JPWO2013172429A1 - Elastic heat-dissipating sheet and article to which it is attached - Google Patents

Elastic heat-dissipating sheet and article to which it is attached Download PDF

Info

Publication number
JPWO2013172429A1
JPWO2013172429A1 JP2014515676A JP2014515676A JPWO2013172429A1 JP WO2013172429 A1 JPWO2013172429 A1 JP WO2013172429A1 JP 2014515676 A JP2014515676 A JP 2014515676A JP 2014515676 A JP2014515676 A JP 2014515676A JP WO2013172429 A1 JPWO2013172429 A1 JP WO2013172429A1
Authority
JP
Japan
Prior art keywords
resin
heat
sheet according
tensile elongation
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014515676A
Other languages
Japanese (ja)
Other versions
JP6151245B2 (en
Inventor
岩村 栄治
栄治 岩村
理規 小林
理規 小林
靖孝 両角
靖孝 両角
尚弥 高橋
尚弥 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Pelnox Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Pelnox Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd, Pelnox Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP2014515676A priority Critical patent/JP6151245B2/en
Publication of JPWO2013172429A1 publication Critical patent/JPWO2013172429A1/en
Application granted granted Critical
Publication of JP6151245B2 publication Critical patent/JP6151245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

本発明は、引張伸び率が200%以上の樹脂(A)、架橋剤(B)及び赤外線吸収性無機粒子(C)を含有する樹脂組成物Iより得られる引張伸び率が100%以上の放熱層と、粘着性樹脂(D)を含有する樹脂組成物IIより得られる引張伸び率が200%以上の粘着層とから構成される、引張伸び率が100%以上の2層構造の伸縮性放熱シートを提供するものである。また、本発明は、上記の2層構造の伸縮性放熱シートが貼付された物品をも提供する。The present invention provides a heat release having a tensile elongation of 100% or more obtained from the resin composition I containing a resin (A) having a tensile elongation of 200% or more, a crosslinking agent (B), and infrared absorbing inorganic particles (C). Stretchable heat dissipation of a two-layer structure composed of a layer and an adhesive layer having a tensile elongation of 200% or more obtained from the resin composition II containing the adhesive resin (D) A sheet is provided. The present invention also provides an article to which the stretchable heat radiation sheet having the above two-layer structure is attached.

Description

本発明は、伸縮性放熱シート及びこの伸縮性放熱シートが貼付された物品に関する。   The present invention relates to a stretchable heat dissipation sheet and an article to which the stretchable heat dissipation sheet is attached.

近年、半導体、LED素子、電子基板等の電子部品及び光学部品や、これらの部品を含む筐体である電子製品、電気製品及び光学製品の性能が向上するに従い、各種の部品や製品からの発熱量が増大するようになった。そして、これらの部品や製品を適切に冷却することができない場合には、破損や短寿命化等の問題が生じる。そのため、これら部品や製品から発生する熱を外界に放出させるための手段として、各種の放熱シートが用いられるようになってきている。   In recent years, as the performance of electronic parts and optical parts such as semiconductors, LED elements, and electronic boards, and electronic products, electrical products and optical products which are casings containing these parts has improved, heat from various parts and products has been increased. The amount began to increase. And when these components and products cannot be cooled appropriately, problems such as breakage and shortening of the service life occur. For this reason, various heat dissipation sheets have been used as means for releasing heat generated from these components and products to the outside.

例えば、特許文献1は、熱伝導性を有する可撓性の吸熱層のおもて面に、赤外線放射効果を有する可撓性の熱放射膜を形成し、前記吸熱層の裏面に熱伝導性接着剤からなる接着層を形成して可撓性を有するように構成した三層構造の放熱シートを提案している。図1に、この従来の放熱シートの模式図を示した。図1において、1はこの放熱シートを、2は熱放射膜を、3はアルミニウム板等の吸熱層を、4は接着層を、それぞれ示す。しかし、当該放熱シートは、吸熱層として、アルミニウム等の金属の薄板を用いているため、可撓性を有するものの、複雑な形状の部品に貼り付ける際に必要となる柔軟性や伸縮性が不十分であった。また、特許文献1の放熱シートは、熱放射膜、吸熱層および接着層の三層構造であることから、熱源から最外層である熱放射膜までの各層間に熱抵抗が生じるため、熱源から熱放射膜に至る熱伝達の点で不十分であると考えられる。   For example, in Patent Document 1, a flexible heat radiation film having an infrared radiation effect is formed on the front surface of a flexible heat absorption layer having heat conductivity, and the heat conductivity is formed on the back surface of the heat absorption layer. A heat dissipation sheet having a three-layer structure in which an adhesive layer made of an adhesive is formed to have flexibility is proposed. FIG. 1 shows a schematic diagram of this conventional heat dissipation sheet. In FIG. 1, 1 shows this heat radiating sheet, 2 shows a heat radiation film, 3 shows a heat absorbing layer such as an aluminum plate, and 4 shows an adhesive layer. However, since the heat-dissipating sheet uses a thin metal plate such as aluminum as the heat-absorbing layer, the heat-dissipating sheet has flexibility, but lacks flexibility and stretchability required when affixing to a component having a complicated shape. It was enough. Moreover, since the heat dissipation sheet of Patent Document 1 has a three-layer structure of a heat radiation film, a heat absorption layer, and an adhesive layer, a thermal resistance is generated between each layer from the heat source to the heat radiation film that is the outermost layer. It is considered that heat transfer to the heat radiation film is insufficient.

そこで、特許文献2においては、二層構造の放熱シートとして、波長2〜14μmにおける全赤外線吸収率が0.85以上でありかつ厚さ方向の熱伝導率が1W/mKである赤外吸収熱伝導ポリイミドフィルムにシリコーン粘着剤層を設けてなるものが提案されている。そして、当該ポリイミドフィルムに窒化ホウ素やカーボン繊維等を含ませることにより、シートの放熱効率が確保されている。しかし、当該シートは放熱層として用いるポリイミドフィルムがそもそも柔軟性や伸縮性に乏しい樹脂であるため、複雑な形状の部品に貼り付けるために必要な柔軟性や伸縮性がやはり十分ではなかった。   Therefore, in Patent Document 2, as a heat dissipation sheet having a two-layer structure, the infrared absorption heat having a total infrared absorption rate of 0.85 or more at a wavelength of 2 to 14 μm and a thermal conductivity in the thickness direction of 1 W / mK. The thing which provided the silicone adhesive layer in the conductive polyimide film is proposed. And the heat dissipation efficiency of the sheet | seat is ensured by including boron nitride, carbon fiber, etc. in the said polyimide film. However, since the polyimide film used as the heat dissipation layer of the sheet is a resin having poor flexibility and stretchability in the first place, the flexibility and stretchability necessary for attaching to a component having a complicated shape are still insufficient.

そのため、電子部品、光学部品等の各種部品や、これらの部品を含む筐体である各種製品の部分又は全体に、容易に貼付して放熱することができる柔軟性や伸縮性に優れた放熱シートが要望されている。   Therefore, heat dissipation sheet with excellent flexibility and stretchability that can be easily applied and dissipated on various parts such as electronic parts, optical parts, and various products that are casings containing these parts. Is desired.

特開2004−200199号公報JP 2004-200199 A 特開2011−32430号公報JP 2011-32430 A

本発明の目的は、柔軟性及び伸縮性に優れた放熱シートを提供することにある。   An object of the present invention is to provide a heat dissipation sheet excellent in flexibility and stretchability.

本発明者は、上記課題を解決するために鋭意研究した。その結果、特定の成分を含有し、かつ特定の引張伸び率を有する放熱層と、特定の引張伸び率を有する粘着層とから構成される、特定の引張伸び率を有する2層構造の伸縮性放熱シートによれば、当該課題を解決し得ることを発見し、これに基づいて、本発明を完成するに至った。   The present inventor has intensively studied to solve the above problems. As a result, the stretchability of the two-layer structure having a specific tensile elongation rate, which is composed of a heat radiation layer containing a specific component and having a specific tensile elongation rate, and an adhesive layer having a specific tensile elongation rate. According to the heat dissipation sheet, it has been found that the problem can be solved, and based on this, the present invention has been completed.

すなわち本発明は、以下に示す、伸縮性放熱シート及びこれが貼付された物品を提供するものである。   That is, the present invention provides the following elastic heat-dissipating sheet and an article to which it is attached.

1.引張伸び率が200%以上の樹脂(A)、架橋剤(B)及び赤外線吸収性無機粒子(C)を含有する樹脂組成物Iより得られる引張伸び率が100%以上の放熱層と、粘着性樹脂(D)を含有する樹脂組成物IIより得られる引張伸び率が200%以上の粘着層とから構成される、引張伸び率が100%以上の2層構造の伸縮性放熱シート。   1. A heat-dissipating layer having a tensile elongation of 100% or more obtained from the resin composition I containing a resin (A) having a tensile elongation of 200% or more, a crosslinking agent (B) and infrared absorbing inorganic particles (C); A stretchable heat-dissipating sheet having a two-layer structure having a tensile elongation of 100% or more, comprising an adhesive layer having a tensile elongation of 200% or more obtained from the resin composition II containing the conductive resin (D).

2.引張伸び率が200%以上の樹脂(A)が、ポリエステル樹脂、アクリル樹脂、エポキシ樹脂、ポリウレタン樹脂及びシリコーン樹脂からなる群より選ばれる少なくとも1種である、上記項1に記載の伸縮性放熱シート。   2. The stretchable heat radiation sheet according to Item 1, wherein the resin (A) having a tensile elongation of 200% or more is at least one selected from the group consisting of a polyester resin, an acrylic resin, an epoxy resin, a polyurethane resin, and a silicone resin. .

3.引張伸び率が200%以上の樹脂(A)が、ポリエステル樹脂であり、かつ、その数平均分子量が10,000〜80,000であって、その水酸基価が1〜20mgKOH/gである、上記項1に記載の伸縮性放熱シート。   3. The resin (A) having a tensile elongation of 200% or more is a polyester resin, the number average molecular weight thereof is 10,000 to 80,000, and the hydroxyl value thereof is 1 to 20 mgKOH / g. The elastic heat-radiating sheet according to Item 1.

4.架橋剤(B)が、アミノ樹脂系架橋剤である、上記項1に記載の伸縮性放熱シート。   4). The stretchable heat-radiating sheet according to Item 1, wherein the crosslinking agent (B) is an amino resin-based crosslinking agent.

5.赤外線吸収性無機粒子(C)が、非多孔質シリカ、多孔質シリカ、窒化ホウ素、石英、カオリン、フッ化カルシウム、水酸化アルミニウム、ベントナイト、タルク、サリサイト、マイカ及びコージェライトからなる群より選ばれる少なくとも1種である、上記項1に記載の伸縮性放熱シート。   5. Infrared absorbing inorganic particles (C) selected from the group consisting of non-porous silica, porous silica, boron nitride, quartz, kaolin, calcium fluoride, aluminum hydroxide, bentonite, talc, salicite, mica and cordierite The elastic heat-dissipating sheet according to Item 1, which is at least one kind.

6.赤外線吸収性無機粒子(C)が、6.3〜10.5μmの波長域の赤外線を吸収するものである、上記項1に記載の伸縮性放熱シート。   6). The elastic heat-radiating sheet according to Item 1, wherein the infrared-absorbing inorganic particles (C) absorb infrared rays having a wavelength range of 6.3 to 10.5 μm.

7.赤外線吸収性無機粒子(C)の平均一次粒子径が0.1〜15.0μmである、上記項1に記載の伸縮性放熱シート。   7). The stretchable heat radiation sheet according to Item 1, wherein the infrared-absorbing inorganic particles (C) have an average primary particle diameter of 0.1 to 15.0 μm.

8.赤外線吸収性無機粒子(C)の含有率が、放熱層の10〜60重量%である、上記項1に記載の伸縮性放熱シート。   8). The elastic heat-radiating sheet according to Item 1, wherein the content of the infrared-absorbing inorganic particles (C) is 10 to 60% by weight of the heat-dissipating layer.

9.樹脂組成物Iにおいて、引張伸び率が200%以上の樹脂(A)100重量部(固形分換算)に対して、架橋剤(B)の含有量が1〜40重量部(固形分換算)および赤外線吸収性無機粒子(C)の含有量が20〜200重量部である、上記項1に記載の伸縮性放熱シート。   9. In the resin composition I, the content of the crosslinking agent (B) is 1 to 40 parts by weight (in terms of solids) and 100 parts by weight (in terms of solids) of the resin (A) having a tensile elongation of 200% or more and The elastic heat-radiating sheet according to Item 1, wherein the content of the infrared-absorbing inorganic particles (C) is 20 to 200 parts by weight.

10.放熱層の熱放射率が、70℃において0.95以上である、上記項1に記載の伸縮性放熱シート。   10. The elastic heat-radiating sheet according to Item 1, wherein the heat emissivity of the heat-dissipating layer is 0.95 or more at 70 ° C.

11.粘着性樹脂(D)が、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂及びシリコーン樹脂からなる群より選ばれる少なくとも1種の樹脂である、上記項8に記載の伸縮性放熱シート。   11. The elastic heat-radiating sheet according to Item 8, wherein the adhesive resin (D) is at least one resin selected from the group consisting of acrylic resins, polyurethane resins, polyester resins, and silicone resins.

12.粘着層が、熱伝導率が10〜300W/m・K未満である無機粒子(E)を10〜80重量%の範囲で含有する、上記項1に記載の伸縮性放熱シート。   12 The elastic heat-radiating sheet according to Item 1, wherein the adhesive layer contains 10 to 80% by weight of inorganic particles (E) having a thermal conductivity of less than 10 to 300 W / m · K.

13.放熱層の厚さが、10〜100μmである、上記項1に記載の伸縮性放熱シート。   13. The elastic heat-radiating sheet according to Item 1, wherein the heat-radiating layer has a thickness of 10 to 100 μm.

14.粘着層の厚さが、10〜150μmである、上記項1に記載の伸縮性放熱シート。   14 The elastic heat-radiating sheet according to Item 1, wherein the pressure-sensitive adhesive layer has a thickness of 10 to 150 μm.

15.上記項1に記載の伸縮性放熱シートが貼付された物品。   15. An article to which the stretchable heat dissipation sheet according to Item 1 is attached.

本発明によれば、次の様な効果が得られる。   According to the present invention, the following effects can be obtained.

(1)本発明の伸縮性放熱シートは、アルミニウム、銅等の金属層を挟むことなく、特定の引張伸び率を有する放熱層と、同じく特定の引張伸び率を有する粘着層との2層構造からなるものであるため、柔軟性に優れるのみならず、伸縮性にも優れている。また、本発明放熱シートは、被貼付物である電子部品等の発熱体から当該放熱シートの粘着層を経て放熱層に伝わる熱を外界に効率良く放出して、当該発熱体を冷却する。従って、本発明の放熱シートは、各種部品、特に複雑な形状の部品に貼り付けるに十分な柔軟性、追従性、密着性、そして優れた放熱性を有している。   (1) The stretchable heat-radiating sheet of the present invention has a two-layer structure of a heat-dissipating layer having a specific tensile elongation and an adhesive layer having a specific tensile elongation without sandwiching a metal layer such as aluminum or copper. Therefore, it is excellent not only in flexibility but also in elasticity. In addition, the heat-dissipating sheet of the present invention efficiently releases heat transmitted from the heat-generating body such as an electronic component, which is an object to be pasted, to the heat-dissipating layer through the adhesive layer of the heat-dissipating sheet, and cools the heat-generating body. Therefore, the heat-radiating sheet of the present invention has sufficient flexibility, followability, adhesion, and excellent heat-dissipating properties to be attached to various parts, particularly parts having complicated shapes.

(2)本発明の伸縮性放熱シートは、その優れた柔軟性及び伸縮性に基づいて、半導体、LED素子、電子基板等の電子部品等の各種部品、これらの部品を含む筐体である電子製品等の各種製品に、好適に貼付して用いることができ、これによって、これらの部品や製品から発生する熱を効果的に放出することができる。   (2) The stretchable heat dissipation sheet of the present invention is based on its excellent flexibility and stretchability, and is an electronic component that is a variety of components such as electronic components such as semiconductors, LED elements, and electronic substrates, and a housing that includes these components. It can be suitably affixed to various products such as products, whereby heat generated from these parts and products can be effectively released.

(3)本発明の伸縮性放熱シートは、その優れた柔軟性及び伸縮性に基づいて、特に、電子基板等の発熱性部品やその筐体である発熱性物品が、凹凸や段差を有する場合にも、その発熱部分又はその全体に密着させることができるので、放熱効率が極めて高い。   (3) The stretchable heat radiation sheet of the present invention is based on its excellent flexibility and stretchability, particularly when the heat-generating component such as an electronic substrate or the heat-generating article that is the housing has unevenness or steps. In addition, since the heat generating part or the whole of the heat generating part can be brought into close contact, the heat radiation efficiency is extremely high.

(4)また、本発明の伸縮性放熱シートは、放熱フィン等の他の物理的な冷却手段と組み合わせることにより、そうした冷却手段の小型化や、製品のダウンサイジング等も可能になる。   (4) Further, the stretchable heat radiation sheet of the present invention can be combined with other physical cooling means such as heat radiation fins, so that the cooling means can be reduced in size and the product can be downsized.

(5)更に、本発明の伸縮性放熱シートは、有機溶剤の溶液又はペーストとしての放熱塗料とは異なり、それを貼付する物品の耐溶剤性や耐熱性が低い場合にも、問題なく、手軽に使用することができる。   (5) Further, the stretchable heat radiation sheet of the present invention is different from the heat radiation paint as an organic solvent solution or paste, and even when the article to which it is attached has low solvent resistance or heat resistance, there is no problem and is easy. Can be used for

従来の三層構造の放熱シートの模式図である。It is a schematic diagram of the conventional heat dissipation sheet of a three-layer structure. 本発明に係る二層構造の伸縮性放熱シートの模式図である。It is a schematic diagram of a stretchable heat dissipation sheet having a two-layer structure according to the present invention. 本発明に係る伸縮性放熱シートをプリント配線基板の一部に貼り付けた状態を示す写真である。It is a photograph which shows the state which affixed the elastic heat dissipation sheet which concerns on this invention to a part of printed wiring board.

本発明の伸縮性放熱シートは、引張伸び率が100%以上の放熱層と、引張伸び率が200%以上の粘着層とから構成される2層構造を有し、シート自体の引張伸び率が100%以上であること、並びに、該放熱層が引張伸び率200%以上の樹脂(A)、架橋剤(B)及び赤外線吸収性無機粒子(C)を含有する樹脂組成物Iより得られることによって、特徴付けられる。   The stretchable heat dissipation sheet of the present invention has a two-layer structure composed of a heat dissipation layer having a tensile elongation of 100% or more and an adhesive layer having a tensile elongation of 200% or more. 100% or more, and the heat dissipation layer is obtained from the resin composition I containing a resin (A) having a tensile elongation of 200% or more, a crosslinking agent (B), and infrared absorbing inorganic particles (C). Is characterized by

本発明において、引張伸び率とは、JIS K 7312に規定された方法に準拠して測定した値である。具体的には、測定対象が例えば樹脂(A)の場合には、当該樹脂からなるシートを10mm×123mm×0.1mmの短冊形に加工し、標線間距離10mmとして、引張速度5mm/minで伸び率の測定を行った時の測定値(切断時の伸び(%))のことである。伸び率の測定は、例えば、精密万能試験機を用いて、行うことができる。精密万能試験機としては、例えば、市販品の「オートグラフ AGS−X」(製品名、(株)島津製作所製)を用いることができる。また、かかる測定方法は、本発明に係る放熱層、粘着層及び放熱シートのそれぞれの引張伸び率の測定にも適用する。   In the present invention, the tensile elongation is a value measured according to the method defined in JIS K 7312. Specifically, when the measurement target is, for example, a resin (A), a sheet made of the resin is processed into a 10 mm × 123 mm × 0.1 mm strip, the distance between the marked lines is 10 mm, and the tensile speed is 5 mm / min. It is a measured value (elongation at the time of cutting (%)) when measuring the elongation percentage. The elongation rate can be measured using, for example, a precision universal testing machine. As the precision universal testing machine, for example, commercially available “Autograph AGS-X” (product name, manufactured by Shimadzu Corporation) can be used. Moreover, this measuring method is applied also to the measurement of each tensile elongation rate of the thermal radiation layer, the adhesion layer, and the thermal radiation sheet which concern on this invention.

本発明に係る伸縮性放熱性シートの放熱層は、引張伸び率200%以上の樹脂(A)、架橋剤(B)及び赤外線吸収性無機粒子(C)を含有する樹脂組成物Iを用いて形成される。   The heat-dissipating layer of the stretchable heat-dissipating sheet according to the present invention uses a resin composition I containing a resin (A) having a tensile elongation of 200% or more, a crosslinking agent (B), and infrared-absorbing inorganic particles (C). It is formed.

樹脂(A)としては、引張伸び率が200%以上である限りにおいて、特に限定されず公知の樹脂を使用することができる。樹脂(A)の引張伸び率は、200以上600%以下であるのが好ましい。樹脂(A)の引張伸び率が600%を超えると、放熱シートの引張り後の復元性が大きく低下し、被貼付物品への密着性が不十分になる傾向にある。かかる観点より、樹脂(A)の引張伸び率は、200以上550%以下であるのがより好ましい。   The resin (A) is not particularly limited as long as the tensile elongation is 200% or more, and a known resin can be used. The tensile elongation of the resin (A) is preferably 200 or more and 600% or less. If the tensile elongation rate of the resin (A) exceeds 600%, the resilience after pulling of the heat-dissipating sheet is greatly reduced, and the adhesion to the article to be stuck tends to be insufficient. From this point of view, the tensile elongation of the resin (A) is more preferably 200 or more and 550% or less.

樹脂(A)としては、具体的には、ポリエステル樹脂、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂、及びシリコーン樹脂等が挙げられ、これらは1種を単独で、または2種以上を組み合わせて使用できる。これらの中でもポリエステル樹脂を用いると、本発明の放熱シートを被貼付物品の表面に追従、密着させやすくなる点で好ましい。   Specific examples of the resin (A) include polyester resins, acrylic resins, polyurethane resins, epoxy resins, and silicone resins, and these can be used alone or in combination of two or more. Among these, it is preferable to use a polyester resin in that the heat dissipation sheet of the present invention easily follows and adheres to the surface of the article to be adhered.

一方、引張伸び率が200%未満の樹脂、例えば一般的なポリイミド樹脂を樹脂(A)として用いて用いると、本発明の放熱シートの引張伸び率を100%以上とすることが困難になり、本発明が目的とする伸縮性のある放熱シートが得られない。   On the other hand, when a resin having a tensile elongation of less than 200%, for example, a general polyimide resin is used as the resin (A), it becomes difficult to set the tensile elongation of the heat dissipation sheet of the present invention to 100% or more. The stretchable heat dissipation sheet intended by the present invention cannot be obtained.

樹脂(A)として用いられるポリエステル樹脂としては、引張伸び率が200%以上程度となるものであれば、特に限定されず、公知のものを使用することができる。ポリエステル樹脂の引張伸び率は、200以上600%以下であるのが好ましく、200以上550%以下であるのがより好ましい。ポリエステル樹脂としては、具体的には、ジカルボン酸とジオールの反応物が挙げられる。   The polyester resin used as the resin (A) is not particularly limited as long as the tensile elongation is about 200% or more, and a known resin can be used. The tensile elongation of the polyester resin is preferably 200 or more and 600% or less, and more preferably 200 or more and 550% or less. Specific examples of the polyester resin include a reaction product of a dicarboxylic acid and a diol.

使用するジカルボン酸としては、芳香族ジカルボン酸、脂肪族ジカルボン酸、脂環族ジカルボン酸等が挙げられる。芳香族ジカルボン酸としては、特に限定されないが、無水フタル酸、イソフタル酸、テレフタル酸、2,6−ナフタレンジカルボン酸等が挙げられる。脂肪族ジカルボン酸としては、特に限定されないが、コハク酸、フマル酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジカルボン酸、無水マレイン酸等が挙げられる。脂環族ジカルボン酸としては、特に限定されないが、ヘキサヒドロ無水フタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロテレフタル酸等が挙げられる。これらのジカルボン酸は、1種単独で用いても、2種以上を混合して用いてもよいが、芳香族ジカルボン酸と脂肪族ジカルボン酸を併用することが好ましい。なお、これらのジカルボン酸はそのまま用いてもよいが、そのジメチルエステルやジエチルエステル等の低級アルキルエステル化物を用いてもよい。ただし、本発明の伸縮シートの柔軟性と引張伸び率等を考慮すると、該芳香族ジカルボン酸と脂肪族ジカルボン酸を、前者対後者が95:5〜70:30程度の重量比率となる範囲で併用するのが好ましい。また、これらのジカルボン酸に加えて、必要に応じて安息香酸、クロトン酸、p−t−ブチル安息香酸等の一塩基酸、無水トリメリット酸、メチルシクロヘキセントリカルボン酸、無水ピロメリット酸等の3価以上の多塩基酸等を併用してもよい。   Examples of the dicarboxylic acid used include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and alicyclic dicarboxylic acids. The aromatic dicarboxylic acid is not particularly limited, and examples thereof include phthalic anhydride, isophthalic acid, terephthalic acid, and 2,6-naphthalenedicarboxylic acid. Examples of the aliphatic dicarboxylic acid include, but are not limited to, succinic acid, fumaric acid, adipic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid, and maleic anhydride. The alicyclic dicarboxylic acid is not particularly limited, and examples thereof include hexahydrophthalic anhydride, hexahydroisophthalic acid, hexahydroterephthalic acid and the like. These dicarboxylic acids may be used alone or in combination of two or more, but it is preferable to use an aromatic dicarboxylic acid and an aliphatic dicarboxylic acid in combination. These dicarboxylic acids may be used as they are, but lower alkyl esterified products such as dimethyl esters and diethyl esters may also be used. However, considering the flexibility and tensile elongation of the stretchable sheet of the present invention, the aromatic dicarboxylic acid and the aliphatic dicarboxylic acid are in a range where the former to the latter are in a weight ratio of about 95: 5 to 70:30. It is preferable to use together. Moreover, in addition to these dicarboxylic acids, 3 basic acids such as benzoic acid, crotonic acid, pt-butylbenzoic acid, trimellitic anhydride, methylcyclohexeric carboxylic acid, pyromellitic anhydride, etc. A polybasic acid having a valency or higher may be used in combination.

使用するジオールとしては、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール等の分岐構造を有さない脂肪族ジオール;1,3−ブタンジオール、ネオペンチルグリコール、2−メチル−1,3−プロパンジオール、3−メチルペンタンジオール、1,4−ヘキサンジオール等の分岐構造を有する脂肪族ジオール;1,4−ジメチロールシクロヘキサン等の脂環族ジオール等が挙げられる。特に分岐構造を有する脂肪族ジオールと分岐構造を有しない脂肪族ジオールとを、前者対後者が90:10〜50:50程度の重量比率となる範囲で併用するのが好ましい。これらのジオールは、1種単独で用いても、2種以上を混合して用いてもよいが、分岐構造を有する脂肪族ジオールと分岐構造を有しない脂肪族ジオールを併用することが好ましい。また、これらのジオールに加えて、必要に応じて、トリメチロールプロパン、トリメチロールエタン、グリセリン等の3価以上のポリオール成分を併用してもよい。   Examples of the diol used include aliphatic diols having no branched structure such as ethylene glycol, diethylene glycol, propylene glycol, 1,4-butanediol, and 1,6-hexanediol; 1,3-butanediol, neopentyl glycol, Examples include aliphatic diols having a branched structure such as 2-methyl-1,3-propanediol, 3-methylpentanediol, and 1,4-hexanediol; and alicyclic diols such as 1,4-dimethylolcyclohexane. . In particular, it is preferable to use an aliphatic diol having a branched structure and an aliphatic diol having no branched structure in such a range that the former and the latter are in a weight ratio of about 90:10 to 50:50. These diols may be used singly or in combination of two or more, but it is preferable to use an aliphatic diol having a branched structure and an aliphatic diol having no branched structure in combination. In addition to these diols, a tri- or higher valent polyol component such as trimethylolpropane, trimethylolethane, or glycerin may be used in combination as necessary.

樹脂(A)として使用するポリエステル樹脂は、数平均分子量が10,000〜80,000程度であるのが好ましく、15,000〜50,000程度であるのがより好ましい。また、ポリエステル樹脂の水酸基価は、1〜20mg/KOH程度であるのが好ましく、4〜16mgKOH/g程度であるのがより好ましい。これら物性を備えるポリエステル樹脂を用いると、本発明の放熱シートの放熱層の硬度と、シート自体の加工性とのバランスが良好になる。   The polyester resin used as the resin (A) preferably has a number average molecular weight of about 10,000 to 80,000, more preferably about 15,000 to 50,000. The hydroxyl value of the polyester resin is preferably about 1 to 20 mg / KOH, and more preferably about 4 to 16 mg KOH / g. When a polyester resin having these physical properties is used, the balance between the hardness of the heat dissipation layer of the heat dissipation sheet of the present invention and the workability of the sheet itself is improved.

アクリル樹脂としては、特にアルキル基の炭素数が1〜18の(メタ)アクリル酸アルキルエステル類およびスチレン類より得られるアクリル樹脂が好ましい。当該(メタ)アクリル酸アルキルエステル類としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec−ブチル、(メタ)アクリル酸tert−ブチル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸オクタデセニル、(メタ)アクリル酸イコシル、(メタ)アクリル酸ドコシル、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル等が挙げられ、放熱層と粘着層との密着性や、放熱層の硬度の観点より、アルキル基の炭素数が1〜12程度のものが好ましく、1〜5程度のものがより好ましい。また、前記スチレン類としては、スチレン、α−メチルスチレン、t−ブチルスチレン、ジメチルスチレン、アセトキシスチレン、ヒドロキシスチレン、ビニルトルエン、クロルビニルトルエン等が挙げられ、入手が容易であり、かつ、放熱層と粘着層との密着性や、放熱層の硬度にも寄与する点より、スチレンが好ましい。なお、(メタ)アクリル酸アルキルエステル類およびスチレン類の他に、必要に応じて、各種公知のαオレフィン類、ニトリル類、(メタ)アクリルアミド類、(メタ)アクリル酸ヒドロキシアルキルエステル類等を併用できる。   As the acrylic resin, an acrylic resin obtained from (meth) acrylic acid alkyl esters having 1 to 18 carbon atoms in the alkyl group and styrenes is particularly preferable. Examples of the (meth) acrylic acid alkyl esters include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate. , Tert-butyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, hexadecyl (meth) acrylate, ( Such as octadecyl (meth) acrylate, octadecenyl (meth) acrylate, icosyl (meth) acrylate, docosyl (meth) acrylate, cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, etc., heat dissipation layer and adhesive layer From the viewpoint of adhesion with the heat dissipation layer and the hardness of the heat dissipation layer, the alkyl group has 1 to 1 carbon atoms. Preferably of about 2, and more preferably about 1-5. Examples of the styrenes include styrene, α-methylstyrene, t-butylstyrene, dimethylstyrene, acetoxystyrene, hydroxystyrene, vinyltoluene, chlorovinyltoluene and the like, which are easily available, and a heat dissipation layer. Styrene is preferred because it contributes to the adhesion between the adhesive layer and the adhesive layer and also contributes to the hardness of the heat dissipation layer. In addition to (meth) acrylic acid alkyl esters and styrenes, various known α olefins, nitriles, (meth) acrylamides, (meth) acrylic acid hydroxyalkyl esters, etc. may be used in combination as required. it can.

なお、前記したアルキル基の炭素数が1〜18の(メタ)アクリル酸アルキルエステル類、スチレン類およびその他の単量体の使用量は特に限定されないが、通常、全単量体を100モル%とした場合において、順に、40〜60モル%程度、60〜40モル%程度、および0〜10モル%程度であるのが好ましく、特に、順に45〜55モル%程度、55〜45モル%程度、および0〜5モル%程度であるのがより好ましい。   In addition, although the usage-amount of the (meth) acrylic-acid alkylesters whose carbon number of the above-mentioned alkyl group is 1-18, styrene, and another monomer is not specifically limited, Usually, all the monomers are 100 mol%. In this case, it is preferably about 40 to 60 mol%, about 60 to 40 mol%, and about 0 to 10 mol%, in particular, about 45 to 55 mol%, especially about 55 to 45 mol%. And about 0 to 5 mol% is more preferable.

前記アクリル樹脂の製造法は、特に限定されず、各種公知の重合反応を採用できる。例えば、前記(メタ)アクリル酸アルキルエステル類、スチレン類およびその他の単量体を、前記使用量において、各種公知のラジカル重合開始剤の存在下、通常20〜120℃において2〜10時間反応させればよい。また、反応の際には後述の有機溶剤のうち適当なものを反応溶媒として使用できる。なお、ラジカル重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩、2,2’−アゾビスイソブチルニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)等が挙げられる。   The method for producing the acrylic resin is not particularly limited, and various known polymerization reactions can be employed. For example, the (meth) acrylic acid alkyl esters, styrenes, and other monomers are reacted in the presence of various known radical polymerization initiators at 20 to 120 ° C. for 2 to 10 hours in the amount used. Just do it. In the reaction, any suitable organic solvent described later can be used as the reaction solvent. Examples of the radical polymerization initiator include potassium persulfate, ammonium persulfate, 2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′-azobisisobutylnitrile, and 2,2′-azobis. (2,4-dimethylvaleronitrile) and the like.

前記アクリル樹脂の市販品としては、例えば、パラペットSA((株)クラレ製、伸び率200%)、アルマテックス748−5M(三井化学(株)製)、アルマテックス748−16AE(三井化学(株)製)等が挙げられる。   Examples of the commercially available acrylic resin include Parapet SA (manufactured by Kuraray Co., Ltd., 200% elongation), Armatex 748-5M (manufactured by Mitsui Chemicals), Armatex 748-16AE (Mitsui Chemicals, Inc.) )) And the like.

前記エポキシ樹脂としては、具体的には、非アミン変性エポキシ樹脂、アミン変性エポキシ樹脂、およびアミン・ウレタン変性エポキシ樹脂が挙げられる。   Specific examples of the epoxy resin include non-amine-modified epoxy resins, amine-modified epoxy resins, and amine / urethane-modified epoxy resins.

該非アミン変性エポキシ樹脂としては、各種公知のものを特に制限なく使用できる。具体的には、例えば、各種ビスフェノール類をグリシジル化してなるビスフェノール型エポキシ樹脂や当該ビスフェノール型エポキシ樹脂の水添物、フェノールノボラック樹脂、クレゾールノボラック樹脂にハロエポキシドを反応させて得られるノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂等が挙げられる。また、前記ビスフェノール類としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールAD、テトラメチルビスフェノールS、テトラブロモビスフェノールA、テトラクロロビスフェノールA、テトラフルオロビスフェノールA等を例示できる。   As the non-amine-modified epoxy resin, various known ones can be used without particular limitation. Specifically, for example, a bisphenol type epoxy resin obtained by glycidylating various bisphenols, a hydrogenated product of the bisphenol type epoxy resin, a phenol novolac resin, a novolac type epoxy resin obtained by reacting a cresol novolac resin with a haloepoxide. And biphenyl type epoxy resin. Examples of the bisphenols include bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethylbisphenol A, tetramethylbisphenol F, tetramethylbisphenol AD, tetramethylbisphenol S, tetrabromobisphenol A, and tetrachlorobisphenol. Examples thereof include A and tetrafluorobisphenol A.

該アミン変性エポキシ樹脂としては、各種公知のものを特に制限なく使用できる。具体的には、例えば、前記非アミン変性エポキシ樹脂、特にビスフェノール型エポキシ樹脂やその水添物に各種公知のアミン類を反応させたものである。当該アミン類としては、例えば、トルイジン類、キシリジン類、クミジン(イソプロピルアニリン)類、ヘキシルアニリン類、ノニルアニリン類、ドデシルアニリン類等の該芳香族アミン類;シクロペンチルアミン類、シクロヘキシルアミン類、ノルボニルアミン類等の脂環族アミン類;メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミン、ステアリルアミン、イコシルアミン、2−エチルヘキシルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘプチルアミン等の脂肪族アミン類;ジエタノ−ルアミン、ジイソプロパノ−ルアミン、ジ−2−ヒドロキシブチルアミン、N−メチルエタノ−ルアミン、N−エチルエタノ−ルアミン、N−ベンジルエタノ−ルアミン等のアルカノ−ルアミン類が挙げられ、これらの中でも放熱性塗膜の機械的強度や基材との密着性等を考慮すると、分子内に炭素数3〜30のアルキル基を1つ以上有するものが好ましい。   As the amine-modified epoxy resin, various known ones can be used without particular limitation. Specifically, for example, the non-amine-modified epoxy resin, in particular, a bisphenol type epoxy resin or a hydrogenated product thereof is reacted with various known amines. Examples of the amines include aromatic amines such as toluidines, xylidines, cumidine (isopropylaniline), hexylanilines, nonylanilines, dodecylanilines; cyclopentylamines, cyclohexylamines, norbornyl Alicyclic amines such as amines; methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, dodecylamine, stearylamine, icosylamine, 2-ethylhexylamine, dimethylamine, diethylamine, dipropylamine, Aliphatic amines such as dibutylamine, dipentylamine, diheptylamine; diethanolamine, diisopropanolamine, di-2-hydroxybutylamine, N-methylethanolamine, N Examples include alkanolamines such as ethylethanolamine and N-benzylethanolamine. Among these, considering the mechanical strength of the heat-dissipating coating film and adhesion to the substrate, the number of carbon atoms in the molecule is 3 to 3. Those having one or more of 30 alkyl groups are preferred.

該アミン・ウレタン変性エポキシ樹脂としては、各種公知のものを特に制限なく使用できる。具体的には、例えば、前記アミン変性エポキシ樹脂を更にポリイソシアネートで変性したものが挙げられる。該ポリイソシアネートとしては、例えば、1,5−ナフチレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、トリレンジイソシアネート、ブタン−1,4−ジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート等の各種の脂肪族系、脂環族系または芳香族系のジイソシアネートが挙げられる。
なお、前記アミン変性エポキシ樹脂およびアミン・ウレタン変性エポキシ樹脂としては、例えば特開2010−235918号公報に記載のものを使用できる。
As the amine / urethane modified epoxy resin, various known ones can be used without particular limitation. Specific examples include those obtained by further modifying the amine-modified epoxy resin with polyisocyanate. Examples of the polyisocyanate include 1,5-naphthylene diisocyanate, 4,4′-diphenylmethane diisocyanate, tolylene diisocyanate, butane-1,4-diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate. And various aliphatic, alicyclic or aromatic diisocyanates such as isophorone diisocyanate and dicyclohexylmethane-4,4′-diisocyanate.
As the amine-modified epoxy resin and the amine / urethane-modified epoxy resin, for example, those described in JP 2010-235918 A can be used.

前記ポリウレタン樹脂(但し、前記アミン・ウレタン変性エポキシ樹脂に相当するものを除く。)としては、各種公知のものを特に制限なく使用できる。具体的には、例えば、高分子ポリオールおよび前記ポリイソシアネートを原料とするものが挙げられる。当該高分子ポリオールとしてはポリエステルポリオールやポリエーテルポリオール、ポリカーボネートポリオール、アクリルポリオール等が、該ポリイソシアネートとしては前記したものが挙げられる。また、ポリウレタン樹脂に水性を付与するために、ジオール成分としてジメチロールプロパン酸やジメチロールブタン酸等の該カルボキシル基含有ジオールを併用してもよい。また、その数平均分子量も特に限定されないが、通常は通常10,000〜80,000程度、特に15,000〜50,000程度である。なお、市販品としては、例えば、エラストランC80A(伸び率500%)、エラストランC1180A(伸び率550%)等が挙げられる(いずれも商品名、全てBASF製)。   As the polyurethane resin (excluding those corresponding to the amine / urethane-modified epoxy resin), various known ones can be used without particular limitation. Specifically, for example, those using a polymer polyol and the polyisocyanate as raw materials can be mentioned. Examples of the polymer polyol include polyester polyol, polyether polyol, polycarbonate polyol, and acrylic polyol, and examples of the polyisocyanate include those described above. Moreover, in order to provide water resistance to the polyurethane resin, the carboxyl group-containing diol such as dimethylolpropanoic acid or dimethylolbutanoic acid may be used in combination as a diol component. Further, the number average molecular weight is not particularly limited, but is usually about 10,000 to 80,000, particularly about 15,000 to 50,000. In addition, as a commercial item, Elastollan C80A (elongation rate 500%), Elastollan C1180A (elongation rate 550%), etc. are mentioned, for example (all are brand names, all manufactured by BASF).

前記シリコーン樹脂としては、各種公知のものを特に制限なく使用できる。具体的には、例えば、ジメチルシリコーン樹脂、メチルフェニルシリコーン樹脂、ジフェニルシリコーン樹脂、アルキル変性シリコーン樹脂、アラルキル変性シリコーン樹脂及びアルキルアラルキル変性シリコーン樹脂等の、シリコーン変性アクリル樹脂が挙げられる。なお、市販品としては、例えば、JCR6125(2液硬化型メチル系シリコーンエラストマー、伸び率230%)、SE9186(伸び率555%)およびSE6186L(伸び率320%、アクリル変性シリコーンエラストマー)(いずれも商品名、全て東レ・ダウコーニング社製)が挙げられる。   As the silicone resin, various known ones can be used without particular limitation. Specific examples include silicone-modified acrylic resins such as dimethylsilicone resin, methylphenylsilicone resin, diphenylsilicone resin, alkyl-modified silicone resin, aralkyl-modified silicone resin, and alkylaralkyl-modified silicone resin. Examples of commercially available products include JCR6125 (two-component curable methyl silicone elastomer, elongation rate 230%), SE9186 (elongation rate 555%) and SE6186L (elongation rate 320%, acrylic modified silicone elastomer) (both products) Name, all manufactured by Toray Dow Corning).

架橋剤(B)は、樹脂(A)を放熱層の内部で橋かけ状に結合させることによって、その硬度を確保する目的で使用され、樹脂(A)の種類やその官能基に応じて適切なものを選択すればよい。   The cross-linking agent (B) is used for the purpose of securing the hardness of the resin (A) by bonding in the form of a bridge inside the heat dissipation layer, and is appropriate depending on the type of the resin (A) and its functional group. You can choose the right one.

例えば、樹脂(A)として分子内に水酸基やカルボキシル基を有するようなものについては、アミノ樹脂系架橋剤が好ましい。該アミノ樹脂系架橋剤としては、例えば、メラミン樹脂、尿素樹脂、ベンゾグアナミン樹脂、アセトグアナミン樹脂、スピログアナミン樹脂およびジシアンジアミド等や、それらとアルデヒドとの反応によって得られるメチロール化アミノ樹脂が挙げられ、これらの中でも、放熱層の硬度の点より、メラミン樹脂および/または、炭素数1〜5程度のアルキル基で置換されたアルキル化メラミン樹脂が好ましい。   For example, an amino resin-based crosslinking agent is preferable for the resin (A) having a hydroxyl group or a carboxyl group in the molecule. Examples of the amino resin-based crosslinking agent include melamine resins, urea resins, benzoguanamine resins, acetoguanamine resins, spiroguanamine resins, dicyandiamide, and the like, and methylolated amino resins obtained by reacting them with aldehydes. Among these, from the viewpoint of the hardness of the heat dissipation layer, a melamine resin and / or an alkylated melamine resin substituted with an alkyl group having about 1 to 5 carbon atoms is preferable.

無機粒子(C)としては、各種公知のものを特に制限なく使用できる。具体的には、例えば、酸化チタン、炭化ケイ素、非多孔質シリカ、多孔質シリカ、窒化ホウ素、石英、カオリン、フッ化カルシウム、水酸化アルミニウム、ベントナイト、タルク、サリサイト、マイカ、コージェライト等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。   As the inorganic particles (C), various known particles can be used without particular limitation. Specifically, for example, titanium oxide, silicon carbide, non-porous silica, porous silica, boron nitride, quartz, kaolin, calcium fluoride, aluminum hydroxide, bentonite, talc, salicite, mica, cordierite, etc. Can be mentioned. These may be used alone or in combination of two or more.

また、無機粒子(C)の中でも、6.3〜10.5μm程度の波長域の赤外線を吸収する無機粒子(以下、(c)成分という。)を用いると、本発明の放熱シートの放熱効率の観点より好ましい。そうしたものとしては、例えば、多孔質シリカ、窒化ホウ素、フッ化カルシウム、及び水酸化アルミニウム等が挙げられ、これらは1種を単独で、または2種以上を組み合わせて使用できる。無機粒子(C)における(c)成分の含有量は、特に限定されないが、5〜100重量%程度、好ましくは20〜80重量%程度とすることが放熱シートの放熱効率の観点より好ましい。   Further, among the inorganic particles (C), when inorganic particles that absorb infrared rays having a wavelength range of about 6.3 to 10.5 μm (hereinafter referred to as “component (c)”) are used, the heat dissipation efficiency of the heat dissipation sheet of the present invention. From the viewpoint of Examples of such materials include porous silica, boron nitride, calcium fluoride, and aluminum hydroxide. These can be used alone or in combination of two or more. The content of the component (c) in the inorganic particles (C) is not particularly limited, but is preferably about 5 to 100% by weight, and preferably about 20 to 80% by weight from the viewpoint of heat dissipation efficiency of the heat dissipation sheet.

なお、無機粒子(C)の粒径は、放熱層の厚さと同じかそれよりも小さい値である限りにおいて特に限定されることはない。例えば、無機粒子(C)として平均一次粒子径が通常0.1〜15.0μm程度、好ましくは0.1〜10.0μm程度のものを用いると、本発明の放熱シートは伸縮性が良好になり、被貼付物の表面に追従、密着させやすくなるため好ましい。   The particle size of the inorganic particles (C) is not particularly limited as long as it is the same as or smaller than the thickness of the heat dissipation layer. For example, when inorganic particles (C) having an average primary particle diameter of usually about 0.1 to 15.0 μm, preferably about 0.1 to 10.0 μm, the heat dissipation sheet of the present invention has good stretchability. It is preferable because it easily follows and adheres to the surface of the object to be pasted.

また、本発明の放熱シートの放熱層における無機粒子(C)の含有率は特に限定されないが、該放熱層の重量に基づいて通常10〜60重量%程度であるのが、放熱効率の観点より好ましい。   In addition, the content of the inorganic particles (C) in the heat dissipation layer of the heat dissipation sheet of the present invention is not particularly limited, but is usually about 10 to 60% by weight based on the weight of the heat dissipation layer, from the viewpoint of heat dissipation efficiency. preferable.

放熱層は、引張伸び率が200%以上の樹脂(A)、架橋剤(B)及び無機粒子(C)を含有する樹脂組成物Iを用いて形成される。樹脂組成物Iにおける各成分の含有量は特に限定されないが、樹脂(A)100重量部(固形分換算)に対して、架橋剤(B)が1〜40重量部(固形分換算)程度、および無機粒子(C)が20〜200重量部程度、好ましくは架橋剤(B)が5〜25重量部(固形分換算)程度、および無機粒子(C)が70〜150重量部程度であることにより、本発明の放熱シートの放熱効果を維持しつつ、その伸縮性を良好にできる。   The heat dissipation layer is formed using a resin composition I containing a resin (A) having a tensile elongation of 200% or more, a crosslinking agent (B), and inorganic particles (C). Although content of each component in the resin composition I is not particularly limited, the crosslinking agent (B) is about 1 to 40 parts by weight (in terms of solids) with respect to 100 parts by weight (in terms of solids) of the resin (A), And about 20 to 200 parts by weight of inorganic particles (C), preferably about 5 to 25 parts by weight (in terms of solid content) of crosslinking agent (B), and about 70 to 150 parts by weight of inorganic particles (C). Thereby, the elasticity can be made favorable, maintaining the thermal radiation effect of the thermal radiation sheet of this invention.

樹脂組成物Iには、本発明の効果を損なわない範囲で、公知の添加剤を使用することもできる。使用できる添加剤としては、例えば、有機ベントナイト、カルボキシメチルセルロース、ポリビニルアルコール等の増粘剤;ポリアクリル酸、ポリアクリル酸塩等の各種分散剤等が挙げられる。添加剤を使用する場合、その使用量は特に限定されないが、通常は、樹脂組成物I中、固形分換算で5重量%以下である。   For the resin composition I, known additives can be used as long as the effects of the present invention are not impaired. Examples of additives that can be used include thickeners such as organic bentonite, carboxymethylcellulose, and polyvinyl alcohol; and various dispersants such as polyacrylic acid and polyacrylate. When the additive is used, the amount used is not particularly limited, but is usually 5% by weight or less in terms of solid content in the resin composition I.

樹脂組成物Iは、通常、有機溶媒または水を含有する液状組成物又はペースト状組成物の態様で用いられる。有機溶剤としては、例えば、キシレン、エチルベンゼン、トルエン、トリメチルベンゼン等の芳香族炭化水素;イソパラフィン等の脂肪族炭化水素、メタノール、エタノール、プロパノール、イソプロパノール、ブチルアルコール、イソブチルアルコール等のモノアルコール;エチレングリコール等の多価アルコール;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル系溶剤;プロピレングリコールモノメチルエーテルアセテート等のアセテート系溶剤;メチルエチルケトン、シクロヘキサノン等の揮発性ケトン;ナフサ等が挙げられる。   The resin composition I is usually used in the form of a liquid composition or a paste-like composition containing an organic solvent or water. Examples of the organic solvent include aromatic hydrocarbons such as xylene, ethylbenzene, toluene, and trimethylbenzene; aliphatic hydrocarbons such as isoparaffin, monoalcohols such as methanol, ethanol, propanol, isopropanol, butyl alcohol, and isobutyl alcohol; ethylene glycol Polyhydric alcohols such as: ester solvents such as methyl acetate, ethyl acetate and butyl acetate; acetate solvents such as propylene glycol monomethyl ether acetate; volatile ketones such as methyl ethyl ketone and cyclohexanone; naphtha and the like.

放熱層は、その引張伸び率が100%以上であることが必要であり、そうすることによって、本発明の放熱シートを被貼付物、特に複雑形状の部品や製品の表面に追従、密着させやすくなる。かかる観点より、当該引張伸び率は100%以上300%以下であるのが好ましく、100%以上200%以下であるのがより好ましい。なお、放熱層の引張伸び率の調整は、例えば、樹脂(A)の種類や使用量、架橋剤(B)の種類や使用量、および無機粒子(C)の含有量を変更する等の手段によって可能である。   The heat dissipation layer needs to have a tensile elongation of 100% or more. By doing so, the heat dissipation sheet of the present invention easily follows and adheres to the surface of an object to be pasted, particularly a complicated part or product. Become. From this viewpoint, the tensile elongation is preferably 100% or more and 300% or less, and more preferably 100% or more and 200% or less. In addition, adjustment of the tensile elongation rate of a thermal radiation layer is means, such as changing the kind and usage-amount of resin (A), the kind and usage-amount of a crosslinking agent (B), and content of an inorganic particle (C), for example. Is possible.

また、当該放熱層の熱放射率は、70℃において0.95以上とすることが、本発明の放熱シートの放熱効率の観点より好ましい。   Moreover, it is preferable from a viewpoint of the thermal radiation efficiency of the thermal radiation sheet | seat of this invention that the thermal emissivity of the said thermal radiation layer shall be 0.95 or more in 70 degreeC.

本発明放熱性シートの粘着層は、粘着性樹脂(D)を含有する樹脂組成物IIより得られる。   The adhesive layer of the heat-radiating sheet of the present invention is obtained from the resin composition II containing the adhesive resin (D).

粘着性樹脂(D)としては、粘着性を有する樹脂である限り、特に限定されず、公知のものを使用することができる。具体的には、例えば、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂及びシリコーン樹脂等が挙げられ、これらは1種を単独で、または2種以上を組み合わせて使用できる。これらの中では、アクリル樹脂が好ましい。また、粘着性樹脂(D)としては、また、例えば日本国特開2008‐195904号に記載されている粘着性樹脂や、日本国特開日本国特開2012‐131921号に記載されている粘着性樹脂を使用してもよい。   The adhesive resin (D) is not particularly limited as long as it is an adhesive resin, and known ones can be used. Specifically, an acrylic resin, a polyurethane resin, a polyester resin, a silicone resin, etc. are mentioned, for example, These can be used individually by 1 type or in combination of 2 or more types. In these, an acrylic resin is preferable. Further, as the adhesive resin (D), for example, an adhesive resin described in Japanese Patent Application Laid-Open No. 2008-195904, or an adhesive described in Japanese Patent Application Laid-Open No. 2012-131922, for example. Resin may be used.

上記アクリル樹脂は、通常、アルキル(メタ)アクリレートを重合することにより得られる。使用するアルキル(メタ)アクリレートは、特に限定されず公知のものを使用することができる。具体的には、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、n−オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレートを重合させることにより得られる。アクリル樹脂のガラス転移温度は、−20℃以下とすることが好ましい。また、溶融粘度は50,000mPa・s以上とすることが好ましく、100,000〜70,0000mPa・s程度とすることがより好ましい。   The acrylic resin is usually obtained by polymerizing alkyl (meth) acrylate. The alkyl (meth) acrylate to be used is not particularly limited, and known ones can be used. Specifically, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl It can be obtained by polymerizing (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate. The glass transition temperature of the acrylic resin is preferably −20 ° C. or lower. The melt viscosity is preferably 50,000 mPa · s or more, and more preferably about 100,000 to 70,000 mPa · s.

ポリウレタン樹脂、ポリエステル樹脂およびシリコーン樹脂としては、前記した樹脂(A)として挙げたもののうち、粘着性を有するものを選択して用いることができる。   As a polyurethane resin, a polyester resin, and a silicone resin, what has adhesiveness can be selected and used among what was mentioned as above-mentioned resin (A).

また、樹脂組成物IIには、必要に応じて、熱伝導率が10〜300W/m・K程度である無機粒子(E)を含めてもよい。例えば、後述するように、粘着層の厚みは特に限定されないところ、その値が10μm以上30μm以下である場合には粘着層の熱伝導に関わる熱抵抗を無視できるため、無機粒子(E)は格別必要ない。一方、その厚みが30μmを超える場合には、粘着層の熱抵抗を無視し難くなるため、当該無機粒子(E)を用いる利点がある。   In addition, the resin composition II may include inorganic particles (E) having a thermal conductivity of about 10 to 300 W / m · K as necessary. For example, as will be described later, the thickness of the pressure-sensitive adhesive layer is not particularly limited. However, when the value is 10 μm or more and 30 μm or less, the thermal resistance related to the heat conduction of the pressure-sensitive adhesive layer can be ignored. unnecessary. On the other hand, when the thickness exceeds 30 μm, it is difficult to ignore the thermal resistance of the adhesive layer, and thus there is an advantage of using the inorganic particles (E).

無機粒子(E)としては、熱伝導率が10〜300W/m・K程度である限り特に限定されない。そのようなものとしては、例えば、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、窒化ホウ素、窒化アルミニウム、窒化ケイ素及び炭化ケイ素等が挙げられ、これらは1種を単独で、または2種以上を組み合わせて使用できる The inorganic particles (E) are not particularly limited as long as the thermal conductivity is about 10 to 300 W / m · K. Examples of such materials include aluminum oxide, magnesium oxide, zinc oxide, boron nitride, aluminum nitride, silicon nitride, and silicon carbide. These are used alone or in combination of two or more. it can

また、無機粒子(E)の使用量は、特に限定されないが、粘着層の熱伝導率を高くして、しかもその粘着性を維持する点より、該粘着層の重量に基づいて通常10〜80重量%程度であることが好ましい。 The amount of the inorganic particles (E) used is not particularly limited, but is usually 10 to 80 based on the weight of the adhesive layer from the viewpoint of increasing the thermal conductivity of the adhesive layer and maintaining its adhesiveness. It is preferable that it is about weight%.

なお、無機粒子(E)の粒径は、放熱層の厚さと同じかそれよりも小さい値である限りにおいて特に限定されることはない。例えば、無機粒子(E)として平均一次粒子径が通常0.1〜15.0μm程度、好ましくは0.1〜10.0μm程度であるものを用いると、本発明の放熱シートの伸縮性が良好になり、被貼付物の表面に追従、密着させやすくなるため好ましい。   The particle size of the inorganic particles (E) is not particularly limited as long as it is the same as or smaller than the thickness of the heat dissipation layer. For example, when an inorganic particle (E) having an average primary particle size of usually about 0.1 to 15.0 μm, preferably about 0.1 to 10.0 μm, the heat dissipation sheet of the present invention has good stretchability. It is preferable because it becomes easy to follow and adhere to the surface of the object to be pasted.

なお、樹脂組成物IIには、さらに必要に応じて、架橋性モノマー、反応性希釈剤及びラジカル重合開始剤を含めてもよい。   The resin composition II may further contain a crosslinkable monomer, a reactive diluent and a radical polymerization initiator as necessary.

前記架橋性モノマーとしては、例えば、1,6−ヘキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、シクロヘキサンジ(メタ)アクリレート、1,4−ブタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート、1,9−ノナンジオールジアクリレート等の2官能アクリレート;トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ポリグリセロールトリ(メタ)アクリレート、ポリグリセロールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の3官能アクリレート等を用いることができる。架橋モノマーの配合量は、粘着剤樹脂(D)100重量部(固形分換算)に対して0.01〜10.0重量部程度であることが好ましく、0.03〜5.0重量部程度であることがより好ましい。   Examples of the crosslinkable monomer include 1,6-hexanediol di (meth) acrylate, glycerin di (meth) acrylate, cyclohexane di (meth) acrylate, 1,4-butanediol diacrylate, and 1,6-hexanediol. Bifunctional acrylates such as diacrylate and 1,9-nonanediol diacrylate; trimethylolpropane tri (meth) acrylate, trimethylolpropane di (meth) acrylate, glycerol tri (meth) acrylate, polyglycerol tri (meth) acrylate, Trifunctional acrylates such as polyglycerol di (meth) acrylate and pentaerythritol tri (meth) acrylate can be used. The amount of the crosslinking monomer is preferably about 0.01 to 10.0 parts by weight and about 0.03 to 5.0 parts by weight with respect to 100 parts by weight (in terms of solid content) of the pressure-sensitive adhesive resin (D). It is more preferable that

前記反応性希釈剤としては、公知の1官能の(メタ)アクリル化合物等を例示することができる。具体的には、例えば、2−エチルヘキシルアクリレート、2−ヒドロキシ−3−フェノキシプロピルアクリレート、アクリロイルモルホリン、トリシクロデカニルアクリレート、イソボルニルアクリレート等が挙げられる。反応性希釈剤の使用量は、特に限定されないが、通常は、粘着性樹脂(D)100重量部に対して、50重量部以下であることが好ましい。   Examples of the reactive diluent include known monofunctional (meth) acrylic compounds. Specific examples include 2-ethylhexyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, acryloylmorpholine, tricyclodecanyl acrylate, and isobornyl acrylate. Although the usage-amount of a reactive diluent is not specifically limited, Usually, it is preferable that it is 50 weight part or less with respect to 100 weight part of adhesive resin (D).

前記ラジカル重合開始剤としては、アセトフェノン系開始剤、ベンゾイン系開始剤、ベンゾフェノン系開始剤、フォスフィンオキサイド系開始剤等の公知のものを使用することができる。特に、ヒドロキシル基を有する化合物を用いることが、組成物の相溶性の点から好ましい。ラジカル重合開始剤の使用量は、特に限定されないが、前記架橋性モノマーおよび前記反応性希釈剤の合計量100重量部に対し、0.5〜5重量部程度であることが好ましい。   As the radical polymerization initiator, known ones such as an acetophenone-based initiator, a benzoin-based initiator, a benzophenone-based initiator, and a phosphine oxide-based initiator can be used. In particular, it is preferable to use a compound having a hydroxyl group from the viewpoint of the compatibility of the composition. Although the usage-amount of a radical polymerization initiator is not specifically limited, It is preferable that it is about 0.5-5 weight part with respect to 100 weight part of total amounts of the said crosslinkable monomer and the said reactive diluent.

樹脂組成物IIには、本発明の効果を損なわない範囲で、更に公知の添加剤として、例えば、粘着付与剤、沈降防止剤、増粘剤、チクソトロピー剤、酸化防止剤、可塑剤、界面活性剤、消泡剤、着色剤等の1種または2種以上を含めてよい。添加剤を使用する場合、その使用量は特に限定されないが、通常は樹脂組成物II中、固形分換算で5重量%以下とするのが適当である。   In the resin composition II, as long as the effects of the present invention are not impaired, further known additives include, for example, a tackifier, an anti-settling agent, a thickener, a thixotropic agent, an antioxidant, a plasticizer, and a surfactant. You may include 1 type, or 2 or more types, such as an agent, an antifoamer, and a coloring agent. When the additive is used, the amount of the additive is not particularly limited, but it is usually suitably 5% by weight or less in terms of solid content in the resin composition II.

樹脂組成物IIは、通常、有機溶媒または水を含有する液状組成物又はペースト状組成物の態様で用いられ、当該有機溶媒は、樹脂組成物Iに使用したものと同様である。   The resin composition II is usually used in the form of a liquid composition or a paste-like composition containing an organic solvent or water, and the organic solvent is the same as that used for the resin composition I.

粘着層は、その引張伸び率が200%以上であることが必要である。本発明の放熱シートを各種物品に貼付する際、粘着層は放熱層よりも内側に位置しているところ、被貼付体に直に接する。そして、その凹凸形状に追従して密着する必要があるため、放熱層よりも引張伸び率が大きいことが必要である。また、当該引張伸び率を好ましくは200%以上400%以下、より好ましくは200%以上300%以下とすることによって、放熱シートの復元性が良好となり、各種の被貼付物、特に複雑形状の部品や製品の表面に追従、密着させやすくなることが容易になる。なお、粘着層の引張伸び率の調整は、例えば、粘着性樹脂(D)の種類や使用量、無機粒子(E)の含有量を変更する等の手段によって可能である。   The adhesive layer needs to have a tensile elongation of 200% or more. When sticking the heat-dissipating sheet of the present invention to various articles, the pressure-sensitive adhesive layer is directly in contact with the adherend when it is located inside the heat-dissipating layer. And since it is necessary to closely adhere to the uneven shape, it is necessary that the tensile elongation is larger than that of the heat dissipation layer. Further, by making the tensile elongation rate preferably 200% or more and 400% or less, more preferably 200% or more and 300% or less, the heat-dissipating sheet has a good restorability, and various objects to be pasted, especially parts having complicated shapes. It becomes easier to follow and adhere to the surface of the product and the product. In addition, adjustment of the tensile elongation rate of an adhesion layer is possible by means, such as changing the kind and usage-amount of adhesive resin (D), and content of an inorganic particle (E), for example.

本発明の放熱シートは、公知の方法により、前記放熱層上に前記粘着層を設ける、または前記粘着層上に前記放熱層を設けることにより得られる。   The heat dissipation sheet of the present invention can be obtained by providing the adhesive layer on the heat dissipation layer or providing the heat dissipation layer on the adhesive layer by a known method.

具体的には、放熱層を形成する樹脂組成物Iを適当な支持体の上に塗工した後に、更に樹脂組成物IIを塗工し、次いで乾燥し、当該支持体を剥離することによって得られる。   Specifically, after coating the resin composition I forming the heat dissipation layer on a suitable support, the resin composition II is further coated, then dried, and the support is peeled off. It is done.

また、樹脂組成物IIを適当な支持体の上に塗工した後に、更に樹脂組成物Iを塗工し、次いで乾燥し、当該支持体を剥離することによって、本発明の放熱シートを調製することができる。   In addition, after coating the resin composition II on a suitable support, the resin composition I is further coated, then dried, and the support is peeled off to prepare the heat dissipation sheet of the present invention. be able to.

また、樹脂組成物Iおよび樹脂組成物IIを、それぞれ異なる支持体の上に塗工し乾燥させた後、放熱層と粘着層を圧着し、次いで支持体を剥離することによっても、本発明の伸縮性シートを調製することができる。   Also, the resin composition I and the resin composition II can be coated on different supports and dried, and then the heat dissipation layer and the adhesive layer are pressure-bonded, and then the support is peeled off. An elastic sheet can be prepared.

ここで、前記支持体は特に限定されないが、例えば、ポリエチレンフタレート等のプラスチック製のフィルム又は板、ガラス板、金属板等を使用することができる。また、支持体には必要に応じて離型処理してもよい。   Here, although the said support body is not specifically limited, For example, plastic films or plates, such as a polyethylene phthalate, a glass plate, a metal plate, etc. can be used. Further, the support may be subjected to a mold release treatment as necessary.

本発明の放熱シートにおいて、放熱層の厚みは特に限定されないが、通常、10〜100μm程度、好ましくは12〜70μm程度である。また、粘着層の厚みも特に限定されないが、通常、10〜150μm程度、好ましくは12〜70μm程度である。放熱層及び粘着層の厚みをいずれも10μm以上とすることによって、本発明の放熱シートの強度を維持することができ、伸縮時の破れを抑制できる。また、放熱層の厚みを100μm以下とし、粘着層の厚みを150μm以下とすることによって、熱伝導による熱抵抗を抑制できるため、本発明の放熱シートの放熱効率を高めることができる。   In the heat dissipation sheet of the present invention, the thickness of the heat dissipation layer is not particularly limited, but is usually about 10 to 100 μm, preferably about 12 to 70 μm. The thickness of the adhesive layer is not particularly limited, but is usually about 10 to 150 μm, preferably about 12 to 70 μm. By setting the thickness of the heat dissipation layer and the adhesive layer to 10 μm or more, the strength of the heat dissipation sheet of the present invention can be maintained, and tearing during expansion and contraction can be suppressed. Moreover, since the heat resistance by heat conduction can be suppressed by setting the thickness of the heat dissipation layer to 100 μm or less and the thickness of the adhesive layer to 150 μm or less, the heat dissipation efficiency of the heat dissipation sheet of the present invention can be enhanced.

前記方法で得られる本発明の放熱シートは、その引張伸び率が100%以上であることが必要である。伸縮性シートの引張伸び率を100%以上とすることによって、各種物品、特に複雑形状の部品や製品の表面に追従、密着させやすくなる。かかる観点より、放熱シートの引張伸び率は、100%以上400%以下であることが好ましく、特に100%以上200%以下であるのがより好ましい。なお、放熱シートの引張伸び率の調整は、当該引張伸び率を与えるような放熱層と着層の組み合わせによって可能である。   The heat dissipation sheet of the present invention obtained by the above method needs to have a tensile elongation of 100% or more. By making the tensile elongation rate of the stretchable sheet 100% or more, it becomes easy to follow and adhere to the surface of various articles, particularly complex shaped parts and products. From this viewpoint, the tensile elongation of the heat dissipation sheet is preferably 100% or more and 400% or less, and more preferably 100% or more and 200% or less. In addition, adjustment of the tensile elongation rate of a thermal radiation sheet | seat is possible by the combination of the thermal radiation layer and the layer which gives the said tensile elongation rate.

図2に、本発明に係る伸縮性放熱シートの一例の模式図を示した。図2において、5は本発明の伸縮性放熱シートを、6は放熱層を、7は粘着層を、それぞれ示したものである。   In FIG. 2, the schematic diagram of an example of the elastic | stretch heat dissipation sheet which concerns on this invention was shown. In FIG. 2, 5 indicates the stretchable heat dissipation sheet of the present invention, 6 indicates the heat dissipation layer, and 7 indicates the adhesive layer.

本発明の放熱シートは、必要に応じて、その片面又は両面に、表面を保護する目的でセパレーターが貼り合わさったものであってよい。セパレーターとしては、前記した支持体が挙げられるが、特に、放熱層と粘着層の表面平滑性を保つ観点より、プラスチックフィルムが好ましい。プラスチックフィルムとしては、放熱シートの表面を保護するできるものであれば、特に限定されず、公知のものを使用することができる。例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリ塩化ビニルフィルム、ポリウレタンフィルム、エチレン−酢酸ビニル共重合体フィルム等が挙げられる。   The heat dissipation sheet of the present invention may have a separator bonded to one side or both sides as needed for the purpose of protecting the surface. Examples of the separator include the above-described support, and a plastic film is particularly preferable from the viewpoint of maintaining the surface smoothness of the heat dissipation layer and the adhesive layer. The plastic film is not particularly limited as long as it can protect the surface of the heat dissipation sheet, and a known film can be used. Examples thereof include a polyethylene film, a polypropylene film, a polybutene film, a polybutadiene film, a polymethylpentene film, a polyethylene terephthalate film, a polybutylene terephthalate film, a polyvinyl chloride film, a polyurethane film, and an ethylene-vinyl acetate copolymer film.

かくして得られる本発明の放熱シートは、その優れた柔軟性及び伸縮性に基づいて、半導体、LED素子、電子基板等の電子部品等の各種部品、並びにこれらの部品を含む筐体である電子製品等の各種製品に対して、好適に貼付して用いることができ、これによって、これらの部品や製品から発生する熱を効果的に放出することができる。   The heat-dissipating sheet of the present invention thus obtained is based on its excellent flexibility and stretchability, and various parts such as electronic parts such as semiconductors, LED elements, and electronic boards, and electronic products that are casings containing these parts For example, the heat generated from these parts and products can be effectively released.

図3に、本発明に係る伸縮性放熱シートを、プリント配線基板における半導体チップ(上位置)と中央演算子チップ(下位置)に貼付けた状態を表す写真を示す。   In FIG. 3, the photograph showing the state which affixed on the semiconductor chip (upper position) and center operator chip | tip (lower position) in a printed wiring board the stretchable heat-radiation sheet which concerns on this invention is shown.

以下に、製造例、比較製造例、実施例及び比較例を挙げて、本発明をより詳細に説明する。但し、本発明はこれら各例によって限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Production Examples, Comparative Production Examples, Examples and Comparative Examples. However, the present invention is not limited to these examples.

以下に示す製造例の内、製造例1〜14は、樹脂組成物Iを用いて放熱層(シート状硬化物)を作製する例である。また、製造例15〜20は、樹脂組成物IIを用いて粘着層(シート状硬化物)を作製する例である。   Among the production examples shown below, Production Examples 1 to 14 are examples in which a heat radiation layer (sheet-like cured product) is produced using the resin composition I. In addition, Production Examples 15 to 20 are examples in which an adhesive layer (sheet-like cured product) is produced using the resin composition II.

製造例1
市販のポリエステル樹脂(商品名:アラキード7005N、荒川化学工業(株)製、引張伸び率550%)65重量部、ブチル化メラミン樹脂(商品名:ユーバン228、三井化学(株)製)8重量部、酸化チタン粉末(商品名:TI TONE R−32、堺化学工業(株)製、平均一次粒子径0.2μm以下)16重量部、炭化ケイ素粉末(商品名:シナノランダムGP−3000、信濃電気製錬(株)製、平均一次粒子径4.0μm以下)2重量部、窒化ホウ素粉末(商品名:Boronid S3、ESK CERAMICS社製、平均一次粒子径10.0μm以下)2重量部、触媒としてジノニルナフタレンジスルフォン酸アミン塩0.5重量部を混合して、樹脂組成物Iを調製した。この樹脂組成物Iを用いて、乾燥後の膜厚が30μm〜40μm程度となるように、離型処理を施したポリエチレンテレフタレートフィルム(厚さ75μm)に、アプリケーターで塗布した。約5分間室内で放置した後、乾燥器中にて120℃で30分間、乾燥を行った後、上記フィルムを剥離して、放熱層としてのシート状硬化物を得た。
Production Example 1
Commercially available polyester resin (trade name: Arakid 7005N, manufactured by Arakawa Chemical Industries, Ltd., tensile elongation 550%) 65 parts by weight, butylated melamine resin (trade name: Uban 228, manufactured by Mitsui Chemicals, Inc.) 8 parts by weight , Titanium oxide powder (trade name: TI TONE R-32, Sakai Chemical Industry Co., Ltd., average primary particle size 0.2 μm or less) 16 parts by weight, silicon carbide powder (trade name: Shinano Random GP-3000, Shinano Electric As a catalyst, 2 parts by weight, manufactured by Smelting Co., Ltd., 2 parts by weight of an average primary particle diameter of 4.0 μm or less, boron nitride powder (trade name: Boronid S3, manufactured by ESK CERAMICS, average primary particle diameter of 10.0 μm or less) Resin composition I was prepared by mixing 0.5 parts by weight of dinonylnaphthalenedisulfonic acid amine salt. Using this resin composition I, an applicator was applied to a polyethylene terephthalate film (thickness 75 μm) subjected to a mold release treatment so that the film thickness after drying was about 30 μm to 40 μm. After leaving it indoors for about 5 minutes, it was dried in a dryer at 120 ° C. for 30 minutes, and then the film was peeled off to obtain a sheet-like cured product as a heat dissipation layer.

製造例2〜14
使用する各成分の種類および使用量を、後記表1又は表2に記載のとおりに変更した他は製造例1と同様にして、放熱層としてのシート状硬化物を得た。
Production Examples 2-14
A sheet-like cured product as a heat-dissipating layer was obtained in the same manner as in Production Example 1 except that the type and amount of each component used were changed as described in Table 1 or Table 2 below.

製造例1〜14で得られたシートについて、伸縮性、伸び率及び70℃熱放射率を、下記方法に従って、測定した。   About the sheet | seat obtained by manufacture example 1-14, the elasticity, elongation rate, and 70 degreeC heat emissivity were measured in accordance with the following method.

伸縮性
製造例1〜14の各シートより、JIS K 7312で定める成型物の物理試験方法に準拠して、10mm×123mm×0.03〜0.10mmの短冊形試験片を作製し、標線間距離10mmとして、精密万能試験機(製品名:オートグラフ AGS−X、(株)島津製作所製)を用いて100%に伸ばした。そして、形状が保持されている場合は◎と、一部変形がある場合は○と、大きく変形または破断した場合は×とした。
Based on the physical test method of the molded article defined by JIS K 7312, a strip-shaped test piece of 10 mm × 123 mm × 0.03-0.10 mm is produced from each sheet of the stretchable production examples 1 to 14, and marked. Using a precision universal testing machine (product name: Autograph AGS-X, manufactured by Shimadzu Corporation), the distance was 10 mm. And, when the shape is maintained, ◎, when there is a partial deformation, ◯, and when greatly deformed or broken, ×.

伸び率
製造例1〜14の各シートより、JIS K 7312で定める成型物の物理試験方法に準拠して、10mm×123mm×0.03〜0.10mmの短冊形試験片を作製し、標線間距離10mmとして、精密万能試験機(製品名:オートグラフ AGS−X、(株)島津製作所製)を用いて、引張速度5mm/minで、切断時の伸び(%)の測定を行った。
From each sheet elongation <br/> Preparation 1-14, in compliance with the physical testing method of molding materials as specified in JIS K 7312, producing strip-shaped test piece of 10mm × 123mm × 0.03~0.10mm Then, using a precision universal testing machine (product name: Autograph AGS-X, manufactured by Shimadzu Corporation) with a distance between marked lines of 10 mm, the elongation (%) at the time of cutting was measured at a tensile speed of 5 mm / min. Went.

70℃熱放射率
製造例1〜14の各シートを、アルミニウム板(A10.5P、サイズ:2.0mm×50mm×120mm)の片面の中心に、熱伝導性両面テープ(製品名:NO.5046 熱伝導性テープ、マクセルスリオンテック(株)製)で貼付した。硬化物を貼付したアルミニウム板の裏側の中心に、熱源として抵抗器(シャント抵抗器、PCN社製、型番PBH1ΩD、定格電力10W、サイズ:長さ20mm×幅15mm×厚さ5mm)を、上記両面テープで固定した。熱源には一定の電流(2.82A)を印加して、1.0〜1.5時間経過後、平衡状態となったシート面の温度を約70℃とした。熱放射率測定には、サーモグラフィー(製品名:サーモギアG100、NEC Avio赤外線テクノロジー(株)製)を用いた。放射率が0.95の黒体テープ0.5mm×0.5mmをシート面中心に貼付、サーモグラフィーの熱放射率設定を黒体テープの放射率(0.95)にし、黒体テープ貼付部の温度を測定。その後、解析ソフトで(製品名:InfReC Analyzer NS9500 Standard
Ver.1.1A、NEC Avio赤外線テクノロジー(株)製)黒体テープの貼付面側の放熱層面の温度が黒体テープ面と同じ温度となるように熱放射率設定の調整を行ない、そのときの熱放射率を放熱層の測定値とした。
Heat conductive double-sided tape (product name: NO.5046) is placed on the center of one side of an aluminum plate (A10.5P, size: 2.0 mm × 50 mm × 120 mm) with each sheet of 70 ° C. thermal emissivity production examples 1-14. Affixed with a heat conductive tape, manufactured by Maxell Sliontec Co., Ltd. A resistor (shunt resistor, manufactured by PCN, model number PBH1ΩD, rated power 10 W, size: length 20 mm × width 15 mm × thickness 5 mm) is used as the heat source in the center of the back side of the aluminum plate to which the cured product is affixed. Fixed with tape. A constant current (2.82 A) was applied to the heat source, and the temperature of the sheet surface in an equilibrium state after about 1.0 to 1.5 hours was about 70 ° C. Thermography (product name: Thermogear G100, manufactured by NEC Avio Infrared Technology Co., Ltd.) was used for thermal emissivity measurement. A 0.5mm x 0.5mm blackbody tape with an emissivity of 0.95 is affixed to the center of the sheet surface, the thermal emissivity setting of the thermography is set to the emissivity of the blackbody tape (0.95), Measure temperature. After that, with analysis software (Product name: InfReC Analyzer NS9500 Standard
Ver.1.1A, manufactured by NEC Avio Infrared Technology Co., Ltd.) Adjust the thermal emissivity setting so that the temperature of the heat dissipation layer on the black tape surface is the same as the black tape surface. The thermal emissivity was taken as the measured value of the heat dissipation layer.

表1及び表2に、製造例1〜14で得られた樹脂組成物Iの組成、並びに、放熱層としてのシート状硬化物について、伸縮性、伸び率、70℃熱放射率及び膜厚を示した。   In Tables 1 and 2, the composition of the resin composition I obtained in Production Examples 1 to 14 and the sheet-like cured product as the heat dissipation layer, stretchability, elongation, 70 ° C. thermal emissivity and film thickness are shown. Indicated.

表1及び表2において、各配合物の配合量の数値は重量部である。また、配合物の詳細は、下記の通りである。   In Table 1 and Table 2, the numerical value of the blending amount of each blend is parts by weight. The details of the blend are as follows.

アラキード7005N:ポリエステル樹脂(荒川化学工業(株)製、引張伸び率550%、数平均分子量23000、水酸基価6〜12mgKOH/g、不揮発分35重量%、溶剤:ソルベッソ100、プロピレングリコールモノメチルエーテルアセテートおよびシクロヘキサノン)   Arachid 7005N: Polyester resin (manufactured by Arakawa Chemical Industries, Ltd., tensile elongation 550%, number average molecular weight 23000, hydroxyl value 6-12 mg KOH / g, nonvolatile content 35% by weight, solvent: Solvesso 100, propylene glycol monomethyl ether acetate and Cyclohexanone)

アラキード7021:ポリエステル樹脂(荒川化学工業(株)製、引張伸び率530%、数平均分子量26000、水酸基価5〜9mgKOH/g、不揮発分33重量%、溶剤:ソルベッソ150、シクロヘキサノン)   Arachid 7021: Polyester resin (manufactured by Arakawa Chemical Industries, Ltd., tensile elongation 530%, number average molecular weight 26000, hydroxyl value 5-9 mg KOH / g, nonvolatile content 33% by weight, solvent: Solvesso 150, cyclohexanone)

アラキード7015N:ポリエステル樹脂(荒川化学工業(株)製、数平均分子量15000、水酸基価8〜16mgKOH/g、不揮発分40重量%、溶剤:ソルベッソ150、ブチルグリコール、引張伸び率200%)   Arachid 7015N: Polyester resin (manufactured by Arakawa Chemical Industries, Ltd., number average molecular weight 15000, hydroxyl value 8-16 mg KOH / g, nonvolatile content 40% by weight, solvent: Solvesso 150, butyl glycol, tensile elongation 200%)

ユーバン228:ブチル化メラミン樹脂(三井化学(株)製、固形分60重量%、溶剤:ノルマルブタノール)   Uban 228: Butylated melamine resin (manufactured by Mitsui Chemicals, solid content 60% by weight, solvent: normal butanol)

エリーテルUE−3310:ポリエステル樹脂(ユニチカ(株)製、固形分100%、数平均分子量34000、水酸基価4、引張伸び率590%)   Elitel UE-3310: Polyester resin (manufactured by Unitika Ltd., solid content 100%, number average molecular weight 34000, hydroxyl value 4, tensile elongation 590%)

JCR 6125(主剤/架橋剤):2液硬化性メチル系シリコーンエラストマー(東レ・ダウコーニング社製、固形分100重量%、引張伸び率230%)   JCR 6125 (main agent / crosslinking agent): two-part curable methyl silicone elastomer (manufactured by Dow Corning Toray, solid content 100% by weight, tensile elongation 230%)

エラストランC80A:ポリエステル系熱可塑性ポリウレタンエラストマー(BASF社製、固形分100重量%、引張伸び率500%)   Elastollan C80A: polyester-based thermoplastic polyurethane elastomer (manufactured by BASF, solid content: 100% by weight, tensile elongation: 500%)

エポキー802-30CX:ウレタン変性エポキシ樹脂(三井化学(株)製、固形分30重量%、引張伸び率250%、溶剤:キシレン、シクロヘキサノン、3−メトキシブチルアセテート、2−ブタノール、シクロヘキシルアセテート)   Epokey 802-30CX: urethane-modified epoxy resin (manufactured by Mitsui Chemicals, solid content 30% by weight, tensile elongation 250%, solvent: xylene, cyclohexanone, 3-methoxybutyl acetate, 2-butanol, cyclohexyl acetate)

パラペットSA:軟質アクリル樹脂((株)クラレ製、固形分100重量%、引張伸び率210%)   Parapet SA: Soft acrylic resin (manufactured by Kuraray Co., Ltd., solid content 100% by weight, tensile elongation 210%)

TITONE R−32:酸化チタン粉末(堺化学工業(株)製、平均一次粒子径0.2μm)   TITONE R-32: Titanium oxide powder (manufactured by Sakai Chemical Industry Co., Ltd., average primary particle size 0.2 μm)

シナノランダムGP−3000:炭化ケイ素粉末(信濃電気製錬(株)製、平均一次粒子径4.0μm)   Shinano Random GP-3000: Silicon carbide powder (manufactured by Shinano Denki Smelting Co., Ltd., average primary particle size 4.0 μm)

Boronid S3:窒化ホウ素粉末(ESK CERAMICS社製、平均一次粒子径10.0μm以下)   Boronid S3: Boron nitride powder (manufactured by ESK CERAMICS, average primary particle size of 10.0 μm or less)

HO#100:フッ化カルシウム粉末(三共製粉(株)製、平均一次粒子径6.0μm以下)   HO # 100: Calcium fluoride powder (manufactured by Sankyo Flour Milling Co., Ltd., average primary particle size of 6.0 μm or less)

製造例15
アクリル系ポリマー粘着剤(商品名:ファインタック CT−6010、DIC(株)製、不揮発分25重量%、溶剤:酢酸エチル)を、粘着剤組成物IIとして用いた。この組成物を、乾燥後の膜厚が20〜30μmとなるように、離型処理を施したポリエチレンテレフタレートフィルム(厚さ75μm)に、アプリケーターで塗布した。約5分間室内で放置した後、乾燥器中にて100℃で3分間乾燥を行い、更に40℃で72時間エージングを行った後、ポリエチレンテレフタレートフィルムを剥離して、粘着層としてのシート状硬化物を得た。
Production Example 15
An acrylic polymer pressure-sensitive adhesive (trade name: Finetac CT-6010, manufactured by DIC Corporation, nonvolatile content 25% by weight, solvent: ethyl acetate) was used as the pressure-sensitive adhesive composition II. This composition was applied with an applicator to a polyethylene terephthalate film (thickness 75 μm) subjected to a release treatment so that the film thickness after drying was 20 to 30 μm. After standing in a room for about 5 minutes, drying in a dryer at 100 ° C. for 3 minutes, and further aging at 40 ° C. for 72 hours, the polyethylene terephthalate film was peeled off, and the sheet was cured as an adhesive layer I got a thing.

製造例16〜20
使用する粘着剤組成物IIとして、後記表2に記載の粘着剤又は成分組成のものを用いた他は製造例15と同様にして、粘着層としてのシート状硬化物を得た。
Production Examples 16-20
As the pressure-sensitive adhesive composition II to be used, a sheet-like cured product as a pressure-sensitive adhesive layer was obtained in the same manner as in Production Example 15 except that the pressure-sensitive adhesive or component composition described in Table 2 below was used.

製造例15〜20で得られた粘着層としてのシート状硬化物について、伸縮性、及び伸び率を、下記方法に従って、測定した。   About the sheet-like hardened | cured material as an adhesion layer obtained in manufacture examples 15-20, the elasticity and elongation rate were measured in accordance with the following method.

伸縮性
粘着層としてのシート状硬化物を、JIS K 7312で定める成型物の物理試験方法に準拠して、10mm×123mm×0.01〜0.15mmの短冊形に加工、標線間距離10mmとして、200%に伸ばした後の形状を保持できるか確認した。形状を保持できる場合は◎、一部変形がある場合は○、大きく変形または破断した場合は×とした。
The sheet-like cured product as the stretchable adhesive layer is processed into a strip shape of 10 mm × 123 mm × 0.01 to 0.15 mm in accordance with a physical test method for a molded article defined in JIS K 7312, and the distance between marked lines is 10 mm. It was confirmed whether the shape after extending to 200% could be maintained. ◎ when the shape can be maintained, ◯ when there is some deformation, and x when greatly deformed or broken.

伸び率
粘着層としてのシート状硬化物を、JIS K 7312で定める成型物の物理試験方法に準拠して、10mm×123mm×0.01〜0.15mmの短冊形に加工、標線間距離10mmとして、精密万能試験機(製品名:オートグラフ AGS−X、(株)島津製作所製)を用いて、引張速度5mm/minで、切断時の伸び(%)の測定を行った。
The sheet-like cured product as the elongation adhesive layer is processed into a strip shape of 10 mm × 123 mm × 0.01 to 0.15 mm in accordance with a physical test method of a molded article defined in JIS K 7312, and the distance between marked lines is 10 mm. The elongation (%) at the time of cutting was measured at a tensile speed of 5 mm / min using a precision universal testing machine (product name: Autograph AGS-X, manufactured by Shimadzu Corporation).

表3に、製造例15〜20で得られた粘着剤組成物IIの組成、並びに、粘着層(硬化物シート)について、伸縮性、伸び率及び膜厚の物性を示した。   Table 3 shows the physical properties of stretchability, elongation, and film thickness for the composition of the pressure-sensitive adhesive composition II obtained in Production Examples 15 to 20 and the pressure-sensitive adhesive layer (cured material sheet).

表3において、各配合物の配合量は下記製品の重量部である。また、配合物の詳細は、下記の通りである。   In Table 3, the compounding quantity of each compound is a weight part of the following product. The details of the blend are as follows.

ファインタック CT−6010:アクリル系ポリマー粘着剤(DIC(株)製、不揮発分25重量%、溶剤:酢酸エチル)   Finetac CT-6010: Acrylic polymer adhesive (manufactured by DIC Corporation, nonvolatile content 25% by weight, solvent: ethyl acetate)

ファインタック CT−3080:アクリル系ポリマー粘着剤(DIC(株)製、不揮発分45重量%、溶剤:酢酸エチル、メチルエチルケトン)   Finetac CT-3080: Acrylic polymer adhesive (manufactured by DIC Corporation, non-volatile content 45% by weight, solvent: ethyl acetate, methyl ethyl ketone)

アロンタック S−1601:溶剤型アクリル系ポリマー粘着剤(東亞合成(株)製、不揮発分30重量%)   Aron Tack S-1601: Solvent type acrylic polymer adhesive (manufactured by Toagosei Co., Ltd., nonvolatile content 30% by weight)

アルミナAL−43−M:アルミナ粉末(昭和電工(株)製、平均一次粒子径1.5μm)   Alumina AL-43-M: Alumina powder (Showa Denko K.K., average primary particle size 1.5 μm)

実施例1〜26
製造例1〜14で得られた放熱層である硬化物シートと製造例15〜20で得られた粘着層としてのシート状硬化物とを圧着して、2層構造の放熱シートを作製した。得られた放熱シートの物性として、伸び率、伸縮性、密着性、70℃熱放射率、及び放熱性を、下記方法によって、測定した。
Examples 1-26
The cured product sheet, which is the heat dissipation layer obtained in Production Examples 1 to 14, and the sheet-like cured product as the adhesive layer obtained in Production Examples 15 to 20 were pressure-bonded to produce a heat dissipation sheet having a two-layer structure. As physical properties of the obtained heat-dissipating sheet, elongation, stretchability, adhesion, 70 ° C. thermal emissivity, and heat dissipation were measured by the following methods.

伸縮性
実施例1〜26の放熱シートについて、JIS K 7312で定める成型物の物理試験方法に準拠して、10mm×123mm×0.05〜0.2mmの短冊形に加工、標線間距離10mmとして、100%に伸ばした後の形状を保持できるか確認した。形状を保持できる場合は◎、一部変形がある場合は○、大きく変形または破断した場合は×とした。
About the heat-radiation sheet of the stretchable Examples 1-26, it processed into a 10 mm x 123 mm x 0.05-0.2 mm strip shape according to the physical test method of the molding defined in JIS K 7312, and the distance between marked lines is 10 mm. It was confirmed whether the shape after extending to 100% could be maintained. ◎ when the shape can be maintained, ◯ when there is some deformation, and x when greatly deformed or broken.

密着性
アルミニウム板(A10.5P、サイズ:10.0mm×50mm×120mm)の表面に幅10mm、深さ5mmの溝加工を長さ方向に垂直で10mm間隔で行い、加工面に実施例1〜26の放熱シートを貼付して密着性を確認した。貼付後、加工面と放熱シート間に隙間があまり生じていない状態を◎、やや隙間が生じる場合は○、大きな隙間が生じて放熱シートが加工面に追従できていないと判断された場合は×とした。
Grooves with a width of 10 mm and a depth of 5 mm were formed on the surface of an adhesive aluminum plate (A10.5P, size: 10.0 mm × 50 mm × 120 mm) at intervals of 10 mm perpendicular to the length direction. Twenty-six heat dissipating sheets were attached to confirm the adhesion. After sticking, ◎ indicates that there is not much gap between the processed surface and the heat dissipation sheet, ◎ if there is a slight gap, ○ if there is a large gap and the heat dissipation sheet cannot follow the processed surface × It was.

伸び率
放熱シートを、JIS K 7312で定める成型物の物理試験方法に準拠して、10mm×123mm×0.05〜0.2mmの短冊形に加工、標線間距離10mmとして、精密万能試験機(製品名:オートグラフ AGS−X、(株)島津製作所製)を用いて、引張速度5mm/minで、切断時の伸び(%)の測定を行った。
Elongation radiating sheet, in compliance with the physical testing method of molding materials as specified in JIS K 7312, processed into a strip shape of 10mm × 123 mm × 0.05 to 0.2 mm, as the distance 10mm between marked lines, precision universal testing machine (Product name: Autograph AGS-X, manufactured by Shimadzu Corporation) was used to measure elongation (%) at the time of cutting at a tensile speed of 5 mm / min.

70℃熱放射率
放熱シートを、アルミニウム板(A10.5P、サイズ:2.0mm×50mm×120mm)の片面の中心に、熱伝導性両面テープ(商品名:NO.5046 熱伝導性テープ、マクセルスリオンテック(株)製)で貼付した。上記シートを貼付したアルミニウム板の裏側の中心に、熱源として抵抗器(シャント抵抗器、PCN社製、型番PBH1ΩD、定格電力10W、サイズ:長さ20mm×幅15mm×厚さ5mm)を、上記両面テープで固定した。熱源には一定の電流(2.82A)を印加して1.0〜1.5時間経過後、平衡状態となったシート面の温度を約70℃とした。を約70℃とした。熱放射率測定には、サーモグラフィー(製品名:サーモギアG100、NEC Avio赤外線テクノロジー(株)製)を用いた。放射率が0.95の黒体テープ0.5mm×0.5mmをシート面中心に貼付、サーモグラフィーの熱放射率設定を黒体テープの放射率(0.95)にし、黒体テープ貼付部の温度を測定。その後、解析ソフトで(製品名:InfReC Analyzer NS9500 Standard Ver.1.1A、NEC Avio赤外線テクノロジー(株)製)黒体テープの貼付面側の放熱シート面の温度が黒体テープ面と同じ温度となるように熱放射率設定の調整を行ない、そのときの熱放射率を放熱シートの測定値とした。
The 70 ° C. Thermal emissivity heat radiation sheet, an aluminum plate (A10.5P, Size: 2.0mm × 50mm × 120mm) on one side of the center of the thermally conductive double-sided tape (trade name: NO.5046 thermally conductive tape, Maxell Affixed with Sliontec Co., Ltd. A resistor (a shunt resistor, manufactured by PCN, model number PBH1ΩD, rated power 10 W, size: length 20 mm × width 15 mm × thickness 5 mm) is provided on the both sides of the center of the back side of the aluminum plate to which the sheet is attached. Fixed with tape. A constant current (2.82 A) was applied to the heat source, and after 1.0 to 1.5 hours had elapsed, the temperature of the sheet surface in an equilibrium state was set to about 70 ° C. Was about 70 ° C. Thermography (product name: Thermogear G100, manufactured by NEC Avio Infrared Technology Co., Ltd.) was used for thermal emissivity measurement. A 0.5mm x 0.5mm blackbody tape with an emissivity of 0.95 is affixed to the center of the sheet surface, the thermal emissivity setting of the thermography is set to the emissivity of the blackbody tape (0.95), Measure temperature. After that, in the analysis software (Product name: InfReC Analyzer NS9500 Standard Ver.1.1A, manufactured by NEC Avio Infrared Technology Co., Ltd.) The temperature of the heat dissipation sheet surface on the side of the black body tape is the same as that of the black body tape surface. Thus, the thermal emissivity setting was adjusted, and the thermal emissivity at that time was taken as the measured value of the heat dissipation sheet.

放熱性
アルミニウム板(A10.5P、サイズ:10.0mm×50mm×120mm)の表面に幅10mm、深さ5mmの溝加工を長さ方向に垂直で10mm間隔で行い、加工面に実施例1〜22の放熱シートを貼付した。裏面の中心に、熱源として抵抗器(シャント抵抗器、PCN社製、型番PBH1ΩD、定格電力10W、サイズ:長さ20mm×幅15mm×厚さ5mm)を、熱伝導性両面テープ(商品名:NO.5046 熱伝導性テープ、マクセルスリオンテック(株)製)で固定した。熱源には一定の電流(3.2A)を印加して1.0〜1.5時間経過後、平衡状態となった熱源の温度を約100℃とした。熱源の温度測定にはK熱電対を使用した。放熱シート未貼付の場合と比較して、10℃以上の温度低下となった場合は◎、7〜10℃未満を○、7℃未満を×とした。
A groove with a width of 10 mm and a depth of 5 mm was formed on the surface of a heat-dissipating aluminum plate (A10.5P, size: 10.0 mm × 50 mm × 120 mm) at intervals of 10 mm perpendicular to the length direction. Twenty-two heat dissipation sheets were attached. A resistor (shunt resistor, manufactured by PCN, model number PBH1ΩD, rated power 10 W, size: length 20 mm × width 15 mm × thickness 5 mm) is used as a heat source in the center of the back surface, and a thermally conductive double-sided tape (trade name: NO) 5046 was fixed with a heat conductive tape, manufactured by Maxell Sliontec Co., Ltd. A constant current (3.2 A) was applied to the heat source, and after 1.0 to 1.5 hours had passed, the temperature of the heat source that had reached an equilibrium state was about 100 ° C. A K thermocouple was used to measure the temperature of the heat source. Compared with the case where the heat-dissipation sheet was not attached, when the temperature decreased by 10 ° C. or more, “◎”, “less than 7-10 ° C.”, and “less than 7 ° C.” as x.

表4〜9に、放熱シートのシート構成及び物性を示す。   Tables 4 to 9 show the sheet configuration and physical properties of the heat dissipation sheet.

比較製造例1〜2
使用する各成分の種類および使用量を、後記表10に記載のとおりに変更した他は製造例1と同様にして、放熱層である硬化物シートを得た。
Comparative production examples 1-2
Except having changed the kind and amount of each component to be used as described in Table 10 below, a cured sheet as a heat radiation layer was obtained in the same manner as in Production Example 1.

表10に、比較製造例1〜2で得られた樹脂組成物Iの組成、並びに、放熱層(硬化物シート)について、前記と同様にして測定した物性を、示した。   Table 10 shows the physical properties measured in the same manner as described above for the composition of the resin composition I obtained in Comparative Production Examples 1 and 2 and the heat dissipation layer (cured material sheet).

表10において、各配合物の配合量は下記製品の重量部である。また、配合物の詳細は、下記の通りである。   In Table 10, the compounding quantity of each compound is a weight part of the following product. The details of the blend are as follows.

エリーテルUE−3380:ポリエステル樹脂(ユニチカ(株)製、固形分100%、数平均分子量8000、水酸基価15、引張伸び率155%)   Elitel UE-3380: Polyester resin (manufactured by Unitika Ltd., solid content 100%, number average molecular weight 8000, hydroxyl value 15, tensile elongation 155%)

エリーテルUE−3350:ポリエステル樹脂(ユニチカ(株)製、固形分100%、数平均分子量5000、水酸基価25、引張伸び率105%)   Elitel UE-3350: Polyester resin (manufactured by Unitika Ltd., solid content 100%, number average molecular weight 5000, hydroxyl value 25, tensile elongation 105%)

表10により、比較製造例1〜2では、放熱層の引張伸び率が100%以下となっているとこがわかる。   From Table 10, it can be seen that in Comparative Production Examples 1 and 2, the heat dissipation layer has a tensile elongation of 100% or less.

比較製造例3〜4
使用する各成分の種類および使用量を、後記表11に記載のとおりに変更した他は製造例15と同様にして、粘着層としてのシート状硬化物を得た。
Comparative production examples 3-4
A sheet-like cured product as an adhesive layer was obtained in the same manner as in Production Example 15 except that the type and amount of each component used were changed as described in Table 11 below.

表11に、比較製造例3〜4で得られた粘着剤組成物IIの組成、並びに、粘着層(硬化物シート)について、前記と同様にして測定した物性を、示した。   Table 11 shows the properties of the pressure-sensitive adhesive composition II obtained in Comparative Production Examples 3 and 4 and the physical properties measured in the same manner as described above for the pressure-sensitive adhesive layer (cured material sheet).

比較例1〜4
比較製造例1〜2で得られた放熱層である硬化物シートと比較製造例3〜4で得られた粘着層としてのシート状硬化物とを圧着して、2層構造の比較用の放熱シートを作製した。得られた放熱シートの物性として、伸び率、接着性、70℃熱放射率、放熱性を、前記と同様の方法によって、測定した。
Comparative Examples 1-4
Heat radiation for comparison of the two-layer structure by pressure bonding the cured sheet as the heat radiation layer obtained in Comparative Production Examples 1 and 2 and the sheet-like cured material as the adhesive layer obtained in Comparative Production Examples 3 to 4 A sheet was produced. As physical properties of the obtained heat-dissipating sheet, elongation, adhesion, 70 ° C. thermal emissivity, and heat dissipation were measured by the same method as described above.

表12に、比較用の放熱シートのシート構成及び物性を示す。   Table 12 shows the sheet configuration and physical properties of a comparative heat dissipation sheet.

本発明の伸縮性放熱シートは、半導体、LED素子、電子基板等の電子部品等の各種部品、並びにこれらの部品を含む筐体である電子製品等の各種製品に、貼付して用いることによって、これらの部品や製品から発生する熱を放出させる場合に、好適に利用できる。   The stretchable heat dissipation sheet of the present invention is used by attaching to various products such as electronic components such as semiconductors, LED elements, electronic substrates, etc., and electronic products that are casings containing these components. It can be suitably used when releasing heat generated from these parts and products.

1 従来の放熱シート
2 熱放射膜
3 吸熱層
4 接着層
5 本発明に係る伸縮性放熱シート
6 放熱層
7 粘着層

DESCRIPTION OF SYMBOLS 1 Conventional heat radiation sheet 2 Heat radiation film 3 Heat absorption layer 4 Adhesive layer 5 The elastic heat radiation sheet 6 heat radiation layer 7 adhesion layer which concerns on this invention

Claims (15)

引張伸び率が200%以上の樹脂(A)、架橋剤(B)及び赤外線吸収性無機粒子(C)を含有する樹脂組成物Iより得られる引張伸び率が100%以上の放熱層と、粘着性樹脂(D)を含有する樹脂組成物IIより得られる引張伸び率が200%以上の粘着層とから構成される、引張伸び率が100%以上の2層構造の伸縮性放熱シート。   A heat-dissipating layer having a tensile elongation of 100% or more obtained from the resin composition I containing a resin (A) having a tensile elongation of 200% or more, a crosslinking agent (B) and infrared absorbing inorganic particles (C); A stretchable heat-dissipating sheet having a two-layer structure having a tensile elongation of 100% or more, comprising an adhesive layer having a tensile elongation of 200% or more obtained from the resin composition II containing the conductive resin (D). 引張伸び率が200%以上の樹脂(A)が、ポリエステル樹脂、アクリル樹脂、エポキシ樹脂、ポリウレタン樹脂及びシリコーン樹脂からなる群より選ばれる少なくとも1種である、請求項1に記載の伸縮性放熱シート。   The stretchable heat radiation sheet according to claim 1, wherein the resin (A) having a tensile elongation of 200% or more is at least one selected from the group consisting of a polyester resin, an acrylic resin, an epoxy resin, a polyurethane resin, and a silicone resin. . 引張伸び率が200%以上の樹脂(A)が、ポリエステル樹脂であり、かつ、その数平均分子量が10,000〜80,000であって、その水酸基価が1〜20mgKOH/g以下である、請求項1に記載の伸縮性放熱シート。   The resin (A) having a tensile elongation of 200% or more is a polyester resin, and its number average molecular weight is 10,000 to 80,000, and its hydroxyl value is 1 to 20 mgKOH / g or less. The stretchable heat dissipation sheet according to claim 1. 架橋剤(B)が、アミノ樹脂系架橋剤である、請求項1に記載の伸縮性放熱シート。   The stretchable heat-radiating sheet according to claim 1, wherein the crosslinking agent (B) is an amino resin-based crosslinking agent. 赤外線吸収性無機粒子(C)が、非多孔質シリカ、多孔質シリカ、窒化ホウ素、石英、カオリン、フッ化カルシウム、水酸化アルミニウム、ベントナイト、タルク、サリサイト、マイカ及びコージェライトからなる群より選ばれる少なくとも1種である、請求項1に記載の伸縮性放熱シート。   Infrared absorbing inorganic particles (C) selected from the group consisting of non-porous silica, porous silica, boron nitride, quartz, kaolin, calcium fluoride, aluminum hydroxide, bentonite, talc, salicite, mica and cordierite The elastic heat-radiating sheet according to claim 1, which is at least one kind. 赤外線吸収性無機粒子(C)が、6.3〜10.5μmの波長域の赤外線を吸収するものである、請求項1に記載の伸縮性放熱シート。   The stretchable heat-radiating sheet according to claim 1, wherein the infrared-absorbing inorganic particles (C) absorb infrared rays having a wavelength range of 6.3 to 10.5 µm. 赤外線吸収性無機粒子(C)の平均一次粒子径が、0.1〜15.0μmである、請求項1に記載の伸縮性放熱シート。   The stretchable heat radiation sheet according to claim 1, wherein the average primary particle diameter of the infrared absorbing inorganic particles (C) is 0.1 to 15.0 µm. 赤外線吸収性無機粒子(C)の含有率が、放熱層の10〜60重量%である、請求項1に記載の伸縮性放熱シート。   The elastic heat-radiating sheet according to claim 1, wherein the content of the infrared-absorbing inorganic particles (C) is 10 to 60% by weight of the heat-dissipating layer. 樹脂組成物Iにおいて、引張伸び率が200%以上の樹脂(A)100重量部(固形分換算)に対して、架橋剤(B)の含有量が1〜40重量部(固形分換算)および赤外線吸収性無機粒子(C)の含有量が20〜200重量部である、請求項1に記載の伸縮性放熱シート。   In the resin composition I, the content of the crosslinking agent (B) is 1 to 40 parts by weight (in terms of solids) and 100 parts by weight (in terms of solids) of the resin (A) having a tensile elongation of 200% or more and The stretchable heat radiation sheet according to claim 1, wherein the content of the infrared-absorbing inorganic particles (C) is 20 to 200 parts by weight. 放熱層の熱放射率が、70℃において0.95以上である、請求項1に記載の伸縮性放熱シート。   The elastic heat-radiating sheet according to claim 1, wherein the heat emissivity of the heat-dissipating layer is 0.95 or more at 70 ° C. 粘着性樹脂(D)が、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂及びシリコーン樹脂からなる群より選ばれる少なくとも1種の樹脂である、請求項1に記載の伸縮性放熱シート。   The stretchable heat radiation sheet according to claim 1, wherein the adhesive resin (D) is at least one resin selected from the group consisting of an acrylic resin, a polyurethane resin, a polyester resin, and a silicone resin. 粘着層が、熱伝導率が10〜300W/m・Kである無機粒子(E)を10〜80重量%の範囲で含有する、請求項1に記載の伸縮性放熱シート。   The stretchable heat-radiating sheet according to claim 1, wherein the adhesive layer contains 10 to 80% by weight of inorganic particles (E) having a thermal conductivity of 10 to 300 W / m · K. 放熱層の厚さが、10〜100μmである、請求項1に記載の伸縮性放熱シート。   The elastic heat-radiating sheet according to claim 1, wherein the heat-radiating layer has a thickness of 10 to 100 μm. 粘着層の厚さが、10〜150μmである、請求項1に記載の伸縮性放熱シート。   The stretchable heat-radiating sheet according to claim 1, wherein the adhesive layer has a thickness of 10 to 150 μm. 請求項1に記載の伸縮性放熱シートが貼付された物品。   An article to which the stretchable heat radiation sheet according to claim 1 is attached.
JP2014515676A 2012-05-16 2013-05-16 Elastic heat-dissipating sheet and article to which it is attached Active JP6151245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014515676A JP6151245B2 (en) 2012-05-16 2013-05-16 Elastic heat-dissipating sheet and article to which it is attached

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012112069 2012-05-16
JP2012112069 2012-05-16
JP2014515676A JP6151245B2 (en) 2012-05-16 2013-05-16 Elastic heat-dissipating sheet and article to which it is attached
PCT/JP2013/063717 WO2013172429A1 (en) 2012-05-16 2013-05-16 Stretchable heat-radiation sheet, and article having same attached thereto

Publications (2)

Publication Number Publication Date
JPWO2013172429A1 true JPWO2013172429A1 (en) 2016-01-12
JP6151245B2 JP6151245B2 (en) 2017-06-21

Family

ID=49583830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014515676A Active JP6151245B2 (en) 2012-05-16 2013-05-16 Elastic heat-dissipating sheet and article to which it is attached

Country Status (4)

Country Link
JP (1) JP6151245B2 (en)
KR (1) KR20150008140A (en)
CN (1) CN104302474B (en)
WO (1) WO2013172429A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9464214B2 (en) * 2014-02-25 2016-10-11 The Boeing Company Thermally conductive flexible adhesive for aerospace applications

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016066485A (en) * 2014-09-24 2016-04-28 信越ポリマー株式会社 Heat radiation light valve and light member including the same
WO2017038942A1 (en) * 2015-09-02 2017-03-09 Jnc株式会社 Heat-dissipating coating composition, heat-dissipating member, article
CN109486412A (en) * 2018-09-19 2019-03-19 航天材料及工艺研究所 Low transmitting thermal control coating of a kind of low absorption and preparation method thereof
JP7412900B2 (en) 2019-05-09 2024-01-15 リンテック株式会社 Adhesive composition and adhesive sheet
CN113271749A (en) * 2021-04-01 2021-08-17 王启腾 Composite heat-conducting PCB

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311747A (en) * 1987-06-15 1988-12-20 Mitsubishi Gas Chem Co Inc Manufacture of ic chip-mounting printed circuit board
JP2003243587A (en) * 2002-02-13 2003-08-29 Tokai Rubber Ind Ltd Heat conductive member
JP2004035721A (en) * 2002-07-03 2004-02-05 Kanegafuchi Chem Ind Co Ltd Thermally conductive thermoplastic elastomer composition and thermally conductive thermoplastic elastomer sheet
JP2005116946A (en) * 2003-10-10 2005-04-28 Shin Etsu Polymer Co Ltd Heat dissipating sheet and manufacturing method therefor
JP2006156935A (en) * 2004-11-08 2006-06-15 Dainippon Printing Co Ltd Heat dissipating sheet and its manufacturing method
JP2007056067A (en) * 2005-08-22 2007-03-08 Denki Kagaku Kogyo Kk Electroinsulating flame retardant heat conductive material and heat conductive sheet using the same
JP2007173613A (en) * 2005-12-22 2007-07-05 Dainippon Printing Co Ltd Heat dissipating sheet and method of manufacturing same
JP2010007039A (en) * 2008-05-26 2010-01-14 Sekisui Chem Co Ltd Thermal conductive sheet
WO2010035614A1 (en) * 2008-09-26 2010-04-01 日本ゼオン株式会社 Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet, and electronic component
JP2010137562A (en) * 2008-11-12 2010-06-24 Nitto Denko Corp Method of manufacturing insulating heat conductive sheet, insulating heat conductive sheet and radiating member
JP2011222862A (en) * 2010-04-13 2011-11-04 Shin Etsu Chem Co Ltd Composite heat dissipation sheet and method for producing the same
JP2011228647A (en) * 2010-03-30 2011-11-10 Dainippon Printing Co Ltd Heat radiation sheet and manufacturing method of the same
JP2012049496A (en) * 2010-01-29 2012-03-08 Nitto Denko Corp Heat radiation structure
JP2012064691A (en) * 2010-09-15 2012-03-29 Furukawa Electric Co Ltd:The Thermal diffusion sheet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200199A (en) * 2002-12-16 2004-07-15 Oki Electric Ind Co Ltd Heat sink sheet
US7229683B2 (en) * 2003-05-30 2007-06-12 3M Innovative Properties Company Thermal interface materials and method of making thermal interface materials
JP5153558B2 (en) * 2008-10-08 2013-02-27 日本ジッパーチュービング株式会社 Adhesive heat conductive sheet
JP2010232535A (en) * 2009-03-27 2010-10-14 Polymatech Co Ltd Heat-resistant heat dissipation sheet
JP5423455B2 (en) * 2010-02-09 2014-02-19 日立化成株式会社 HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
JP2012054313A (en) * 2010-08-31 2012-03-15 Dainippon Printing Co Ltd Heat dissipation sheet and method of producing the same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311747A (en) * 1987-06-15 1988-12-20 Mitsubishi Gas Chem Co Inc Manufacture of ic chip-mounting printed circuit board
JP2003243587A (en) * 2002-02-13 2003-08-29 Tokai Rubber Ind Ltd Heat conductive member
JP2004035721A (en) * 2002-07-03 2004-02-05 Kanegafuchi Chem Ind Co Ltd Thermally conductive thermoplastic elastomer composition and thermally conductive thermoplastic elastomer sheet
JP2005116946A (en) * 2003-10-10 2005-04-28 Shin Etsu Polymer Co Ltd Heat dissipating sheet and manufacturing method therefor
JP2006156935A (en) * 2004-11-08 2006-06-15 Dainippon Printing Co Ltd Heat dissipating sheet and its manufacturing method
JP2007056067A (en) * 2005-08-22 2007-03-08 Denki Kagaku Kogyo Kk Electroinsulating flame retardant heat conductive material and heat conductive sheet using the same
JP2007173613A (en) * 2005-12-22 2007-07-05 Dainippon Printing Co Ltd Heat dissipating sheet and method of manufacturing same
JP2010007039A (en) * 2008-05-26 2010-01-14 Sekisui Chem Co Ltd Thermal conductive sheet
WO2010035614A1 (en) * 2008-09-26 2010-04-01 日本ゼオン株式会社 Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet, and electronic component
JP2010137562A (en) * 2008-11-12 2010-06-24 Nitto Denko Corp Method of manufacturing insulating heat conductive sheet, insulating heat conductive sheet and radiating member
JP2012049496A (en) * 2010-01-29 2012-03-08 Nitto Denko Corp Heat radiation structure
JP2011228647A (en) * 2010-03-30 2011-11-10 Dainippon Printing Co Ltd Heat radiation sheet and manufacturing method of the same
JP2011222862A (en) * 2010-04-13 2011-11-04 Shin Etsu Chem Co Ltd Composite heat dissipation sheet and method for producing the same
JP2012064691A (en) * 2010-09-15 2012-03-29 Furukawa Electric Co Ltd:The Thermal diffusion sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9464214B2 (en) * 2014-02-25 2016-10-11 The Boeing Company Thermally conductive flexible adhesive for aerospace applications

Also Published As

Publication number Publication date
JP6151245B2 (en) 2017-06-21
CN104302474A (en) 2015-01-21
CN104302474B (en) 2016-09-21
WO2013172429A1 (en) 2013-11-21
KR20150008140A (en) 2015-01-21

Similar Documents

Publication Publication Date Title
JP6151245B2 (en) Elastic heat-dissipating sheet and article to which it is attached
US9346993B2 (en) Heat dissipating coating composition and heat dissipating coating film
JP5600604B2 (en) Temperature-sensitive adhesive for flat panel display manufacturing and temperature-sensitive adhesive tape for flat panel display manufacturing
CN105264031B (en) Thermal conductivity bonding sheet
TWI686582B (en) Method of producing heat-radiation insulating sheet, heat-radiation insulating sheet and heat spreader
JP2009013183A (en) Adhesive sheet and method for producing electronic part by using the same
JP6230761B2 (en) First protective film forming sheet
WO2017078050A1 (en) Curable resin film, and first protective film forming sheet
KR101798532B1 (en) Adhesive Composition for Heat Dissipation Sheet and Heat Dissipation Sheet Using the Same
JP5049485B2 (en) Adhesive composition and adhesive sheet
KR20190003458A (en) Film for forming protective film and composite sheet for forming protective film
JP4829482B2 (en) Thermally conductive composition and thermal conductive sheet
CN104212368B (en) Thermal conductivity bonding sheet
JP6153806B2 (en) Adhesive composition and adhesive sheet
JP2015201602A (en) Laminate sheet, heat sink, and method for manufacturing laminate sheet
JP7176903B2 (en) Heat-dissipating sheet, manufacturing method thereof, and heat-dissipating device
JP2013209645A (en) Heat-dissipating coating material composition, heat-dissipating coating film and coated article
JP7290771B2 (en) Protective film forming film and protective film forming composite sheet
JP5227495B2 (en) Adhesive sheet
JP7170476B2 (en) Composition for Forming Heat Dissipating Member, Heat Dissipating Member, and Method for Producing Same
JP6870991B2 (en) Thermal conductivity sheet
KR20140088092A (en) Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet-form molded body, manufacturing method of these, and electronic component
JP7471880B2 (en) Film-like adhesive and dicing die bonding sheet
JP4086322B2 (en) Thermally conductive pressure sensitive adhesive and its adhesive sheets
JPH10133590A (en) Light emission display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170524

R150 Certificate of patent or registration of utility model

Ref document number: 6151245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250