JPWO2013172053A1 - 太陽電池の制御装置 - Google Patents

太陽電池の制御装置 Download PDF

Info

Publication number
JPWO2013172053A1
JPWO2013172053A1 JP2014515510A JP2014515510A JPWO2013172053A1 JP WO2013172053 A1 JPWO2013172053 A1 JP WO2013172053A1 JP 2014515510 A JP2014515510 A JP 2014515510A JP 2014515510 A JP2014515510 A JP 2014515510A JP WO2013172053 A1 JPWO2013172053 A1 JP WO2013172053A1
Authority
JP
Japan
Prior art keywords
value
solar cell
current
voltage
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014515510A
Other languages
English (en)
Other versions
JP5789046B2 (ja
Inventor
中村 明博
明博 中村
亨 河野
亨 河野
俊祐 松永
俊祐 松永
健 焦
健 焦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2014515510A priority Critical patent/JP5789046B2/ja
Application granted granted Critical
Publication of JP5789046B2 publication Critical patent/JP5789046B2/ja
Publication of JPWO2013172053A1 publication Critical patent/JPWO2013172053A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

日射量の変化に伴う電力損失をより低減した探索点の設定を可能とする太陽電池の制御装置である。パワーコンディショナ2において、太陽電池の出力電流を検出する電流センサ11と、電流センサ11から得られる電流値を入力として太陽電池の動作電力値が極値であるか否かを判定し、この判定結果に基づいて、極値と判定した電圧値と電流値とを記憶する極値監視部6と、電流センサ11から得られる電流値と、極値と判定した際の太陽電池の出力電流値との比に基づいて、太陽電池の電圧−電力特性の極値探索を行う際の電圧幅を設定する変動幅決定部17aと、を有する。

Description

本発明は、太陽光発電システムに係わり、特に、日射量が急激に変化した場合でも太陽電池から発電電力を効率良く取り出す最大電力点追従制御方式を採用した太陽電池の制御装置に適用して有効な技術に関する。
従来の太陽電池の最大電力点追従制御方式(Maximum Power Point Tracking:MPPT)を採用した制御装置として、例えば、非特許文献1や特許文献1〜2に記載される技術などがある。
前記非特許文献1には、電圧制御型の山登り法と呼ばれるMPPT方式が開示されている(非特許文献1の図2)。山登り法は、前回測定した電流・電圧から求めた電力P(k−1)と今回測定した電流・電圧から求めた電力P(k)とを比較する。さらに、電力を比較した後、前回測定した電圧V(k−1)と今回測定した電圧V(k)の大きさを比較し、電力と電圧の比較で次回の電圧の変化を4つのパターンから選択する。この一連の動作を繰り返し行うことで、電力の頂点まで動作電圧を移動させることが可能となる。
また、前記特許文献1には、最大点追従を高速に行うと共に、より正確に最大点を探索することができる太陽光発電システムが開示されている(特許文献1の図2)。この特許文献1では、高速な追従を実現するため、3点の電力を測定・保存し、3点の電力の大小関係を3つのタイプに分けることで次回のMPPTにおいて設定する電圧値を決定している(特許文献1の図5、図9、図10)。例えば、3つの電力の対象関係が単調増加であれば、次回の探索電圧を正の電圧方向に拡大し、単調減少であれば、次回の探索電圧を負の電圧方向に電圧幅を変化させずに移動させる。これは、太陽電池の電力の電圧に対する傾きが、最大電力点電圧より小さい電圧範囲では緩やかであるため、探索幅のステップを大きくして高速な追従を可能としている。また、電力の大小関係が上に凸になると、電圧幅を1/2ずつ減少させて探索範囲を絞り込んでいく。最終的に、電力と電圧の関係が収束条件に当てはまると、探索を停止する。そして、探索停止後は電力の変化を監視し、設定された閾値を超えるか否かを判定することで、日射量や温度の変化を検知し、最大電力点の探索を再開する。
また、前記特許文献2には、太陽電池のMPPT制御を簡単かつ高精度で行うことが可能で、電力取得の効率を向上させることができる太陽光発電システムが開示されている。この特許文献2では、太陽電池を制御する際に接続されるDC/DCコンバータのインダクタに流れる電流をスイッチン素子により制御し、太陽電池の電流を零から短絡電流まで変化させ、電流−電圧特性を一定時間に取得する。そして、特性取得後、取得データに基づいて電力−電圧特性を計算し、最大電力が出力される電圧へ動作電圧を変化させる。このような特性取得、電圧変化を一定時間間隔で実施することにより、日射量等の変化が起こっても最大電力点を追従することが可能となる。
C.Liu,B.et.al,"ADVANCED ALGORITHM FOR MPPT CONTROL OF PHOTOVOLTAIC SYSTEMS",Canadian Solar Buildings Conference, 2004 "Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques",Esram,T.et.al,Energy Conversion,IEEE Transactions on,June 2007,Volume:22,Issue: 2,PP:439−449
特開2011−171348号公報 特許第4294346号公報
ところで、前記非特許文献1や特許文献1〜2を含む従来の太陽電池のMPPTを採用した制御装置に関して、本発明者が検討した結果、以下のようなことが明らかとなった。
例えば、前記非特許文献1に示されたMPPTシステムでは、日射量や温度変化のない静特性に対しては、最大電力点付近を追従可能である。しかし、日射量が急激に変化した場合には、最大電力点から大きく外れた後、改めて山登りを行うために電力を大きく損失する。このため、山登りを高速なタイミングで実施し最大電力点までの到達時間を短くして、電力損失を削減することが考えられている。しかし、山登り法の高速化の効果はある一定の日射量変化のスピードにのみ有効であり、このスピードより遅い速度で日射量が変化した場合、MPPTで指令する電圧が真の最大電力点電圧と乖離し、電力損失を新たに発生させるという課題がある。
また、前記特許文献1に示されたMPPTシステムは、山登り法の欠点である応答性の課題を解決するために提案された技術である。この特許文献1に記載されたMPPTシステムは、3点のデータを元にして、電力−電圧特性の概形を予測している。しかし、これら3点のデータをサンプリングする際に、日射量の変化に応じて電力−電圧特性が変化する可能性がある。このような場合には、本来の電力−電圧特性とは異なる電力−電圧特性を予測して、これをターゲットとした探索点の設定を行う可能性があり、これに伴い電力損失が生じることが懸念される。
また、前記特許文献2に記載されたMPPTシステムは、太陽電池の電流を零から短絡電流まで変化させて得られた特性により、最大電力が得られる動作電圧が決定される。しかし、動作電圧が決定された後、日射量の変化により電力−電圧特性が変化しても、動作電圧が一定であるため、等価的に最大電力点からずれたポイントで動作することになり、電力損失が生じることが懸念される。また、元にするデータが3点ではなく多点となっている点が前記特許文献1と異なるが、電流を零から短絡電流まで変化させる時間がV=L・dI/dtで制約されるため、日射量の変化が生じ、前記特許文献1と同様の電力損失が生じ得ることに変わりはない。
そこで、本発明は、以上のような従来技術の課題を検討し、これらの課題を解決するためになされたものであり、その代表的な目的は、日射量の変化に伴う電力損失をより低減した探索点の設定を可能とする太陽電池の制御装置を提供することにある。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次の通りである。
(1)代表的な太陽電池の制御装置は、太陽電池の出力電流を検出する電流検出部と、前記電流検出部から得られる電流値を入力として前記太陽電池の動作電力値が極値であるか否かを判定し、この判定結果に基づいて、極値と判定した電圧値と電流値とを記憶する極値監視部と、前記電流検出部から得られる電流値と、前記極値と判定した際の前記太陽電池の出力電流値との比に基づいて、前記太陽電池の電圧−電力特性の極値探索を行う際の電圧幅を設定する変動幅決定部と、を有することを特徴とする。
(2)代表的な別の太陽電池の制御装置は、太陽電池の出力電流を検出する電流検出部と、日射量を検出する日射計と、前記電流検出部から得られる電流値を入力として前記太陽電池の動作電力値が極値であるか否かを判定し、この判定結果に基づいて、極値と判定した電圧値と電流値と日射量とを記憶する極値監視部と、前記日射計から得られる日射量と、前記極値と判定した際の日射量との比に基づいて、前記太陽電池の電圧−電力特性の極値探索を行う際の電圧幅を設定する変動幅決定部と、を有することを特徴とする。
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下の通りである。
すなわち、代表的な効果は、日射量の変化に伴う電力損失をより低減した探索点の設定を可能とする太陽電池の制御装置を提供することができる。
本発明の実施の形態1〜8である太陽光発電システムの構成の一例を示す概略構成図である。 本発明の実施の形態1において、パワーコンディショナの構成の一例を示すブロック構成図である。 本発明の実施の形態2において、パワーコンディショナの構成の一例を示すブロック構成図である。 本発明の実施の形態3において、パワーコンディショナの構成の一例を示すブロック構成図である。 本発明の実施の形態4において、パワーコンディショナの構成の一例を示すブロック構成図である。 本発明の実施の形態5において、パワーコンディショナの構成の一例を示すブロック構成図である。 本発明の実施の形態6において、パワーコンディショナの構成の一例を示すブロック構成図である。 本発明の実施の形態7において、パワーコンディショナの構成の一例を示すブロック構成図である。 本発明の実施の形態8において、パワーコンディショナの構成の一例を示すブロック構成図である。 本発明の実施の形態1〜4において、最大点追従部、極値監視部の動作の一例を示すフローチャートである。 本発明の実施の形態1〜8において、変動幅決定部による変動幅決定の方法の一例を示すフローチャートである。 本発明の実施の形態1〜4において、最大点追従部、極値監視部の別の動作の一例を示すフローチャートである。 本発明の実施の形態1〜8において、変動幅決定部による変動幅決定の方法の別の一例を示すフローチャートである。 本発明の実施の形態5〜8において、最大点追従部、極値監視部の動作の一例を示すフローチャートである。 本発明の実施の形態1〜8において、極値監視部による極値監視の方法の一例を示すフローチャートである。 本発明の実施の形態1〜8において、効果を説明するためのタイミングチャートである。 本発明の実施の形態1〜8において、効果を説明するための別のタイミングチャートである。
以下の実施の形態においては、便宜上その必要があるときは、複数の実施の形態またはセクションに分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。
さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
[実施の形態の概要]
まず、実施の形態の概要について説明する。本実施の形態の概要では、一例として、括弧内に各実施の形態の対応する構成要素および符号を付して説明する。
(1)実施の形態の代表的な太陽電池の制御装置(パワーコンディショナ2)は、太陽電池の出力電流を検出する電流検出部(電流センサ11)と、前記電流検出部から得られる電流値を入力として前記太陽電池の動作電力値が極値であるか否かを判定し、この判定結果に基づいて、極値と判定した電圧値と電流値とを記憶する極値監視部(極値監視部6,12)と、前記電流検出部から得られる電流値と、前記極値と判定した際の前記太陽電池の出力電流値との比に基づいて、前記太陽電池の電圧−電力特性の極値探索を行う際の電圧幅を設定する変動幅決定部(変動幅決定部17a,18a,19a,20a)と、を有することを特徴とする。
(2)実施の形態の代表的な別の太陽電池の制御装置(パワーコンディショナ2)は、太陽電池の出力電流を検出する電流検出部(電流センサ11)と、日射量を検出する日射計(日射計15)と、前記電流検出部から得られる電流値を入力として前記太陽電池の動作電力値が極値であるか否かを判定し、この判定結果に基づいて、極値と判定した電圧値と電流値と日射量とを記憶する極値監視部(極値監視部6,12)と、前記日射計から得られる日射量と、前記極値と判定した際の日射量との比に基づいて、前記太陽電池の電圧−電力特性の極値探索を行う際の電圧幅を設定する変動幅決定部(変動幅決定部17a,18a,19a,20a)と、を有することを特徴とする。
以下、上述した実施の形態の概要に基づいた各実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
[実施の形態1]
実施の形態1の太陽電池の制御装置を含む太陽光発電システムについて、図1、図2、図10〜図13、図15〜図17を用いて説明する。
本実施の形態においては、電流センサの計測データを用いて最大電力点追従制御(MPPT)を実施し、DC/ACインバータにより太陽電池アレイから出力電力を取り出すシステムについて説明する。
<太陽光発電システムの構成>
図1を用いて、本実施の形態の太陽光発電システムの構成について説明する。図1は、この太陽光発電システムの構成の一例を示す概略構成図である。
太陽光発電システムは、太陽電池アレイ1と、この太陽電池アレイ1に接続されたパワーコンディショナ(PCS)2と、このパワーコンディショナ2に接続された電力系統3とから構成される。
太陽電池アレイ1は、複数の太陽電池パネルが直並列に接続された単位からなる太陽電池である。パワーコンディショナ2は、太陽電池アレイ1から発電電力を取り出し、直流電力を交流電力に変換して電力系統3に出力する制御装置である。電力系統3は、一般の電力系統ラインであり、例えば交流電圧200Vまたは400V、周波数50Hzまたは60Hzのラインである。
<パワーコンディショナの構成と動作概要>
図2を用いて、図1に示したパワーコンディショナ2の構成について説明する。図2は、このパワーコンディショナ2の構成の一例を示すブロック構成図である。
パワーコンディショナ2は、電圧センサ4と、DC/ACインバータ5と、極値監視部(1)6と、電流平均化部7と、2点データ記憶部8と、AVR(Automatic Voltage Regulator)制御部9と、電流センサ11と、最大点追従部(1)17とから構成される。
電圧センサ4は、入力側が太陽電池アレイ1に接続され、出力側がAVR制御部9に接続されている。この電圧センサ4は、太陽電池アレイ1から出力される発電電力の電圧を検出し、この検出された電圧値をAVR制御部9に出力するための検出器である。
DC/ACインバータ5は、入力側が太陽電池アレイ1に接続され、出力側が電力系統3に接続され、AVR制御部9からのPWM(Pulse Width Modulation)指令により制御される。このDC/ACインバータ5は、太陽電池アレイ1から出力される発電電力の直流電圧を交流電圧に変換して、電力系統3に供給するための変換器である。
極値監視部(1)6は、入力側が2点データ記憶部8に接続され、出力側が最大点追従部17に接続されている。この極値監視部(1)6は、電流センサ11から得られる電流値を入力として、太陽電池アレイ1の動作電力値が極値であるか否かを判定し、この判定結果に基づいて、極値と判定した電圧値と電流値とを記憶するための機能部である。
電流平均化部7は、入力側が電流センサ11に接続され、出力側が2点データ記憶部8と最大点追従部17とに接続されている。この電流平均化部7は、電流センサ11で検出された電流(太陽電池アレイ1から出力される発電電力の電流)を平均化して、2点データ記憶部8と最大点追従部17に出力するための機能部である。
2点データ記憶部8は、入力側が電流平均化部7とAVR制御部9と最大点追従部17とに接続され、出力側が極値監視部(1)6に接続されている。この2点データ記憶部8は、今回のMPPT制御時の電圧指令値および電力値と、前回の最大電力点制御時の電圧指令値および電力値とを2点データ8aとして記憶するための記憶部である。
AVR制御部9は、入力側が電圧センサ4と2点データ記憶部8と最大点追従部17とに接続され、出力側がDC/ACインバータ5に接続されている。このAVR制御部9は、電圧センサ4のデータと最大点追従部(1)17から出力された電圧指令値とをもとにPWM指令を生成して、DC/ACインバータ5に出力するための制御部である。
電流センサ11は、入力側が太陽電池アレイ1に接続され、出力側が電流平均化部7に接続されている。この電流センサ11は、太陽電池アレイ1から出力される発電電力の電流を検出して、電流平均化部7に出力するための検出器である。
最大点追従部(1)17は、入力側が極値監視部(1)6と電流平均化部7とに接続され、出力側が2点データ記憶部8とAVR制御部9とに接続されている。この最大点追従部(1)17は、最大電力点の探索を行うための変動幅を設定して、2点データ記憶部8とAVR制御部9とに電圧指令値を出力するための機能部である。この最大点追従部(1)17には、変動幅決定部17aが内蔵されている。変動幅決定部17aは、電流センサ11から得られる電流値と、極値と判定した際の太陽電池アレイ1の出力電流値との比に基づいて、太陽電池アレイ1の電圧−電力特性の極値探索を行う際の電圧幅を設定するための機能部である。
以上のパワーコンディショナ2の構成において、電圧センサ4、DC/ACインバータ5、AVR制御部9、電流センサ11はハードウェアで構成される。その他の、極値監視部(1)6、電流平均化部7、最大点追従部(1)17は、パワーコンディショナ2内のマイコン内に記憶されたソフトウェアで構成され、2点データ記憶部8はマイコン内の記憶領域に割り当てられて構成される。
このパワーコンディショナ2の動作概要は、以下の通りである。電流センサ11から出力されたデータは電流平均化部7へ入力される。電流平均化部7から出力されたデータは2点データ記憶部8と最大点追従部(1)17へ入力される。最大点追従部(1)17では、最大電力点の探索を行うための変動幅を設定し、電圧指令値をAVR制御部9と2点データ記憶部8へ出力する。また、最大点追従部(1)17では、TYP(2点の電力の変化パターンを示すタイプ)を2点データ記憶部8へ出力する。電圧センサ4の出力はAVR制御部9へ入力される。
2点データ記憶部8で記憶された今回と前回のMPPT制御時の電圧指令値および電力値を極値監視部(1)6へ出力し、極値監視部(1)6の判定結果は最大点追従部(1)17へ入力される。AVR制御部9では、電圧センサ4のデータと最大点追従部(1)17から出力された電圧指令値をもとにPWM指令を生成し、この生成されたPWM指令がDC/ACインバータ5へ出力される。
<パワーコンディショナの詳細動作>
前述した図2を参照しながら、図10、図11、図12、図13、図15を用いて、図2に示したパワーコンディショナ2の各部の詳細動作について説明する。
《2点データ記憶部の詳細動作》
まず、図2に示した2点データ記憶部8の動作について、詳細に説明する。2点データ記憶部8では、今回のMPPT制御時の電圧指令値と電力値または電流値、および前回のMPPT制御時の電圧指令値と電力値または電流値を2点データ8aとして保存する。電力値は、電流平均化部7からのデータに対応する電圧指令値を乗算することで電力値として記憶する。また、電圧指令値の代わりに、電圧センサ4のデータを用いて電力値を算出することも可能である。
《最大点追従部、極値監視部の詳細動作》
続いて、図2に示した最大点追従部(1)17、極値監視部(1)6の動作について、図10を用いて詳細に説明する。図10は、この最大点追従部(1)17、極値監視部(1)6の動作の一例を示すフローチャートである。
最大点追従部(1)17においてMPPTが開始すると(ステップS101)、まず、極値監視部(1)6で極値監視を行う(ステップS102)。この極値監視部(1)6による極値監視の方法については、図15を用いて後述する。次に、極値監視部(1)6による極値監視の結果に基づいて、変動幅決定部17aで変動幅を決定する(ステップS103)。この変動幅決定部17aによる変動幅決定の方法については、図11および図13を用いて後述する。
さらに、変動幅決定部17aで変動幅が決定された後、MPPTが行われる(ステップS104)。このMPPTは、例えば、山登り法に代表される1変数探索手法を用いるが、他の方法を用いても良い。変動幅決定部17aで決定された変動幅が0より大きい場合には、MPPTで用いる探索幅を用いずに、最大電力点電圧に変動幅を加算することで電圧指令値を設定する。
そして、MPPTの実行後は、電圧をAVR制御部9に対して設定(指令)し(ステップS105)、制御回路の応答時間を待機した後に(ステップS106)、指令電圧に対する電力を測定する(ステップS107)。
以上のステップS102〜S107の流れを1周期として、これを繰り返して最大電力点追従を実行する。
この図10に示した最大点追従部(1)17による最大電力点追従のフローは、図12のように、MPPTと変更幅決定を並列に実行することも可能である。図12は、最大点追従部(1)17、極値監視部(1)6の別の動作の一例を示すフローチャートである。
すなわち、MPPTを開始して(ステップS301)、極値監視(ステップS302)を行った後に、MPPT(ステップS303)と変更幅決定(ステップS304)を並列に実行し、その後、電圧設定(ステップS305)、応答時間待機(ステップS306)、電力測定(ステップS307)を行う。以上のステップS302〜S307の流れを繰り返して最大電力点追従を実行する。
《極値監視部による極値監視の方法》
続いて、図10および図12に示した極値監視部(1)6による極値監視(ステップS102,S302)の方法について、図15を用いて詳細に説明する。図15は、この極値監視部(1)6による極値監視(ステップS102,S302)の方法の一例を示すフローチャートである。
まず、極値監視部(1)6による極値監視の結果、極値である場合には、今回のMPPT制御時の電圧指令値をV、電力値をPとし、前回のMPPT制御時の電圧指令値をV、電力値をPとすると、VとVの電圧差の極限値が0の場合、最大電力点では式(1)の関係が成り立つ。
Figure 2013172053
極値監視部(1)6では、上記の式(1)の関係を利用するため、まず、電圧差、電力差に対して閾値(Vth,Pth)を設定する(ステップS601)。MPPTの実装にはマイコンを利用するため、ゲート数を極力少なくする必要があり、除算は使用しない方が良い。そのため、電力差、電圧差それぞれに閾値を設け、電圧差が閾値Vthより小さいか否かを判定し(ステップS602)、さらに、電力差の絶対値が閾値Pthより小さいか否かを判定して(ステップS603)、極値の判定を行う。
この判定の結果、電圧差と電力差の判定条件が両方とも成立したときのみ(ステップS602−YES、ステップS603−YES)、極値と判定し、最大電力点電流(極値電流)Im、最大電力点電圧(極値電圧)Vmを保持する(ステップS604,S605)。ここで、電力差の閾値Pthについては定数で指定する他、測定された電力値および電流値に応じて可変させることも可能である。
太陽電池の電圧−電力特性においては、日射量が大きい場合には、大きな電力差を閾値に用いた場合でも極値を正確に判定することができる。しかし、日射量が小さい場合に、日射量が大きい場合の閾値を用いると、正確に極値を見つけることができない。このため、電力差の閾値を、測定される電力量および電流量が小さくなるほど、小さく設定することで、より正確に極値の判定、監視を行うことが可能となる。
次に、保持した最大電力点電流を用いて、日射量が変動した際の変動幅の決定を行う。日射量が変動した際にMPPTの効率を向上させるには、日射量の変動に同期した変動幅を設定する必要がある。
そこで、本実施の形態においては、極値と判定した際の最大電力点電流Imと、定期的に測定される現在の電流値I1より、日射量変化後の変動幅(ΔVinit)を決定する。以下、この変動幅(ΔVinit)の算出方法の詳細を説明する。
ΔVinitは、前述したとおり、日射量変動に同期させる必要があるため、太陽電池特性の式から日射量と最大電力点の変化量(ΔVdiff)の関係を導出する。式(2)は、太陽電池の特性式である。
Figure 2013172053
式(2)において、Iは太陽電池の出力電流、Vは太陽電池の出力電圧、Iscは短絡電流、pは日射量、Isは太陽電池セルの逆方向飽和電流、nfはダイオード接合定数、kはボルツマン定数、Tは絶対温度、Ncellはセル数、qは素荷量、Rsは太陽電池セル同士を接続する配線などの直列抵抗値、Rshは太陽電池セルのシャント抵抗値を表す。抵抗値をここで、Rs≒0、Rsh≒∞として電圧の式として変換すると、式(3)となる。
Figure 2013172053
ここで、日射量がp1からp2へ変化した場合の最大電力点電圧の電圧差ΔVdiffを求めると、式(4)となる。
Figure 2013172053
ここで、前記非特許文献2[”Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques”,Esram,T.et.al,Energy Conversion,IEEE Transactions on,June 2007,Volume:22,Issue: 2,PP:439−449]で示されている短絡電流Iscと動作電流Iopの関係(式(5))を用いると、式(4)は式(6)に変更できる。
Figure 2013172053
つまり、式(6)より、日射量変化が発生した際のΔVdiffは日射量の比から導出できることが分かる。ここで、本実施の形態においては、日射計を入力としないため、電流による置き換えを考える。式(4)において、Iop1を極値電圧での電流値Im、Iop2を現在の電流値I1として、ΔVdiff=0となる場合、以下のような式展開(式(7)、式(8)、式(9))ができる。
Figure 2013172053
式(5)の関係を使用すると、式(9)は式(10)となり、式(6)は式(11)のように書き換えることができる。
Figure 2013172053
このように、日射量変化が発生した際の最大電力点電圧の電圧差ΔVdiffは、電流センサのデータ、極値と判定した際の最大電力点電流Imと、定期的に測定される現在の電流値I1の比から算出することができる。また、電流値を電力値として置き換えることも可能である。
《変動幅決定部による変動幅決定の方法》
続いて、図10および図12に示した変動幅決定部17aによる変動幅決定(ステップS103,S304)の方法について、図11を用いて詳細に説明する。図11は、この変動幅決定部17aによる変動幅決定(ステップS103,S304)の方法の一例を示すフローチャートである。
変動幅決定部17aでは、式(11)を用いて、極値と判定した際の最大電力点電流Imと、定期的に測定される現在の電流値I1より、日射量変化後の変動幅ΔVinitを算出する。まず、現在の電流値I1を測定し(ステップS201)、この測定した電流値I1と、極値と判定した際の最大電力点電流Imとから電流比(I1/Im)を算出する(ステップS202)。そして、算出した電流比を対数演算し、定数を乗算することで変動幅(=定数×ln(電流比))を算出する(ステップS203)。この変動幅を新たな探索幅として利用する。
続いて、図11に示した方法とは別の変動幅決定部17aによる変動幅決定(ステップS103,S304)の方法について、図13を用いて詳細に説明する。図13は、この変動幅決定部17aによる変動幅決定(ステップS103,S304)の方法の別の一例を示すフローチャートである。
図13は、変動幅決定部17aによる変動幅決定のもう一つの実現方法である。図13では、まず、現在の電流値I1を測定し(ステップS401)、さらに、電流比と大小関係の比較を行うための閾値Ithを設定する(ステップS402)。この閾値は、変動幅を決めるための条件分岐で使用する。
閾値を決定後、測定した電流値I1と、極値と判定した際の最大電力点電流Imとから電流比を算出し(ステップS403)、電圧の移動方向を決めるための信号Signを1または−1で設定する(ステップS404)。Sign=1の場合は、電流が増加した場合、Sign=−1の場合は電流が減少した場合を示す。
上記のSignのパラメータの設定後、電流比と閾値Ithの比較を実施し、電流比が閾値より大きな値であれば、閾値Ithをべき乗し、新たに電流比と比較を行う。条件が満たされたべき乗数の数に従い、変動幅の基準幅を整数倍して、変動幅を決定する。
例えば、ステップS405において、電流比が閾値Ithより小さいか否かを判定し、小さい場合(YES)は変動幅を0とする(ステップS406)。一方、ステップS405の判定の結果、電流比が閾値Ithより小さくない場合(NO)には、ステップS407に進む。
さらに、ステップS407において、電流比が閾値Ithの2乗(Ith)より小さいか否かを判定し、小さい場合(YES)は変動幅をSign×基準幅とする(ステップS408)。一方、ステップS407の判定の結果、電流比が閾値Ithの2乗(Ith)より小さくない場合(NO)には、ステップS409に進む。
以降同様にして、電流比<Ithの判定(ステップS409)、変動幅=Sign×2×基準幅の決定(ステップS410)、電流比<Ithの判定(ステップS411)、変動幅=Sign×3×基準幅の決定(ステップS412)、電流比<Ithの判定(ステップS413)、変動幅=Sign×4×基準幅の決定(ステップS414)を順に行い、ステップS413の判定の結果、電流比<Ithでない場合(NO)にはステップS415に進む。
そして、ステップS415において、電流比が閾値Ithの6乗(Ith)より小さいか否かを判定し、小さい場合(YES)は変動幅をSign×5×基準幅とし(ステップS416)、一方、小さくない場合(NO)には変動幅をSign×6×基準幅とする(ステップS417)。
以上のようにして、変動幅が決定される。その後は、前述したように、図10および図12に示したMPPT(ステップS104,S303)が行われる。そして、MPPTの実行後は、電圧設定、応答時間待機、電力測定が行われる。
<本実施の形態の効果>
以上説明した本実施の形態による効果を、図16、図17を用いて説明する。 図16、図17は、MPPTに山登り法を実装した場合の効果を説明するためのタイミングチャートであり、それぞれ、図16は日射量が急激に減少した場合の制御結果、図17は日射量が急激に増加した場合の制御結果を示す。図16、図17において、上側に時間に対する電圧の変化を示すタイミングチャート、下側に時間に対する電流の変化を示すタイミングチャートをそれぞれ示し、実線は本実施の形態、破線は従来方式をそれぞれ表す。
図16、図17において、MPPT開始時には、初期値として設定された電圧から一定の探索幅で極値の探索を行う。図中の▼印の時間で、極値監視の条件が成立して極値と判定される。その後、▽印の時間で、日射量が変化(図16は減少、図17は増加)すると、本実施の形態では電流の変化(電流比(I1/Im))を極値監視により検知し、日射量変化後の次の探索周期で変動幅が設定される。
本実施の形態(実線表示)では、急速に最大電力点に向けて電圧が移動しているが、従来方式(破線表示)においては、本実施の形態から5周期以上遅れて日射量変化後の最大電力点に到達していることが分かる。以上より、本実施の形態を用いることで、太陽光発電における発電効率を向上できることが分かる。
以上のように、本実施の形態によれば、パワーコンディショナ2において、電流センサ11と、極値監視部(1)6と、変動幅決定部17aを内蔵した最大点追従部(1)17などを有することで、日射量の変化に伴う電力損失をより低減した探索点の設定を可能とすることができる。さらに、日射量の変化に同期して最大電力点を探索するための変動幅を決定することができるため、日射量の変化の大きさに関わらず、最大電力点を正確に追従可能なMPPTを実現することができる。
より詳細には、以下のような効果を得ることができる。
(1)極値監視部(1)6は、電流センサ11から得られる電流値を入力として太陽電池アレイ1の動作電力値が極値であるか否かを判定し、この判定結果に基づいて、極値と判定した電圧値と電流値とを記憶する。そして、変動幅決定部17aは、電流センサ11から得られる電流値と、極値と判定した際の太陽電池アレイ1の出力電流値との比に基づいて、太陽電池アレイ1の電圧−電力特性の極値探索を行う際の電圧幅を設定する。これにより、日射量に同期して、日射量が変化する場合も変化しない場合も、効率良くMPPTを実現することができる。
(2)極値監視部(1)6は、電流センサ11から得られる電流値に基づいて、極値の判定条件を可変することができる。
(3)極値監視部(1)6は、電流センサ11から得られる電流値と、この電流値を計測した際の電圧指令値とを用いて、電流値と電圧指令値とを乗算することで太陽電池アレイ1の出力電力値を算出し、今回のMPPT制御時の出力電力値から前回のMPPT制御時の出力電力値の差分が規定値より小さく、今回のMPPT制御時の電圧指令値から前回のMPPT制御時の電圧指令値の差分が規定値より小さい場合には、極値と判定することができる。
(4)変動幅決定部17aは、電流センサ11から得られる電流値と、極値と判定した際の太陽電池アレイ1の出力電流値との比の対数演算結果に比例した値を、太陽電池アレイ1の電圧−電流特性の極値を探索する電圧幅として設定することができる。
(5)変動幅決定部17aは、電流センサ11から得られる電流値と、極値と判定した際の太陽電池アレイ1の出力電流値との比を基準となる電流比のべき乗と比較し、この比較結果に基づいて、基準となる電圧幅を整数倍して、太陽電池アレイ1の電圧−電流特性の極値を探索する電圧幅を設定することができる。
[実施の形態2]
実施の形態2の太陽電池の制御装置を含む太陽光発電システムについて、図1、図3、図10〜図13、図15〜図17を用いて説明する。
本実施の形態においては、電流センサの計測データを用いて最大電力点追従制御(MPPT)を実施し、DC/DCコンバータとDC/ACインバータにより太陽電池アレイから出力電力を取り出すシステムについて説明する。
なお、前述した実施の形態1と同様の図、記号、ブロックや接続に関しては同一の動作を行うので説明を省略し、本実施の形態2においては、追加、変更した部分について詳細に説明を行う。
本実施の形態において、太陽光発電システムのブロック図は前記実施の形態1の図1と同様である。図3は、本実施の形態において、図1に示したパワーコンディショナ2の構成の一例を示すブロック構成図である。
図3に示すパワーコンディショナ2では、太陽電池アレイ1に対してDC/DCコンバータ10が接続され、このDC/DCコンバータ10のスイッチング素子の通流率を制御することで、太陽電池の出力電力を取り出す。そして、DC/DCコンバータ10により得られた直流電力は、DC/ACインバータ5によって交流電力へ変換され、電力系統3へ接続される。
なお、図3に示す各部の詳細に関して、最大点追従部(1)17、極値監視部(1)6の動作に関するフローチャートは図10、図12に示したフローチャートと同様であり、また、変動幅決定部17aによる変動幅決定の方法は図11、図13に示したフローチャートと同様であり、また、極値監視部(1)6による極値監視の方法は図15に示したフローチャートと同様である。
そして、本実施の形態の効果は、前述した図16、図17と同様のタイミングチャートとなり、よって、前記実施の形態1と同様の効果を得ることができる。さらに、前記実施の形態1と異なる効果として、DC/DCコンバータ10を有することで、このDC/DCコンバータ10のスイッチング素子の通流率を制御することができるので、太陽電池アレイ1の出力電力を制御して電力系統3へ供給することができる。
[実施の形態3]
実施の形態3の太陽電池の制御装置を含む太陽光発電システムについて、図1、図4、図10〜図13、図15〜図17を用いて説明する。
本実施の形態においては、電流センサと日射計の計測データを用いて最大電力点追従制御(MPPT)を実施し、DC/ACインバータにより太陽電池アレイから出力電力を取り出すシステムについて説明する。
なお、前述した実施の形態1,2と同様の図、記号、ブロックや接続に関しては同一の動作を行うので説明を省略し、本実施の形態においては、追加、変更した部分について詳細に説明を行う。
本実施の形態において、太陽光発電システムのブロック図は前記実施の形態1の図1と同様である。図4は、本実施の形態において、図1に示したパワーコンディショナ2の構成の一例を示すブロック構成図である。
図4に示すパワーコンディショナ2では、最大点追従部(2)18にバッファ14を介して日射計15が接続され、この日射計15で取得した日射量がバッファ14を介して最大点追従部(2)18に入力される。そして、日射量も含めて、最大点追従部(2)18による動作が行われる。
なお、図4に示す各部の詳細に関して、最大点追従部(2)18、極値監視部(1)6の動作に関するフローチャートは図10、図12に示したフローチャートと同様であり、また、変動幅決定部18aによる変動幅決定の方法は図11、図13に示したフローチャートと同様であり、また、極値監視部(1)6による極値監視の方法は図15に示したフローチャートと同様である。
但し、図11、図13では、電流比を用いた変動幅の決定を行っているが、日射量がp1からp2に変化した場合、式(12)に示す関係が成り立つため、電流比を日射量比として扱うことも可能である。本実施の形態においては、電流比を日射量比として変動量の計算を行う。
Figure 2013172053
そして、本実施の形態の効果は、前述した図16、図17と同様のタイミングチャートとなり、よって、前記実施の形態1と同様の効果を得ることができる。さらに、前記実施の形態1と異なる効果として、日射計15を有することで、以下のような効果を得ることができる。
(1)極値監視部(1)6は、電流センサ11から得られる電流値を入力として太陽電池アレイ1の動作電力値が極値であるか否かを判定し、この判定結果に基づいて、極値と判定した電圧値と電流値と日射量とを記憶する。そして、変動幅決定部18aは、日射計15から得られる日射量と、極値と判定した際の日射量との比に基づいて、太陽電池アレイ1の電圧−電力特性の極値探索を行う際の電圧幅を設定する。これにより、日射量に同期して、日射量が変化する場合も変化しない場合も、効率良くMPPTを実現することができる。
(2)極値監視部(1)6は、電流センサ11から得られる電流値に基づいて、極値の判定条件を可変することができる。
(3)極値監視部(1)6は、電流センサ11から得られる電流値と、この電流値を計測した際の電圧指令値とを用いて、電流値と電圧指令値とを乗算することで太陽電池アレイ1の出力電力値を算出し、今回のMPPT制御時の出力電力値から前回のMPPT制御時の出力電力値の差分が規定値より小さく、今回のMPPT制御時の電圧指令値から前回のMPPT制御時の電圧指令値の差分が規定値より小さい場合には、極値と判定することができる。
(4)変動幅決定部18aは、日射計15から得られる日射量と、極値と判定した際の日射計15の日射量との比の対数演算結果に比例した値を、太陽電池アレイ1の電圧−電流特性の極値を探索する電圧幅として設定することができる。
(5)変動幅決定部18aは、日射計15から得られる日射量と、極値と判定した際の日射計15から得られる日射量との比を基準となる日射量比のべき乗と比較し、この比較結果に基づいて、基準となる電圧幅を整数倍して、太陽電池アレイ1の電圧−電流特性の極値を探索する電圧幅を設定することができる。
[実施の形態4]
実施の形態4の太陽電池の制御装置を含む太陽光発電システムについて、図1、図5、図10〜図13、図15〜図17を用いて説明する。
本実施の形態においては、電流センサと日射計の計測データを用いて最大電力点追従制御(MPPT)を実施し、DC/DCコンバータとDC/ACインバータにより太陽電池アレイから出力電力を取り出すシステムについて説明する。
なお、前述した実施の形態1〜3と同様の図、記号、ブロックや接続に関しては同一の動作を行うので説明を省略し、本実施の形態4においては、追加、変更した部分について詳細に説明を行う。
本実施の形態において、太陽光発電システムのブロック図は前記実施の形態1の図1と同様である。図5は、本実施の形態において、図1に示したパワーコンディショナ2の構成の一例を示すブロック構成図である。
図5に示すパワーコンディショナ2では、太陽電池アレイ1に対してDC/DCコンバータ10が接続され、このDC/DCコンバータ10のスイッチング素子の通流率を制御することで、太陽電池の出力電力を取り出す。そして、DC/DCコンバータ10により得られた直流電力は、DC/ACインバータ5によって交流電力へ変換され、電力系統3へ接続される。
なお、図5に示す各部の詳細に関して、最大点追従部(2)18に関するフローチャートは図10、図12に示したフローチャートと同様であり、また、変動幅決定部18aに関するフローチャートは図11、図13に示したフローチャートと同様であり、また、極値監視部(1)6による極値監視の方法は図15に示したフローチャートと同様である。
但し、図11、図13では電流比を用いた変動の決定を行っているが、日射量がp1からp2に変化した場合、式(12)に示した関係が成り立つため、電流比を日射量比として扱うことも可能である。本実施の形態においては、電流比を日射量比として変動量の計算を行う。
そして、本実施の形態の効果は、前述した図16、図17と同様のタイミングチャートとなり、よって、前記実施の形態1と同様の効果を得ることができる。さらに、前記実施の形態1と異なる効果として、DC/DCコンバータ10を有することで、前記実施の形態2と同様の効果を得ることができ、また、日射計15を有することで、前記実施の形態3と同様の効果を得ることができる。
[実施の形態5]
実施の形態5の太陽電池の制御装置を含む太陽光発電システムについて、図1、図6、図11、図13〜図17を用いて説明する。
本実施の形態においては、電流センサの計測データを用いて最大電力点追従制御(MPPT)を実施し、DC/ACインバータにより太陽電池アレイから出力電力を取り出すシステムについて説明する。
なお、前述した実施の形態1〜4と同様の図、記号、ブロックや接続に関しては同一の動作を行うので説明を省略し、本実施の形態1においては、追加、変更した部分について詳細に説明を行う。
<パワーコンディショナの構成と動作概要>
本実施の形態において、太陽光発電システムのブロック図は前記実施の形態1の図1と同様である。図6は、本実施の形態において、図1に示したパワーコンディショナ2の構成の一例を示すブロック構成図である。
図6に示すパワーコンディショナ2は、電圧センサ4と、DC/ACインバータ5と、極値監視部(2)12と、電流平均化部7と、3点データ記憶部16と、AVR制御部9と、電流センサ11と、最大点追従部(3)19と、初期化部13とから構成される。
このパワーコンディショナ2の構成において、電圧センサ4、DC/ACインバータ5、AVR制御部9、電流センサ11はハードウェアで構成される。その他の、極値監視部(2)12、電流平均化部7、最大点追従部(3)19、初期化部13は、パワーコンディショナ2内のマイコン内に記憶されたソフトウェアで構成され、3点データ記憶部16はマイコン内の記憶領域に割り当てられて構成される。
このパワーコンディショナ2の動作概要は、以下の通りである。電流センサ11から出力されたデータは電流平均化部7へ入力される。電流平均化部7から出力されたデータは3点データ記憶部16と初期化部13、最大点追従部(3)19へ入力される。最大点追従部(3)19では、最大電力点の探索を行うための変動幅を設定し、電圧指令値をAVR制御部9と3点データ記憶部16へ出力する。また、最大点追従部(3)19では、TYP(3点の電力の変化パターンを示すタイプ)を3点データ記憶部16へ出力する。電圧センサ4の出力はAVR制御部9へ入力される。
3点データ記憶部16で記憶された今回と前回と前々回のMPPT制御時の電圧指令値および電力値を極値監視部(2)12へ出力し、極値監視部(2)12の判定結果は最大点追従部(3)19と初期化部13へ入力される。初期化部13では、予め設定された初期値に基づいて初期化を行い、最大点追従部(3)19へ出力する。AVR制御部9では、電圧センサ4のデータと最大点追従部(3)19から出力された電圧指令値をもとにPWM指令を生成し、この生成されたPWM指令がDC/ACインバータ5へ出力される。
<パワーコンディショナの詳細動作>
図6に示したパワーコンディショナ2の各部の詳細動作について説明する。
まず、図6に示した電流平均化部7では、電流センサ11から計測した複数のデータを平均値として出力することで、測定誤差を減らし、制御の精度向上を可能とする。3点データ記憶部16では、今回、前回、前々回のMPPT制御を実施した際の電圧指令値、電力値を記憶する。電力値は、電流平均化部7からのデータに対応する電圧指令値を乗算することで電力値として記憶を行う。また、電力値の計算において、電圧指令値の代わりに電圧センサ4のデータを用いることも可能である。
続いて、図6に示した最大点追従部(3)19、極値監視部(2)12の動作について、図14を用いて詳細に説明する。図14は、この最大点追従部(3)19、極値監視部(2)12の動作の一例を示すフローチャートである。
最大点追従部(3)19においてMPPTが開始すると(ステップS501)、最大点追従部(3)19では、太陽電池アレイ1の最大電力点でパワーコンディショナ2が動作するための制御を行う。
まず、パワーコンディショナ2が起動した際には、フラグFlagが0となる(ステップS502)。このフラグFlagは、初期化または極値監視を判断するためのフラグである。次に、Flagが0か1かの判定が行われ(ステップS503)、この判定の結果、Flagが0であるので、予め設定された初期値に基づいて初期化される(ステップS504)。そして、Flag=1とした後に(ステップS505)、電圧が設定(指令)され(ステップS511)、応答時間待機後に(ステップS512)、3点の電流が測定される。この後、電圧指令値を、測定された電流に乗算することで電力値が算出される(ステップS513)。
電流の測定後、極値監視部(2)12は、図15に示したフローチャートに従って極値を判定する。また、3点の電力値のうち、中間の電圧の電力値が、最小の電圧(最も低い電圧)、最大の電圧(最も高い電圧)の電力値より大きい場合には極値と判定することも可能である。
ステップS503の判定の結果、Flagが1の場合は、極値監視部(2)12による極値監視が行われる(ステップS506)。この監視の結果、極値監視部(2)12により極値と判定された場合には、3点データ記憶部16で記憶されているいずれかの電圧と、この電圧に対応する電流値を最大電力点電流(極値電流)Im、最大電力点電圧(極値電圧)Vmとして保持する。
極値監視後には、MPPT(3点比較MPPT)と変動幅の決定が同時に行われ(ステップS507,S509)、電圧指令値が決定される。MPPTについては、例えば、3点による山登り法などの1変数探索手法を用いるが、他の方法を用いても良い。
ステップS507のMPPT(3点比較MPPT)の実行後は、Flag=1とした後に(ステップS508)、電圧設定(ステップS511)、応答時間待機(ステップS512)、電力測定(ステップS513)が行われる。
ステップS509の変動幅決定において、変動ありの場合は、Flag=0とした後に(ステップS510)、電圧設定(ステップS511)、応答時間待機(ステップS512)、電力測定(ステップS513)が行われる。一方、ステップS509の変動幅決定において、変動なしの場合は、電圧設定(ステップS511)、応答時間待機(ステップS512)、電力測定(ステップS513)が行われる。
以上のステップS503〜S513の流れを繰り返して、最大電力点追従を実行する。
また、極値監視部(2)12で、電流を監視することにより日射量の変動を検知した場合には、例えば、電流の変動が閾値1以上(例えば±30%)にあった場合に、初期化のフローへ移行する。初期化の際の3点電圧は、極値として記憶した電圧から変動幅を加算した電圧を最低電圧とし、残りの2点を探索幅(例えば5.0V)分加算し、3点電圧を設定する。
続いて、変動幅決定部19aによる変動幅決定の方法は、図11、図13に示したフローチャートと同様である。
<本実施の形態の効果>
以上説明した本実施の形態による効果は、前述した図16、図17と同様のタイミングチャートとなる。よって、本実施の形態によれば、パワーコンディショナ2において、電流センサ11と、極値監視部(1)6と、変動幅決定部17aを内蔵した最大点追従部(1)17などを有することで、前記実施の形態1と同様に、日射量の変化に伴う電力損失をより低減した探索点の設定を可能とすることができる。さらに、日射量の変化に同期して最大電力点を探索するための変動幅を決定することができるため、日射量の変化の大きさに関わらず、最大電力点を正確に追従可能な最大電力点追従方式を実現することができる。
さらに、前記実施の形態1と異なる効果として、3点データ記憶部16を有することで、極値監視部(2)12は、電流センサ11から得られる電流値と、この電流値を計測した際の電圧指令値とを用いて、電流値と電圧指令値とを乗算することで太陽電池アレイ1の出力電力値を算出し、今回のMPPT制御時と前回のMPPT制御時と前々回のMPPT制御時との3点の出力電力値において、この3点の出力電力値のうちの中間電圧の出力電力値が最も低い電圧の出力電力値と最も高い電圧の出力電力値とより大きい場合に、極値と判定することができる。
[実施の形態6]
実施の形態6の太陽電池の制御装置を含む太陽光発電システムについて、図1、図7、図11、図13〜図17を用いて説明する。
本実施の形態においては、電流センサの計測データを用いて最大電力点追従制御(MPPT)を実施し、DC/DCコンバータとDC/ACインバータにより太陽電池アレイから出力電力を取り出すシステムについて説明する。
なお、前述した実施の形態1〜5と同様の図、記号、ブロックや接続に関しては同一の動作を行うので説明を省略し、本実施の形態6においては、追加、変更した部分について詳細に説明を行う。
本実施の形態において、太陽光発電システムのブロック図は前記実施の形態1の図1と同様である。図7は、本実施の形態において、図1に示したパワーコンディショナ2の構成の一例を示すブロック構成図である。
図7に示すパワーコンディショナ2では、太陽電池アレイ1に対してDC/DCコンバータ10が接続され、このDC/DCコンバータ10のスイッチング素子の通流率を制御することで、太陽電池の出力電力を取り出す。そして、DC/DCコンバータ10により得られた直流電力は、DC/ACインバータ5によって交流電力へ変換され、電力系統3へ接続される。
なお、図7に示す各部の詳細に関して、最大点追従部(3)19に関するフローチャートは図14に示したフローチャートと同様であり、また、変動幅決定部19aに関するフローチャートは図11、図13に示したフローチャートと同様であり、また、極値監視部(2)12による極値監視の方法は図15に示したフローチャートと同様である。
そして、本実施の形態の効果は、前述した図16、図17と同様のタイミングチャートとなり、よって、前記実施の形態5と同様の効果を得ることができる。さらに、前記実施の形態5と異なる効果として、DC/DCコンバータ10を有することで、前記実施の形態2と同様の効果を得ることができる。
[実施の形態7]
実施の形態7の太陽電池の制御装置を含む太陽光発電システムについて、図1、図8、図11、図13〜図17を用いて説明する。
本実施の形態においては、電流センサと日射計の計測データを用いて最大電力点追従制御(MPPT)を実施し、DC/ACインバータにより太陽電池アレイから出力電力を取り出すシステムについて説明する。
なお、前述した実施の形態1〜6と同様の図、記号、ブロックや接続に関しては同一の動作を行うので説明を省略し、本実施の形態7においては、追加、変更した部分について詳細に説明を行う。
本実施の形態において、太陽光発電システムのブロック図は前記実施の形態1の図1と同様である。図8は、本実施の形態において、図1に示したパワーコンディショナ2の構成の一例を示すブロック構成図である。
図8に示すパワーコンディショナ2では、日射計15で取得した日射量がバッファ14を介して最大点追従部(4)20に入力される。そして、日射量も含めて、最大点追従部(4)20による動作が行われる。
なお、図8に示す各部の詳細に関して、最大点追従部(4)20に関するフローチャートは図14に示したフローチャートと同様であり、また、変動幅決定部20aに関するフローチャートは図11、図13に示したフローチャートと同様であり、また、極値監視部(2)12による極値監視の方法は図15に示したフローチャートと同様である。
但し、図11、図13では電流比を用いた変動の決定を行っているが、日射量がp1からp2に変化した場合、前述した式(12)に示した関係が成り立つため、電流比を日射量比として扱うことも可能である。本実施の形態においては、電流比を日射量比として変動量の計算を行う。
そして、本実施の形態の効果は、前述した図16、図17と同様のタイミングチャートとなり、よって、前記実施の形態5と同様の効果を得ることができる。さらに、前記実施の形態5と異なる効果として、日射計15を有することで、前記実施の形態3と同様の効果を得ることができる。
[実施の形態8]
実施の形態8の太陽電池の制御装置を含む太陽光発電システムについて、図1、図9、図11、図13〜図17を用いて説明する。
本実施の形態においては、電流センサと日射計の計測データを用いて最大電力点追従制御(MPPT)を実施し、DC/DCコンバータとDC/ACインバータにより太陽電池アレイから出力電力を取り出すシステムについて説明する。
なお、前述した実施の形態1〜7と同様の図、記号、ブロックや接続に関しては同一の動作を行うので説明を省略し、本実施の形態8においては、追加、変更した部分について詳細に説明を行う。
本実施の形態において、太陽光発電システムのブロック図は前記実施の形態1の図1と同様である。図9は、本実施の形態において、図1に示したパワーコンディショナ2の構成の一例を示すブロック構成図である。
図9に示すパワーコンディショナ2では、太陽電池アレイ1に対してDC/DCコンバータ10が接続され、このDC/DCコンバータ10のスイッチング素子の通流率を制御することで、太陽電池の出力電力を取り出す。そして、DC/DCコンバータ10により得られた直流電力は、DC/ACインバータ5によって交流電力へ変換され、電力系統3へ接続される。
なお、図9に示す各部の詳細に関して、最大点追従部(4)20に関するフローチャートは図14に示したフローチャートと同様であり、また、変動幅決定部20aに関するフローチャートは図11、図13に示したフローチャートと同様であり、また、極値監視部(2)12による極値監視の方法は図15に示したフローチャートと同様である。
但し、図11、図13では電流比を用いた変動の決定を行っているが、日射量がp1からp2に変化した場合、前述した式(12)に示した関係が成り立つため、電流比を日射量比として扱うことも可能である。本実施の形態においては、電流比を日射量比として変動量の計算を行う。
そして、本実施の形態の効果は、前述した図16、図17と同様のタイミングチャートとなり、よって、前記実施の形態5と同様の効果を得ることができる。さらに、前記実施の形態5と異なる効果として、DC/DCコンバータ10を有することで、前記実施の形態2と同様の効果を得ることができ、また、日射計15を有することで、前記実施の形態3と同様の効果を得ることができる。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
1…太陽電池アレイ
2…パワーコンディショナ
3…電力系統
4…電圧センサ
5…DC/ACインバータ
6…極値監視部(1)
7…電流平均化部
8…2点データ記憶部
8a…2点データ
9…AVR制御部
10…DC/DCコンバータ
11…電流センサ
12…極値監視部(2)
13…初期化部
14…バッファ
15…日射計
16…3点データ記憶部
16a…3点データ
17…最大点追従部(1)
17a…変動幅決定部
18…最大点追従部(2)
18a…変動幅決定部
19…最大点追従部(3)
19a…変動幅決定部
20…最大点追従部(4)
20a…変動幅決定部


Claims (12)

  1. 太陽電池の出力電流を検出する電流検出部と、
    前記電流検出部から得られる電流値を入力として前記太陽電池の動作電力値が極値であるか否かを判定し、この判定結果に基づいて、極値と判定した電圧値と電流値とを記憶する極値監視部と、
    前記電流検出部から得られる電流値と、前記極値と判定した際の前記太陽電池の出力電流値との比に基づいて、前記太陽電池の電圧−電力特性の極値探索を行う際の電圧幅を設定する変動幅決定部と、を有する、ことを特徴とする太陽電池の制御装置。
  2. 請求項1記載の太陽電池の制御装置において、
    前記極値監視部は、前記電流検出部から得られる電流値に基づいて、極値の判定条件を可変する機能を有する、ことを特徴とする太陽電池の制御装置。
  3. 請求項1記載の太陽電池の制御装置において、
    前記極値監視部は、前記太陽電池の動作電力値が極値であるか否かを判定する際に、前記電流検出部から得られる電流値と前記電流値を計測した際の電圧指令値とを用いて、前記電流値と前記電圧指令値とを乗算することで前記太陽電池の出力電力値を算出し、今回の最大電力点制御時の出力電力値から前回の最大電力点制御時の出力電力値の差分が規定値より小さく、今回の最大電力点制御時の電圧指令値から前回の最大電力点制御時の電圧指令値の差分が規定値より小さい場合には極値と判定する、ことを特徴とする太陽電池の制御装置。
  4. 請求項1記載の太陽電池の制御装置において、
    前記極値監視部は、前記太陽電池の動作電力値が極値であるか否かを判定する際に、前記電流検出部から得られる電流値と前記電流値を計測した際の電圧指令値とを用いて、前記電流値と前記電圧指令値とを乗算することで前記太陽電池の出力電力値を算出し、今回の最大電力点制御時と前回の最大電力点制御時と前々回の最大電力点制御時との3点の出力電力値において、この3点の出力電力値のうちの中間電圧の出力電力値が最も低い電圧の出力電力値と最も高い電圧の出力電力値とより大きい場合に極値と判定する、ことを特徴とする太陽電池の制御装置。
  5. 請求項1記載の太陽電池の制御装置において、
    前記変動幅決定部は、前記太陽電池の電圧−電力特性の極値探索を行う際の電圧幅を設定する際に、前記電流検出部から得られる電流値と、前記極値と判定した際の前記太陽電池の出力電流値との比の対数演算結果に比例した値を、前記太陽電池の電圧−電流特性の極値を探索する電圧幅として設定する、ことを特徴とする太陽電池の制御装置。
  6. 請求項1記載の太陽電池の制御装置において、
    前記変動幅決定部は、前記太陽電池の電圧−電力特性の極値探索を行う際の電圧幅を設定する際に、前記電流検出部から得られる電流値と、前記極値と判定した際の前記太陽電池の出力電流値との比を基準となる電流比のべき乗と比較し、この比較結果に基づいて、基準となる電圧幅を整数倍して、前記太陽電池の電圧−電流特性の極値を探索する電圧幅を設定する、ことを特徴とする太陽電池の制御装置。
  7. 太陽電池の出力電流を検出する電流検出部と、
    日射量を検出する日射計と、
    前記電流検出部から得られる電流値を入力として前記太陽電池の動作電力値が極値であるか否かを判定し、この判定結果に基づいて、極値と判定した電圧値と電流値と日射量とを記憶する極値監視部と、
    前記日射計から得られる日射量と、前記極値と判定した際の日射量との比に基づいて、前記太陽電池の電圧−電力特性の極値探索を行う際の電圧幅を設定する変動幅決定部と、を有する、ことを特徴とする太陽電池の制御装置。
  8. 請求項7記載の太陽電池の制御装置において、
    前記極値監視部は、前記電流検出部から得られる電流値に基づいて、極値の判定条件を可変する機能を有する、ことを特徴とする太陽電池の制御装置。
  9. 請求項7記載の太陽電池の制御装置において、
    前記極値監視部は、前記太陽電池の動作電力値が極値であるか否かを判定する際に、前記電流検出部から得られる電流値と前記電流値を計測した際の電圧指令値とを用いて、前記電流値と前記電圧指令値とを乗算することで前記太陽電池の出力電力値を算出し、今回の最大電力点制御時の出力電力値から前回の最大電力点制御時の出力電力値の差分が規定値より小さく、今回の最大電力点制御時の電圧指令値から前回の最大電力点制御時の電圧指令値の差分が規定値より小さい場合には極値と判定する、ことを特徴とする太陽電池の制御装置。
  10. 請求項7記載の太陽電池の制御装置において、
    前記極値監視部は、前記太陽電池の動作電力値が極値であるか否かを判定する際に、前記電流検出部から得られる電流値と前記電流値を計測した際の電圧指令値とを用いて、前記電流値と前記電圧指令値とを乗算することで前記太陽電池の出力電力値を算出し、今回の最大電力点制御時と前回の最大電力点制御時と前々回の最大電力点制御時との3点の出力電力値において、この3点の出力電力値のうちの中間電圧の出力電力値が最も低い電圧の出力電力値と最も高い電圧の出力電力値とより大きい場合に極値と判定する、ことを特徴とする太陽電池の制御装置。
  11. 請求項7記載の太陽電池の制御装置において、
    前記変動幅決定部は、前記太陽電池の電圧−電力特性の極値探索を行う際の電圧幅を設定する際に、前記日射計から得られる日射量と、前記極値と判定した際の前記日射計の日射量との比の対数演算結果に比例した値を、前記太陽電池の電圧−電流特性の極値を探索する電圧幅として設定する、ことを特徴とする太陽電池の制御装置。
  12. 請求項7記載の太陽電池の制御装置において、
    前記変動幅決定部は、前記太陽電池の電圧−電力特性の極値探索を行う際の電圧幅を設定する際に、前記日射計から得られる日射量と、前記極値と判定した際の前記日射計から得られる日射量との比を基準となる日射量比のべき乗と比較し、この比較結果に基づいて、基準となる電圧幅を整数倍して、前記太陽電池の電圧−電流特性の極値を探索する電圧幅を設定する、ことを特徴とする太陽電池の制御装置。


JP2014515510A 2012-05-16 2013-01-23 太陽電池の制御装置 Active JP5789046B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014515510A JP5789046B2 (ja) 2012-05-16 2013-01-23 太陽電池の制御装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012112308 2012-05-16
JP2012112308 2012-05-16
PCT/JP2013/051309 WO2013172053A1 (ja) 2012-05-16 2013-01-23 太陽電池の制御装置
JP2014515510A JP5789046B2 (ja) 2012-05-16 2013-01-23 太陽電池の制御装置

Publications (2)

Publication Number Publication Date
JP5789046B2 JP5789046B2 (ja) 2015-10-07
JPWO2013172053A1 true JPWO2013172053A1 (ja) 2016-01-12

Family

ID=49583479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014515510A Active JP5789046B2 (ja) 2012-05-16 2013-01-23 太陽電池の制御装置

Country Status (4)

Country Link
JP (1) JP5789046B2 (ja)
CN (1) CN104303128B (ja)
IN (1) IN2014DN09555A (ja)
WO (1) WO2013172053A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104836523B (zh) * 2015-04-29 2017-03-22 国家电网公司 基于李雅普诺夫开关耦合极值搜索的光伏储能发电模组
TWI633409B (zh) * 2017-04-20 2018-08-21 台達電子工業股份有限公司 最大功率點追蹤方法與最大功率點追蹤系統
KR102394942B1 (ko) * 2017-10-27 2022-05-04 엘티 (유에스에이), 코포레이션 제어된 에너지 저장 균형 기술
JP7251886B2 (ja) * 2019-04-02 2023-04-04 東芝エネルギーシステムズ株式会社 制御システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3021244B2 (ja) * 1993-07-30 2000-03-15 キヤノン株式会社 電力制御装置及びそれを用いた電源装置
JP2810630B2 (ja) * 1993-11-16 1998-10-15 キヤノン株式会社 太陽電池の電力制御装置、電力制御システム、電力制御方法及び電圧電流出力特性の測定方法
JP2005070890A (ja) * 2003-08-28 2005-03-17 Tokyo Univ Of Agriculture & Technology 太陽光発電用インバータの最大電力点追従制御方式
JP5581965B2 (ja) * 2010-01-19 2014-09-03 オムロン株式会社 Mppt制御器、太陽電池制御装置、太陽光発電システム、mppt制御プログラム、およびmppt制御器の制御方法
CN202120154U (zh) * 2011-02-23 2012-01-18 苏州市曦煜光电有限公司 太阳能电池及其输出功率调节系统
CN102200793A (zh) * 2011-05-23 2011-09-28 昆明理工大学 一种发电装置最大功率点检测跟踪方法及其电路
CN102386808B (zh) * 2011-11-07 2014-09-24 重庆电力高等专科学校 具有最大功率跟踪的光伏控制器

Also Published As

Publication number Publication date
CN104303128A (zh) 2015-01-21
CN104303128B (zh) 2016-02-24
JP5789046B2 (ja) 2015-10-07
WO2013172053A1 (ja) 2013-11-21
IN2014DN09555A (ja) 2015-07-17

Similar Documents

Publication Publication Date Title
JP5320144B2 (ja) 太陽電池の最大出力電力追従制御装置
TWI425174B (zh) The Sun can generate system
Paz et al. Zero oscillation and irradiance slope tracking for photovoltaic MPPT
ES2828456T3 (es) Método de seguimiento de punto de potencia máxima
JP4457692B2 (ja) 最大電力追尾制御方法及び電力変換装置
JP5789046B2 (ja) 太陽電池の制御装置
KR101595060B1 (ko) 태양광 발전 시스템의 동적 최대전력지점 추종 기능을 구비한 인버터장치 및 상기 인버터장치의 동적최대전력지점 추종 방법
JP6762680B2 (ja) 太陽光発電システム
JP6210649B2 (ja) 電力変換装置及びその制御方法
JP2010278036A (ja) 太陽光発電システム
KR20130080631A (ko) 이동형 태양광 발전모듈을 위한 최대 전력 추종 제어방법
Li A maximum power point tracking method with variable weather parameters based on input resistance for photovoltaic system
JP5903341B2 (ja) 発電制御装置、太陽光発電システム、および発電制御方法
KR101573277B1 (ko) 동적 최대전력지점 추종 태양광 발전 시스템 및 그 방법
WO2013061703A1 (ja) 最大電力点追従装置および電力変化量測定方法
JP2017192191A (ja) Dc/dcコンバータ及び太陽発電システム
KR20190101672A (ko) 최대전력점 추종 제어를 위한 태양광 발전 시스템
JP6029540B2 (ja) 太陽電池制御装置および太陽電池制御方法
JP2010238265A (ja) 太陽光発電制御装置
JPS63181015A (ja) 太陽光発電装置の最大出力制御方式
Tan et al. Improvement of hill climbing method by introducing simple irradiance detection method
Paz et al. Zero-oscillation adaptive-step solar maximum power point tracking for rapid irradiance tracking and steady-state losses minimization
JP6582051B2 (ja) 電源装置、分散電源システム及びその制御方法
JP2020014358A (ja) 電力変換装置及びフリッカ検出方法
CN111969945B (zh) 一种准mppt新型光伏板追踪方法、设备及存储介质

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150730

R150 Certificate of patent or registration of utility model

Ref document number: 5789046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150