JPWO2013145835A1 - 受電装置、電気回路、および、給電装置 - Google Patents

受電装置、電気回路、および、給電装置 Download PDF

Info

Publication number
JPWO2013145835A1
JPWO2013145835A1 JP2014507471A JP2014507471A JPWO2013145835A1 JP WO2013145835 A1 JPWO2013145835 A1 JP WO2013145835A1 JP 2014507471 A JP2014507471 A JP 2014507471A JP 2014507471 A JP2014507471 A JP 2014507471A JP WO2013145835 A1 JPWO2013145835 A1 JP WO2013145835A1
Authority
JP
Japan
Prior art keywords
power receiving
coil
power
receiving device
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014507471A
Other languages
English (en)
Other versions
JP5907253B2 (ja
Inventor
有沢 繁
繁 有沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2014507471A priority Critical patent/JP5907253B2/ja
Publication of JPWO2013145835A1 publication Critical patent/JPWO2013145835A1/ja
Application granted granted Critical
Publication of JP5907253B2 publication Critical patent/JP5907253B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/10Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils
    • G01V3/101Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils by measuring the impedance of the search coil; by measuring features of a resonant circuit comprising the search coil
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

電気的に非接触で給電が行われる非接触給電システムにおいて、異物を正確に検出することができる受電装置を提供する。電気的に非接触で給電が行われる非接触給電システムにおける受電装置は、受電コイルと、測定コイルとを具備する。この非接触給電コイルにおいて、受電コイルは、電磁波により給電される電源を受電する。また、この非接触給電システムにおいて、受電コイルの近傍には、測定コイルが配置されている。受電コイルの近傍に配置された測定コイルは、電磁界を測定する。

Description

本技術は、受電装置、電気回路、および、給電装置に関する。詳しくは、電気的に非接触で給電を行う非接触給電システムにおける受電装置、電気回路、および、給電装置に関する。
従来、電気的に非接触で給電を行う非接触給電システムにおいて、給電装置と受電装置との間の磁界内に混入した物体を異物として検出する回路が設けられることがあった。これは、導体の異物が磁界内に混入すると、異物内に渦電流が生じ、その渦電流によるジュール熱の影響で異物が発熱する場合があるためである。異物の発熱量が大きいと、非接触給電システムにおける機器や筐体に損傷が生じるおそれがあった。特に急速充電においては給電装置が出力する磁界の強度が大きくなるため、異物の発熱量も大きくなり、異物の存在が問題になることが多かった。
異物を検出する回路として、例えば、受電側に誘導される電圧の振幅が基準値未満であるか否かにより、異物の有無を判断する回路が提案されている(例えば、特許文献1参照。)。異物がある場合には異物の渦電流により電力の損失が生じて送電効率が低下するため、受電側の電圧の振幅が基準値未満に低下した場合に、異物があると判断される。
特開2012−16125号公報
しかしながら、上述の従来技術では、異物の存在を正確に検出することができない場合があった。具体的には、上述の受電装置は、異物の混入以外の原因により、受電コイルの電圧の振幅が低下した場合に、異物を誤って検出してしまうことがあった。電圧の振幅の低下は、異物の混入のほか、給電装置の故障や経年劣化などによる給電電力や給電効率の低下などによっても生じるが、上述の受電装置は、給電電力量や送電効率を取得していなかった。また、上述の受電装置は、給電コイルおよび受電コイルの互いの位置がずれてしまうことを想定していなかった。このため、電圧の振幅が低下した場合に、その低下が異物の混入によるものであるのか、給電電力や送電効率の低下によるのであるものかを判断することができなかった。また、電圧の振幅が低下した場合に、給電コイルおよび受電コイルの互いの位置がずれてしまうことによるものであるのか、異物の混入によるものであるのかを判断することができなかった。この結果、異物の混入以外の要因により電圧の振幅が低下した場合に、異物が誤検出されることがあった。
本技術はこのような状況に鑑みて生み出されたものであり、異物を正確に検出することができる受電装置を提供することを目的とする。
本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、電磁波により給電される電源を受電する受電コイルと、上記受電コイルの近傍に配置された、電磁界を測定する測定コイルとを具備する受電装置である。これにより、電磁界が測定されるという作用をもたらす。
また、この第1の側面において、上記測定コイルは、上記受電コイルのコイル面を通過する上記電磁界の磁束と同様の磁束が通過するように配置されているコイルであってもよい。これにより、測定コイルのコイル面を通過すると同様の磁束が測定コイルを通過するという作用をもたらす。
また、この第1の側面において、上記測定コイルは、実質的に電流が流れないコイルであってもよい。これにより、測定コイルに実質的に電流が流れないという作用をもたらす。
また、この第1の側面において、上記測定コイルの巻数は、上記受電コイルの巻数と異なってもよい。これにより、測定コイルの巻数が受電コイルと異なるという作用をもたらす。
また、この第1の側面において、上記測定された電磁界により発生する上記測定コイルの誘導電圧を取得する電圧取得回路と、上記測定された電磁界により発生する上記受電コイルの誘導電流を取得する電流取得回路とをさらに具備してもよい。これにより、誘導電圧および誘導電流が取得されるという作用をもたらす。
また、この第1の側面において、上記誘導電圧および上記誘導電流から、上記電磁波による受電を妨げる異物の有無を検出する検出回路をさらに具備してもよい。これにより、異物の有無が検出されるという作用をもたらす。
また、この第1の側面において、上記異物の検出結果に応じて充電電流を制御する充電制御回路をさらに具備してもよい。これにより、異物の検出結果に応じて充電電流が制御されるという作用をもたらす。
また、この第1の側面において、上記検出回路は、上記誘導電圧および上記誘導電流から、上記受電コイルにおいて変動するパラメータを取得することにより、上記異物の有無を検出してもよい。これにより、受電コイルにおいて変動するパラメータを取得することにより、異物の有無が検出されるという作用をもたらす。
また、この第1の側面において、上記パラメータは、上記受電コイルのインピーダンス、または、上記受電コイルのインダクタンスであってもよい。これにより、受電コイルのインピーダンスまたは受電コイルのインダクタンスを取得することにより、異物の有無が検出されるという作用をもたらす。
また、この第1の側面において、上記誘導電圧および上記誘導電流に応じて、上記電源を給電する給電装置に対する信号を送信するための送信回路をさらに具備してもよい。これにより、誘導電圧および誘導電流に応じて、給電装置に対する信号が送信されるという作用をもたらす。
また、この第1の側面において、上記信号は、上記給電装置から給電される電磁波量を調整する信号であってもよい。これにより、電磁波量を調整する信号が送信されるという作用をもたらす。
また、この第1の側面において、上記受電コイルに接続された負荷の抵抗を取得する負荷抵抗取得回路と、上記誘導電圧と上記誘導電流と上記抵抗とを記憶する記憶部とをさらに具備してもよい。これにより、起電力の比率に基づいてパラメータが取得されるという作用をもたらす。
また、この第1の側面において、上記検出回路は、上記測定コイルの誘導電圧および上記受電コイルの誘導電流から、上記電磁波による受電を妨げる異物の有無を検出する検出回路をさらに具備してもよい。これにより、異物の有無が検出されるという作用をもたらす。
また、この第1の側面において、上記異物の検出結果に応じて充電電流を制御する充電制御回路をさらに具備してもよい。これにより、異物の検出結果に応じて充電電流が制御されるという作用をもたらす。
また、この第1の側面において、上記検出回路は、上記誘導電圧および上記誘導電流から、上記受電コイルにおいて変動するパラメータを取得することにより、上記異物の有無を検出してもよい。これにより、受電コイルにおいて変動するパラメータを取得することにより、異物の有無が検出されるという作用をもたらす。
また、この第1の側面において、上記パラメータは、上記受電コイルのインピーダンス、または、上記受電コイルのインダクタンスであってもよい。これにより、受電コイルのインピーダンスまたは受電コイルのインダクタンスを取得することにより、異物の有無が検出されるという作用をもたらす。
また、本技術の第2の側面は、電磁波により給電される電源を受電する受電装置に用いられる電気回路であって、上記受電装置は、上記電磁波により給電される電源を受電する受電コイルと、上記受電コイルの近傍に配置された測定コイルとを具備し、上記測定コイルに発生する誘導電圧を測定する電気回路である。これにより、測定コイルに発生する誘導電圧が測定されるという作用をもたらす。
また、この第2の側面において、上記測定コイルは、実質的に電流が流れないコイルであってもよい。これにより、測定コイルに実質的に電流が流れないという作用をもたらす。
また、本技術の第3の側面は、電磁波により給電される電源を受電する受電コイルと、前記受電コイルの近傍に配置された、実質的に電流が流れない測定コイルと、前記測定コイルに発生する電圧を測定する回路と、前記測定された電圧に応じて電磁波量を調整するための信号を送信するための送信回路とを備える受電装置により送信された前記信号に応じて、前記受電装置に電源を給電する給電コイルを具備する給電装置である。これにより、受電装置から送信された信号に応じて電源が受電装置に給電されるという作用をもたらす。
また、この第3の側面において、上記測定コイルは、実質的に電流が流れないコイルであってもよい。これにより、測定コイルに実質的に電流が流れないという作用をもたらす。
本技術によれば、受電装置が異物を正確に検出することができるという優れた効果を奏し得る。
第1の実施の形態における非接触給電システムの一構成例を示す全体図である。 第1の実施の形態における受電コイルにおけるパラメータの変化の原因を説明するための図である。 第1の実施の形態における非接触給電システムの等価回路の一例を示す回路図である。 第1の実施の形態における給電制御部の一構成例を示すブロック図である。 第1の実施の形態における充電制御部の一構成例を示すブロック図である。 第1の実施の形態における異物検出部の一構成例を示すブロック図である。 第1の実施の形態における誘導電圧の算出方法を説明するための図である。 第1の実施の形態における給電制御処理の一例を示すフローチャートである。 第1の実施の形態における充電制御処理の一例を示すフローチャートである。 第1の実施の形態における7mmの鉄の温度と受電コイルの抵抗値との関係の一例を示すグラフである。 第1の実施の形態における13mmの鉄の温度と受電コイルの抵抗値との関係の一例を示すグラフである。 第1の実施の形態における20mmの鉄の温度と受電コイルの抵抗値との関係の一例を示すグラフである。 第2の実施の形態における異物検出部の一構成例を示すブロック図である。 第2の実施の形態における充電制御処理の一例を示すフローチャートである。 第3の実施の形態における充電制御処理の一例を示すフローチャートである。 第3の実施の形態における給電制御処理の一例を示すフローチャートである。 第4の実施の形態における非接触給電システムの一構成例を示す全体図である。 第4の実施の形態における充電制御部の一構成例を示すブロック図である。 第4の実施の形態における起電力比率取得部の一構成例を示すブロック図である。 第4の実施の形態における監視誘導電圧および誘導電流と2次抵抗との関係の一例を示すグラフである。 第5の実施の形態における異物検出部の一構成例を示すブロック図である。
以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
1.第1の実施の形態(受電コイルの抵抗およびインダクタンスの変化量に基づいて異物を検知する例)
2.第2の実施の形態(受電コイルの抵抗の変化量に基づいて異物を検出する例)
3.第3の実施の形態(受電コイルの抵抗の変化量に基づいて異物の検出と制御量の算出とを行う例)
4.第4の実施の形態(起電力比率を求める例)
5.第5の実施の形態(負荷抵抗を変更して異物を検出する例)
<1.第1の実施の形態>
[非接触給電システムの構成例]
図1は、実施の形態における非接触給電システムの一構成例を示す全体図である。この非接触給電システムは、電気的に非接触の状態で装置に電力を供給するためのシステムである。非接触給電システムは、給電装置100および受電装置200を備える。
給電装置100は、電磁波により受電装置200に交流の電源を供給するものである。この給電装置100は、給電制御部110および給電コイル120を備える。
給電制御部110は、受電装置200に供給する電力量を制御するものである。この給電制御部110は、信号線128および129を介して給電コイル120に交流電力を供給するとともに、その電力量を制御する。また、給電制御部110は、受電装置200から、給電量を制御するための制御信号を受信する。給電制御部110は、制御信号を受信した場合には、その制御信号に従って給電量を制御する。この制御信号には、例えば、給電の停止を要求する制御信号が含まれる。
給電コイル120は、給電制御部110により電力が供給されると、アンペールの法則に従って電磁波を発生するものである。この電磁波を介して受電装置200に電源が供給される。
受電装置200は、電磁波により供給された電源を受電するものである。この受電装置200は、充電制御部210、受電コイル220、測定コイル230、および、異物検出部240を備える。
充電制御部210は、受電コイル220から配線228および229を介して受電した電源を二次電池などに充電するとともに、充電において電流や電圧を制御するものである。具体的には、充電制御部210は、受電した交流の電源を直流に変換する。そして、充電制御部210は、二次電池の特性や、充電時間などに基づいて電圧や電流を制御する。
また、充電制御部210は、受電コイル220における誘導電流I2を測定し、その測定値を異物検出部240に信号線219を介して供給する。誘導電流I2の単位として、例えば、アンペア(A)が用いられる。さらに、充電制御部210は、異物の検出における検出結果を異物検出部240から信号線249を介して受け取る。そして、充電制御部210は、その検出結果に基づいて制御信号を給電装置100に送信する。例えば、異物が検出された場合において、充電制御部210は、給電の停止を要求する制御信号を送信する。なお、充電制御部210は、異物が検出された場合に、電力量を一定量、減少させることを要求する制御信号を送信することもできる。これにより、異物検出時においても、継続して給電が行われる。なお、充電制御部210は、特許請求の範囲に記載の電気回路の一例である。
受電コイル220は、給電コイル120から電磁波が供給されると、電磁誘導の法則に従って、その電磁波の磁束の変化に応じた誘導電圧を発生するものである。
測定コイル230は、受電コイル220の近傍に配置された、電磁界を測定するためのコイルである。この測定コイル230は、測定コイル230を通過する電磁界の磁束が、ほぼ受電コイル220を通過する磁束となるように配置されている。具体的には、測定コイル230は、受電コイル220を囲むように配置されており、受電コイル220および測定コイル230のコイル面の面積は同程度となるように調整されている。コイル面の面積を同程度とするために、測定コイル230の巻き数を受電コイル220より小さくしてもよい。あるいは、測定コイル230の巻き線の直径を受電コイル220より小さくしてもよい。また、測定コイル230には、実質的に電流が流されていない。ここで、「実質的に電流が流されていない」とは、測定コイル230の端子が開放されており、電流が測定コイル230に流れないことを意味する。あるいは、開放されていなくても高い抵抗が配置されていることにより電圧が発生しても微量の電流しか流れないことを意味する。ただし、開放された端子には、信号線238および239を介して後述する異物検出部240が接続されている。測定コイル230の端子を開放しておくことにより、測定コイル230からの磁界が受電コイル220にほとんど作用しなくなる。これにより、受電装置200は、充電制御部210に影響を与えずに、異物を検出することができる。なお、測定コイル230の端子を開放するのでなく、端子間に高インピーダンスの抵抗を配置しておいてもよい。
ここで、ファラデーの電磁誘導の法則に基づく次の式1より、コイルに発生する誘導電圧Vは、磁束φの変化に比例する。この磁束の単位は、例えば、ウェーバー(wb)であり、誘導電圧Vの単位は、例えば、ボルト(V)である。
Figure 2013145835
式1において、Nは、コイルの巻き数である。tは、時間である。tの単位は、例えばセコンド(s)である。
測定コイル230を通過する磁束と受電コイル220とを通過する磁束とがほぼ一致する場合、式1より、給電コイル120からの磁界による測定コイル230の誘導電圧V31と、受電コイル220の誘導電圧V21との比率は、それらのコイルの巻き数比にほぼ一致する。したがって、巻き数比が既知であれば、測定コイル230の誘導電圧V31から、受電コイル220の誘導電圧V21が正確に求められる。ただし、測定コイル230の誘導電圧Vmonには、給電コイル120からの磁界による誘導電圧V31のほか、受電コイル220からの磁界による誘導電圧V32も含まれるため、V31を得るには、Vmonの測定のほか、V32の算出が必要となる。V32およびVmonから誘導電圧V21を算出する方法の詳細については、後述する。
なお、誘導電圧V21を直接測定することは困難である。これは、受電コイル220に充電制御部210などの負荷が接続されており、その影響により受電コイル220の端子電圧が、誘導電圧V21とならないからである。もちろん、負荷を切り離して、受電コイル220の端子を開放状態にすれば、誘導電圧V21に近い値のみは測定できるが、誘導電流I2との関係が分からない限り、受電コイル220のパラメータを計算することはできない。測定コイル230を設けることにより、その誘導電圧Vmonから、充電中において正確な誘導電圧V21が求められる。
異物検出部240は、測定コイル230の誘導電圧Vmonと受電コイル220の誘導電流I2とから、受電コイル220において変動するパラメータを推定することにより、電磁波の受電を妨げる異物の有無を検出するものである。異物により、受電コイル220において変動するパラメータとしては、インピーダンスにおける抵抗成分やリアクタンス成分などがある。異物検出部240は、異物の有無を検出した検出結果を充電制御部210に信号線249を介して出力する。
図2は、第1の実施の形態における受電コイル220におけるパラメータの変化の原因を説明するための図である。受電コイル220が発生させた電磁界において、金属などの導電性の異物300があった場合を想定する。電磁界が変化すると、この異物300において、電磁誘導効果により渦電流が発生する。この渦電流によるジュール熱により異物は発熱する。また、渦電流が発生させた磁界が受電コイル220に作用し、受電コイル220の等価回路における抵抗やリアクタンスを変化させる。したがって、受電装置200は、受電コイル220における抵抗やリアクタンスの変化量から、異物の有無を判断することができる。図2において、点線の矢印は、受電コイル220が発生させた磁界であり、実線の矢印は渦電流である。一点鎖線の矢印は、渦電流が発生させた磁界である。
図3は、第1の実施の形態における非接触給電システムの等価回路の一例を示す回路図である。給電コイル120は、1次インダクタンス(L1)121および1次キャパシタンス(C1)122を含む等価回路に置き換えられる。受電コイル220は、2次インダクタンス(L2)221、2次抵抗(r2)222、および、2次キャパシタンス(C2)223を含む等価回路に置き換えられる。充電制御部210は、負荷抵抗(R2)215を含む等価回路に置き換えられる。充電制御部210において、整流器は省略されている。測定コイル230は、インダクタンス(L3)231を含む等価回路に置き換えられる。前述したように異物が存在する場合には、受電コイル220の等価回路において、2次抵抗r2および2次インダクタンスL2のうちの少なくとも一方が変化するため、それらの変化量から異物が検出される。なお、この等価回路において、測定コイル230の抵抗と、給電コイル120の抵抗とは、省略されている。
この等価回路において、給電コイル120が発生させた磁界により受電コイル220の2次インダクタンス221において発生する誘導電圧をV21とする。また、給電コイル120が発生させた磁界により測定コイル230に発生する誘導電圧をV31とする。一方、受電コイル220が発生させた磁界により測定コイル230に発生する誘導電圧をV32とする。このため、測定コイル230における誘導電圧は、これらの誘導電圧V31およびV32を合成した電圧となる。異物検出部240は、この測定コイル230の誘導電圧を監視誘導電圧Vmonとして取得する。また、充電制御部210は、受電コイル220に流れる誘導電流I2を取得する。
[給電制御部の構成例]
図4は、第1の実施の形態における給電制御部110の一構成例を示すブロック図である。給電制御部110は、復調回路111および給電制御回路112を備える。
復調回路111は、受電装置200からの交流信号を復調して、その交流信号に重畳された制御信号を取り出すものである。復調回路111は、その制御信号を給電制御回路112に出力する。給電制御回路112は、制御信号に従って、受電装置200に供給する電力量を制御するものである。
[充電制御部の構成例]
図5は、第1の実施の形態における充電制御部210の一構成例を示すブロック図である。この充電制御部210は、変調回路211、整流器212、充電制御回路213、誘導電流取得回路214を備える。
変調回路211は、給電装置100への交流信号の振幅などを変調することにより制御信号を重畳するものである。変調回路211は、異物が検出されたことを通知する検出結果を異物検出部240から受け取ると、例えば、給電の停止を要求する制御信号を交流信号に重畳して給電装置100に送信する。なお、変調回路211は、特許請求の範囲に記載の送信回路の一例である。
整流器212は、交流電力を直流に変換して充電制御回路213に供給するものである。充電制御回路213は、変換された直流電力の電圧や電流を制御して、二次電池などを充電するものである。
誘導電流取得回路214は、受電コイル220に流れる誘導電流I2を取得するものである。誘導電流取得回路214は、誘導電流I2を測定し、必要に応じて測定値をA/D(Analog to Digital)変換して異物検出部240に供給する。なお、誘導電流取得回路214は、特許請求の範囲に記載の電流取得回路の一例である。また、誘導電流取得回路214は、交流の誘導電流を取得しているが、交流の誘導電流の代わりに、整流器212により変換された後の直流の誘導電流を取得してもよい。
[異物検出部の構成例]
図6は、第1の実施の形態における異物検出部240の一構成例を示すブロック図である。この異物検出部240は、監視誘導電圧取得回路241、2次抵抗変化量取得回路242、2次インダクタンス変化量取得回路243、および、異物検出回路244を備える。
監視誘導電圧取得回路241は、測定コイル230における監視誘導電圧Vmonを取得するものである。例えば、監視誘導電圧取得回路241は、測定コイル230の端子に接続された交流電圧計により監視誘導電圧Vmonを測定する。監視誘導電圧取得回路241は、監視誘導電圧Vmonの測定値を必要に応じてA/D変換して2次抵抗変化量取得回路242および2次インダクタンス変化量取得回路243に供給する。なお、監視誘導電圧取得回路241は、特許請求の範囲に記載の電圧取得回路の一例である。
2次抵抗変化量取得回路242は、監視誘導電圧Vmonおよび誘導電流I2の測定値から、受電コイル220における抵抗の変化量を2次抵抗変化量Δr2として取得するものである。2次抵抗変化量取得回路242は、例えば、次の式2を使用して、2次抵抗R2を算出する。
Figure 2013145835
式2において、「Re()」は、()内の複素数の実数部を返す関数である。V21は、給電コイル120が発生させた磁界の変化により受電コイル220に発生する交流の誘導電圧である。上部にドットを付した電圧Vまたは電流Iは、複素数で表記した交流電圧または交流電流を表している。R2は、充電制御部210における負荷の負荷抵抗である。R2の単位は、例えば、オーム(Ω)である。N2は、受電コイル220の巻き数であり、N3は、測定コイル230の巻き数である。式2の導出方法については後述する。
2次抵抗変化量取得回路242は、算出した2次抵抗r2から、次の式3を使用して、2次抵抗変化量Δr2を算出する。2次抵抗変化量取得回路242は、算出したΔr2を異物検出回路244に出力する。
Figure 2013145835
式3において、r0は、異物がない場合に測定された受電コイル220の本来の2次抵抗である。
2次インダクタンス変化量取得回路243は、監視誘導電圧Vmonおよび誘導電流I2の測定値から、受電コイル220の等価回路におけるインダクタンスの変化量を2次インダクタンス変化量ΔL2として取得するものである。2次インダクタンス変化量取得回路243は、例えば、次の式4を使用して、2次インダクタンスL2を算出する。
Figure 2013145835
式4において、「Im()」は、()内の複素数の虚数部を返す関数である。また、ωは角周波数であり、単位は、ラジアン/秒(rad/s)である。M32は、受電コイル220と測定コイル230との間の結合係数である。C2は、受電コイル220の等価回路におけるキャパシタンスであり、単位は、例えば、ファラド(F)である。式4の導出方法については後述する。
2次インダクタンス変化量取得回路243は、算出した2次インダクタンスL2から、次の式5を使用して、2次インダクタンス変化量ΔL2を算出する。2次抵抗変化量取得回路242は、算出したΔL2を異物検出回路244に出力する。
Figure 2013145835
この式5において、Lは、異物が存在しない場合に測定された受電コイル220本来のインダクタンスである。
異物検出回路244は、2次抵抗変化量Δr2と2次インダクタンス変化量ΔL2とから、異物の有無を検出するものである。例えば、異物検出回路244は、Δr2およびΔL2と閾値Th1およびTh2とを比較する。閾値Th1は、Δr2と比較するための閾値であり、閾値Th2は、ΔL2と比較するための閾値である。そして、異物検出回路244は、例えば、Δr2が閾値Th1以上である場合、または、ΔL2が閾値Th2以上である場合に、異物があると判断する。異物検出回路244は、異物の検出結果を充電制御部210に出力する。なお、異物検出回路244は、特許請求の範囲に記載の検出回路の一例である。
なお、異物検出部240は、Δr2が閾値Th1以上であり、かつ、ΔL2が閾値Th2以上である場合に、異物があると判断してもよい。また、異物検出部240は、第2の実施の形態において後述するように、ΔL2を取得せず、Δr2が閾値以上である場合に異物があると判断してもよい。あるいは、異物検出部240は、Δr2を取得せず、ΔL2が閾値以上である場合に異物があると判断してもよい。もしくは、異物検出部240は、Δr2とΔωL2との加算値が閾値以上である場合に異物があると判断してもよい。
ここで、供給電圧に対するΔr2およびΔL2の値は、異物のサイズや物性により、異なる値となる。このため、これらの値により、物質の種類が特定される。特に、Δrの増加に応じて異物の温度が上昇するため、温度がある値未満になるように、受電する電流を制御することにより、温度上昇が抑制される。
図7は、第1の実施の形態における誘導電圧の算出方法を説明するための図である。図7において、縦軸は、複素表現した交流電圧の虚数部であり、横軸は実数部である。図3に例示した等価回路より、測定コイル230には、給電コイル120が発生させた磁界の変化による誘導電圧V31と、受電コイル220が発生させた磁界の変化による誘導電圧V32とが発生する。したがって、監視誘導電圧Vmonは、次の式6から求められる。
Figure 2013145835
ここで、受電コイル220と測定コイル230との間の結合係数M32に基づいて、誘導電圧V32は、次の式7から求められる。V32の算出においては、異物検出前に予め測定しておいたM32の値が用いられる。なお、M32の値を求めるには、測定コイル230を実装した状態において、給電装置100からの給電を停止し、受電装置200内の電源から受電コイル220に電流を供給して、Vmonを測定すればよい。この場合、測定コイル230には、受電コイル220からの磁界による誘導電圧しか生じないため、VmonはV32と等しくなる。受電コイル220に供給した電流と、Vmon(=V32)との間の関係から、式7を使用して、M32が求められる。
Figure 2013145835
式6および式7から次の式8が得られる。
Figure 2013145835
また、受電コイル220の誘導電圧V21は、そのコイルの巻き数N2等から次の式9により求められる。
Figure 2013145835
式9において、μは受電コイル220の透磁率である。Hd21は、受電コイル220のコイル面に生じる磁界の強さであり、単位は、例えばアンペア/メートル(A/m)である。nは法線ベクトルである。
一方、測定コイル230の誘導電圧V31は、そのコイルの巻き数N3等から次の式10により求められる。
Figure 2013145835
式10において、Hd31は、測定コイル230のコイル面に生じる磁界の強さである。
前述したように、測定コイル230は、受電コイル220を囲むように配置され、かつ、測定コイル230の巻き数は、十分に小さい。このため、測定コイル230と受電コイル220との面積および磁界の強さがほぼ等しくなる。したがって、次の式11が成立する。
Figure 2013145835
この式11は、測定コイル230を通過する磁束と、受電コイル220を通過する磁束とがほぼ一致することを示している。
式9、式10および式11より、次の式12が得られる。
Figure 2013145835
式8および式12より、次の式13が得られる。
Figure 2013145835
また、図3に例示した等価回路から、次の式14が得られる。
Figure 2013145835
この式14に式13の右辺を代入して両辺の実数部を求めることにより、式2が導出される。また、式14に式13の右辺を代入して両辺の虚数部を求めることにより、式4が導出される。
[給電装置の動作例]
図8は、第1の実施の形態における給電制御処理の一例を示すフローチャートである。この給電制御処理は、例えば、給電装置100に電源が投入されたときに給電装置100により開始される。
給電装置100は、交流電源の給電を開始する(ステップS901)。給電装置100は、制御信号に基づいて給電停止の要求があったか否かを判断する(ステップS902)。給電停止の要求がない場合(ステップS902:No)、給電装置100は、ステップS902に戻り、給電を継続する。給電停止の要求があった場合(ステップS902:Yes)、給電装置100は、給電を停止する(ステップS903)。ステップS903の後、給電装置100は、給電制御処理を終了する。
[受電装置の動作例]
図9は、第1の実施の形態における充電制御処理の一例を示すフローチャートである。この給電制御処理は、例えば、給電装置100から電源供給が開始されたときに受電装置200により開始される。
受電装置200は、誘導電流I2および監視誘導電圧Vmonを測定する(ステップS951)。受電装置200は、誘導電流I2および監視誘導電圧Vmonを式2および式3に代入して2次抵抗変化量Δr2を算出する(ステップS952)。また、受電装置200は、誘導電流I2および監視誘導電圧Vmonを式4および式5に代入して2次インダクタンス変化量ΔL2を算出する(ステップS953)。
受電装置200は、Δr2が閾値Th1以上、または、ΔL2が閾値Th2以上であるか否かにより、異物を検出したか否かを判断する(ステップS954)。異物を検出しなかった場合には(ステップS954:No)、受電装置200は、ステップS951に戻る。異物を検出した場合には(ステップS954:Yes)、受電装置200は、給電停止を要求する制御信号を給電装置100に送信する(ステップS955)。ステップS955の後、受電装置200は、充電制御処理を終了する。なお、受電装置200は、異物検出時に、2次電池等への充電電流の供給を制御(停止など)してもよい。この場合、受電装置200は、異物検出時に制御信号を給電装置100へ送信しなくてもよい。また、受電装置200は、異物検出時に、充電電流の供給を制御するとともに、制御信号を給電装置100へ送信してもよい。
図10乃至図12は、第1の実施の形態における異物の温度とコイルの抵抗値との関係の一例を示すグラフである。図10乃至図12の縦軸は、異物の温度またはコイルの抵抗値であり、横軸は異物の位置である。温度の単位は度(℃)であり、抵抗値の単位はミリオーム(mΩ)である。位置の単位はミリメートル(mm)である。横軸において、コイルの中央を原点として、その中央を含み、コイル面に平行な所定の直線上の位置が異物の位置として測定される。また、図10乃至12において、丸印は、異物の温度の測定結果をプロットしたものであり、四角形の印は、受電コイル220の抵抗値の測定結果をプロットしたものである。図10乃至12において三角形の印は、給電コイル120の抵抗値の測定結果をプロットしたものである。
図10乃至図12に例示するように、コイルの中央から少し離した位置に異物が置かれると、異物の温度が高くなり、コイル(120および220)の抵抗値も上昇する。一方、中央付近に異物が置かれると、異物の温度が低くなり、コイルの抵抗値も低くなる。これは、前述したように、異物内の渦電流によりジュール熱が発生し、また、その渦電流が発生させた磁界の作用により、コイルの抵抗値などのパラメータが変化するためである。
なお、図10乃至図12において、位置が負数である場合の温度は測定されていない。これは、位置が負数である場合の温度変化は、位置が正数である場合と同様の変化であると推定されるためである。
このように、本技術の第1の実施の形態によれば、受電装置200は、受電コイル220の近傍に配置された測定コイル230により、電磁界を測定することができる。このため、受電装置200は、電磁界により発生する測定コイル230の誘導電圧と、受電コイル220の誘導電流とから、異物の存在によって変動するパラメータ(抵抗やインダクタンス)を取得することにより、異物の有無を検出することができる。受電コイル220の抵抗やインダクタンスの値は、異物が存在しない場合には給電効率に関りなく一定であるが、コイル間に異物が混入すると変動する。したがって、抵抗やインダクタンスの変化量から、異物が正確に検出される。
なお、第1の実施の形態における非接触給電システムは、給電コイル120および受電コイル220を使用して給電するとともに、制御信号を送受信している。しかし、非接触給電システムに、給電コイル120および受電コイル220とは別途に、制御信号を送受信するためのコイルを設けて、そのコイルを使用して、給電装置100および受電装置200が制御信号を送受信する構成としてもよい。
<2.第2の実施の形態>
[異物検出部の構成例]
図13は、第2の実施の形態における異物検出部240の一構成例を示すブロック図である。第2の実施の形態の異物検出部240は、ΔL2を取得せず、Δr2のみから異物の有無を検出する点において、第1の実施の形態と異なる。具体的には、第2の実施の形態の異物検出部240は、2次インダクタンス変化量取得回路243を備えない点において、第1の実施の形態と異なる。
第2の実施の形態の異物検出回路244は、2次抵抗変化量Δr2と、誘導電流I2とから、異物を検出する。例えば、異物検出回路244は、Δr2×I2×I2を算出し、その値が閾値Th1'以上である場合に、異物があると判断する。これは、渦電流によるジュール熱の熱量が、Δr2×I2×I2に比例するためである。
[受電装置の動作例]
図14は、第2の実施の形態における充電制御処理の一例を示すフローチャートである。第2の実施の形態の充電制御処理は、ステップS953およびS954の代わりにステップS961を実行する点において第1の実施の形態と異なる。
受電装置200は、2次抵抗変化量Δr2の算出後(ステップS952)、Δr2×I2×I2が閾値Th1'以上であるか否かにより異物を検出したか否かを判断する(ステップS961)。異物を検出しなかった場合には(ステップS961:No)、受電装置200は、ステップS951に戻る。異物を検出した場合には(ステップS961:Yes)、受電装置200は、給電停止を要求する制御信号を給電装置100に送信する(ステップS955)。
このように、本技術の第2の実施の形態によれば、受電装置200は、2次抵抗変化量Δr2と、誘導電流I2とから、発熱しうる異物を検出することができる。このため、異物検出時に給電量を制御することにより、非接触給電システムは、異物の発熱を防止することができる。
<3.第3の実施の形態>
[受電装置の動作例]
図15は、第3の実施の形態における充電制御処理の一例を示すフローチャートである。第3の実施の形態の充電制御処理は、異物の検出時に、給電量の制御量をさらに算出する点において第2の実施の形態と異なる。第3の実施の形態の異物検出部240の構成は、第2の実施の形態と同様である。ただし、第3の実施の形態の異物検出回路244は、異物の検出時に、給電量の制御量ΔWを算出する。また、第3の実施の形態の充電制御部210は、ΔWに応じて、充電電流を制御する。
ここで、異物の温度上昇量ΔTは、一般に、異物の熱抵抗Rtから次の式15により求められる。Rtの単位は、例えば、度/ワット(℃/W)である。
Figure 2013145835
式15において、ドットを付していないI2は、交流の誘導電流I2の絶対値であることを表わす。
式15において、機器の損傷などが生じない程度のΔTとなる場合における受電コイル220の誘導電流の値をI2Lとする。このI2Lを発生させるのに必要な供給電力W1Lは、給電効率をηとした場合、次の式16から算出される。
Figure 2013145835
式16において、W2Lは、誘導電流がI2Lである場合の受電電力である。
一方、異物が検出された場合における受電コイル220の誘導電流をI2Hとすると、このI2Hを発生させるのに必要な供給電力W1Hは、次の式17から算出される。
Figure 2013145835
式17において、W2Hは、誘導電流がI2Hである場合の受電電力である。
式16および式17に基づいて、制御量ΔWは、次の式18から算出される。なお、受電装置200が想定した給電効率が、実際の値と異なる場合や、給電効率自体を受電装置200が取得できない場合もある。そこで、受電装置200は、ΔWの代わりに、W2HとΔWとの比率(ΔW/W2H)や、W2H−W2Lの値を給電装置100へ送信してもよい。給電装置100は、受信した値を式16乃至18に基づいて、ΔWに換算して、給電量を制御すればよい。
Figure 2013145835
[充電装置の動作例]
図15に例示した充電制御処理は、ステップS955の代わりにステップS962乃至S964を実行する点において、第2の実施の形態と異なる。異物を検出した場合には(ステップS961:Yes)、受電装置200は、式18から、給電量の制御量ΔWを算出する(ステップS962)。受電装置200は、給電量をΔW低下させることを要求する制御信号を送信する(ステップS963)。受電装置200は、ΔWに応じて充電電流を制御する(ステップS964)。なお、受電装置200は、異物検出時に、充電電流の制御で対応することができるのであれば、給電装置100へ制御信号を送信する必要はない。
図16は、第3の実施の形態における給電制御処理の一例を示すフローチャートである。第3の実施の形態の給電制御処理は、ステップS911およびS912をさらに実行する点において、第1の実施の形態と異なる。
給電開始後(ステップS901)、給電装置100は、給電量の制御の要求があるか否かを制御信号に基づいて判断する(ステップS911)。制御の要求がある場合には(ステップS911:Yes)、給電装置100は、制御信号に従って給電量をΔW制御する(ステップS912)。そして、給電装置100は、ステップS911に戻る。
制御の要求がない場合には(ステップS911:No)、給電装置100は、ステップS902以降の処理を実行する。
このように、本技術の第3の実施の形態によれば、受電装置200は、異物を検出するとともに、電力量の制御量を求めることができる。これにより、異物検出時においても、非接触給電システムは、適切な電力量により給電を継続することができる。
<4.第4の実施の形態>
[非接触給電システムの構成例]
図17は、第4の実施の形態における非接触給電システムの一構成例を示す全体図である。第1の実施の形態においては、受電コイル220の誘導電圧V21と測定コイル230の誘導電圧V31との比率(以下、「起電力比率」と称する。)が、これらのコイルの巻き数比に一致するとの前提のもとに、インピーダンスを算出していた。しかし、実際には、製造時におけるコイルの特性のばらつきや、位置ずれなどにより、起電力比率k(=V21/V31)が巻き数比に一致しない場合があった。第4の実施の形態は、受電装置200が、異物検出の前に起電力比率kの正確な値を取得しておく点において第1の実施の形態と異なる。具体的には、第4の実施の形態の非接触給電システムは、起電力比率取得部260をさらに具備する点において、第1の実施の形態と異なる。
また、第4の実施の形態の充電制御部210は、入力電圧Vinおよび入力電流Iinと2次電流I2とを起電力比率取得部260に信号線218および219を介して出力する。入力電圧Vinは、充電制御回路213の入力端子の電圧である。入力電流Iinは、受電制御回路213を流れる電流である。また、第4の実施の形態の異物検出部240は、監視誘導電圧Vmonを起電力比率取得部260に信号線248を介して出力する。
起電力比率取得部260は、入力電圧Vinおよび入力電流Iinから負荷抵抗R2を算出する。起電力比率取得部260は、監視誘導電圧Vmon、2次電流I2、および、負荷抵抗R2からなる組を少なくとも2組取得する。起電力比率取得部260は、各組の値を、例えば、次の式19に代入して連立一次方程式を生成し、これを解くことにより、kの値を算出する。なお、起電力比率取得部260は、最小二乗法を使用して、最適なkの値を算出してもよい。また、kの算出の時期は、工場出荷時や修理時など、給電が開始される前であれば、任意である。
Figure 2013145835
式19は、式2の「N2/N3」を起電力比率kに置き換えたものである。式2は、kが「N2/N3」に一致することを前提とした式であるが、前述したように、kが「N2/N3」に一致しないことがあるため、式19に、各組のVmon、I2、および、R2を代入することにより、kの正確な値を算出することが望ましい。起電力比率取得部260は、算出した起電力比率kを異物検出部240に出力する。異物検出部240は、このkに基づいて式19を使用して、2次抵抗変化量Δr2を算出する。
なお、受電装置200内に起電力比率取得部260を設ける構成としているが、起電力比率取得部260を受電装置200の外部に設ける構成とすることもできる。また、第4の実施の形態の受電装置200は、起電力比率の取得時において異物検出部240を設けない構成とすることもできる。
[充電制御部の構成例]
図18は、第4の実施の形態における充電制御部210の一構成例を示すブロック図である。第4の実施の形態の充電制御回路213は、電圧制御回路251、電流制御回路252を備える。また、充電制御回路213には、二次電池253が接続される。
電圧制御回路251は、例えば、出力電圧を一定値に制御するシリーズレギュレータなどを使用して、直流電圧を制御するものである。また、電圧制御回路251は、例えば、シリーズレギュレータの入力端子の電圧および電流を入力電圧Vinおよび入力電流Iinとして測定して、その測定値を起電力比率取得部260に出力する。電流制御回路252は、二次電池253に電力を供給して充電するとともに充電電流を制御するものである。充電電流は、二次電池253の特性や、充電時間などに応じて制御される。二次電池253は、電流制御回路252から供給された電力を蓄えるものである。
なお、値が異なる複数のVinおよびIinを測定するために、変調回路211は、起電力比率の測定時に、供給電力量の変更を要求する制御信号を変調回路211に出力してもよい。これにより、複数のVinおよびIinが効率的に測定される。
[起電力比率取得部の構成例]
図19は、第4の実施の形態における起電力比率取得部260の一構成例を示すブロック図である。起電力比率取得部260は、負荷抵抗取得回路261、測定結果記憶部262および起電力比率取得回路263を備える。
負荷抵抗取得回路261は、負荷抵抗R2を取得するものである。負荷抵抗取得回路261は、充電制御部210から入力電圧Vinおよび入力電流Iinを受け取る。そして、負荷抵抗取得回路261は、予め取得しておいたシリーズレギュレータの出力電圧Voutと、入力電圧Vinおよび入力電流Iinとから、シリーズレギュレータの抵抗を算出する。負荷抵抗取得回路261は、シリーズレギュレータの抵抗と、予め取得しておいた、シリーズレギュレータ以外の負荷の抵抗とを加算して、負荷全体の負荷抵抗R2を算出する。負荷抵抗取得回路261は、算出した負荷抵抗R2を測定結果記憶部262に保存する。
測定結果記憶部262は、監視誘導電圧Vmon、2次電流I2、および、負荷抵抗R2からなる組を複数組、記憶するものである。起電力比率取得回路263は、測定値の各組と、式19とから、起電力比率kを取得するものである。起電力比率取得回路263は算出した起電力比率kを異物検出部240における2次抵抗変化量取得回路242に出力する。なお、測定結果記憶部262は、特許請求の範囲に記載の記憶部の一例である。
なお、起電力比率取得部260は、複数の入力電圧VinおよびIinから、複数の負荷抵抗R2を取得する構成としているが、複数の負荷抵抗R2を取得可能であれば、この構成に限定されない。例えば、充電制御部210に負荷を追加して接続する制御を行う接続制御部を受電装置200にさらに設けてもよい。この構成において、接続制御部は、作業者の操作などにより起電力比率の測定開始が指示されると、充電制御部210に直列または並列に負荷を接続するとともに、負荷を接続した旨を通知する信号を起電力比率取得部260に出力する。測定結果記憶部262には、予め、接続前後の負荷抵抗R2と、接続前のVmonおよびI2を記憶しておく。起電力比率取得部260は、負荷を接続した旨の通知を受けてから、接続後のVmonおよびI2を取得し、接続前後のVmon、I2およびR2から、kを算出する。
図20は、第4の実施の形態における監視誘導電圧Vmonおよび誘導電流I2と負荷抵抗R2との関係の一例を示すグラフである。図20において、縦軸は「R2」であり、横軸は「Re(Vmon/I2)」である。A点は、受電電力WAにおいて測定されたR2A、VmonA、および、I2Aに基づいてプロットした測定点であり、B点は、受電電力WBにおいて測定されたR2B、VmonB、および、I2Bに基づいてプロットした測定点である。A点およびB点を結ぶ直線の傾きが式19における起電力比率kに相当する。また、その直線の切片が2次抵抗r2に相当する。なお、測定誤差が生じる場合もあるため、各測定点から得られるR2xと、各測定点のVmonxおよびI2xから式19により得られるR2x'との差分dの二乗和Eが最小となるkを求める最小二乗法を使用して、kを求めてもよい。
このように、本技術の第4の実施の形態によれば、受電装置200は、Vmon、I2、および、R2から、起電力比率kの正確な値を取得することができる。これにより、異物がより正確に検出される。
<4.第5の実施の形態>
[異物検出部の構成例]
図21は、第5の実施の形態における異物検出部240の一構成例を示すブロック図である。第1の実施の形態においては、異物検出部240は、起電力比率kが一定であるとの前提でインピーダンスを算出していた。しかし、第4の実施の形態において説明したように、kは必ずしも一定であるとは限らない。第5の実施の形態の異物検出部240は、kを用いずに、Δrを算出する点において第1の実施の形態と異なる。第5の実施の形態の充電制御部210は第4の実施の形態と同様の構成であり、充電中に入力電圧Vinおよび入力電流Iinを測定し、それらの測定値を異物検出部240に出力する。また、第5の実施の形態の異物検出部240は、負荷抵抗取得回路245および測定結果記憶部246を備え、2次インダクタンス変化量取得回路243を備えない点において第1の実施の形態と異なる。
なお、値が異なる複数のVinおよびIinを測定するために、第5の実施の形態の充電制御部210は、充電中に、供給電力量の変更を要求する制御信号を給電回路100へ送信してもよい。これにより、複数のVinおよびIinが効率的に測定される。
負荷抵抗取得回路245の構成は、第4の実施の形態の負荷抵抗取得回路261と同様である。また、測定結果記憶部246の構成は、第4の実施の形態の測定結果記憶部262と同様である。第5の実施の形態の2次抵抗変化量取得回路242は、測定結果から、Δrを求める。図20において、説明したように、少なくとも2組の測定結果を式19に代入することにより、kが不明であっても、rが求められる。具体的には、図20に例示した直線の切片がrに等しい。2次抵抗変化量取得回路242は、求めたrから、式3を使用してΔrを算出して出力する。
このように、本技術の第5の実施の形態によれば、受電装置200は、Vmon、I2、および、R2から、正確なインピーダンスの変化量を取得することができる。これにより、kの値が変動しても、異物がより正確に検出される。
なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
また、上述の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(MiniDisc)、DVD(Digital Versatile Disk)、メモリカード、ブルーレイディスク(Blu-ray Disc(登録商標))等を用いることができる。
なお、本技術は以下のような構成もとることができる。
(1)電磁波により給電される電源を受電する受電コイルと、
前記受電コイルの近傍に配置された、電磁界を測定する測定コイルと
を具備する受電装置。
(2)前記測定コイルは、前記受電コイルのコイル面を通過する前記電磁界の磁束と同様の磁束が通過するように配置されているコイルである
前記(1)記載の受電装置。
(3)前記測定コイルは、実質的に電流が流れないコイルである
前記(2)記載の受電装置。
(4)前記測定コイルの巻数は、前記受電コイルの巻数と異なる
前記(3)のいずれかに記載の受電装置。
(5)前記測定された電磁界により発生する前記測定コイルの誘導電圧を取得する電圧取得回路と、
前記測定された電磁界により発生する前記受電コイルの誘導電流を取得する電流取得回路と
をさらに具備する
前記(1)乃至(4)のいずれかに記載の受電装置。
(6)前記誘導電圧および前記誘導電流から、前記電磁波による受電を妨げる異物の有無を検出する検出回路をさらに具備する前記(5)に記載の受電装置。
(7)前記異物の検出結果に応じて充電電流を制御する充電制御回路をさらに具備する前記(6)記載の受電装置。
(8)前記検出回路は、前記誘導電圧および前記誘導電流から、前記受電コイルにおいて変動するパラメータを取得することにより、前記異物の有無を検出する
前記(6)記載の受電装置。
(10)前記誘導電圧および前記誘導電流に応じて、前記電源を給電する給電装置に対する信号を送信するための送信回路をさらに具備する
前記5記載の受電装置。
(11)前記信号は、前記給電装置から給電される電磁波量を調整する信号である
前記10記載の受電装置。
(12)前記受電コイルに接続された負荷の抵抗を取得する負荷抵抗取得回路と、
前記誘導電圧と前記誘導電流と前記抵抗とを記憶する記憶部と
をさらに具備する前記(1)乃至(11)記載の受電装置。
(13)前記誘導電圧および前記誘導電流から、前記電磁波による受電を妨げる異物の有無を検出する検出回路をさらに具備する前記(12)記載の受電装置。
(14)前記異物の検出結果に応じて充電電流を制御する充電制御回路をさらに具備する前記(13)記載の受電装置。
(15)前記検出回路は、前記測定コイルの誘導電圧および前記受電コイルの誘導電流から、前記受電コイルにおいて変動するパラメータを取得することにより、前記異物の有無を検出する
前記(13)または(14)記載の受電装置。
(16)前記パラメータは、前記受電コイルのインピーダンス、または、前記受電コイルのインダクタンスである
前記(15)記載の受電装置。
(17)電磁波により給電される電源を受電する受電装置に用いられる電気回路であって、
前記受電装置は、
前記電磁波により給電される電源を受電する受電コイルと、
前記受電コイルの近傍に配置された測定コイルと
を具備し、
前記測定コイルに発生する誘導電圧を測定する電気回路。
(18)前記測定コイルは、実質的に電流が流れないコイルである
前記(17)記載の受電装置。
(19)電磁波により給電される電源を受電する受電コイルと、
前記受電コイルの近傍に配置された、実質的に電流が流れない測定コイルと、
前記測定コイルに発生する電圧を測定する回路と、
前記測定された電圧に応じて電磁波量を調整するための信号を送信するための送信回路とを備える受電装置により送信された前記信号に応じて、前記受電装置に電源を給電する給電コイルを具備する給電装置。
(20)前記測定コイルは、実質的に電流が流れないコイルである
前記(19)記載の受電装置。
100 給電装置
110 給電制御部
111 復調回路
112 給電制御回路
120 給電コイル
121 1次インダクタンス
122 1次キャパシタンス
200 受電装置
210 充電制御部
211 変調回路
212 整流器
213 充電制御回路
214 誘導電流取得回路
215 負荷抵抗
220 受電コイル
221 2次インダクタンス
215 2次キャパシタンス
230 測定コイル
231 インダクタンス
240 異物検出部
241 監視誘導電圧取得回路
242 2次抵抗変化量取得回路
243 2次インダクタンス変化量取得回路
244 異物検出回路
245 負荷抵抗取得回路
246 測定結果記憶部
251 電圧制御回路
252 電流制御回路
253 二次電池
260 起電力比率取得部
261 負荷抵抗取得回路
262 測定結果記憶部
263 起電力比率取得回路
300 異物

Claims (20)

  1. 電磁波により給電される電源を受電する受電コイルと、
    前記受電コイルの近傍に配置された、電磁界を測定する測定コイルと
    を具備する受電装置。
  2. 前記測定コイルは、前記受電コイルのコイル面を通過する前記電磁界の磁束と同様の磁束が通過するように配置されているコイルである
    請求項1記載の受電装置。
  3. 前記測定コイルは、実質的に電流が流れないコイルである
    請求項2記載の受電装置。
  4. 前記測定コイルの巻数は、前記受電コイルの巻数と異なる
    請求項3記載の受電装置。
  5. 前記測定された電磁界により発生する前記測定コイルの誘導電圧を取得する電圧取得回路と、
    前記測定された電磁界により発生する前記受電コイルの誘導電流を取得する電流取得回路と
    をさらに具備する
    請求項1記載の受電装置。
  6. 前記誘導電圧および前記誘導電流から、前記電磁波による受電を妨げる異物の有無を検出する検出回路をさらに具備する請求項5記載の受電装置。
  7. 前記異物の検出結果に応じて充電電流を制御する充電制御回路をさらに具備する請求項6記載の受電装置。
  8. 前記検出回路は、前記誘導電圧および前記誘導電流から、前記受電コイルにおいて変動するパラメータを取得することにより、前記異物の有無を検出する
    請求項6記載の受電装置。
  9. 前記パラメータは、前記受電コイルのインピーダンス、または、前記受電コイルのインダクタンスである
    請求項8記載の受電装置。
  10. 前記誘導電圧および前記誘導電流に応じて、前記電源を給電する給電装置に対する信号を送信するための送信回路をさらに具備する
    請求項5記載の受電装置。
  11. 前記信号は、前記給電装置から給電される電磁波量を調整する信号である
    請求項10記載の受電装置。
  12. 前記受電コイルに接続された負荷の抵抗を取得する負荷抵抗取得回路と、
    前記誘導電圧と前記誘導電流と前記抵抗とを記憶する記憶部と
    をさらに具備する請求項1記載の受電装置。
  13. 前記誘導電圧および前記誘導電流から、前記電磁波による受電を妨げる異物の有無を検出する検出回路をさらに具備する請求項12記載の受電装置。
  14. 前記異物の検出結果に応じて充電電流を制御する充電制御回路をさらに具備する請求項13記載の受電装置。
  15. 前記検出回路は、前記測定コイルの誘導電圧および前記受電コイルの誘導電流から、前記受電コイルにおいて変動するパラメータを取得することにより、前記異物の有無を検出する
    請求項13記載の受電装置。
  16. 前記パラメータは、前記受電コイルのインピーダンス、または、前記受電コイルのインダクタンスである
    請求項15記載の受電装置。
  17. 電磁波により給電される電源を受電する受電装置に用いられる電気回路であって、
    前記受電装置は、
    前記電磁波により給電される電源を受電する受電コイルと、
    前記受電コイルの近傍に配置された測定コイルと
    を具備し、
    前記測定コイルに発生する誘導電圧を測定する電気回路。
  18. 前記測定コイルは、実質的に電流が流れないコイルである
    請求項17記載の受電装置。
  19. 電磁波により給電される電源を受電する受電コイルと、
    前記受電コイルの近傍に配置された、実質的に電流が流れない測定コイルと、
    前記測定コイルに発生する電圧を測定する回路と、
    前記測定された電圧に応じて電磁波量を調整するための信号を送信するための送信回路とを備える受電装置により送信された前記信号に応じて、前記受電装置に電源を給電する給電コイルを具備する給電装置。
  20. 前記測定コイルは、実質的に電流が流れないコイルである
    請求項19記載の受電装置。
JP2014507471A 2012-03-28 2013-01-28 受電装置、電気回路、および、給電装置 Active JP5907253B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014507471A JP5907253B2 (ja) 2012-03-28 2013-01-28 受電装置、電気回路、および、給電装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012074537 2012-03-28
JP2012074537 2012-03-28
PCT/JP2013/051719 WO2013145835A1 (ja) 2012-03-28 2013-01-28 受電装置、電気回路、および、給電装置
JP2014507471A JP5907253B2 (ja) 2012-03-28 2013-01-28 受電装置、電気回路、および、給電装置

Publications (2)

Publication Number Publication Date
JPWO2013145835A1 true JPWO2013145835A1 (ja) 2015-12-10
JP5907253B2 JP5907253B2 (ja) 2016-04-26

Family

ID=49259121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014507471A Active JP5907253B2 (ja) 2012-03-28 2013-01-28 受電装置、電気回路、および、給電装置

Country Status (5)

Country Link
US (3) US9709690B2 (ja)
EP (2) EP2833511B1 (ja)
JP (1) JP5907253B2 (ja)
CN (1) CN104247207B (ja)
WO (1) WO2013145835A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017135838A (ja) * 2016-01-27 2017-08-03 パナソニックIpマネジメント株式会社 非接触給電システム

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5966538B2 (ja) * 2012-04-10 2016-08-10 ソニー株式会社 受電装置、受電装置の制御方法、および、給電システム
JP5929493B2 (ja) 2012-05-17 2016-06-08 ソニー株式会社 受電装置、および、給電システム
US9935501B2 (en) 2015-04-10 2018-04-03 Samsung Electro-Mechanics Co., Ltd. Wireless power transmitting and receiving device, apparatus including the same, and method
CN106160268B (zh) * 2015-05-15 2020-11-06 松下知识产权经营株式会社 异物检测装置、无线送电装置以及无线电力传送系统
JP6365773B2 (ja) * 2015-05-28 2018-08-01 株式会社村田製作所 インダクタモジュール及び電力伝送システム
US9899881B2 (en) * 2015-06-08 2018-02-20 Samsung Electro-Mechanics Co., Ltd. Wireless power transmitting device
CN105591408B (zh) * 2016-03-03 2018-11-16 清华大学深圳研究生院 一种输电线路取能装置
CN106226824B (zh) * 2016-07-28 2019-07-12 山东大学 一种用于铁路隧道的瞬变电磁线框及使用方法
EP3553918B1 (en) 2018-04-09 2020-11-25 NXP USA, Inc. A power transmitter unit
EP3553917B1 (en) * 2018-04-09 2021-09-01 NXP USA, Inc. A power transmitter unit
JP7047782B2 (ja) * 2019-01-11 2022-04-05 オムロン株式会社 送電装置の制御装置、送電装置、及び非接触電力伝送システム
CN109781026B (zh) * 2019-02-13 2021-12-03 业成科技(成都)有限公司 光学模组的安全监控方法及其应用于三维感测器
CN110146927B (zh) * 2019-05-16 2022-02-15 京东方科技集团股份有限公司 充电系统、异物检测方法及组件、充电控制方法及装置
DE102020118575B4 (de) * 2020-07-14 2022-03-03 Infineon Technologies Ag Nahfeldkommunikationsvorrichtung, elektronische Vorrichtung zum Bereitstellen einer Substanz, Verfahren zum Betreiben einer Nahfeldkommunikationsvorrichtung und Verfahren zum Bereitstellen einer Substanz
EP4141608A1 (en) 2021-08-31 2023-03-01 Danfoss A/S Valve arrangement and method for operating a valve

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272134A (ja) * 2001-03-08 2002-09-20 Mitsubishi Heavy Ind Ltd 高周波電力の非接触給電装置及び非接触給電方法
JP2005202881A (ja) * 2004-01-19 2005-07-28 Fuji Photo Film Co Ltd Rfidタグの検査装置
JP2010252498A (ja) * 2009-04-14 2010-11-04 Fujitsu Ten Ltd 無線電力伝送装置および無線電力伝送方法
JP2011182624A (ja) * 2010-02-08 2011-09-15 Showa Aircraft Ind Co Ltd 給電指示の伝送装置
JP2011244531A (ja) * 2010-05-14 2011-12-01 Toyota Industries Corp 共鳴型非接触給電システム
WO2012002063A1 (ja) * 2010-06-30 2012-01-05 パナソニック電工 株式会社 非接触給電システム及び非接触給電システムの金属異物検出装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1080944C (zh) * 1995-05-29 2002-03-13 松下电器产业株式会社 电源装置
JP4599751B2 (ja) 2000-05-12 2010-12-15 株式会社デンソー セラミックハニカム構造体の製造方法
US6849222B2 (en) 2000-05-12 2005-02-01 Denso Corporation Method of manufacturing ceramic honeycomb structure and device for forming through holes
JP2005059512A (ja) 2003-08-19 2005-03-10 Ngk Insulators Ltd 目封止ハニカム構造体の製造方法、これに用いる目封止部形成用マスク、及びその製造方法
JP2006230129A (ja) 2005-02-18 2006-08-31 Nanao Corp 非接触電力供給装置
US20070114700A1 (en) 2005-11-22 2007-05-24 Andrewlavage Edward F Jr Apparatus, system and method for manufacturing a plugging mask for a honeycomb substrate
CN101069980A (zh) 2006-03-23 2007-11-14 日本碍子株式会社 填塞蜂窝状结构的制造方法和填塞蜂窝状结构
JP2007283755A (ja) 2006-03-23 2007-11-01 Ngk Insulators Ltd 目封止ハニカム構造体の製造方法及び目封止ハニカム構造体
US20090160261A1 (en) 2007-12-19 2009-06-25 Nokia Corporation Wireless energy transfer
DE102009033237A1 (de) * 2009-07-14 2011-01-20 Conductix-Wampfler Ag Vorrichtung zur induktiven Übertragung elektrischer Energie
US8704513B2 (en) * 2011-02-16 2014-04-22 Olympus Ndt Inc. Shielded eddy current coils and methods for forming same on printed circuit boards

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272134A (ja) * 2001-03-08 2002-09-20 Mitsubishi Heavy Ind Ltd 高周波電力の非接触給電装置及び非接触給電方法
JP2005202881A (ja) * 2004-01-19 2005-07-28 Fuji Photo Film Co Ltd Rfidタグの検査装置
JP2010252498A (ja) * 2009-04-14 2010-11-04 Fujitsu Ten Ltd 無線電力伝送装置および無線電力伝送方法
JP2011182624A (ja) * 2010-02-08 2011-09-15 Showa Aircraft Ind Co Ltd 給電指示の伝送装置
JP2011244531A (ja) * 2010-05-14 2011-12-01 Toyota Industries Corp 共鳴型非接触給電システム
WO2012002063A1 (ja) * 2010-06-30 2012-01-05 パナソニック電工 株式会社 非接触給電システム及び非接触給電システムの金属異物検出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017135838A (ja) * 2016-01-27 2017-08-03 パナソニックIpマネジメント株式会社 非接触給電システム

Also Published As

Publication number Publication date
WO2013145835A1 (ja) 2013-10-03
JP5907253B2 (ja) 2016-04-26
EP3486691A1 (en) 2019-05-22
US20190341815A1 (en) 2019-11-07
US11101702B2 (en) 2021-08-24
US20170269251A1 (en) 2017-09-21
EP3486691B1 (en) 2021-11-10
US10381882B2 (en) 2019-08-13
EP2833511A4 (en) 2015-12-23
CN104247207A (zh) 2014-12-24
US9709690B2 (en) 2017-07-18
US20150028689A1 (en) 2015-01-29
EP2833511B1 (en) 2019-01-02
CN104247207B (zh) 2017-03-01
EP2833511A1 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5907253B2 (ja) 受電装置、電気回路、および、給電装置
JP5966538B2 (ja) 受電装置、受電装置の制御方法、および、給電システム
JP5929493B2 (ja) 受電装置、および、給電システム
JP5884610B2 (ja) 受電装置、受電装置の制御方法、および、給電システム
JP5838768B2 (ja) 検知装置、受電装置、非接触電力伝送システム及び検知方法
JP2014225961A (ja) 検知装置、給電システム、および、検知装置の制御方法
WO2012157374A1 (ja) 電磁結合状態検知回路、送電装置、非接触電力伝送システム及び電磁結合状態検知方法
JP6090172B2 (ja) 無接点充電方法
TWI542112B (zh) 電子設備的無線充電方法及相關裝置
JP2017535235A (ja) 誘導充電装置のための異物検知方法および誘導充電装置
TW201729511A (zh) 用於操作一監視一感應式能量傳送裝置的監視裝置的方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R151 Written notification of patent or utility model registration

Ref document number: 5907253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250