and the first electrode, hot melt resin, and second electrode were laminated in this order by the roll-to-roll method.
And it was made to adhere | attach by the hot press on 120 degreeC, 1KN, and 120 second conditions.

所定長さのモジュールに超音波融着を用い絶縁・溶着・切断を実施することにより、矩形からなる3枚の色素増感型太陽電池を得た。それぞれの色素増感型太陽電池について、電極性能を評価した。
[評価結果]
実施例2で得られた色素増感型太陽電池を蛍光灯下(450lx)に載置し、発電評価をした。
Three modules of rectangular dye-sensitized solar cells were obtained by performing insulation, welding, and cutting using ultrasonic fusion on a module having a predetermined length. The electrode performance was evaluated for each dye-sensitized solar cell.
[Evaluation results]
The dye-sensitized solar cell obtained in Example 2 was placed under a fluorescent lamp (450 lx), and power generation was evaluated.

色素増感型太陽電池の作業工程における優位性に関して、実施例2の場合は、半導体層等の成膜を一の動作で行うことができるため、半導体層等の形成工程が従来に比べ大幅に簡略化され、第1電極及び第2電極の形成工程に要する時間が大きく削減された。   Regarding the superiority in the working process of the dye-sensitized solar cell, in the case of Example 2, since the film formation of the semiconductor layer and the like can be performed with one operation, the process of forming the semiconductor layer and the like is significantly more than conventional. The time required for the process of forming the first electrode and the second electrode is greatly reduced.

また、位置合わせに関し、従来の方法では、第1電極と第2電極との貼り合せ時に、透明導電膜と対向導電膜とのパターニング位置と、封止材の配置位置と、セパレータの配置位置とを同時に精度よく位置合わせすることが困難であった。しかし、実施例2では、第1電極と第2電極と貼り合せ工程の後に色素増感型太陽電池の一のモジュールを溶着かつ絶縁して封止し、更に切断するため、第1電極と第2電極との貼り合せをその延在方向における位置合わせを精密に考慮することなく容易に行うことができた。また、透明導電膜と対向導電膜との絶縁,溶着及び切断とを一つの動作で同時に行うため、一つのモジュールに関して的確な位置合わせが容易にできた。
したがって、いわゆるRoll to Rollにより連続生産する上で実施例2の場合が好適であることが確認でき、また一の色素増感型太陽電池の封止性についても問題がないことが確認された。
In addition, regarding the alignment, in the conventional method, when the first electrode and the second electrode are bonded, the patterning position of the transparent conductive film and the counter conductive film, the position of the sealing material, the position of the separator, At the same time, it was difficult to accurately align the positions. However, in Example 2, the first electrode and the second electrode were bonded to each other after the step of bonding the first electrode and the second electrode, and the module was welded, insulated, sealed, and further cut. Bonding with two electrodes could be easily performed without considering the alignment in the extending direction precisely. In addition, since the insulation, welding, and cutting of the transparent conductive film and the counter conductive film are simultaneously performed in one operation, accurate alignment with respect to one module can be easily performed.
Therefore, it was confirmed that the case of Example 2 was suitable for continuous production by so-called Roll to Roll, and it was confirmed that there was no problem with the sealing property of one dye-sensitized solar cell.

また、実施例2の色素増感型太陽電池の発電評価を行った。その結果、短絡なく発電できることが確認された。   Further, power generation evaluation of the dye-sensitized solar cell of Example 2 was performed. As a result, it was confirmed that power can be generated without a short circuit.

以上より、本発明によれば、色素増感型太陽電池をいわゆるRoll to Roll生産する際に課題となる第1電極と第2電極との精巧な貼り合わせを行わなくても、少なくとも比較例1によって得られた色素増感型太陽電池と同様に発電性能が得られる色素増感型太陽電池を容易に製造することが可能であることが確認できた。   As described above, according to the present invention, at least Comparative Example 1 can be achieved without performing elaborate bonding between the first electrode and the second electrode, which is a problem when producing a dye-sensitized solar cell so-called Roll to Roll. It was confirmed that it is possible to easily produce a dye-sensitized solar cell capable of obtaining power generation performance in the same manner as the dye-sensitized solar cell obtained by the above method.

1A,1B 色素増感型太陽電池(電気モジュール)
2 第一基板
2a 板面
2b 裏面
3 透明導電膜
4 半導体層
5 第1電極
6 第二基板
6a 板面
6b 裏面
7 対向導電膜
9 第2電極
11 封止材
P 超音波振動が付与される箇所
C セル
1A, 1B Dye-sensitized solar cell (electric module)
2 first substrate 2a plate surface 2b back surface 3 transparent conductive film 4 semiconductor layer 5 first electrode 6 second substrate 6a plate surface 6b back surface 7 counter conductive film 9 second electrode 11 sealing material P where ultrasonic vibration is applied C cell

Claims (5)

第一基板の板面に透明導電膜が成膜され、前記透明導電膜の表面に半導体層が形成された第1電極と、第二基板の板面に前記透明導電膜に対向するように対向導電膜が成膜された第2電極とを備え、これら第1電極と第2電極との間に形成された空間に電解質が封止された電気モジュールの製造方法おいて、
前記透明導電膜と前記対向導電膜とを対向させて前記第1電極と前記第2電極とを貼り合せる貼り合わせ工程と、
前記透明導電膜が成膜された前記第一基板の裏面又は前記対向導電膜が成膜された前記第二基板の裏面のいずれか一方から超音波振動を付与し、この超音波振動が付与された箇所に位置する前記第一基板及び前記第二基板の互いに対向する板面を当接させて絶縁するとともにこれら第一基板と第二基板とを溶着することにより、前記第1電極と前記第2電極とを分割する分割工程とを有することを特徴とする電気モジュールの製造方法。
A first electrode having a transparent conductive film formed on the plate surface of the first substrate and a semiconductor layer formed on the surface of the transparent conductive film, and a plate surface of the second substrate opposed to the transparent conductive film. In a method for manufacturing an electrical module comprising a second electrode on which a conductive film is formed and an electrolyte is sealed in a space formed between the first electrode and the second electrode,
A bonding step of bonding the first electrode and the second electrode with the transparent conductive film and the counter conductive film facing each other;
Ultrasonic vibration is applied from either the back surface of the first substrate on which the transparent conductive film is formed or the back surface of the second substrate on which the counter conductive film is formed, and this ultrasonic vibration is applied. The first substrate and the second substrate that are located at the same location are brought into contact with each other to insulate and insulate the first substrate and the second substrate, so that the first electrode and the second substrate are welded together. A method of manufacturing an electric module, comprising: a dividing step of dividing two electrodes.
帯状に一方向に延在させた前記第一基板の板面に、前記一方向に連続して成膜された前記透明導電膜及び前記半導体層が前記第一基板の幅方向に一又は複数成膜された前記第1電極と、帯状に一方向に延在させた前記第二基板の板面に、前記一方向に連続して成膜された前記対向導電膜が前記第一基板の幅方向に一又は複数連続して成膜された前記第2電極とを貼り合せて前記幅方向両端を接着し、前記貼り合わされた前記第1電極と前記第2電極とに超音波振動を付与してこれら第1電極と第2電極とを前記延在する方向に対し交叉する方向に絶縁かつ溶着するとともに切断して分割した単位毎に封止及び切断することを特徴とする請求項1に記載の電気モジュールの製造方法。   One or a plurality of the transparent conductive film and the semiconductor layer continuously formed in the one direction are formed in the width direction of the first substrate on the plate surface of the first substrate extended in one direction in a band shape. The counter conductive film continuously formed in the one direction is formed in the width direction of the first substrate on the filmed first electrode and the plate surface of the second substrate extended in one direction in a strip shape. One or a plurality of the second electrodes formed in succession to each other are bonded to each other in the width direction, and ultrasonic vibration is applied to the bonded first electrode and the second electrode. 2. The first electrode and the second electrode are insulated and welded in a direction crossing the extending direction, and cut and divided for each unit divided and cut. Manufacturing method of electrical module. 前記超音波振動は、前記第1電極と前記第2電極とを絶縁,溶着及び切断する箇所の全体に同時に及ぶように付与し、前記絶縁かつ溶着する箇所を同時に絶縁,溶着及び切断することを特徴とする請求項2に記載の電気モジュールの製造方法。   The ultrasonic vibration is applied so that the first electrode and the second electrode are simultaneously covered over the entire portion to be insulated, welded and cut, and the portion to be insulated and welded is simultaneously insulated, welded and cut. The method of manufacturing an electric module according to claim 2, wherein 第一基板の板面に透明導電膜が成膜され、前記透明導電膜の表面に半導体層が形成された第1電極と、第二基板に前記透明導電膜に対向するように対向導電膜が成膜された第2電極とを備え、これら第1電極と第2電極との間に形成された空間に電解質が充填された電気モジュールにおいて、
前記第一基板の板面と前記第二基板の板面とが直接当接し、超音波振動により絶縁かつ溶着されていることを特徴とする電気モジュール。
A transparent conductive film is formed on the plate surface of the first substrate, a semiconductor layer is formed on the surface of the transparent conductive film, and a counter conductive film is provided on the second substrate so as to face the transparent conductive film. In an electric module comprising a second electrode formed and an electrolyte is filled in a space formed between the first electrode and the second electrode.
An electrical module, wherein the plate surface of the first substrate and the plate surface of the second substrate are in direct contact with each other and are insulated and welded by ultrasonic vibration.
前記半導体層が前記第一基板の幅方向に複数形成されており、前記第一基板の板面と前記第二基板の板面とが前記幅方向に対し交叉する方向に超音波振動により絶縁かつ溶着されていることを特徴とする請求項4に記載の電気モジュール。   A plurality of the semiconductor layers are formed in the width direction of the first substrate, and the plate surface of the first substrate and the plate surface of the second substrate are insulated by ultrasonic vibration in a direction intersecting the width direction. The electric module according to claim 4, wherein the electric module is welded.
JP2014531680A 2012-08-24 2013-08-23 Electric module manufacturing method and electric module Active JP5702897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014531680A JP5702897B2 (en) 2012-08-24 2013-08-23 Electric module manufacturing method and electric module

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012185875 2012-08-24
JP2012185875 2012-08-24
JP2013025019 2013-02-12
JP2013025019 2013-02-12
PCT/JP2013/072542 WO2014030736A1 (en) 2012-08-24 2013-08-23 Method for producing electric module and electric module
JP2014531680A JP5702897B2 (en) 2012-08-24 2013-08-23 Electric module manufacturing method and electric module

Publications (2)

Publication Number Publication Date
JP5702897B2 JP5702897B2 (en) 2015-04-15
JPWO2014030736A1 true JPWO2014030736A1 (en) 2016-08-08

Family

ID=50150039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014531680A Active JP5702897B2 (en) 2012-08-24 2013-08-23 Electric module manufacturing method and electric module

Country Status (5)

Country Link
JP (1) JP5702897B2 (en)
KR (1) KR102095768B1 (en)
CN (1) CN104541350B (en)
TW (1) TWI560895B (en)
WO (1) WO2014030736A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180233295A1 (en) * 2015-08-06 2018-08-16 Fujikura Ltd. Photoelectric conversion element
TW201724550A (en) * 2015-09-17 2017-07-01 積水化學工業股份有限公司 Electric module manufacturing method and electric module manufacturing apparatus
TW201725740A (en) * 2015-12-09 2017-07-16 積水化學工業股份有限公司 Electric module and electric module manufacturing method
JP2018037606A (en) * 2016-09-02 2018-03-08 積水化学工業株式会社 Electric module and method for manufacturing the same
JP6918521B2 (en) * 2017-03-03 2021-08-11 積水化学工業株式会社 Electric module and manufacturing method of electric module

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979878B2 (en) * 2002-01-25 2012-07-18 コナルカ テクノロジーズ インコーポレイテッド Structure and material of dye-sensitized solar cell
JP2006012794A (en) * 2004-05-26 2006-01-12 Kansai Paint Co Ltd Photocell and manufacturing method therefor
CN101667493B (en) * 2005-03-30 2012-09-26 大日本印刷株式会社 Oxide semiconductor electrode, dye-sensitized solar cell, and, method of producing the same
JP2007059324A (en) * 2005-08-26 2007-03-08 Kansai Paint Co Ltd Forming method of dye-sensitized semiconductor electrode and photoelectric cell module
JP5089911B2 (en) * 2006-04-17 2012-12-05 株式会社フジクラ Method for producing dye-sensitized solar cell
JP2008192856A (en) * 2007-02-05 2008-08-21 Sony Chemical & Information Device Corp Manufacturing method of electrochemical cell
JP5430971B2 (en) * 2008-04-28 2014-03-05 株式会社フジクラ Method for manufacturing photoelectric conversion element and method for manufacturing photoelectric conversion element module
JP5361539B2 (en) * 2009-05-27 2013-12-04 京セラ株式会社 Photoelectric conversion device
JP4504457B1 (en) 2009-07-28 2010-07-14 株式会社フジクラ Laminated sheet for sealing dye-sensitized solar cell and method for producing dye-sensitized solar cell using the same
DE102009044038A1 (en) * 2009-09-17 2011-03-31 Schott Solar Ag Method for producing a contact region of an electronic component
JP5498265B2 (en) * 2010-05-31 2014-05-21 新日鉄住金化学株式会社 Extraction electrode for solar cell, solar cell and solar cell module
JP2012113946A (en) * 2010-11-24 2012-06-14 Sony Corp Sealed structure and manufacturing method thereof
KR101119044B1 (en) * 2011-06-16 2012-03-16 주식회사 티모테크놀로지 Parallel type dye-sensitized solar cell module

Also Published As

Publication number Publication date
KR20150048721A (en) 2015-05-07
JP5702897B2 (en) 2015-04-15
WO2014030736A1 (en) 2014-02-27
KR102095768B1 (en) 2020-04-01
CN104541350B (en) 2019-03-05
TW201417317A (en) 2014-05-01
TWI560895B (en) 2016-12-01
CN104541350A (en) 2015-04-22

Similar Documents

Publication Publication Date Title
JP5702897B2 (en) Electric module manufacturing method and electric module
TWI583009B (en) Electrical module
JP6286110B2 (en) Electric module manufacturing method and electric module manufacturing apparatus
TW201618141A (en) Method for producing solar cell
TW201444106A (en) Electric device and method of manufacturing the same
JP6918521B2 (en) Electric module and manufacturing method of electric module
JP2018037606A (en) Electric module and method for manufacturing the same
WO2017099217A1 (en) Electrical module and method for manufacturing same
TW201543516A (en) Electric module and method for producing electric module
JP5530372B2 (en) Manufacturing method of electric module
JP5778601B2 (en) Manufacturing method of electric module
JP5846984B2 (en) Electric module and method of manufacturing electric module
JP2013201078A (en) Electric module and manufacturing method of the same
JP5688344B2 (en) Electric module and method of manufacturing electric module
JP6043166B2 (en) Electric module manufacturing method and electric module
JP2011249258A (en) Extraction electrode of solar battery, solar battery, and solar battery module
JP7107788B2 (en) Electric module and method of manufacturing an electric module
WO2015083738A1 (en) Conductive member with sealing function, electric module, and manufacturing method for electric module
JP2013073856A (en) Manufacturing method of electric module and electric module
JP2015216394A (en) Member for manufacturing electric module, and electric module
JP2014063575A (en) Solar cell, solar cell module, manufacturing method of solar cell and manufacturing method of solar cell module
JP2013214373A (en) Electric module
JP2020038876A (en) Electric module
JP2020047805A (en) Electric module and manufacturing method of electric module
JP2020047804A (en) Electric module and manufacturing method of electric module

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150220

R151 Written notification of patent or utility model registration

Ref document number: 5702897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250