JPWO2013172048A1 - Substrate processing equipment - Google Patents

Substrate processing equipment Download PDF

Info

Publication number
JPWO2013172048A1
JPWO2013172048A1 JP2014515508A JP2014515508A JPWO2013172048A1 JP WO2013172048 A1 JPWO2013172048 A1 JP WO2013172048A1 JP 2014515508 A JP2014515508 A JP 2014515508A JP 2014515508 A JP2014515508 A JP 2014515508A JP WO2013172048 A1 JPWO2013172048 A1 JP WO2013172048A1
Authority
JP
Japan
Prior art keywords
mask
substrate
processing apparatus
rotary
substrate processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014515508A
Other languages
Japanese (ja)
Other versions
JP6123797B2 (en
Inventor
鈴木 智也
智也 鈴木
弘樹 小宮山
弘樹 小宮山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JPWO2013172048A1 publication Critical patent/JPWO2013172048A1/en
Application granted granted Critical
Publication of JP6123797B2 publication Critical patent/JP6123797B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/24Curved surfaces

Abstract

基板処理装置は、可撓性を有する長尺の基板(S)を、回転可能な転動体(30)の円周面の一部で支持した状態で、長尺の方向に搬送すると共に、回転可能な回転マスクの周面に形成されたパターンを、基板の被処理面に繰り返し転写する。回転マスクの外周面の転写に関与する部分と基板の被処理面とが所定の間隔で配置されるように、回転マスクを転動体に対して支持するマスク保持部(MU1〜MU5)と、転動体及び回転マスクの一方の回転力を他方の回転力として磁力で伝達する磁気歯車伝達系(GD)と、を備える。The substrate processing apparatus conveys the long substrate (S) having flexibility with a part of the circumferential surface of the rotatable rolling element (30) in the long direction and rotates the substrate. The pattern formed on the peripheral surface of the possible rotary mask is repeatedly transferred to the surface to be processed of the substrate. A mask holding unit (MU1 to MU5) that supports the rotating mask with respect to the rolling elements, and a portion that is involved in the transfer of the outer peripheral surface of the rotating mask and the surface to be processed of the substrate are arranged at a predetermined interval; A magnetic gear transmission system (GD) that transmits one rotational force of the moving body and the rotary mask as a magnetic force as the other rotational force.

Description

本発明は、基板処理装置に関する。
本願は、2012年5月18日に出願された米国特許仮出願第61/648,956号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a substrate processing apparatus.
This application claims priority based on US Provisional Application No. 61 / 648,956 filed on May 18, 2012, the contents of which are incorporated herein by reference.

液晶表示素子等の大画面表示素子においては、平面状のガラス基板上にITO等の透明電極やSi等の半導体物質を堆積した上に金属材料を蒸着し、フォトレジストを塗布して回路パターンを転写し、転写後にフォトレジストを現像後、エッチングすることで回路パターン等を形成している。ところが、表示素子の大画面化に伴ってガラス基板が大型化するため、基板搬送も困難になってきている。
そこで、可撓性を有する基板(例えば、ポリイミド、PET、金属箔等のフィルム部材など)上に表示素子を形成するロール・トゥ・ロール方式(以下、単に「ロール方式」と表記する)と呼ばれる技術が提案されている(例えば、特許文献1参照)。
In a large screen display element such as a liquid crystal display element, a transparent electrode such as ITO or a semiconductor substance such as Si is deposited on a flat glass substrate, a metal material is evaporated, a photoresist is applied, and a circuit pattern is formed. The circuit pattern is formed by transferring, developing the photoresist after the transfer, and then etching. However, since the glass substrate is enlarged with an increase in the screen size of the display element, it is difficult to carry the substrate.
Therefore, it is called a roll-to-roll method (hereinafter simply referred to as “roll method”) in which a display element is formed on a flexible substrate (for example, a film member such as polyimide, PET, or metal foil). A technique has been proposed (see, for example, Patent Document 1).

また、特許文献2には、回転可能な円筒状のマスクの外周部に近接して、送りローラに巻き付けて走行させられる可撓性の長尺シート(基板)を配置し、マスクのパターンを連続的に基板に露光する技術が提案されている。   Further, in Patent Document 2, a flexible long sheet (substrate) that is wound around a feed roller and traveled is disposed in the vicinity of the outer peripheral portion of a rotatable cylindrical mask, and the mask pattern is continuous. In particular, techniques for exposing a substrate have been proposed.

国際公開第2008/129819号International Publication No. 2008/1229819 実開昭60−019037号公報Japanese Utility Model Publication No. 60-019037

しかしながら、上述したような従来技術には、以下のような問題が存在する。
回転マスクの周速度と基板の送り速度(周速度)とを所定の比率(例えば、1:1)で同期移動させる機構としては、例えば歯車を用いて回転力を伝達することが考えられるが、この場合、歯車の噛合に起因する振動、摩耗等が生じて高精度に速度の安定性を保って同期駆動させることは困難であり、ひいては基板に対してマスクのパターンを転写する際の精度(転写忠実度)に悪影響を与える可能性がある。
例えば、直径30cmの回転マスクの外周に、全周長の90%程度に渡って転写すべきマスクパターンが形成されている場合、マスクパターンの周方向の寸法は約85cm(30cm×π×0.9)となる。回転マスクのパターン面(外周面)の周速度を5cm/秒とし、転写すべきパターンの最少サイズ(線幅等)を5μmとすると、マスクパターン全体の転写時間は概ね17秒(85/5)になり、この間の周速度の安定性(等速性)が重要となる。
仮に、周速度の絶対値が平均して0.05%変動したとすると、1秒当たり、2.5μmの送り誤差が発生し、これが転写時間の間続くとすると、マスクパターンと基板との相対送り誤差は、最大で約43μm程度になり、これは最少パターンサイズ(5μm)を考慮した重ね合せ露光等を考える場合に許容し得ないものである。
また、回転マスクの振動的な速度ムラ(ワウ・フラッター)が±0.05%である場合には、±2.5μm/秒の相対送り誤差が局所的に生じ得るため、最少パターンサイズ(5μm)の転写忠実度を低下させることになる。
However, the following problems exist in the conventional technology as described above.
As a mechanism for synchronously moving the peripheral speed of the rotary mask and the substrate feed speed (peripheral speed) at a predetermined ratio (for example, 1: 1), for example, it is conceivable to transmit a rotational force using a gear, In this case, vibration, wear, and the like due to the meshing of the gears are generated, and it is difficult to perform synchronous driving while maintaining high-speed stability with high accuracy. As a result, accuracy when transferring the mask pattern to the substrate ( May adversely affect (transfer fidelity).
For example, when a mask pattern to be transferred is formed on the outer periphery of a rotating mask having a diameter of 30 cm over about 90% of the entire circumference, the dimension in the circumferential direction of the mask pattern is about 85 cm (30 cm × π × 0. 9). If the peripheral speed of the pattern surface (outer peripheral surface) of the rotating mask is 5 cm / second and the minimum size (line width, etc.) of the pattern to be transferred is 5 μm, the transfer time of the entire mask pattern is approximately 17 seconds (85/5). Therefore, the stability (constant speed) of the peripheral speed during this period is important.
Assuming that the absolute value of the peripheral speed fluctuates by 0.05% on average, a feed error of 2.5 μm occurs per second. If this continues for the transfer time, the relative relationship between the mask pattern and the substrate is assumed. The feeding error is about 43 μm at the maximum, which is not acceptable when considering the overlay exposure considering the minimum pattern size (5 μm).
In addition, when the rotational speed variation (wow / flutter) of the rotary mask is ± 0.05%, a relative feed error of ± 2.5 μm / second can locally occur, so the minimum pattern size (5 μm ) Transfer fidelity.

本発明の態様は、マスクと基板とを高精度に同期駆動可能な基板処理装置を提供することを目的とする。   An object of an aspect of the present invention is to provide a substrate processing apparatus capable of synchronously driving a mask and a substrate with high accuracy.

本発明の一態様に従えば、可撓性を有する長尺の基板を、回転可能な転動体の円周面の一部で支持した状態で、長尺の方向に搬送すると共に、回転可能な回転マスクの周面に形成されたパターンを、基板の被処理面に繰り返し転写する基板処理装置であって、回転マスクの外周面の転写に関与する部分と基板の被処理面とが所定の間隔で配置されるように、回転マスクを転動体に対して支持するマスク保持部と、転動体及び回転マスクの一方の回転力を他方の回転力として磁力で伝達する磁気歯車伝達系と、を備える基板処理装置が提供される。   According to one aspect of the present invention, a long substrate having flexibility is supported in a part of the circumferential surface of a rotatable rolling element and is transported in the long direction and is rotatable. A substrate processing apparatus for repeatedly transferring a pattern formed on a peripheral surface of a rotary mask onto a surface to be processed of the substrate, wherein a portion involved in the transfer of the outer peripheral surface of the rotary mask and a surface to be processed of the substrate have a predetermined distance A mask holding portion that supports the rotating mask with respect to the rolling element, and a magnetic gear transmission system that transmits one rotational force of the rolling element and the rotating mask with the magnetic force as the other rotational force. A substrate processing apparatus is provided.

本発明の別の態様に従えば、可撓性を有する長尺の基板を、回転可能な転動体の円周面の一部で支持した状態で、長尺の方向に搬送する基板搬送機構と、所定半径で円筒状に湾曲したマスクパターンを有し、円筒の軸回りに回転可能な回転マスクを保持するマスク保持機構と、回転マスクに形成されたマスクパターンの一部分に照明光を照射する照明系を有し、マスクパターンの一部を基板の被処理面に転写する転写機構と、転動体及び回転マスクの一方の回転力を他方の回転力として磁力で伝達する磁気歯車伝達系と、を備える基板処理装置が提供される。   According to another aspect of the present invention, a substrate transport mechanism for transporting a flexible long substrate in a long direction while being supported by a part of the circumferential surface of a rotatable rolling element. A mask holding mechanism that holds a rotating mask that has a mask pattern curved in a cylindrical shape with a predetermined radius and that can rotate around the axis of the cylinder, and illumination that irradiates a part of the mask pattern formed on the rotating mask with illumination light A transfer mechanism that transfers a part of the mask pattern to the surface to be processed of the substrate, and a magnetic gear transmission system that transmits one of the rolling elements and the rotating mask as a rotational force by the magnetic force. A substrate processing apparatus is provided.

本発明の態様では、マスクと基板とが高精度に同期して駆動可能になり、マスクのパターンを基板に高精度に転写することができる。   In the aspect of the present invention, the mask and the substrate can be driven in synchronization with high accuracy, and the pattern of the mask can be transferred to the substrate with high accuracy.

本実施形態に係る基板処理装置の概略的な外観斜視図。1 is a schematic external perspective view of a substrate processing apparatus according to an embodiment. 基板処理装置におけるマスクユニットの概略的な外観斜視図。The schematic external perspective view of the mask unit in a substrate processing apparatus. マスクユニットを、回転軸線を含む平面で破断した断面図。Sectional drawing which fractured | ruptured the mask unit at the plane containing a rotating shaft line. 図3におけるA部を拡大した図。The figure which expanded the A section in FIG. 回転マスクの回転を制御する駆動制御部内に設けられるサーボ系を示す図。The figure which shows the servo system provided in the drive control part which controls rotation of a rotation mask. 回転マスクの展開図。FIG. 回転ドラムに巻き付く基板の展開図。FIG. 3 is a development view of a substrate wound around a rotating drum. 磁気歯車部の動作を説明する図。The figure explaining operation | movement of a magnetic gear part. 第2実施形態に係る基板処理装置の概略的な外観斜視図。FIG. 5 is a schematic external perspective view of a substrate processing apparatus according to a second embodiment. 固定プレート及びマスクユニットの部分拡大図。The elements on larger scale of a fixed plate and a mask unit. マスクユニットを回転軸線AX1B及び回転軸線AX2を含む平面で断面した図。The figure which cut | disconnected the mask unit in the plane containing rotation axis AX1B and rotation axis AX2. 第3実施形態に係る磁気歯車伝達機構の概略構成図。The schematic block diagram of the magnetic gearwheel transmission mechanism which concerns on 3rd Embodiment. 第3実施形態に係る磁気歯車伝達機構の概略構成図。The schematic block diagram of the magnetic gearwheel transmission mechanism which concerns on 3rd Embodiment. デバイス製造システムの構成を示す図。The figure which shows the structure of a device manufacturing system. 磁気歯車伝達機構の別形態を示す図。The figure which shows another form of a magnetic gearwheel transmission mechanism. 図15の磁気歯車伝達機構を利用した基板処理装置の別形態を示す図。The figure which shows another form of the substrate processing apparatus using the magnetic gearwheel transmission mechanism of FIG.

以下、本発明の基板処理装置の実施の形態を、図1から図14を参照して説明する。
(第1実施形態)
第1実施形態では、複数のマスクのパターンが基板上で重ね合わされて転写される場合について説明する。
Hereinafter, embodiments of the substrate processing apparatus of the present invention will be described with reference to FIGS.
(First embodiment)
In the first embodiment, a case where a plurality of mask patterns are superimposed and transferred on a substrate will be described.

図1は、第1実施形態に係る基板処理装置100の概略的な外観斜視図、図2は基板処理装置100におけるマスクユニットMUの概略的な外観斜視図、図3はマスクユニットMUを、回転軸線AX1A(AX1B)(第1の回転軸)を含む平面で破断した断面図、図4は図3におけるA部を拡大した図である。   FIG. 1 is a schematic external perspective view of a substrate processing apparatus 100 according to the first embodiment, FIG. 2 is a schematic external perspective view of a mask unit MU in the substrate processing apparatus 100, and FIG. FIG. 4 is a cross-sectional view taken along a plane including the axis AX1A (AX1B) (first rotation axis), and FIG. 4 is an enlarged view of part A in FIG.

基板処理装置100は、所定半径で円筒面状に湾曲したマスクMのパターンを、可撓性を有する帯状(長尺)の基板(例えば、帯状のフィルム部材)Sに対して露光処理を行うものであって、照明部10(図1では不図示、図3参照)、マスクユニットMU1〜MU5、基板保持ユニットSU、磁気歯車伝達機構GD、制御部(不図示)を主体に構成されている。なお、以下の説明では、マスクユニットMU1〜MU5について、適宜マスクユニットMUと総称する。   The substrate processing apparatus 100 performs exposure processing on a flexible belt-like (long) substrate (for example, a belt-like film member) S with a pattern of a mask M curved into a cylindrical surface with a predetermined radius. The illumination unit 10 (not shown in FIG. 1, see FIG. 3), the mask units MU1 to MU5, the substrate holding unit SU, the magnetic gear transmission mechanism GD, and the control unit (not shown) are mainly configured. In the following description, the mask units MU1 to MU5 are collectively referred to as a mask unit MU as appropriate.

なお、本実施形態では、鉛直方向をZ方向とし、マスクユニットMU1〜MU5の回転軸線AX1A、AX1B、及び基板保持ユニットSUの回転軸線AX2と平行な方向をY方向とし、Z方向及びY方向と直交する方向をX方向として説明する。   In the present embodiment, the vertical direction is the Z direction, the directions parallel to the rotation axes AX1A and AX1B of the mask units MU1 to MU5 and the rotation axis AX2 of the substrate holding unit SU are the Y directions, and the Z and Y directions are The direction orthogonal to the X direction will be described.

照明部10は、マスクユニットMUにおける回転マスク20の照明領域に向けて照明光を照射するものであって、蛍光灯と同様に直管型で放射状に露光用の照明光を発光するものや、円筒状の石英の棒の両端から照明光を導入し裏面側に拡散部材を設けてあるもの、或いは波長が400nm以下の紫外線域の光を発するLED等をY方向に複数個並べたものが用いられ、回転マスク20を支持する内筒21の内部空間に収容されている。
照明光の光源としては、例えばランプ光源から射出される輝線(g線、h線、i線)、KrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)、ArFエキシマレーザ光(波長193nm)、半導体レーザやLED等の固体光源が使われる。
The illumination unit 10 irradiates illumination light toward the illumination area of the rotary mask 20 in the mask unit MU. The illumination unit 10 emits illumination light for exposure radially in a straight tube type like a fluorescent lamp, Uses one in which illumination light is introduced from both ends of a cylindrical quartz rod and a diffusion member is provided on the back side, or a plurality of LEDs that emit light in the ultraviolet region with a wavelength of 400 nm or less arranged in the Y direction. And is accommodated in the internal space of the inner cylinder 21 that supports the rotary mask 20.
As a light source of illumination light, for example, bright lines (g line, h line, i line) emitted from a lamp light source, far ultraviolet light (DUV light) such as KrF excimer laser light (wavelength 248 nm), ArF excimer laser light (wavelength) 193 nm), solid state light sources such as semiconductor lasers and LEDs are used.

マスクユニットMU1〜MU5のうち、マスクユニットMU1〜MU3は回転軸線AX1Aに沿って順次配列されている。マスクユニットMU1〜MU5のうち、マスクユニットMU4〜MU5は回転軸線AX1Bに沿って順次配列されている。また、マスクユニットMU4は、Y方向に関してマスクユニットMU1、MU2の中間位置に配置され、マスクユニットMU5は、Y方向に関してマスクユニットMU2、MU3の中間位置に配置されている。
回転軸線AX1A、AX1Bは、回転軸線AX2周り方向に一定の角度間隔、例えば90°をあけて配置されている。
Of the mask units MU1 to MU5, the mask units MU1 to MU3 are sequentially arranged along the rotation axis AX1A. Of the mask units MU1 to MU5, the mask units MU4 to MU5 are sequentially arranged along the rotation axis AX1B. The mask unit MU4 is disposed at an intermediate position between the mask units MU1 and MU2 with respect to the Y direction, and the mask unit MU5 is disposed at an intermediate position between the mask units MU2 and MU3 with respect to the Y direction.
The rotation axes AX1A and AX1B are arranged at a certain angular interval, for example, 90 °, around the rotation axis AX2.

各マスクユニットMU1〜MU5は、図2及び図3に示すように、回転マスク20、内筒21、エアパッド(マスク保持部)22、ホルダ23、駆動部MT、フランジ部25を備えている。円筒状の回転マスク20の両端部には、円環状のホルダ23が固着されて、一体化された状態で設けられている。この回転マスク20とホルダ23の内側には、回転軸線AX1A(又はAX1B)方向に、円筒状の内筒21が挿入される。   As shown in FIGS. 2 and 3, each mask unit MU <b> 1 to MU <b> 5 includes a rotary mask 20, an inner cylinder 21, an air pad (mask holding part) 22, a holder 23, a drive part MT, and a flange part 25. At both ends of the cylindrical rotary mask 20, an annular holder 23 is fixed and provided in an integrated state. Inside the rotary mask 20 and the holder 23, a cylindrical inner cylinder 21 is inserted in the direction of the rotation axis AX1A (or AX1B).

回転マスク20は、照明光を透過可能な円筒状の石英等で形成されており、その外周面(周面)20aに所定のパターンが形成されている。また、回転マスク20の内周面と対向する内筒21の外周位置に設けられた流体軸受であるエアパッド22(気体供給部、詳細は後述)によって、回転マスク20は内筒21に対して、回転軸線AX1A(又はAX1B)方向、及び回転軸線AX1A(又はAX1B)周り方向に非接触(或いは低摩擦状態)で移動自在に支持されている。
ホルダ23は、金属材で円環状に形成され、図4に示すように、回転マスク20のY方向の端部外周面及び内周面を挟んで支持する。
The rotary mask 20 is formed of cylindrical quartz or the like that can transmit illumination light, and a predetermined pattern is formed on an outer peripheral surface (peripheral surface) 20a thereof. Further, the air mask 22 is a fluid bearing provided at the outer peripheral position of the inner cylinder 21 facing the inner peripheral surface of the rotary mask 20 (a gas supply unit, details will be described later). It is supported so as to be movable in a non-contact (or low friction state) in the direction of the rotation axis AX1A (or AX1B) and the direction around the rotation axis AX1A (or AX1B).
The holder 23 is formed in an annular shape with a metal material, and supports the outer peripheral surface and inner peripheral surface of the end portion in the Y direction of the rotary mask 20 as shown in FIG.

内筒21は、図示しないベース部(露光装置のボディ構造体)に設置されており、回転軸線AX1A(又はAX1B)方向の両端部にエアベアリング26を介して上記フランジ部25を回転自在に支持する。
フランジ部25の外周面に設けられた多孔質材料によるエアパッドAPは、回転マスク20の外周面20aのパターン領域と、図1に示した基板Sの被処理面とが所定の間隔で配置されるように、回転マスク20と内筒21とを、回転ドラム30に巻き付けられる基板Sに対して支持するものである。リング状のエアパッドAPは、その外周面と基板Sとの間に気体としてのエアを供給(噴出)する多孔質パッドで形成されている為、基板Sの表面と接触することなく、内筒21と回転マスク20を支持できる。
その多孔質エアパッドAPは、内筒21の回転軸線AX1A(又はAX1B)方向の両側部分に設けられたフランジ部25の各外周面に、回転軸線AX1A(又はAX1B)周り方向の全周にわたって、あるいは回転軸線AX1A(又はAX1B)周り方向に所定の間隔をあけて設けられている。
The inner cylinder 21 is installed on a base (not shown) (body structure of the exposure apparatus), and supports the flange 25 via air bearings 26 at both ends in the direction of the rotation axis AX1A (or AX1B). To do.
In the air pad AP made of a porous material provided on the outer peripheral surface of the flange portion 25, the pattern area of the outer peripheral surface 20a of the rotary mask 20 and the surface to be processed of the substrate S shown in FIG. As described above, the rotary mask 20 and the inner cylinder 21 are supported with respect to the substrate S wound around the rotary drum 30. Since the ring-shaped air pad AP is formed of a porous pad that supplies (spouts) air as a gas between the outer peripheral surface and the substrate S, the inner cylinder 21 does not contact the surface of the substrate S. And the rotating mask 20 can be supported.
The porous air pad AP is formed on each outer peripheral surface of the flange portion 25 provided on both sides of the inner cylinder 21 in the direction of the rotation axis AX1A (or AX1B), over the entire circumference in the direction around the rotation axis AX1A (or AX1B), or The rotation axis line AX1A (or AX1B) is provided at a predetermined interval in the direction around.

駆動部MTは、ホルダ23を介して回転マスク20を回転軸線AX1A(又はAX1B)の延長方向(軸方向、Y方向)、及び回転軸線AX1A(又はAX1B)周り方向の各々に推力を与えて駆動するものであって、回転マスク20の回転軸線AX1A(又はAX1B)方向の両側に一対で設けられている。
各駆動部MTは、回転軸線AX1A(又はAX1B)の延長方向(軸方向)及び回転軸線AX1A(又はAX1B)周り方向の2軸方向について独立に推力を付与する、例えば、ボイスコイル型のモータで構成されており、発磁体(永久磁石)MGと、コイル体CUとを備えている。
なお、回転軸線AX1A(又はAX1B)の延長方向(軸方向)の推力については、一対の駆動部MTのうち一方のみが付与可能であればよい。
The drive unit MT drives the rotary mask 20 through the holder 23 by applying a thrust to the extending direction (axial direction, Y direction) of the rotational axis AX1A (or AX1B) and the direction around the rotational axis AX1A (or AX1B). In other words, the rotating mask 20 is provided as a pair on both sides in the direction of the rotation axis AX1A (or AX1B).
Each driving unit MT is a voice coil motor, for example, that applies thrust independently in the two axial directions of the extending direction (axial direction) of the rotational axis AX1A (or AX1B) and the rotational axis AX1A (or AX1B). It is comprised and is provided with the magnetism body (permanent magnet) MG and the coil body CU.
In addition, as for the thrust in the extension direction (axial direction) of the rotation axis AX1A (or AX1B), only one of the pair of drive units MT may be applied.

発磁体MGは、ホルダ23のY方向の外側の面に、回転軸線AX1A(又はAX1B)周り方向の全周にわたり、且つ回転軸線AX1A(AX1B)方向に突出して設けられている。コイル体CUは、内筒21の外周面に対して隙間をもった状態でリング状の連結部24によってフランジ部25に一体的に固定されており、回転軸線AX1A(AX1B)を中心とする径方向に関して発磁体MGを挟み込むコ字状の断面形状を有している。
図2に示したリング状の連結部24の内部には、図4に詳細に示すように、磁気歯車伝達機構GDを構成する一方の磁気歯車部GM1の磁石列が周方向に一定ピッチで配置される。コイル体CUへの通電は、駆動制御部DCによって制御される。なお、コイル体CUは、必ずしも全周にわたって設ける必要はなく、周方向に所定間隔をあけて複数設ける構成(例えば、120°間隔で3箇所設ける構成)であってもよい。
また、コイル体CUは、フランジ部25(連結部24)と回転マスク20(及びホルダ23)との間に、回転軸線AX1A(又はAX1B)周り方向の推力(回転トルク)を与える為の回転推力用のコイル群と、回転軸線AX1Aの延長方向(軸方向、Y方向)の直線駆動力を与える並進推力用のコイル群とで構成され、各コイル群に通電する電流の大きさを駆動制御部DCによって個別に調整することで、回転推力と並進推力を独立に制御することができる。
The magnetism generator MG is provided on the outer surface in the Y direction of the holder 23 so as to protrude in the direction of the rotation axis AX1A (AX1B) over the entire circumference around the rotation axis AX1A (or AX1B). The coil body CU is integrally fixed to the flange portion 25 by a ring-shaped connecting portion 24 with a gap with respect to the outer peripheral surface of the inner cylinder 21, and has a diameter centered on the rotation axis AX1A (AX1B). It has a U-shaped cross-sectional shape that sandwiches the magnetic generator MG with respect to the direction.
Inside the ring-shaped connecting portion 24 shown in FIG. 2, as shown in detail in FIG. 4, the magnet rows of one magnetic gear portion GM1 constituting the magnetic gear transmission mechanism GD are arranged at a constant pitch in the circumferential direction. Is done. Energization of the coil body CU is controlled by the drive control unit DC. Note that the coil body CU does not necessarily have to be provided over the entire circumference, and may have a configuration in which a plurality of coil bodies CU are provided at predetermined intervals in the circumferential direction (for example, a configuration in which three locations are provided at 120 ° intervals).
In addition, the coil body CU provides a rotational thrust for applying a thrust (rotational torque) in the direction around the rotational axis AX1A (or AX1B) between the flange portion 25 (connecting portion 24) and the rotary mask 20 (and the holder 23). Coil group for translation and a coil group for translational thrust that gives a linear driving force in the extending direction (axial direction, Y direction) of the rotation axis AX1A, and the magnitude of the current supplied to each coil group is controlled by a drive control unit. By individually adjusting with DC, the rotational thrust and the translational thrust can be controlled independently.

以上のようなマスクユニットMUの構成において、内筒21は露光装置本体に対して固定的に設置され、フランジ部25(連結部24)と回転マスク20とは共に内筒21に対して回転軸線AX1A(AX1B)を中心として非接触(低摩擦)状態で回転自在に支持される。
また、フランジ部25は、内筒21に対して回転軸線AX1A(AX1B)の延長方向(軸方向、Y方向)には微動しないように、ベアリング26によって拘束されている。その為、駆動部MTによる並進推力によって、回転マスク20は、両側のフランジ部25の間で、回転軸線AX1A(AX1B)の延長方向(軸方向、Y方向)に微動することになる。
さらに、リング状の連結部24の外周面に沿って設けられた磁気歯車部GM1を介して外部から付与される回転トルクによって、フランジ部25(及びコイル体CU)が内筒21の周りを所定の回転速度で転動(回転)する。
その際、同時に、コイル体CUのうちの回転推力用のコイル群に所定の電流を供給すると、回転マスク20もフランジ部25(連結部24)と同期(同調)した速度で回転する。
その回転推力用のコイル群に流す電流の大きさと向きを駆動制御部DCによってサーボ制御することにより、磁気歯車伝達機構GDを介して回動(回転)するフランジ部25(及び連結部24とコイル体CU)に対して回転マスク20の回転速度に差を与えたり、相対回転の方向を逆にしたり、或いは、回転マスク20を静止状態に維持したりすることができる。
In the configuration of the mask unit MU as described above, the inner cylinder 21 is fixedly installed with respect to the exposure apparatus main body, and both the flange portion 25 (connecting portion 24) and the rotary mask 20 are rotational axes with respect to the inner cylinder 21. AX1A (AX1B) is supported rotatably in a non-contact (low friction) state.
Further, the flange portion 25 is constrained by a bearing 26 so as not to slightly move with respect to the inner cylinder 21 in the extension direction (axial direction, Y direction) of the rotation axis AX1A (AX1B). Therefore, the rotary mask 20 slightly moves in the extending direction (axial direction, Y direction) of the rotation axis AX1A (AX1B) between the flange portions 25 on both sides by the translational thrust generated by the drive unit MT.
Further, the flange portion 25 (and the coil body CU) is predetermined around the inner cylinder 21 by a rotational torque applied from the outside through a magnetic gear portion GM1 provided along the outer peripheral surface of the ring-shaped connecting portion 24. Rolls (rotates) at a rotation speed of.
At the same time, when a predetermined current is supplied to the coil group for rotational thrust in the coil body CU, the rotary mask 20 also rotates at a speed synchronized (tuned) with the flange portion 25 (connecting portion 24).
The flange portion 25 (and the connecting portion 24 and the coil that rotate (rotate) via the magnetic gear transmission mechanism GD are servo-controlled by the drive control unit DC by controlling the magnitude and direction of the current flowing through the coil group for rotational thrust. The rotational speed of the rotary mask 20 can be different from the body CU), the direction of relative rotation can be reversed, or the rotary mask 20 can be kept stationary.

そのようなサーボ制御のために、本実施形態では、図5に示すようなサーボ系を設ける。図5は、図4の部分破断面をYZ面内で見た図であり、サーボ制御の為に、回転マスク20の外周面に、エンコーダ計測用の格子スケールGS2を全周にわたって形成し、その格子スケールGS2を読み取る為に、露光装置本体に設置されるエンコーダヘッドEH2を設ける。
駆動制御部DC内には、エンコーダヘッドEH2からの2相信号を入力して回転マスク20(格子スケールGS2)の回転角度位置を逐次計測するカウンター回路201と、カウンター回路201からの計測値を入力して、回転マスク20の回転速度と、指令情報200に基づく回転速度指令値との差分が所定値(記憶部REFに保持された基準値)から変化した場合に、その偏差信号を作り出す演算回路202と、その偏差信号をコイル体CU内の回転推力用のコイル群に駆動信号として与えるドライブ回路203と、コイル体CU内の並進推力用のコイル群に駆動信号を与えるドライブ回路204とが設けられている。
図5のサーボ系では、磁気歯車伝達機構GDを介して、フランジ部25(連結部24)が一定の回転速度で回っている場合は、それを基準として回転マスク20を同期回転させることができる。但し、ここでの同期回転とは、必ずしも同一速度で回転することに限定されるものではなく、フランジ部25の回転速度と回転マスク20の回転速度とが所定の比率を維持する場合も含むものである。
For such servo control, in this embodiment, a servo system as shown in FIG. 5 is provided. FIG. 5 is a view of the partially fractured surface of FIG. 4 as viewed in the YZ plane. For servo control, a grating scale GS2 for encoder measurement is formed on the outer peripheral surface of the rotary mask 20 over the entire circumference. In order to read the lattice scale GS2, an encoder head EH2 installed in the exposure apparatus main body is provided.
In the drive control unit DC, a two-phase signal from the encoder head EH2 is input, and a counter circuit 201 that sequentially measures the rotational angle position of the rotary mask 20 (lattice scale GS2), and a measurement value from the counter circuit 201 are input. When the difference between the rotation speed of the rotation mask 20 and the rotation speed command value based on the command information 200 changes from a predetermined value (a reference value held in the storage unit REF), an arithmetic circuit that generates a deviation signal thereof 202, a drive circuit 203 that provides the deviation signal as a drive signal to the coil group for rotational thrust in the coil body CU, and a drive circuit 204 that provides a drive signal to the coil group for translational thrust in the coil body CU are provided. It has been.
In the servo system of FIG. 5, when the flange portion 25 (connecting portion 24) rotates at a constant rotational speed via the magnetic gear transmission mechanism GD, the rotary mask 20 can be rotated synchronously based on that. . However, the synchronous rotation here is not necessarily limited to the rotation at the same speed, but includes the case where the rotation speed of the flange portion 25 and the rotation speed of the rotary mask 20 maintain a predetermined ratio. .

また、図5のサーボ系において、露光時に重要なのは回転マスク20のマスクパターン面(外周面20a)の周速度であり、その周速度が予め定められた基準速度に対して偏差が生じたときに、ドライブ回路203によって、コイル体CU内の回転推力用のコイル群に駆動信号を与えるようにしても良い。
このようにすると、フランジ部25の回転速度が設定速度から異なっていたり、速度ムラが生じたりしても、そのような誤差要因に関わらず、回転マスク20を一定速度で安定に回転させることができる。さらに、フランジ部25の回転速度に関わらず、回転マスク20を設定された任意の速度で回転、或いは静止させることが可能である。
尚、格子スケールGS2を2次元格子として、エンコーダヘッドEH2もY方向(回転軸線AX1A,AX1Bの延長方向(軸方向))の変位を計測可能なものにすると、回転マスク20のY方向の位置変位を、露光装置本体(エンコーダヘッドEH2)を基準として高精度に計測でき、ドライブ回路204を介してコイル体CU内の並進推力用のコイル群に駆動信号を与えるサーボ系を簡単に構成することができる。
Further, in the servo system of FIG. 5, what is important at the time of exposure is the peripheral speed of the mask pattern surface (outer peripheral surface 20a) of the rotary mask 20, and when the peripheral speed deviates from a predetermined reference speed. The drive circuit 203 may give a drive signal to the coil group for rotational thrust in the coil body CU.
In this way, even if the rotational speed of the flange portion 25 differs from the set speed or uneven speed occurs, the rotary mask 20 can be stably rotated at a constant speed regardless of such error factors. it can. Furthermore, regardless of the rotational speed of the flange portion 25, the rotary mask 20 can be rotated at a set arbitrary speed or made stationary.
If the grating scale GS2 is a two-dimensional grating and the encoder head EH2 is also capable of measuring the displacement in the Y direction (extension direction (axial direction) of the rotation axes AX1A and AX1B), the displacement of the rotary mask 20 in the Y direction. Can be measured with high accuracy on the basis of the exposure apparatus main body (encoder head EH2), and a servo system that provides a drive signal to the coil group for translational thrust in the coil body CU via the drive circuit 204 can be easily configured. it can.

一方、基板保持ユニットSUは、図1に示すように、回転ドラム(転動体)30を備えている。
回転ドラム30は、Y軸と平行で、回転軸線AX1Bの−Z側、且つ回転軸線AX1Aの+X側に設定された回転軸線AX2回りに回転する円柱状に形成されている。回転ドラム30の外周面は、基板Sを接触保持する基板保持面31とされている。回転ドラム30のY方向両端面には、回転ドラム30よりも小径、且つ同軸で突出する突出部32が設けられている。
また、本実施形態では、図1に示すように、回転ドラム30を回転駆動する駆動装置33が設けられている。駆動装置33は、上述した駆動制御部DCによって制御される。
On the other hand, the substrate holding unit SU includes a rotating drum (rolling element) 30 as shown in FIG.
The rotary drum 30 is formed in a columnar shape that is parallel to the Y axis and rotates about the rotation axis AX2 set on the −Z side of the rotation axis AX1B and on the + X side of the rotation axis AX1A. The outer peripheral surface of the rotary drum 30 is a substrate holding surface 31 that holds the substrate S in contact therewith. Projecting portions 32 having a smaller diameter than the rotating drum 30 and projecting coaxially are provided on both end surfaces of the rotating drum 30 in the Y direction.
In the present embodiment, as shown in FIG. 1, a drive device 33 that rotationally drives the rotary drum 30 is provided. The drive device 33 is controlled by the drive control unit DC described above.

図6は、回転マスク20の展開図である。図6中の符号Xsは、回転マスク20の移動方向(回転方向)を示す。
図6(a)に示すように、マスクユニットMU1〜MU3における照明部10は、Y方向に関して、回転マスク20のパターン領域MAにわたる範囲を照明する照明領域IR1を備えている。同様に、図6(b)に示すように、マスクユニットMU4〜MU5における照明部10は、Y方向に関して、回転マスク20のパターン形成領域MAにわたる範囲を照明する照明領域IR2を備えている。
各照明領域IR1、IR2は、Y方向の両端部に三角部を備えた台形状に形成されている。照明領域IR1、IR2は、上記三角部の向き(すなわち、一対の平行線のうち、短辺の位置)がX方向に関して互いに逆向きに形成されている。
FIG. 6 is a development view of the rotary mask 20. A symbol Xs in FIG. 6 indicates the movement direction (rotation direction) of the rotary mask 20.
As shown in FIG. 6A, the illumination unit 10 in the mask units MU1 to MU3 includes an illumination region IR1 that illuminates a range over the pattern region MA of the rotary mask 20 with respect to the Y direction. Similarly, as illustrated in FIG. 6B, the illumination unit 10 in the mask units MU4 to MU5 includes an illumination region IR2 that illuminates a range over the pattern formation region MA of the rotary mask 20 in the Y direction.
Each illumination region IR1, IR2 is formed in a trapezoidal shape having triangular portions at both ends in the Y direction. The illumination regions IR1 and IR2 are formed such that the direction of the triangular portion (that is, the position of the short side of the pair of parallel lines) is opposite to the X direction.

本実施形態において、回転マスク20のパターン形成領域MAは、マスク保持部22の回転に伴って符号Xsの方向に移動し、照明領域IR1(照明領域IR2)を通過する。図7は、回転ドラム30に巻き付けられる基板Sの展開図である。図7中の符号Xsは、回転ドラム30の移動方向(回転方向)を示す。
図7に示すように、マスクユニットMU1〜MU5は、回転マスク20を透過したパターンからの照明光(露光光)で照明される転写領域PA1〜PA5が、Y方向に関して隣り合う領域と、端部(台形の三角部分)が重なるように千鳥状に配置されている。
そのため、例えば、回転ドラム30の回転によって転写領域PA1を通過する基板S上の領域は、回転ドラム30の回転によって転写領域PA2を通過する基板S上の領域と一部重複する。転写領域PA1と転写領域PA2は、周方向で重複する領域での露光量が、重複しない領域の露光量と実質的に同じになるように、それぞれの形状等が設定されている。
In the present embodiment, the pattern formation area MA of the rotary mask 20 moves in the direction of the symbol Xs with the rotation of the mask holding unit 22 and passes through the illumination area IR1 (illumination area IR2). FIG. 7 is a development view of the substrate S wound around the rotary drum 30. A symbol Xs in FIG. 7 indicates the moving direction (rotating direction) of the rotating drum 30.
As shown in FIG. 7, the mask units MU <b> 1 to MU <b> 5 are arranged such that transfer areas PA <b> 1 to PA <b> 5 illuminated with illumination light (exposure light) from a pattern that has passed through the rotary mask 20 are adjacent to the Y direction. It is arranged in a staggered pattern so that (the trapezoidal triangular part) overlaps.
Therefore, for example, the area on the substrate S that passes through the transfer area PA1 due to the rotation of the rotating drum 30 partially overlaps the area on the substrate S that passes through the transfer area PA2 due to the rotation of the rotating drum 30. The shapes and the like of the transfer area PA1 and the transfer area PA2 are set so that the exposure amount in the overlapping region in the circumferential direction is substantially the same as the exposure amount in the non-overlapping region.

磁気歯車伝達機構GDは、回転ドラム30の回転力を回転マスク20(連結部24)の回転力として非接触で(磁力を用いて)伝達するものであって、ベルト駆動機構VD、磁気歯車部GM1、GM2を備えている。図1に示すように、ベルト駆動機構VDは、回転ドラム30の突出部32及びプーリPL1、PL2にベルトVLが張設(張力を持った状態に設置)された構成となっている。
プーリPL1は、マスクユニットMU1〜MU3の−X側に、Y方向に延び軸周りに回転自在に配置されたシャフトST1の−Y側の端部に一体的に設けられている。プーリPL2は、マスクユニットMU4〜MU5の−X側に、Y方向に延び軸周りに回転自在に配置されたシャフトST2の−Y側の端部に一体的に設けられている。
The magnetic gear transmission mechanism GD transmits the rotational force of the rotary drum 30 in a non-contact manner (using magnetic force) as the rotational force of the rotary mask 20 (connecting portion 24), and includes a belt drive mechanism VD and a magnetic gear portion. GM1 and GM2 are provided. As shown in FIG. 1, the belt drive mechanism VD has a configuration in which a belt VL is stretched (installed in a tensioned state) on the protruding portion 32 of the rotary drum 30 and the pulleys PL1 and PL2.
The pulley PL1 is integrally provided on the −X side of the mask units MU1 to MU3 at the end of the −Y side of the shaft ST1 that extends in the Y direction and is rotatably arranged around the axis. The pulley PL2 is integrally provided on the −X side of the mask units MU4 to MU5 at the end of the −Y side of the shaft ST2 that extends in the Y direction and is rotatably arranged around the axis.

シャフトST1には、図2に示すように、リング状の連結部24の磁気歯車部GM1と対向する位置に円板状の磁気歯車部GM2が磁気歯車部GM1と隙間をあけて配置されている。
磁気歯車部GM2は、外周部に、図8に示すように、シャフトST1(シャフトST2)周りにS極S2とN極N2とが交互に所定ピッチ、所定周長で複数(図8ではそれぞれ2つずつ)配置された磁気パターン(永久磁石)を備えている。磁気歯車部GM1は、回転軸線AX1A(回転軸線AX1B)周りにS極S1とN極N1が交互に、周面において磁気歯車部GM2と同一ピッチ、同一周長で複数(図8ではそれぞれ8つずつ)配置された磁気パターン(永久磁石)を備えている。
As shown in FIG. 2, a disk-shaped magnetic gear portion GM2 is disposed on the shaft ST1 at a position facing the magnetic gear portion GM1 of the ring-shaped connecting portion 24 with a gap from the magnetic gear portion GM1. .
As shown in FIG. 8, the magnetic gear portion GM2 has a plurality of S poles S2 and N poles N2 alternately with a predetermined pitch and a predetermined peripheral length around the shaft ST1 (shaft ST2) as shown in FIG. It has magnetic patterns (permanent magnets) arranged one by one. The magnetic gear portion GM1 includes a plurality of S-poles S1 and N-poles N1 around the rotation axis AX1A (rotation axis AX1B) alternately at the same pitch and the same circumference as the magnetic gear portion GM2 on the peripheral surface (eight in FIG. 8 each). Each of which is provided with a magnetic pattern (permanent magnet).

上記回転ドラム30の突出部32、プーリPL1、PL2、磁気歯車部GM1、GM2の各外径は、回転マスク20(連結部24)の周速度と回転ドラム30の周速度(基板Sの搬送速度)とがほぼ同一となるように設定されている。   The outer diameters of the protrusion 32 of the rotary drum 30, the pulleys PL1 and PL2, and the magnetic gear portions GM1 and GM2 are determined by the circumferential speed of the rotary mask 20 (connection portion 24) and the peripheral speed of the rotary drum 30 (conveyance speed of the substrate S) ) Are set to be substantially the same.

上記構成の基板処理装置100のうち、磁気歯車伝達機構GDの動作について説明する。駆動装置33の駆動により回転ドラム30が回転軸線AX2(第2の回転軸)周りに回転すると、ベルト駆動機構VDにより、プーリPL1、PL2が突出部32との外径比に応じた速度でそれぞれ回転する。   An operation of the magnetic gear transmission mechanism GD in the substrate processing apparatus 100 having the above configuration will be described. When the rotary drum 30 is rotated around the rotation axis AX2 (second rotation axis) by driving the driving device 33, the pulleys PL1 and PL2 are respectively driven at a speed corresponding to the outer diameter ratio with the protrusion 32 by the belt drive mechanism VD. Rotate.

プーリPL1、PL2の回転は、シャフトST1、ST2を介して伝達され各磁気歯車部GM2が回転する。このとき、磁気歯車部GM2において、例えば、図8(a)に示すように、磁気歯車部GM1とS極S2が対向している場合には、互いに引き合う方向の磁力が作用することで磁気歯車部GM1のN極N1が対向している。
そして、磁気歯車部GM2が、例えば、図8中で時計回り方向に回転すると、図8(b)に示すように、N極N1に対して引き合う方向の磁力を作用させるS極S2が遠ざかるとともに、N極N1に対して反発する方向の磁力を作用させるN極N2が近づくことにより、これらの磁力が磁気歯車部GM1のN極N1に牽引力として作用し、磁気歯車部GM1は、磁気歯車部GM2との外径比(周長比)に応じた速度で回転する。
従って、回転マスク20は、発磁体MGとコイル体CUによる駆動部MTによって付与される回転駆動力と共に、磁気歯車伝達機構GDによって非接触で伝達された回転ドラム30の回転駆動力で、回転軸線AX1A(回転軸線AX1B)周りに同期回転する。
The rotations of the pulleys PL1 and PL2 are transmitted via the shafts ST1 and ST2, and the magnetic gear portions GM2 rotate. At this time, in the magnetic gear portion GM2, for example, as shown in FIG. 8A, when the magnetic gear portion GM1 and the S pole S2 are opposed to each other, magnetic forces in the attracting directions act on the magnetic gear portion. The north pole N1 of the part GM1 is opposed.
Then, for example, when the magnetic gear part GM2 rotates in the clockwise direction in FIG. 8, as shown in FIG. 8B, the S pole S2 that applies the magnetic force in the direction attracting to the N pole N1 moves away. The magnetic pole part GM1 acts as a traction force on the magnetic pole part N1 of the magnetic gear part GM1 by approaching the magnetic pole part N2 that causes the magnetic force in the repulsive direction to act on the magnetic pole part N1. It rotates at a speed corresponding to the outer diameter ratio (peripheral length ratio) with GM2.
Therefore, the rotary mask 20 is rotated by the rotational driving force of the rotary drum 30 transmitted in a non-contact manner by the magnetic gear transmission mechanism GD, together with the rotational driving force applied by the drive unit MT by the magnet generator MG and the coil body CU. Synchronously rotate around AX1A (rotation axis AX1B).

このように、駆動装置33の駆動により回転ドラム30が回転軸線AX2周りに回転すると、磁気歯車伝達機構GDによりマスクユニットMU1〜MU3における回転マスク20が回転軸線AX1A周りに回転するとともに、マスクユニットMU4〜MU5における回転マスク20が回転軸線AX1B周りに回転する。
そして、照明部10から照明光が照射されると、照明領域IR1(照明領域IR2)において内周側から回転マスク20のパターンを照明する。マスクユニットMU1〜MU3における各パターンからの露光光は、基板S上の転写領域PA1〜PA5にそれぞれ照射される。
As described above, when the rotary drum 30 is rotated around the rotation axis AX2 by driving the driving device 33, the rotary mask 20 in the mask units MU1 to MU3 is rotated around the rotation axis AX1A by the magnetic gear transmission mechanism GD, and the mask unit MU4. The rotation mask 20 in MU5 rotates around the rotation axis AX1B.
And when illumination light is irradiated from the illumination part 10, in the illumination area | region IR1 (illumination area | region IR2), the pattern of the rotation mask 20 is illuminated from the inner peripheral side. Exposure light from each pattern in the mask units MU1 to MU3 is applied to the transfer areas PA1 to PA5 on the substrate S, respectively.

従って、マスクユニットMU1〜MU5における回転マスク20のそれぞれのパターンは、基板S上で幅方向に接続されて転写される。そして、回転マスク20の連続的な回転と、回転ドラム30の連続的な回転による基板Sの連続的な搬送により、回転マスク20のパターンは基板Sに繰り返し転写される。   Accordingly, each pattern of the rotary mask 20 in the mask units MU1 to MU5 is connected and transferred on the substrate S in the width direction. The pattern of the rotary mask 20 is repeatedly transferred to the substrate S by continuous rotation of the rotary mask 20 and continuous conveyance of the substrate S by continuous rotation of the rotary drum 30.

上記の露光処理中、あるいは露光処理前、あるいは露光処理後に、回転マスク20の回転軸線AX1A(回転軸線AX1B)周り方向の位置、及び回転軸線AX1A(回転軸線AX1B)方向の位置に関する合わせ込みは、例えば、回転マスク20のマスクマークと基板Sの基板マークとを計測した結果に基づいて、駆動制御部DCの通電制御により駆動部MTの発磁体MGを介して、ホルダ23及び回転マスク20を回転軸線AX1A(回転軸線AX1B)周り方向、あるいは回転軸線AX1A(回転軸線AX1B)方向に微動させることにより行われる。   During the exposure process, before the exposure process, or after the exposure process, the alignment of the position of the rotary mask 20 around the rotation axis AX1A (rotation axis AX1B) and the position of the rotation axis AX1A (rotation axis AX1B) is as follows. For example, based on the measurement result of the mask mark of the rotary mask 20 and the substrate mark of the substrate S, the holder 23 and the rotary mask 20 are rotated via the magnetic generator MG of the drive unit MT by the energization control of the drive control unit DC. It is performed by finely moving in the direction around the axis AX1A (rotation axis AX1B) or in the direction of the rotation axis AX1A (rotation axis AX1B).

以上説明したように、本実施形態では、回転ドラム30の回転力を非接触式の磁気歯車伝達機構GDにより、非接触の駆動部MTを介して回転マスク20の回転力として伝達するため、歯車等の接触式で回転力を伝達する際のように振動や摩耗、騒音、粉塵等を生じさせることなく、高精度の同期駆動が可能になる。特に、本実施形態では、磁気歯車部GM1、GM2を介して回転力を伝達するため、注油等も不要になり作業効率の向上及びクリーン化にも寄与できる。
また、本実施形態では、エアパッド22によって回転マスク20を非接触で回転可能に保持するため、回転マスク20を安定して保持することが可能になる。
As described above, in the present embodiment, the rotational force of the rotary drum 30 is transmitted as the rotational force of the rotary mask 20 through the non-contact type driving mechanism MT by the non-contact type magnetic gear transmission mechanism GD. High-accuracy synchronous driving is possible without causing vibration, wear, noise, dust, or the like as in the case of transmitting the rotational force by a contact type such as the above. In particular, in the present embodiment, since the rotational force is transmitted through the magnetic gear portions GM1 and GM2, lubrication or the like is unnecessary, which can contribute to improvement in work efficiency and cleanliness.
Moreover, in this embodiment, since the rotary mask 20 is hold | maintained by the air pad 22 so that rotation without contact is possible, it becomes possible to hold | maintain the rotary mask 20 stably.

さらに、本実施形態では、複数のマスクユニットMU1〜MU5を配置し、各マスクユニットMU1〜MU5で設定されるパターンを基板S上で幅方向に接続しているため、大面積のパターンを形成することが可能なる。
また、本実施形態では、パターンを基板S上で幅方向に接続する際には、各パターンの一部が互いに重なった状態で接続させているため、パターンの位置が幅方向に誤差をもって転写された場合でも、非重複部に付与される露光エネルギー量と大きな差が生じることを防止できる。
Further, in the present embodiment, a plurality of mask units MU1 to MU5 are arranged, and patterns set by the mask units MU1 to MU5 are connected in the width direction on the substrate S, so that a pattern with a large area is formed. It becomes possible.
In the present embodiment, when the patterns are connected in the width direction on the substrate S, the patterns are transferred with an error in the width direction because the patterns are partially connected to each other. Even in this case, it is possible to prevent a large difference from the amount of exposure energy applied to the non-overlapping portion.

(第2実施形態)
次に、基板処理装置100の第2実施形態について、図9から図11を参照して説明する。上記第1実施形態では、回転ドラム30の回転力をベルト駆動機構VDを介して回転マスク20の回転力として伝達する構成を例示したが、本実施形態では、ベルト駆動機構VDを用いない構成について説明する。
これらの図において、図1から図8に示す第1実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略する。
(Second Embodiment)
Next, a second embodiment of the substrate processing apparatus 100 will be described with reference to FIGS. In the first embodiment, the configuration in which the rotational force of the rotary drum 30 is transmitted as the rotational force of the rotary mask 20 via the belt drive mechanism VD is illustrated. However, in the present embodiment, the belt drive mechanism VD is not used. explain.
In these drawings, the same components as those of the first embodiment shown in FIGS. 1 to 8 are denoted by the same reference numerals, and the description thereof is omitted.

図9に示す基板処理装置100は、回転軸線AX1Aに沿って配置されたマスクユニットMU1〜MU2、回転軸線AX1Bに沿って配置されたマスクユニットMU3、基板保持ユニットSU、磁気歯車伝達機構GD(図11参照)を備えている。
本実施形態では、3つのマスクユニットMU1〜MU3が設けられているが、第1実施形態と同様に、各マスクユニットMU1〜MU3のパターンが基板Sの幅方向(Y方向)で端部を重ね合わせた状態で接続されるように基板S上の転写領域が設定されているが、その説明については省略する。
A substrate processing apparatus 100 shown in FIG. 9 includes a mask unit MU1 to MU2 arranged along the rotation axis AX1A, a mask unit MU3 arranged along the rotation axis AX1B, a substrate holding unit SU, and a magnetic gear transmission mechanism GD (FIG. 11).
In the present embodiment, three mask units MU1 to MU3 are provided, but as in the first embodiment, the patterns of the mask units MU1 to MU3 are overlapped in the width direction (Y direction) of the substrate S. Although the transfer region on the substrate S is set so as to be connected in the combined state, the description thereof is omitted.

回転軸線AX1Aは、回転軸線AX2よりも−X側で、回転軸線AX2周り方向について水平方向(XY面)に対して+Z側に角度θ1となる位置に配置され、回転軸線AX1Bは、回転軸線AX2よりも+X側で、回転軸線AX2周り方向について水平方向(XY面)に対して+Z側に角度θ2となる位置に配置されている。
角度θ1、θ2は、一例として45度に設定されるが、回転ドラム30に巻き付けられる基板Sの巻付け角(基板Sが回転ドラム30の外周面に密着している角度)をω°とすると、180°−(θ1+θ2)<ω°の関係になっていれば良い。
The rotation axis AX1A is arranged at a position that is on the −X side of the rotation axis AX2 and at an angle θ1 on the + Z side with respect to the horizontal direction (XY plane) in the direction around the rotation axis AX2, and the rotation axis AX1B is the rotation axis AX2 Further, on the + X side, with respect to the direction around the rotation axis AX2, it is arranged at a position at an angle θ2 on the + Z side with respect to the horizontal direction (XY plane).
The angles θ1 and θ2 are set to 45 degrees as an example. If the winding angle of the substrate S wound around the rotating drum 30 (the angle at which the substrate S is in close contact with the outer peripheral surface of the rotating drum 30) is ω °. 180 ° − (θ1 + θ2) <ω °.

マスクユニットMU1〜MU2は、回転ドラム30の−X側で回転軸線AX1Aと平行な軸線周りに角度θ1傾いて配置された固定プレート15Aに、回転軸線AX1Aと回転軸線AX2の両方に直交する線分の方向(以下、単に軸間方向と称する)に離間・接近自在(移動自在)に設けられている。
同様に、マスクユニットMU3は、回転ドラム30の+X側で回転軸線AX1Bと平行な軸線周りに角度θ2傾いて配置された固定プレート15Bに、回転軸線AX1Bと回転軸線AX2との軸間方向に離間・接近自在(移動自在)に設けられている。
なお、固定プレート15Aに設けられたマスクユニットMU1〜MU2と、固定プレート15Bに設けられたマスクユニットMU3とは同様の構成であるため、以下の説明では固定プレート15Bに設けられたマスクユニットMU3について代表的に説明する。
The mask units MU1 to MU2 are line segments orthogonal to both the rotation axis AX1A and the rotation axis AX2 on the fixed plate 15A arranged at an angle θ1 around the axis parallel to the rotation axis AX1A on the −X side of the rotary drum 30. In the direction (hereinafter simply referred to as the inter-axis direction).
Similarly, the mask unit MU3 is spaced apart in the direction of the axis between the rotation axis AX1B and the rotation axis AX2 on the fixed plate 15B disposed at an angle θ2 around the axis parallel to the rotation axis AX1B on the + X side of the rotation drum 30.・ It is provided so as to be freely accessible (movable).
Since the mask units MU1 to MU2 provided on the fixed plate 15A and the mask unit MU3 provided on the fixed plate 15B have the same configuration, in the following description, the mask unit MU3 provided on the fixed plate 15B is described. A representative explanation will be given.

図10は、固定プレート15B及びマスクユニットMU3の部分拡大図である。
図10に示すように、固定プレート15Bには、マスクユニットMU3をフランジ部27において、Y方向及び上記軸間方向に移動自在に支持するステージ部16が設けられている。
ステージ部16は、Y方向に沿って設けられたYガイド28Yに沿ってY方向に移動する。ステージ部16には軸間方向に沿って設けられた軸間ガイド28Jが設けられている。マスクユニットMU3は、フランジ部27に設けられたスライド部29が軸間ガイド28Jにガイドされて軸間方向に移動する。
FIG. 10 is a partially enlarged view of the fixing plate 15B and the mask unit MU3.
As shown in FIG. 10, the fixed plate 15 </ b> B is provided with a stage portion 16 that supports the mask unit MU <b> 3 movably in the Y direction and the inter-axis direction at the flange portion 27.
The stage unit 16 moves in the Y direction along the Y guide 28Y provided along the Y direction. The stage portion 16 is provided with an inter-axis guide 28J provided along the inter-axis direction. In the mask unit MU3, the slide portion 29 provided on the flange portion 27 is guided by the inter-axis guide 28J and moves in the inter-axis direction.

フランジ部27の側端に設けられるスライド部29の近傍には、軸間方向に沿ってスリット27aがスライド部29の長さ以上の範囲にわたって形成されている。スリット27aとスライド部29との間の肉厚は、マスクユニットMU3の自重が加わった際にも弾性変形可能な厚さに設定されている。   In the vicinity of the slide portion 29 provided at the side end of the flange portion 27, a slit 27 a is formed in a range longer than the length of the slide portion 29 along the inter-axis direction. The thickness between the slit 27a and the slide portion 29 is set to a thickness that can be elastically deformed even when the weight of the mask unit MU3 is added.

図11は、マスクユニットMU3を回転軸線AX1B及び回転軸線AX2を含む平面で切断した断面図である。図11に示すように、マスクユニットMU3は、−Y側に位置するホルダ23とフランジ部25との間に設けられたスラストベアリングTBと、+Y側に位置するホルダ23とフランジ部25との間に設けられた超音波モータ17とを備えている。   FIG. 11 is a cross-sectional view of the mask unit MU3 cut along a plane including the rotation axis AX1B and the rotation axis AX2. As shown in FIG. 11, the mask unit MU3 includes a thrust bearing TB provided between the holder 23 located on the −Y side and the flange portion 25, and between the holder 23 located on the + Y side and the flange portion 25. And an ultrasonic motor 17 provided in the apparatus.

超音波モータ17は、回転マスク20及び磁気歯車部GM1の回転軸線AX1B周りの位置を調整するものであって、フランジ部25に固定されたリング状のステータ17Aと、ホルダ23に連結されたリング状のロータ17Bとで構成されている。
ロータ17Bは、ホルダ23に対して回転軸線AX1B周りには回転しないが、回転軸線AX1Bの延長方向(軸方向)には微動可能に結合されており、予圧バネ18によってステータ17A側に所定の付勢力で接触している。
The ultrasonic motor 17 adjusts the position of the rotary mask 20 and the magnetic gear portion GM1 around the rotation axis AX1B, and is a ring-shaped stator 17A fixed to the flange portion 25 and a ring connected to the holder 23. And a rotor 17B in the form of a ring.
The rotor 17B does not rotate about the rotation axis AX1B with respect to the holder 23, but is coupled so as to be finely movable in the extending direction (axial direction) of the rotation axis AX1B, and is attached to the stator 17A side by a preload spring 18. They are touching by force.

フランジ部27は、内筒21の両端部に固定されて設けられており、回転ドラム30と対向する面には、回転ドラム30の基板保持面31の半径に基板Sの厚さを加えた値の半径を有する円弧状に切り欠かれた保持部34が設けられている。保持部34は、図3又は図4で示したエアパッドAPと同様に、円弧状の表面から径方向に向けてエアを噴出する多孔質パッドで形成されている。   The flange portion 27 is fixedly provided at both ends of the inner cylinder 21, and a value obtained by adding the thickness of the substrate S to the radius of the substrate holding surface 31 of the rotating drum 30 on the surface facing the rotating drum 30. A holding part 34 cut out in an arc shape having a radius of is provided. Similar to the air pad AP shown in FIG. 3 or FIG. 4, the holding portion 34 is formed of a porous pad that ejects air from the arc-shaped surface in the radial direction.

回転ドラム30内には、Y方向で磁気歯車部GM1と対向する位置に、磁気歯車部GM2が基板保持面31と面一に全周にわたって埋設されている。
他の構成は、上記第1実施形態と同様である。
In the rotary drum 30, a magnetic gear part GM2 is embedded over the entire circumference on the same plane as the substrate holding surface 31 at a position facing the magnetic gear part GM1 in the Y direction.
Other configurations are the same as those of the first embodiment.

上記構成の基板処理装置100においては、ステージ部16に支持されマスクユニットMU3の自重のうち角度θ2に応じた分力の荷重が、回転ドラム30の表面に巻き付けられた基板Sを介して回転ドラム30側に予圧として付与された状態で、マスクユニットMU3が支持される。
このとき、保持部34からはエアが噴出されるため、マスクユニットMU3は、回転マスク20と基板Sとの間に所定量のギャップ(プロキシミティ露光時のギャップ)を形成した状態で、非接触で基板S上に支持される。
In the substrate processing apparatus 100 having the above-described configuration, the load of the component force corresponding to the angle θ2 of the weight of the mask unit MU3 supported by the stage unit 16 is rotated via the substrate S wound around the surface of the rotating drum 30. The mask unit MU3 is supported in a state of being applied as a preload to the 30 side.
At this time, since air is ejected from the holding part 34, the mask unit MU3 is in a non-contact state in a state where a predetermined amount of gap (gap at the time of proximity exposure) is formed between the rotary mask 20 and the substrate S. Is supported on the substrate S.

また、スライド部29及び軸間ガイド28Jの製造誤差あるいは設置誤差等により、保持部34が回転ドラム30(基板S)に支持されたときに、保持部34と回転ドラム30(基板S)の位置がずれていた場合には、保持部34と回転ドラム30とが偏った状態で支持されることがある。
この場合には、スリット27aとスライド部29との間の薄肉部が板バネとして機能し、偏荷重が解消される方向に弾性変形することにより、保持部34を回転ドラム30(基板S)の表面に所定の位置関係で支持させることができる。
Further, when the holding unit 34 is supported by the rotating drum 30 (substrate S) due to manufacturing errors or installation errors of the slide unit 29 and the inter-axis guide 28J, the positions of the holding unit 34 and the rotating drum 30 (substrate S) are as follows. If they are shifted, the holding portion 34 and the rotating drum 30 may be supported in a biased state.
In this case, the thin portion between the slit 27a and the slide portion 29 functions as a leaf spring, and elastically deforms in the direction in which the offset load is eliminated, so that the holding portion 34 of the rotary drum 30 (substrate S) is It can be supported on the surface in a predetermined positional relationship.

ここで、マスクユニットMU1、MU3における保持部34(フランジ部27)の一方が基板Sよりも外側の回転ドラム30上に位置する場合には、保持部34の他方との間で、基板Sの厚み分の段差が生じて回転軸線AX1A(回転軸線AX1B)と回転軸線AX2とが平行でなくなる。
この場合には、この外側に位置する保持部34と対向する回転ドラム30の基板保持面31に基板Sと同一厚さのシムを貼設し、シムを介して回転ドラム30に支持させることにより、回転軸線AX1A(回転軸線AX1B)と回転軸線AX2との平行状態を維持できる。
Here, when one of the holding portions 34 (flange portion 27) in the mask units MU1 and MU3 is positioned on the rotary drum 30 outside the substrate S, the substrate S is placed between the other of the holding portions 34. A step corresponding to the thickness occurs, and the rotation axis AX1A (rotation axis AX1B) and the rotation axis AX2 are not parallel.
In this case, a shim having the same thickness as that of the substrate S is attached to the substrate holding surface 31 of the rotating drum 30 facing the holding portion 34 located outside, and the rotating drum 30 supports the shim through the shim. The rotation axis AX1A (rotation axis AX1B) and the rotation axis AX2 can be maintained in a parallel state.

そして、回転ドラム30が回転軸線AX2周りに回転すると、磁気歯車部GM2が回転するのに伴って磁力による牽引力で磁気歯車部GM1に回転力が非接触で伝達される。
磁気歯車部GM1に伝達された回転力は、フランジ部25、超音波モータ17、ホルダ23、スラストベアリングTB、を介して回転マスク20に伝達され、マスクユニットMU1〜MU2における回転マスク20が回転軸線AX1A周りに同期して回転するとともに、マスクユニットMU3における回転マスク20も回転軸線AX1B周りに同期して回転する。
When the rotating drum 30 rotates about the rotation axis AX2, the rotational force is transmitted to the magnetic gear portion GM1 in a non-contact manner by the traction force due to the magnetic force as the magnetic gear portion GM2 rotates.
The rotational force transmitted to the magnetic gear portion GM1 is transmitted to the rotary mask 20 via the flange portion 25, the ultrasonic motor 17, the holder 23, and the thrust bearing TB, and the rotary mask 20 in the mask units MU1 to MU2 is rotated along the axis of rotation. While rotating around AX1A, the rotating mask 20 in the mask unit MU3 also rotates around the rotation axis AX1B.

この構成において、基板Sに対して回転マスク20の回転軸線AX1A(回転軸線AX1B)周り方向の位置(回転方向の位相)を調整するには、超音波モータ17のステータ17Aに周回方向の振動進行波を与えて、ロータ17Bをステータ17Aに対して所定量回転駆動させれば良い。
また、基板Sに対して回転マスク20の回転軸線AX1A(回転軸線AX1B)方向の位置調整は、ステージ部16を利用して、マスクユニットMU1〜MU3全体をY方向にシフトさせれば良い。
In this configuration, in order to adjust the position (phase in the rotation direction) around the rotation axis AX1A (rotation axis AX1B) of the rotary mask 20 with respect to the substrate S, the vibration progresses in the circumferential direction on the stator 17A of the ultrasonic motor 17. A wave may be applied to rotate the rotor 17B by a predetermined amount with respect to the stator 17A.
Further, the position adjustment of the rotary mask 20 in the rotation axis AX1A (rotation axis AX1B) direction with respect to the substrate S may be performed by shifting the entire mask units MU1 to MU3 in the Y direction using the stage unit 16.

また、保持部34の半径(曲率)は、予め設定された基板Sの厚さに応じて設定されているため、基板Sの厚さが変更された場合には、基板Sと保持部34との間のギャップ量は、保持部34の端部間の距離(すなわち保持部34を形成する円弧部の弦の長さ)に応じて、周方向で偏差が生じる。
そのため、保持部34の端部間の距離は、基板Sの厚さの変化範囲、ギャップ量の許容偏差に応じて設定される。
例えば回転ドラム30の基板保持面31の半径を125mm、基板Sの厚さの変化範囲を100μm、ギャップ量の許容偏差を3μmとすると、幾何計算により基板保持面31の半径の1/2程度よりも保持部34の端部間の距離を小さくすることで、保持部34の半径を変更することなく基板Sの厚さ変更に対応可能であることが得られる。
In addition, since the radius (curvature) of the holding unit 34 is set according to the thickness of the substrate S set in advance, when the thickness of the substrate S is changed, There is a deviation in the circumferential direction according to the distance between the ends of the holding portion 34 (that is, the length of the chord of the arc portion forming the holding portion 34).
For this reason, the distance between the end portions of the holding portion 34 is set according to the variation range of the thickness of the substrate S and the allowable deviation of the gap amount.
For example, assuming that the radius of the substrate holding surface 31 of the rotary drum 30 is 125 mm, the thickness change range of the substrate S is 100 μm, and the allowable deviation of the gap amount is 3 μm, the geometrical calculation results in about 1/2 of the radius of the substrate holding surface 31. In addition, by reducing the distance between the end portions of the holding portion 34, it is possible to cope with the change in the thickness of the substrate S without changing the radius of the holding portion 34.

このように、本実施形態では、上記第1実施形態と同様の作用・効果が得られることに加えて、回転ドラム30に磁気歯車部GM2を設けているため、別途ベルト駆動機構等の装置を用いる必要がなくなり、装置の小型化・低価格化を図ることができる。
さらに、ベルト駆動機構で生じる誤差要因を排除できるため、回転マスク20と回転ドラム30とをより高精度に同期駆動することが可能になる。
Thus, in this embodiment, in addition to obtaining the same operation and effect as in the first embodiment, since the magnetic gear portion GM2 is provided in the rotary drum 30, a device such as a belt drive mechanism is separately provided. There is no need to use it, and the size and cost of the apparatus can be reduced.
Furthermore, since the error factor generated in the belt drive mechanism can be eliminated, the rotary mask 20 and the rotary drum 30 can be synchronously driven with higher accuracy.

(第3実施形態)
次に、基板処理装置100の第3実施形態について、図12及び図13を参照して説明する。
上記第1実施形態では、磁気歯車伝達機構GDにおけるベルト駆動機構VDによって回転ドラム30の回転力が回転マスク20の回転力として常時伝達される構成であったが、本実施形態では回転力の伝達を中止する伝達解放部を設ける構成について説明する。
この図において、図1から図8に示す第1実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略する。
(Third embodiment)
Next, a third embodiment of the substrate processing apparatus 100 will be described with reference to FIGS.
In the first embodiment, the rotational force of the rotary drum 30 is always transmitted as the rotational force of the rotary mask 20 by the belt drive mechanism VD in the magnetic gear transmission mechanism GD. However, in this embodiment, the rotational force is transmitted. The structure which provides the transmission release part which cancels | releases is demonstrated.
In this figure, the same reference numerals are given to the same elements as those of the first embodiment shown in FIGS. 1 to 8, and the description thereof is omitted.

図12に示すように、本実施形態における磁気歯車伝達機構GDは、ベルト駆動機構VD、伝達解放部40を備えている。
ベルト駆動機構VDにおけるシャフトST1(ST2)には、シャフトST1(ST2)より大径の接触部41、接触部41よりも小径の軸部42が設けられている。接触部41は、軸受43を介してプーリPL1(PL2)の内周側を相対的に回転自在に支持している。軸部42には軸受44を介してプッシャー支持部45が設けられている。
As shown in FIG. 12, the magnetic gear transmission mechanism GD in the present embodiment includes a belt drive mechanism VD and a transmission release portion 40.
The shaft ST1 (ST2) in the belt drive mechanism VD is provided with a contact portion 41 having a larger diameter than the shaft ST1 (ST2) and a shaft portion 42 having a smaller diameter than the contact portion 41. The contact portion 41 supports the inner peripheral side of the pulley PL1 (PL2) via a bearing 43 so as to be relatively rotatable. The shaft portion 42 is provided with a pusher support portion 45 via a bearing 44.

伝達解放部40は、クラッチ部46、プッシャー47、付勢バネ48を備えている。
クラッチ部46は、プーリPL1(PL2)の端壁部39に形成された貫通孔39aよりも小径で軸部42に挿入される筒部46aと、筒部46aの接触部41と対向する側の端部に設けられ、貫通孔39aよりも大径に形成された接触部46bと、筒部46aのプッシャー支持部45と対向する側の端部に設けられ、貫通孔39aよりも大径に形成された大径部46cとを備えている。
大径部46cには、プッシャー47と対向する位置に、外径側に向かうに従って、軸部42の長さ方向で漸次プッシャー47から離れる方向に傾斜するテーパ面49が形成されている。
The transmission release part 40 includes a clutch part 46, a pusher 47, and an urging spring 48.
The clutch portion 46 has a cylindrical portion 46a inserted into the shaft portion 42 with a smaller diameter than the through hole 39a formed in the end wall portion 39 of the pulley PL1 (PL2), and a side of the cylindrical portion 46a facing the contact portion 41. A contact portion 46b provided at the end and formed at a larger diameter than the through hole 39a, and provided at an end portion on the side facing the pusher support portion 45 of the cylindrical portion 46a and formed at a larger diameter than the through hole 39a. And a large-diameter portion 46c.
In the large diameter portion 46 c, a tapered surface 49 is formed at a position facing the pusher 47, which is gradually inclined away from the pusher 47 in the length direction of the shaft portion 42 toward the outer diameter side.

付勢バネ48は、大径部46cとプーリPL1(PL2)の端壁部39との間に設けられ、これらに互いに離れる方向の付勢力を付与するものである。   The biasing spring 48 is provided between the large-diameter portion 46c and the end wall portion 39 of the pulley PL1 (PL2), and applies a biasing force in a direction away from each other.

プッシャー47は、軸部42を挟んで一対で設けられ、テーパ面49と対向する位置に球部47aを備えている。
また、各プッシャー47は、図12に示すように、軸部42に近接し球部47aがテーパ面49に係合する伝達位置と、図13に示すように、軸部42から離れ球部47aのテーパ面49に対する係合が解除される解放位置との間を移動する。
プッシャー47は、伝達位置に位置する場合には、クラッチ部46の接触部46bを付勢バネ48の付勢力に抗して接触部41に接触させる。
The pusher 47 is provided as a pair with the shaft portion 42 interposed therebetween, and includes a spherical portion 47 a at a position facing the tapered surface 49.
Further, as shown in FIG. 12, each pusher 47 has a transmission position where the ball portion 47a is engaged with the tapered surface 49 near the shaft portion 42, and the ball portion 47a is separated from the shaft portion 42 as shown in FIG. And the release position where the engagement with the tapered surface 49 is released.
When the pusher 47 is located at the transmission position, the contact portion 46 b of the clutch portion 46 is brought into contact with the contact portion 41 against the urging force of the urging spring 48.

上記構成の磁気歯車伝達機構GDにおいては、プッシャー47が伝達位置に移動して、図12に示すように、クラッチ部46の接触部46bが接触部41に接触している場合には、回転ドラム30の回転力によりベルトVLを介してプーリPL1(PL2)が回転すると、付勢バネ48の付勢に伴う摩擦力で大径部46cが回転するとともに、互いに接触する接触部46b、41間の摩擦力で接触部41が回転する。
これにより、シャフトST1(ST2)を介して磁気歯車部GM2が回転することにより、図2に示した磁気歯車部GM1を介して回転マスク20に回転ドラム30の回転力が伝達される。
In the magnetic gear transmission mechanism GD configured as described above, when the pusher 47 moves to the transmission position and the contact portion 46b of the clutch portion 46 is in contact with the contact portion 41 as shown in FIG. When the pulley PL1 (PL2) is rotated via the belt VL by the rotational force of 30, the large-diameter portion 46c is rotated by the frictional force accompanying the biasing of the biasing spring 48, and between the contact portions 46b and 41 that are in contact with each other. The contact portion 41 is rotated by the frictional force.
As a result, the rotational force of the rotary drum 30 is transmitted to the rotary mask 20 via the magnetic gear portion GM1 shown in FIG. 2 by rotating the magnetic gear portion GM2 via the shaft ST1 (ST2).

一方、プッシャー47が解放位置に移動して、図13に示すように、クラッチ部46の接触部46bが接触部41から離れている場合には、接触部46b、41が離れることでシャフトST及び磁気歯車部GM2は回転しない。従って、回転ドラム30の回転力は、回転マスク20に伝達されないことになる。
そのため、プッシャー47を伝達位置に位置決めした状態で、回転ドラム30の回転力を回転マスク20に伝達して上述した露光処理を実施させ、プッシャー47を解放位置に位置決めすることで、回転ドラム30と回転マスク20との間の回転力の伝達を中止することが可能になる。
On the other hand, when the pusher 47 is moved to the release position and the contact portion 46b of the clutch portion 46 is separated from the contact portion 41 as shown in FIG. 13, the contact portions 46b and 41 are separated, so that the shaft ST and The magnetic gear part GM2 does not rotate. Accordingly, the rotational force of the rotary drum 30 is not transmitted to the rotary mask 20.
Therefore, with the pusher 47 positioned at the transmission position, the rotational force of the rotary drum 30 is transmitted to the rotary mask 20 to perform the above-described exposure process, and the pusher 47 is positioned at the release position, thereby It becomes possible to stop the transmission of the rotational force with the rotary mask 20.

(デバイス製造システム)
次に、上記の基板処理装置100を備えたデバイス製造システムについて、図14を参照して説明する。
図14は、デバイス製造システム(フレキシブル・ディスプレー製造ライン)SYSの一部の構成を示す図である。ここでは、供給ロールFR1から引き出された可撓性の基板P(シート、フィルム、極薄ガラスシート等)が、順次、n台の処理装置U1,U2,U3,U4,U5,…Unを経て、回収ロールFR2に巻き上げられるまでの例を示している。
上位制御装置CONTは、製造ラインを構成する各処理装置U1〜Unを統括制御する。尚、ここでは、先の各実施形態で説明した基板Sを基板Pとする。
(Device manufacturing system)
Next, a device manufacturing system provided with the substrate processing apparatus 100 will be described with reference to FIG.
FIG. 14 is a diagram showing a partial configuration of a device manufacturing system (flexible display manufacturing line) SYS. Here, a flexible substrate P (sheet, film, ultra-thin glass sheet, etc.) drawn from the supply roll FR1 is sequentially passed through n processing devices U1, U2, U3, U4, U5,. The example until it is wound up on the collection roll FR2 is shown.
The host control device CONT performs overall control of the processing devices U1 to Un constituting the production line. Here, the substrate S described in each of the previous embodiments is referred to as a substrate P.

図14において、直交座標系XYZは、基板Pの表面(又は裏面)がXZ面と垂直となるように設定され、基板Pの搬送方向(長尺方向)と直交する幅方向がY方向に設定されるものとする。なお、その基板Pは、予め所定の前処理によって、その表面を改質して活性化したもの、或いは、表面に精密パターニングの為の微細な隔壁構造(凹凸構造)を形成したものでもよい。   In FIG. 14, the orthogonal coordinate system XYZ is set so that the front surface (or back surface) of the substrate P is perpendicular to the XZ plane, and the width direction orthogonal to the transport direction (long direction) of the substrate P is set to the Y direction. Shall be. The substrate P may be activated by modifying the surface in advance by a predetermined pretreatment, or may have a fine partition structure (uneven structure) for precise patterning formed on the surface.

供給ロールFR1に巻かれている基板Pは、ニップされた駆動ローラDR1によって引き出されて処理装置U1に搬送されるが、基板PのY方向(幅方向)の中心はエッジポジションコントローラEPC1によって、目標位置に対して±十数μm〜数十μm程度の範囲に収まるようにサーボ制御される。   The substrate P wound around the supply roll FR1 is pulled out by the nipped drive roller DR1 and conveyed to the processing device U1, and the center of the substrate P in the Y direction (width direction) is set by the edge position controller EPC1. Servo control is performed so as to be within a range of about ± 10 μm to several tens μm with respect to the position.

処理装置U1は、印刷方式で基板Pの表面に感光性機能液(フォトレジスト、感光性シランカップリング材、UV硬化樹脂液等)を、基板Pの搬送方向(長尺方向)に関して連続的又は選択的に塗布する塗布装置である。
処理装置U1内には、基板Pが巻き付けられる圧胴ローラDR2、この圧胴ローラDR2上で、基板Pの表面に感光性機能液を一様に塗布する為の塗布用ローラ等を含む塗布機構Gp1、基板Pに塗布された感光性機能液に含まれる溶剤または水分を急速に除去する為の乾燥機構Gp2等が設けられている。
The processing device U1 continuously applies a photosensitive functional liquid (photoresist, photosensitive silane coupling material, UV curable resin liquid, etc.) to the surface of the substrate P by a printing method with respect to the transport direction (long direction) of the substrate P or This is a coating apparatus for selectively coating.
In the processing apparatus U1, a coating mechanism including a pressure drum DR2 around which the substrate P is wound, and a coating roller for uniformly coating the photosensitive functional liquid on the surface of the substrate P on the pressure drum DR2. Gp1, a drying mechanism Gp2 for rapidly removing a solvent or moisture contained in the photosensitive functional liquid applied to the substrate P, and the like are provided.

処理装置U2は、処理装置U1から搬送されてきた基板Pを所定温度(例えば、数10〜120℃程度)まで加熱して、表面に塗布された感光性機能層を安定にする為の加熱装置である。
処理装置U2内には、基板Pを折返し搬送する為の複数のローラとエア・ターン・バー、搬入されてきた基板Pを加熱する為の加熱チャンバー部HA1、加熱された基板Pの温度を、後工程(処理装置U3)の環境温度と揃うように下げる為の冷却チャンバー部HA2、ニップされた駆動ローラDR3等が設けられている。
The processing device U2 heats the substrate P conveyed from the processing device U1 to a predetermined temperature (for example, about several tens to 120 ° C.), and stabilizes the photosensitive functional layer applied to the surface. It is.
In the processing apparatus U2, a plurality of rollers and an air turn bar for returning and conveying the substrate P, a heating chamber HA1 for heating the substrate P that has been carried in, and the temperature of the heated substrate P are as follows: A cooling chamber HA2 and a nipped drive roller DR3 are provided for lowering the temperature so as to match the ambient temperature of the post-process (processing device U3).

基板処理装置100としての処理装置U3は、処理装置U2から搬送されてきた基板P(基板S)の感光性機能層に対して、ディスプレー用の回路パターンや配線パターンに対応した紫外線のパターニング光を照射する露光装置である。
処理装置U3内には、基板PのY方向(幅方向)の中心を一定位置に制御するエッジポジションコントローラEPC、ニップされた駆動ローラDR4、基板Pを所定のテンションで部分的に巻き付けて、基板P上のパターン露光される部分を一様な円筒面状に支持する回転ドラムDR5(回転ドラム30)、及び、基板Pに所定のたるみ(あそび)DLを与える為の2組の駆動ローラDR6、DR7等が設けられている。
The processing apparatus U3 as the substrate processing apparatus 100 applies ultraviolet patterning light corresponding to the circuit pattern or wiring pattern for display to the photosensitive functional layer of the substrate P (substrate S) conveyed from the processing apparatus U2. An exposure apparatus for irradiation.
In the processing apparatus U3, an edge position controller EPC that controls the center of the substrate P in the Y direction (width direction) to a fixed position, the nipped drive roller DR4, and the substrate P are partially wound with a predetermined tension, and the substrate A rotary drum DR5 (rotary drum 30) for supporting a pattern exposed portion on P in a uniform cylindrical surface, and two sets of drive rollers DR6 for giving a predetermined slack (play) DL to the substrate P, DR7 etc. are provided.

さらに処理装置U3内には、透過型円筒マスクDM(マスクユニットMU)と、その円筒マスクDM内に設けられて、円筒マスクDMの外周面に形成されたマスクパターンを照明する照明機構IU(照明部10)と、回転ドラムDR5によって円筒面状に支持される基板Pの一部分に、円筒マスクDMのマスクパターンの一部分の像と基板Pとを相対的に位置合せ(アライメント)する為に、基板Pに予め形成されたアライメントマーク等を検出するアライメント顕微鏡AM1、AM2とが設けられている。   Further, in the processing apparatus U3, a transmission type cylindrical mask DM (mask unit MU) and an illumination mechanism IU (illumination) provided in the cylindrical mask DM and illuminating a mask pattern formed on the outer peripheral surface of the cylindrical mask DM. Part 10) and a part of the substrate P supported in a cylindrical surface by the rotary drum DR5, in order to relatively align (align) the image of a part of the mask pattern of the cylindrical mask DM and the substrate P. Alignment microscopes AM1 and AM2 for detecting an alignment mark or the like formed in advance on P are provided.

処理装置U4は、処理装置U3から搬送されてきた基板Pの感光性機能層に対して、湿式による現像処理、無電解メッキ処理等を行なうウェット処理装置である。処理装置U4内には、Z方向に階層化された3つの処理槽BT1、BT2、BT3と、基板Pを折り曲げて搬送する複数のローラと、ニップされた駆動ローラDR8等が設けられている。   The processing device U4 is a wet processing device that performs wet development processing, electroless plating processing, and the like on the photosensitive functional layer of the substrate P conveyed from the processing device U3. In the processing apparatus U4, there are provided three processing tanks BT1, BT2, and BT3 layered in the Z direction, a plurality of rollers for bending and transporting the substrate P, a nip driving roller DR8, and the like.

処理装置U5は、処理装置U4から搬送されてきた基板Pを暖めて、湿式プロセスで湿った基板Pの水分含有量を所定値に調整する加熱乾燥装置であるが、詳細は省略する。
その後、幾つかの処理装置を経て、一連のプロセスの最後の処理装置Unを通った基板Pは、ニップされた駆動ローラDR1を介して回収ロールFR2に巻き上げられる。その巻上げの際も、基板PのY方向(幅方向)の中心、或いはY方向の基板端が、Y方向にばらつかないように、エッジポジションコントローラEPC2によって、駆動ローラDR1と回収ロールFR2のY方向の相対位置が逐次補正制御される。
The processing apparatus U5 is a heating and drying apparatus that warms the substrate P conveyed from the processing apparatus U4 and adjusts the moisture content of the substrate P wetted by the wet process to a predetermined value, but the details are omitted.
After that, the substrate P that has passed through several processing devices and passed through the last processing device Un in the series of processes is wound up on the collection roll FR2 via the nipped drive roller DR1. Also during the winding, the edge position controller EPC2 controls the Y of the drive roller DR1 and the recovery roll FR2 so that the center in the Y direction (width direction) of the substrate P or the substrate end in the Y direction does not vary in the Y direction. The relative position in the direction is successively corrected and controlled.

上記のデバイス製造システムSYSでは、処理装置U3として上述した基板処理装置100が用いられているため、歯車等の接触式で回転力を伝達する際に振動や摩耗、騒音、粉塵等を生じさせることなく、高精度な同期駆動が可能になり、比較的大きな寸法のマスクパターンを基板上に忠実に転写することができる。その為、より高精細化された表示パネルや電子回路等のデバイスを製造することが可能になる。   In the device manufacturing system SYS, since the substrate processing apparatus 100 described above is used as the processing apparatus U3, vibration, wear, noise, dust, and the like are generated when a rotational force is transmitted by a contact type such as a gear. Therefore, highly accurate synchronous driving is possible, and a mask pattern having a relatively large size can be faithfully transferred onto the substrate. Therefore, it becomes possible to manufacture devices such as display panels and electronic circuits with higher definition.

以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。   As described above, the preferred embodiments according to the present invention have been described with reference to the accompanying drawings, but the present invention is not limited to the examples. Various shapes, combinations, and the like of the constituent members shown in the above-described examples are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.

例えば、上記実施形態では、磁気歯車部GM1、GM2の回転軸線が互いに平行である構成を例示したが、これに限定されるものではない。磁気歯車の伝達形態として、図15のように、Z軸と平行な回転軸の回りに回転可能な第1の磁気歯車GMaの外周面に近接させて、Y軸と平行な回転軸の回りに回転可能な第2の磁気歯車GMbの外周面を配置するような場合でも、2つの磁気歯車GMa、GMb間で、回転力の伝達が可能である。
このように、互いに直交する方向に回転軸線が配置されている磁気歯車伝達機構としては、例えば、再公表公報WO2007−10780号(EP1906054A1)等に記載されている。
そこで、回転力を90度に変換可能な磁気歯車伝達機構を利用する場合は、例えば、図16に示すように、回転マスク20の外周面に磁気歯車部GM1A、回転ドラム30の外周面に磁気歯車部GM1Bをそれぞれ設け、磁気歯車部GM1A及び磁気歯車部GM1Bの回転軸線と直交する方向に延びるシャフトST1(ST2)を回転軸とする磁気歯車部GM2を、磁気歯車部GM1A、GM1Bに近接して設ける構成としてもよい。
この場合、磁気歯車部GM1Aが第1の磁気パターン部に相当し、磁気歯車部GM1Bが第2の磁気パターン部に相当し、シャフトST1(ST2)に設けた磁気歯車部GM2が第3の磁気パターン部に相当する。
このような構成にすると、シャフトST1(ST2)を延ばすことで、回転マスク20と回転ドラム30の間隔が広げられるので、回転マスク20のパターンの像を回転ドラム30に巻き付いた基板上に投影する為の投影光学系等を設けることができる。
For example, in the above embodiment, the configuration in which the rotation axes of the magnetic gear portions GM1 and GM2 are parallel to each other is illustrated, but the present invention is not limited to this. As a transmission form of the magnetic gear, as shown in FIG. 15, the magnetic gear is arranged around the rotation axis parallel to the Y axis in the vicinity of the outer peripheral surface of the first magnetic gear GMa that can rotate around the rotation axis parallel to the Z axis. Even when the outer peripheral surface of the rotatable second magnetic gear GMb is arranged, the rotational force can be transmitted between the two magnetic gears GMa and GMb.
As described above, the magnetic gear transmission mechanism in which the rotation axes are arranged in directions orthogonal to each other is described in, for example, the republication publication WO2007-10780 (EP1906054A1).
Therefore, when using a magnetic gear transmission mechanism capable of converting the rotational force to 90 degrees, for example, as shown in FIG. A gear portion GM1B is provided, and a magnetic gear portion GM2 having a shaft ST1 (ST2) extending in a direction orthogonal to the rotation axis of the magnetic gear portion GM1A and the magnetic gear portion GM1B as a rotation axis is close to the magnetic gear portions GM1A and GM1B. It is good also as a structure provided.
In this case, the magnetic gear portion GM1A corresponds to the first magnetic pattern portion, the magnetic gear portion GM1B corresponds to the second magnetic pattern portion, and the magnetic gear portion GM2 provided on the shaft ST1 (ST2) is the third magnetic pattern portion. It corresponds to the pattern part.
With such a configuration, the distance between the rotary mask 20 and the rotary drum 30 is widened by extending the shaft ST1 (ST2), so that an image of the pattern of the rotary mask 20 is projected onto the substrate wound around the rotary drum 30. A projection optical system or the like can be provided.

また、上記第2実施形態では、マスクユニットMU1〜MU3を支持する固定プレート15A、15Bの傾斜角度を一定とする構成を例示したが、これに限られず、例えば、固定プレート15A、15Bの傾斜角度を調整する角度調整装置を設けてもよい。この構成では、固定プレート15A、15Bの傾斜角度に応じて、マスクユニットMU1〜MU3の自重のうち、回転ドラム30に予圧として付与される荷重を調整することができる。   In the second embodiment, the configuration in which the inclination angles of the fixed plates 15A and 15B supporting the mask units MU1 to MU3 are made constant is not limited to this. For example, the inclination angles of the fixed plates 15A and 15B are exemplified. An angle adjusting device for adjusting the angle may be provided. In this configuration, the load applied as a preload to the rotating drum 30 among the dead weights of the mask units MU1 to MU3 can be adjusted according to the inclination angles of the fixed plates 15A and 15B.

さらに、上記実施形態では、保持部34が回転ドラム30に支持された際に、回転マスク20と基板Sとの間に所定量のギャップが形成される構成としたが、例えば、保持部34を設けずに、マスクユニットMU1〜MU3を回転ドラム30に対してそれぞれ独立して駆動する駆動装置を設け、回転マスク20と基板Sとの間に形成すべきギャップ量に応じてマスクユニットMU1〜MU3のそれぞれの軸間方向の位置を、ピエゾアクチュエータ等の駆動源によって調整する構成としてもよい。   Furthermore, in the above embodiment, when the holding unit 34 is supported by the rotary drum 30, a predetermined amount of gap is formed between the rotary mask 20 and the substrate S. Without being provided, a driving device for independently driving the mask units MU1 to MU3 with respect to the rotary drum 30 is provided, and the mask units MU1 to MU3 according to the gap amount to be formed between the rotary mask 20 and the substrate S. The position in the inter-axis direction may be adjusted by a drive source such as a piezo actuator.

また、上記実施形態では、回転マスク20にパターンが形成される構成としたが、これに限定されるものではなく、パターンを有するシート状のマスクを透明の円筒体(均一な肉厚の石英製のチューブ状の筒体等)に巻き付ける構成であってもよい。   Moreover, in the said embodiment, although the pattern was formed in the rotation mask 20, it is not limited to this, The sheet-like mask which has a pattern is made into a transparent cylindrical body (product made from quartz with uniform thickness). It may be configured to be wound around a tube-shaped cylinder or the like.

ところで、先の図1、又は図16では、回転マスク20と回転ドラム30との間で、磁気歯車によって回転駆動力を伝達し合う構成としたが、例えば、図16において、シャフトST1(ST2)を駆動源としての回転モータ(回転駆動源)に接続してもよい。
この場合、シャフトST1(ST2)に設けた2つの磁気歯車部GM2の回転トルクが、一方の磁気歯車部GM2と非接触で対向する磁気歯車部GM1A(回転マスク20)と、他方の磁気歯車部GM2と非接触で対向する磁気歯車部GM1B(回転ドラム30)とに伝達され、回転マスク20のパターン面(円筒面)の周速度と基板Sの搬送速度とが所定の速度関係(同期速度)に設定される。
Incidentally, in FIG. 1 or FIG. 16, the rotational driving force is transmitted by the magnetic gear between the rotary mask 20 and the rotary drum 30. For example, in FIG. 16, the shaft ST1 (ST2) May be connected to a rotary motor (rotary drive source) as a drive source.
In this case, the rotational torque of the two magnetic gear portions GM2 provided on the shaft ST1 (ST2) is such that the magnetic gear portion GM1A (rotary mask 20) faces the one magnetic gear portion GM2 in a non-contact manner, and the other magnetic gear portion. It is transmitted to the magnetic gear part GM1B (rotary drum 30) that faces the GM2 in a non-contact manner, and the peripheral speed of the pattern surface (cylindrical surface) of the rotary mask 20 and the transport speed of the substrate S are in a predetermined speed relationship (synchronous speed). Set to

20…回転マスク、 22…エアパッド(気体供給部)、 30…回転ドラム(転動体)、 40…伝達解放部、 100…基板処理装置、 AX1A、AX1B…回転軸線(第1の回転軸)、 AX2…回転軸線(第2の回転軸)、 GD…磁気歯車伝達機構、 M…マスク、 MU、MU1〜MU5…マスクユニット(マスク保持部)、 S…基板、 SU…基板保持ユニット。   DESCRIPTION OF SYMBOLS 20 ... Rotary mask, 22 ... Air pad (gas supply part), 30 ... Rotary drum (rolling body), 40 ... Transmission release part, 100 ... Substrate processing apparatus, AX1A, AX1B ... Rotation axis (1st rotation axis), AX2 ... rotation axis (second rotation axis), GD ... magnetic gear transmission mechanism, M ... mask, MU, MU1 to MU5 ... mask unit (mask holding part), S ... substrate, SU ... substrate holding unit.

Claims (20)

可撓性を有する長尺の基板を、回転可能な転動体の円周面の一部で支持した状態で、前記長尺の方向に搬送すると共に、回転可能な回転マスクの周面に形成されたパターンを、前記基板の被処理面に繰り返し転写する基板処理装置であって、
前記回転マスクの外周面の転写に関与する部分と前記基板の被処理面とが所定の間隔で配置されるように、前記回転マスクを前記転動体に対して支持するマスク保持部と、
前記転動体及び前記回転マスクの一方の回転力を他方の回転力として磁力で伝達する磁気歯車伝達系と、
を備える基板処理装置。
A flexible long substrate is supported by a part of the circumferential surface of a rotatable rolling element, and is transported in the long direction and formed on the circumferential surface of a rotatable rotary mask. A substrate processing apparatus that repeatedly transfers the pattern to the processing surface of the substrate,
A mask holding portion that supports the rotating mask with respect to the rolling element such that a portion involved in the transfer of the outer peripheral surface of the rotating mask and a surface to be processed of the substrate are arranged at a predetermined interval;
A magnetic gear transmission system that transmits one rotational force of the rolling element and the rotary mask as magnetic force as the other rotational force;
A substrate processing apparatus comprising:
前記マスク保持部は、前記回転マスクを第1の回転軸を中心として回転可能に保持し、前記基板との間に気体を供給する気体供給部を備える請求項1に記載の基板処理装置。   The substrate processing apparatus according to claim 1, wherein the mask holding unit includes a gas supply unit that holds the rotary mask so as to be rotatable about a first rotation axis and supplies gas between the mask holding unit and the substrate. 前記気体供給部は、気体を噴出する部分に多孔質部材が用いられる
請求項2に記載の基板処理装置。
The substrate processing apparatus according to claim 2, wherein the gas supply unit uses a porous member at a portion from which gas is ejected.
前記マスク保持部は、円筒部を有し、
前記回転マスクは、前記円筒部に対して回転可能に保持される
請求項1から請求項3のうちいずれか一項に記載の基板処理装置。
The mask holding part has a cylindrical part,
The substrate processing apparatus according to claim 1, wherein the rotary mask is rotatably held with respect to the cylindrical portion.
前記回転マスクは、前記磁気歯車伝達系の一部として磁気パターンを有する請求項1から請求項4のうちいずれか一項に記載の基板処理装置。   The substrate processing apparatus according to claim 1, wherein the rotating mask has a magnetic pattern as a part of the magnetic gear transmission system. 前記転動体は、前記磁気歯車伝達系の一部として磁気パターンを有する請求項1から請求項5のうちいずれか一項に記載の基板処理装置。   The substrate processing apparatus according to claim 1, wherein the rolling element has a magnetic pattern as a part of the magnetic gear transmission system. 前記磁気歯車伝達系は、前記転動体及び前記回転マスクを同期して回転させる磁気パターンを有する
請求項1から請求項6のうちいずれか一項に記載の基板処理装置。
The substrate processing apparatus according to claim 1, wherein the magnetic gear transmission system has a magnetic pattern that rotates the rolling element and the rotary mask in synchronization.
前記磁気歯車伝達系は、前記転動体と前記回転マスクとの間の回転の伝達を中止する伝達解放部を有する
請求項1から請求項7のうちいずれか一項に記載の基板処理装置。
The substrate processing apparatus according to claim 1, wherein the magnetic gear transmission system includes a transmission release unit that stops transmission of rotation between the rolling element and the rotary mask.
前記マスク保持部は、複数用いられ、各回転マスクのそれぞれのパターンが前記基板の被処理面に転写された際に、前記パターンが前記基板の幅方向に接続されるように配置される
請求項1から請求項8のうちいずれか一項に記載の基板処理装置。
A plurality of the mask holding portions are used, and are arranged so that the patterns are connected in the width direction of the substrate when the patterns of the respective rotary masks are transferred to the surface to be processed of the substrate. The substrate processing apparatus according to any one of claims 1 to 8.
前記複数のマスク保持部は、各パターンの一部が互いに重なった状態で前記基板の幅方向に接続されるように配置される
請求項9に記載の基板処理装置。
The substrate processing apparatus according to claim 9, wherein the plurality of mask holding units are arranged so as to be connected in the width direction of the substrate in a state where a part of each pattern overlaps each other.
前記複数のマスク保持部は、前記基板の幅方向に千鳥状に配置される
請求項9又は請求項10に記載の基板処理装置。
The substrate processing apparatus according to claim 9, wherein the plurality of mask holding units are arranged in a staggered manner in the width direction of the substrate.
前記複数のマスク保持部は、それぞれの前記第1の回転軸が前記転動体の第2の回転軸を中心とした同心円上に配置される
請求項9から請求項11のうちいずれか一項に記載の基板処理装置。
The plurality of mask holders are arranged such that each of the first rotation axes is concentrically centered on a second rotation axis of the rolling element. The substrate processing apparatus as described.
前記回転マスクは、透過型マスクであり、
前記マスク保持部は、前記回転マスクのパターンを照明する照明装置を有する
請求項1から請求項12のうちいずれか一項に記載の基板処理装置。
The rotating mask is a transmissive mask,
The substrate processing apparatus according to claim 1, wherein the mask holding unit includes an illumination device that illuminates a pattern of the rotating mask.
前記マスク保持部は、前記回転マスクを前記第2の回転軸の方向と平行の方向に移動させる駆動装置を備える
請求項1から請求項13のうちいずれか一項に記載の基板処理装置。
The substrate processing apparatus according to claim 1, wherein the mask holding unit includes a driving device that moves the rotary mask in a direction parallel to a direction of the second rotation axis.
可撓性を有する長尺の基板を、回転可能な転動体の円周面の一部で支持した状態で、前記長尺の方向に搬送する基板搬送機構と、
所定半径で円筒状に湾曲したマスクパターンを有し、前記円筒の軸回りに回転可能な回転マスクを保持するマスク保持機構と、
前記回転マスクに形成されたマスクパターンの一部分に照明光を照射する照明系を有し、前記マスクパターンの一部を前記基板の被処理面に転写する転写機構と、
前記転動体及び前記回転マスクの一方の回転力を他方の回転力として磁力で伝達する磁気歯車伝達系と、
を備える基板処理装置。
A substrate transport mechanism for transporting a flexible long substrate with a part of a circumferential surface of a rotatable rolling element in the long direction;
A mask holding mechanism having a mask pattern curved in a cylindrical shape with a predetermined radius, and holding a rotating mask rotatable around the axis of the cylinder;
A transfer mechanism having an illumination system for irradiating illumination light to a part of the mask pattern formed on the rotary mask, and transferring a part of the mask pattern to the processing surface of the substrate;
A magnetic gear transmission system that transmits one rotational force of the rolling element and the rotary mask as magnetic force as the other rotational force;
A substrate processing apparatus comprising:
前記回転マスクは周方向に沿って一定ピッチで配列される第1の磁気パターン部を備え、前記転動体は周方向に沿って一定ピッチで配列される第2の磁気パターン部を備え、前記磁気歯車伝達系は、前記第1の磁気パターン部と前記第2の磁気パターン部との間を非接触で磁気的に歯車結合する第3の磁気パターン部を備える
請求項15に記載の基板処理装置。
The rotating mask includes first magnetic pattern portions arranged at a constant pitch along a circumferential direction, and the rolling elements include second magnetic pattern portions arranged at a constant pitch along a circumferential direction, The substrate processing apparatus according to claim 15, wherein the gear transmission system includes a third magnetic pattern unit that magnetically couples the first magnetic pattern unit and the second magnetic pattern unit in a non-contact manner. .
可撓性を有する長尺の基板を、回転可能な転動体の円周面の一部で支持した状態で前記長尺の方向に搬送する基板搬送機構と、
所定半径で円筒状に湾曲したマスクパターンを有し、前記円筒の軸回りに回転可能な回転マスクを保持するマスク保持機構と、
前記回転マスクに形成されたマスクパターンの一部分に照明光を照射する照明系を有し、前記マスクパターンの一部を前記基板の被処理面に転写する転写機構と、
前記回転マスクの周速度と前記基板の長尺方向の搬送速度とが所定の関係になるように、回転駆動源からの回転力を前記転動体と前記回転マスクの各々に磁力で伝達する磁気歯車伝達系と、
を備える基板処理装置。
A substrate transport mechanism for transporting a flexible long substrate in a state of being supported by a part of a circumferential surface of a rotatable rolling element in the long direction;
A mask holding mechanism having a mask pattern curved in a cylindrical shape with a predetermined radius, and holding a rotating mask rotatable around the axis of the cylinder;
A transfer mechanism having an illumination system for irradiating illumination light to a part of the mask pattern formed on the rotary mask, and transferring a part of the mask pattern to the processing surface of the substrate;
A magnetic gear that transmits a rotational force from a rotational drive source to each of the rolling elements and the rotary mask by a magnetic force so that a peripheral speed of the rotary mask and a conveying speed in the longitudinal direction of the substrate have a predetermined relationship. A transmission system;
A substrate processing apparatus comprising:
前記磁気歯車伝達系は、前記回転マスクの回転軸線と同軸に設けられる第1の磁気歯車部材と、
前記転動体の回転軸線と同軸に設けられる第2の磁気歯車部材と、
前記回転駆動源からの回転力を前記第1の磁気歯車部材と前記第2の磁気歯車部材の各々に伝える第3の磁気歯車部材と、
を備える請求項17に記載の基板処理装置。
The magnetic gear transmission system includes a first magnetic gear member provided coaxially with a rotation axis of the rotary mask;
A second magnetic gear member provided coaxially with the rotation axis of the rolling element;
A third magnetic gear member for transmitting a rotational force from the rotational drive source to each of the first magnetic gear member and the second magnetic gear member;
A substrate processing apparatus according to claim 17.
前記転写機構は、前記転動体の回転軸線と前記回転マスクの回転軸線との間隔を調整する可動機構を備える請求項17に記載の基板処理装置。   The substrate processing apparatus according to claim 17, wherein the transfer mechanism includes a movable mechanism that adjusts an interval between a rotation axis of the rolling element and a rotation axis of the rotary mask. 前記転写機構は、前記回転マスクのマスクパターンの像を、前記転動体の円周面の一部で支持された前記基板に投影する投影光学系を備える請求項18に記載の基板処理装置。   The substrate processing apparatus according to claim 18, wherein the transfer mechanism includes a projection optical system that projects an image of a mask pattern of the rotating mask onto the substrate supported by a part of a circumferential surface of the rolling element.
JP2014515508A 2012-05-18 2013-01-17 Substrate processing equipment Active JP6123797B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261648956P 2012-05-18 2012-05-18
US61/648,956 2012-05-18
PCT/JP2013/050778 WO2013172048A1 (en) 2012-05-18 2013-01-17 Substrate processing apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017074303A Division JP6304423B2 (en) 2012-05-18 2017-04-04 Substrate processing equipment

Publications (2)

Publication Number Publication Date
JPWO2013172048A1 true JPWO2013172048A1 (en) 2016-01-12
JP6123797B2 JP6123797B2 (en) 2017-05-10

Family

ID=49583474

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2014515508A Active JP6123797B2 (en) 2012-05-18 2013-01-17 Substrate processing equipment
JP2017074303A Active JP6304423B2 (en) 2012-05-18 2017-04-04 Substrate processing equipment
JP2018034252A Active JP6531847B2 (en) 2012-05-18 2018-02-28 Exposure device
JP2019096890A Active JP6773174B2 (en) 2012-05-18 2019-05-23 Cylindrical mask unit

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2017074303A Active JP6304423B2 (en) 2012-05-18 2017-04-04 Substrate processing equipment
JP2018034252A Active JP6531847B2 (en) 2012-05-18 2018-02-28 Exposure device
JP2019096890A Active JP6773174B2 (en) 2012-05-18 2019-05-23 Cylindrical mask unit

Country Status (3)

Country Link
JP (4) JP6123797B2 (en)
TW (4) TWI733162B (en)
WO (1) WO2013172048A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733162B (en) * 2012-05-18 2021-07-11 日商尼康股份有限公司 Cylindrical mask unit

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019037U (en) * 1983-07-18 1985-02-08 株式会社リコー exposure equipment
JPH02293754A (en) * 1989-05-08 1990-12-04 Sumitomo Bakelite Co Ltd Continuous exposing device
JPH0442159A (en) * 1990-06-08 1992-02-12 Kato Hatsujo Kaisha Ltd Method and device for exposing of photoresist
JPH04150784A (en) * 1990-10-12 1992-05-25 Hishifusa Miura Magnetic force power apparatus
JP2001526953A (en) * 1997-12-22 2001-12-25 ユナキス・トレーディング・アクチェンゲゼルシャフト Vacuum processing equipment
JP2003041361A (en) * 2001-08-02 2003-02-13 Sony Corp Film forming apparatus
WO2008029917A1 (en) * 2006-09-08 2008-03-13 Nikon Corporation Mask, exposure apparatus and device manufacturing method
JP2008290812A (en) * 2007-05-22 2008-12-04 Shoei Koki:Kk Conveying device
JP2009026933A (en) * 2007-07-19 2009-02-05 Konica Minolta Holdings Inc Method of manufacturing electromagnetic wave shield film, and electromagnetic wave shield film
JP2009214381A (en) * 2008-03-10 2009-09-24 Fujifilm Corp Cylinder inner surface working method and rugged component manufacturing method
JP2009237305A (en) * 2008-03-27 2009-10-15 Mitsubishi Paper Mills Ltd Winding mechanism of mask pattern film and exposure apparatus
JP2009283694A (en) * 2008-05-22 2009-12-03 Nikon Corp Drive apparatus, stage apparatus, exposure apparatus and device manufacturing method
JP2011033907A (en) * 2009-08-04 2011-02-17 Nikon Corp Illuminating device, exposure device, illuminating method, exposure method, and method for manufacturing device
JP2011183588A (en) * 2010-03-05 2011-09-22 Seiko Epson Corp Stamp forming device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW556044B (en) * 2001-02-15 2003-10-01 Sipix Imaging Inc Process for roll-to-roll manufacture of a display by synchronized photolithographic exposure on a substrate web
JP4143866B2 (en) * 2006-01-30 2008-09-03 国際技術開発株式会社 Non-contact tape guide device
JP4984810B2 (en) * 2006-02-16 2012-07-25 株式会社ニコン Exposure method, exposure apparatus, and photomask
JP2008235470A (en) * 2007-03-19 2008-10-02 Nikon Corp Planar motor apparatus, stage apparatus, exposure apparatus, and device manufacturing method
JP5151949B2 (en) * 2008-12-10 2013-02-27 株式会社ニコン MOBILE DEVICE, MOBILE DRIVING METHOD, EXPOSURE APPARATUS, AND DEVICE MANUFACTURING METHOD
KR101948467B1 (en) * 2010-02-12 2019-02-14 가부시키가이샤 니콘 Substrate processing device and substrate processing method
JP2011221536A (en) * 2010-04-13 2011-11-04 Nikon Corp Mask moving device, exposure device, substrate processor and device manufacturing method
JP5724564B2 (en) * 2010-04-13 2015-05-27 株式会社ニコン Mask case, mask unit, exposure apparatus, substrate processing apparatus, and device manufacturing method
WO2012100120A2 (en) 2011-01-20 2012-07-26 Purdue Research Foundation (Prf) Synchronization of ion generation with cycling of a discontinuous atmospheric interface
TWI733162B (en) * 2012-05-18 2021-07-11 日商尼康股份有限公司 Cylindrical mask unit

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019037U (en) * 1983-07-18 1985-02-08 株式会社リコー exposure equipment
JPH02293754A (en) * 1989-05-08 1990-12-04 Sumitomo Bakelite Co Ltd Continuous exposing device
JPH0442159A (en) * 1990-06-08 1992-02-12 Kato Hatsujo Kaisha Ltd Method and device for exposing of photoresist
JPH04150784A (en) * 1990-10-12 1992-05-25 Hishifusa Miura Magnetic force power apparatus
JP2001526953A (en) * 1997-12-22 2001-12-25 ユナキス・トレーディング・アクチェンゲゼルシャフト Vacuum processing equipment
JP2003041361A (en) * 2001-08-02 2003-02-13 Sony Corp Film forming apparatus
WO2008029917A1 (en) * 2006-09-08 2008-03-13 Nikon Corporation Mask, exposure apparatus and device manufacturing method
JP2008290812A (en) * 2007-05-22 2008-12-04 Shoei Koki:Kk Conveying device
JP2009026933A (en) * 2007-07-19 2009-02-05 Konica Minolta Holdings Inc Method of manufacturing electromagnetic wave shield film, and electromagnetic wave shield film
JP2009214381A (en) * 2008-03-10 2009-09-24 Fujifilm Corp Cylinder inner surface working method and rugged component manufacturing method
JP2009237305A (en) * 2008-03-27 2009-10-15 Mitsubishi Paper Mills Ltd Winding mechanism of mask pattern film and exposure apparatus
JP2009283694A (en) * 2008-05-22 2009-12-03 Nikon Corp Drive apparatus, stage apparatus, exposure apparatus and device manufacturing method
JP2011033907A (en) * 2009-08-04 2011-02-17 Nikon Corp Illuminating device, exposure device, illuminating method, exposure method, and method for manufacturing device
JP2011183588A (en) * 2010-03-05 2011-09-22 Seiko Epson Corp Stamp forming device

Also Published As

Publication number Publication date
TW201348106A (en) 2013-12-01
TWI672258B (en) 2019-09-21
TWI611996B (en) 2018-01-21
JP6773174B2 (en) 2020-10-21
TWI733162B (en) 2021-07-11
TW201919974A (en) 2019-06-01
JP6531847B2 (en) 2019-06-19
TW201940399A (en) 2019-10-16
JP2018116289A (en) 2018-07-26
JP2017126084A (en) 2017-07-20
JP2019144596A (en) 2019-08-29
TWI653187B (en) 2019-03-11
JP6304423B2 (en) 2018-04-04
TW201808761A (en) 2018-03-16
JP6123797B2 (en) 2017-05-10
WO2013172048A1 (en) 2013-11-21

Similar Documents

Publication Publication Date Title
JP5556389B2 (en) Conveying method and apparatus, and exposure method and apparatus
JP6477932B2 (en) Substrate processing apparatus and pattern forming method
JP6292284B2 (en) Mask mounting apparatus and exposure apparatus
JP6304423B2 (en) Substrate processing equipment
JP6070697B2 (en) Mask unit and substrate processing apparatus
WO2013150898A1 (en) Mask moving device, mask holding device, exposure device, and substrate processing device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170320

R150 Certificate of patent or registration of utility model

Ref document number: 6123797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250