JPWO2013005316A1 - 画像処理装置、画像処理方法及び画像処理プログラム - Google Patents

画像処理装置、画像処理方法及び画像処理プログラム Download PDF

Info

Publication number
JPWO2013005316A1
JPWO2013005316A1 JP2012557741A JP2012557741A JPWO2013005316A1 JP WO2013005316 A1 JPWO2013005316 A1 JP WO2013005316A1 JP 2012557741 A JP2012557741 A JP 2012557741A JP 2012557741 A JP2012557741 A JP 2012557741A JP WO2013005316 A1 JPWO2013005316 A1 JP WO2013005316A1
Authority
JP
Japan
Prior art keywords
image
motion vector
distortion component
target image
image processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012557741A
Other languages
English (en)
Other versions
JP5531194B2 (ja
Inventor
幸生 鴨志田
幸生 鴨志田
淳 入海
淳 入海
兼介 羽深
兼介 羽深
平賀 督基
督基 平賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morpho Inc
Original Assignee
Morpho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morpho Inc filed Critical Morpho Inc
Application granted granted Critical
Publication of JP5531194B2 publication Critical patent/JP5531194B2/ja
Publication of JPWO2013005316A1 publication Critical patent/JPWO2013005316A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/683Vibration or motion blur correction performed by a processor, e.g. controlling the readout of an image memory
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/689Motion occurring during a rolling shutter mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

画像処理装置1は、画像入力部10、動きベクトル取得部11及び歪み成分推定部12を備える。画像入力部10は、処理対象の画像である対象画像を入力する。動きベクトル取得部11は、対象画像を撮像した撮像装置が当該対象画像の撮像時において当該対象画像に描画された被写体に対して相対的に移動したことによって発生する動きベクトルを取得する。歪み成分推定部12は、動きベクトルに基づいて、対象画像のローリングシャッタ歪み成分を推定する。

Description

本発明は、画像処理装置、画像処理方法及び画像処理プログラムに関するものである。
従来、画像処理装置として、CMOS(Complementary Metal Oxide Semiconductor)を用いてフォーカルプレーンシャッタ方式で撮像された画像を処理するものが知られている(特許文献1参照)。上述した方式では、フレーム画像のデータ転送が1ラインごとに行われる。このため、フレーム画像内における撮像タイミングがラインごとに僅かに異なるタイミングとなる。このような撮像タイミングのズレに起因して、いわゆるローリングシャッタ歪み(フォーカルプレーン歪み)が発生する。
特許文献1記載の画像処理装置では、カメラモーション成分及びローリングシャッタ歪み成分等を用いて、画面全体の動きを示すグローバル動きベクトルをモデル化している。そして、この画像処理装置は、グローバル動きベクトルを検出し、検出されたグローバル動きベクトルから上記モデルを用いて各成分を分離し、カメラモーション成分又はローリングシャッタ歪み成分を算出する。
特開2010−193302号公報
しかしながら、特許文献1記載の画像処理装置では、ローリングシャッタ歪み成分を正確に算出できない場合がある。例えば、撮像シーン内に異なる動きの複数の被写体が存在する場合、当該複数の被写体の動きがグローバル動きベクトルへ反映されることがある。この場合、グローバル動きベクトルは特許文献1記載のモデルと誤差が生じるため、得られるローリングシャッタ歪み成分に誤差が発生する。さらに、特許文献1記載のモデルでは、ローリングシャッタ歪みの拡縮を表す成分、及び平行四辺形の歪み度合いを表す成分を算出するために、それぞれグローバル動きベクトルの複数の成分を必要とする。このため、ローリングシャッタ歪み成分の算出において誤差が生じやすい。
よって、当技術分野においては、ローリングシャッタ歪み成分を安定して正確に推定することができる画像処理装置、画像処理方法及び画像処理プログラムが望まれている。
すなわち、本発明の一側面に係る画像処理装置は、画像を処理する装置である。画像処理装置は、画像入力部、動きベクトル取得部及び歪み成分推定部を備える。画像入力部は、処理対象の画像である対象画像を入力する。動きベクトル取得部は、対象画像を撮像した撮像装置が当該対象画像の撮像時において当該対象画像に描画された被写体に対して相対的に移動したことによって発生する動きベクトルを取得する。歪み成分推定部は、動きベクトルに基づいて、対象画像のローリングシャッタ歪み成分を推定する。
この画像処理装置によれば、撮像装置の動きによって発生する動きベクトルを取得し、動きベクトルに基づいて対象画像のローリングシャッタ歪み成分を推定する。撮像装置の動きによって発生する動きベクトルは、画面全体の動きを示すグローバル動きベクトルに比べて自由度が制限されている。このため、動きベクトルは、グローバル動きベクトルに比べて、異なる動きの被写体が混在する撮像シーンであっても被写体の誤差を排除し易く安定して正確に取得することができる。よって、撮像装置の動きによって発生する動きベクトルを用いることにより、ローリングシャッタ歪み成分を安定して正確に推定することができる。
ここで、前記歪み成分推定部は、前記動きベクトルの平行移動成分に基づいて、前記対象画像のローリングシャッタ歪み成分を推定してもよい。このように構成することで、動きベクトルの中でも特に安定して正確に取得できる平行移動成分を用いることで、ローリングシャッタ歪み成分を一層安定して正確に推定することができる。
前記歪み成分推定部は、前記動きベクトル、及び前記撮像装置の撮像条件の設定値に基づいて、前記ローリングシャッタ歪み成分を推定してもよい。このように構成することで、撮像装置固有の要因や撮像の環境情報を勘案してローリングシャッタ歪み成分を推定することができる。このため、正確にローリングシャッタ歪み成分を推定することが可能となる。
前記動きベクトル取得部は、前記対象画像の直前に撮像された画像である直前画像の直前に撮像された画像である直前画像を格納する記録部を参照可能に構成され、記録部に格納された直前画像及び対象画像に基づいて動きベクトルを取得してもよい。あるいは、前記動きベクトル取得部は、前記撮像装置に備わるジャイロセンサによって検出された動きベクトルを取得してもよい。
さらに、前記ローリングシャッタ歪み成分に基づいて、前記対象画像を補正する補正部を備えてもよい。このように構成することで、歪みを低減させた状態で被写体を撮像することができる。
また、前記補正部は、前記ローリングシャッタ歪み成分の直前の履歴を格納する記録部を参照可能に構成され、前記記録部に格納された直前の前記ローリングシャッタ歪み成分と前記対象画像における前記ローリングシャッタ歪み成分との差分が所定値より大きい場合には、前記差分が小さくなるように前記対象画像における前記ローリングシャッタ歪み成分を調整してもよい。このように構成することで、ローリングシャッタ歪み成分の所定値より大きい変化を検出し、その変化を抑制するようにローリングシャッタ歪み成分を調整することができる。よって、例えば、画面に被写体が進入・退出するシーンであっても、画面が不自然に補正されることを回避することが可能となる。
前記動きベクトル取得部は、前記動きベクトルを格納する記録部を参照可能に構成され、前記記録部に格納された直前の前記動きベクトルと前記対象画像における前記動きベクトルとの差分が所定値より大きい場合には、前記差分が小さくなるように前記対象画像における前記動きベクトルを調整してもよい。このように構成することで、動きベクトルの所定値より大きい変化を検出し、その変化を抑制するように動きベクトルを調整することができる。よって、例えば、画面に被写体が進入・退出するシーンであっても、画面が不自然に補正されることを回避することが可能となる。
また、本発明の他の側面に係る画像処理方法は、画像を処理する方法である。画像処理方法は、画像入力ステップ、動きベクトル取得ステップ及び歪み成分推定ステップを備える。画像入力ステップでは、処理対象の前記画像である対象画像を入力する。動きベクトル取得ステップでは、対象画像を撮像した撮像装置が当該対象画像の撮像時において当該対象画像に描画された被写体に対して相対的に移動したことによって発生する動きベクトルを取得する。歪み成分推定ステップでは、動きベクトルに基づいて、対象画像のローリングシャッタ歪み成分を推定する。
また、本発明の他の側面に係る画像処理プログラムは、画像を処理するようにコンピュータを動作させるプログラムである。画像処理プログラムは、コンピュータを、画像入力部、動きベクトル取得部及び歪み成分推定部として動作させる。画像入力部は、処理対象の画像である対象画像を入力する。動きベクトル取得部は、対象画像を撮像した撮像装置が当該対象画像の撮像時において当該対象画像に描画された被写体に対して相対的に移動したことによって発生する動きベクトルを取得する。歪み成分推定部は、動きベクトルに基づいて、対象画像のローリングシャッタ歪み成分を推定する。
本発明の他の側面に係る画像処理方法及び画像処理プログラムによれば、上述した画像処理装置と同様の効果を奏する。
本発明の種々の側面及び実施形態によれば、ローリングシャッタ歪み成分を安定して正確に推定することができる画像処理装置、画像処理方法及び画像処理プログラムが提供される。
第1実施形態に係る画像処理装置を搭載した携帯端末の機能ブロック図である。 図1の画像処理装置が搭載される携帯端末のハードウェア構成図である。 連続する2枚のフレーム画像の座標系を説明する概要図である。 ローリングシャッタ歪みを説明する概要図である。(A)は、X方向のライン走査の走査順がY方向であるときに、カメラ操作がX方向である場合の被写体の歪みを示す。(B)は、X方向のライン走査の走査順がY方向であるときに、カメラ操作がY方向である場合の被写体の歪みを示す。(C)は、Y方向のライン走査の走査順がX方向であるときに、カメラ操作がX方向である場合の被写体の歪みを示す。(D)は、Y方向のライン走査の走査順がX方向であるときに、カメラ操作がY方向である場合の被写体の歪みを示す。 歪み係数の算出方法を説明する概要図である。 動フレーム画像と歪み計数との関係を示すグラフである。 動き行列成分と移動量との関係を示すグラフである。 図1の画像処理装置の動作を示すフローチャートである。 第1実施形態に係る他の画像処理装置を搭載した携帯端末の機能ブロック図である。 第3実施形態に係る画像処理装置を搭載した携帯端末の機能ブロック図である。 図10の画像処理装置の動作を示すフローチャートである。 第4実施形態に係る画像処理装置を搭載した携帯端末の機能ブロック図である。 図12の画像処理装置の動作を示すフローチャートである。
以下、添付図面を参照して本発明の実施形態について説明する。なお、各図において同一又は相当部分には同一の符号を付し、重複する説明を省略する。
(第1実施形態)
本実施形態に係る画像処理装置は、画像の歪みを補正する装置である。この画像処理装置は、例えば、撮像装置を移動させながら撮像する場合に発生するローリングシャッタ歪みを補正する場合に採用される。本実施形態に係る画像処理装置は、例えば、携帯電話、デジタルカメラ、PDA(Personal Digital Assistant)等、リソースに制限のあるモバイル端末に好適に搭載されるものであるが、これらに限られるものではなく、例えば通常のコンピュータシステムに搭載されてもよい。なお、以下では、説明理解の容易性を考慮し、本発明に係る画像処理装置の一例として、カメラ機能を備えた携帯端末に搭載される画像処理装置を説明する。
図1は、本実施形態に係る画像処理装置1を備える携帯端末2の機能ブロック図である。図1に示す携帯端末2は、例えばユーザにより携帯される移動端末であり、図2に示すハードウェア構成を有する。図2は、携帯端末2のハードウェア構成図である。図2に示すように、携帯端末2は、物理的には、CPU(Central Processing Unit)100、ROM(Read Only Memory)101及びRAM(Random Access Memory)102等の主記憶装置、カメラ又はキーボード等の入力デバイス103、ディスプレイ等の出力デバイス104、ハードディスク等の補助記憶装置105などを含む通常のコンピュータシステムとして構成される。後述する携帯端末2及び画像処理装置1の各機能は、CPU100、ROM101、RAM102等のハードウェア上に所定のコンピュータソフトウェアを読み込ませることにより、CPU100の制御の元で入力デバイス103及び出力デバイス104を動作させるとともに、主記憶装置や補助記憶装置105におけるデータの読み出し及び書き込みを行うことで実現される。なお、上記の説明は携帯端末2のハードウェア構成として説明したが、画像処理装置1がCPU100、ROM101及びRAM102等の主記憶装置、入力デバイス103、出力デバイス104、補助記憶装置105などを含む通常のコンピュータシステムとして構成されてもよい。また、携帯端末2は、通信モジュール等を備えてもよい。
図1に示すように、携帯端末2は、カメラ20、画像処理装置1、画像記録部21、カメラ情報記録部22及び表示部23を備えている。カメラ20は、画像を撮像する機能を有している。カメラ20として、例えばCMOSの画素センサ等が用いられ、フォーカルプレーンシャッタ方式で撮像される。すなわち、カメラ20は、画像の縦方向又は横方向へ走査して画素値を入力する。カメラ20は、例えばユーザ操作等により指定されたタイミングから所定の間隔で繰り返し撮像する連続撮像機能を有している。すなわち、カメラ20は、静止画像(静止フレーム画像)だけでなく動画(連続する動フレーム画像)を取得する機能を有している。カメラ20は、例えば撮像されたフレーム画像(対象画像)を撮像の度に画像処理装置1へ出力する機能を有している。
画像処理装置1は、画像入力部10、動きベクトル取得部11、歪み成分推定部12、補正パラメータ算出部13及び画像補正部14を備えている。
画像入力部10は、カメラ20により撮像されたフレーム画像を入力する機能を有している。画像入力部10は、例えばカメラ20により撮像されたフレーム画像を撮像の度に入力する機能を有している。また、画像入力部10は、入力フレーム画像を、携帯端末2に備わる画像記録部21に保存する機能を有している。また、画像入力部10は、入力フレーム画像を動きベクトル取得部11及び画像補正部14へ出力する機能を有している。
動きベクトル取得部11は、入力フレーム画像と当該入力フレーム画像の直前に撮像された2枚のフレーム画像を用いて動きベクトルを取得する機能を有している。動きベクトル取得部11は、例えば、画像記録部21を参照し、入力フレーム画像の直前のフレーム画像を取得する。動きベクトル取得部11は、連続するフレーム画像同士をブロック単位でマッチングしてローカル動きベクトルを取得する。そして、動きベクトル取得部11は、取得された複数のローカル動きベクトルを用いて、カメラ20の被写体に対する相対的な動きによって生じるフレーム間のカメラモーション成分を算出する。ここで、図3に示すように、画像中心を原点とし、算出対象のフレーム画像の座標系を(x,y,1)、一つ前のフレーム画像の座標系を(xi−1,yi−1,1)とすると、カメラモーション成分は以下の数式(1)で表される。なお、iは自然数である。
Figure 2013005316
なお、数式(1)以外の手法でカメラモーションを取得してもよく、少なくともカメラ20の平行移動成分を取得できればよい。動きベクトル取得部11は、カメラモーション成分を歪み成分推定部12及び補正パラメータ算出部13へ出力する機能を有している。
歪み成分推定部12は、カメラモーション成分に基づいてローリングシャッタ歪み成分を推定する機能を有している。図4は、ローリングシャッタ歪みを説明する概要図である。ローリングシャッタ歪みとは、図4の(A)のように、カメラ20が被写体に対して相対的に水平方向に移動した場合に、被写体が水平方向に平行四辺形状に歪むことである。カメラ20が垂直方向に移動する場合には、ローリングシャッタ歪みは、図4の(B)のように、被写体が垂直方向に拡大・縮小するように発生する。歪み量は、カメラ20の移動の速さが速くなるほど大きくなる。このことから、ローリングシャッタ歪みは、カメラ20の移動の速さによって推定することが可能であるといえる。カメラ20の移動の速さはフレーム間の平行移動量によって推定することができる。歪み成分推定部12は、動きベクトル取得部11で取得されたカメラモーション成分を入力し、カメラモーション成分の水平及び垂直方向の平行移動成分(m02 i−1→i,m12 i−1→iを、フレーム間の平行移動量(d ,d であるとし、平行移動量に基づいて、ローリングシャッタ歪み成分を推定する。なお、フレーム間の平行移動量を、フレーム画像の中心座標の平行移動量としてもよい。ローリングシャッタ歪み成分は、歪みのある座標系を(x,y,1)、歪みのない座標系を(X,Y,1)とすると、以下の数式(2)で表される。
Figure 2013005316
上記数式(2)に示すように、Yの値が歪み成分に影響を与える。ここでαは歪み係数である。歪み係数αは、フレーム画像の1ラインを読み込む時間を、フレーム画像全体を読み込む時間と次のフレーム画像を読み込むまでの時間とを加算した値で除算して算出される値である。言い換えれば、歪み係数αは、フレーム画像の1ラインを読み込む時間を、当該フレーム画像の最初のラインを読み込んだ時刻から次のフレーム画像の最初のラインを読み込む時刻までの時間で除算して算出される値である。歪み係数αは、カメラ20に備わる画素センサの仕様や画素センサの駆動の設定により変化する。例えば、画素センサそれぞれにおいて、スキャンスピード、フレームレート、露光時間、画像サイズ、走査線の向き、ズーム倍率、f値、機械式手ブレ補正機構のON/OFF、フレームの撮像から出力までの時間、読み出し速度、読み出し方向等といった設定情報が異なる。このため、歪みの推定の前に、あらかじめ画素センサの様々な設定、撮像モード又は環境条件を含む撮像条件に対して算出しておく必要がある。
ここで、歪み係数αの算出方法について説明する。図5は、歪み係数αの算出方法を説明する概要図である。図5に示すように、歪み係数αは、静止フレーム画像frame、動フレーム画像列frameを用いて算出される。静止フレーム画像と動フレーム画像とを比較して、どの程度の歪みが発生するのかを求め、さらに、動フレーム画像間でどの程度の平行移動量であったのかを求めることにより、歪みと平行移動量の相関を求める。この相関関係から歪みαを算出する。
具体的には、まず、被写体及びカメラ20を静止させて、静止フレーム画像frameを撮影する。次に被写体あるいはカメラ20を動かし、動フレーム画像列:frame、frame、frame、…、framei−1、frameを撮影する。動フレーム画像frameでの歪み量は、静止フレーム画像frameから動フレーム画像frameへの動き行列Mb→iを計算することで算出することができる。歪み量は、静止フレーム画像frameの座標系を(x,y,1)とし、動フレーム画像frameの座標系を(x,y,1)とすると、以下の数式(3)で表される。
Figure 2013005316
ここで、動き行列Mb→iが平行移動成分及び歪み成分のみであると仮定すると、歪み量は、以下の数式(4)のように近似することができる。
Figure 2013005316
数式(2)と数式(4)とを比較する。数式(4)では、歪み成分はm01 b→i及びm11 b→iである。一方、数式(2)においては、歪み成分の元となるのは連続するフレーム間の動き成分とした平行移動量(d ,d である。平行移動量を求めるために、動フレーム画像frameと、その一つ前の動フレーム画像framei−1から、動き行列Mi−1→iを求める。動フレーム画像frameと、その一つ前の動フレーム画像framei−1との関係を以下の数式(5)で表すことができる。
Figure 2013005316
上記数式(5)を用いてフレーム間の動き成分(m02 i−1→i,m12 i−1→iを平行移動成分(d ,d としてもよい。また、動フレーム画像frameの中心座標の平行移動量を(d ,d としてもよい。(d ,d を算出することで、歪み係数αは、以下の数式(6),(7)で表すことができる。
Figure 2013005316
Figure 2013005316
歪み係数αを求めるための測定値であるm01 b→i,m11 b→i,d ,d には誤差が含まれることが想定される。図6は、横軸がframe、縦軸が歪み係数αである。図6に示すように、様々なframeについて歪み係数αを求め、それらの平均値を歪み係数αとして採用してもよい。図7は、横軸が移動量d であり、縦軸が動き行列成分m01 b→iである。図7に示すように、2次元平面上にプロットし、数式(7)に示す回帰直線の傾きから歪み係数αを求めてもよい。測定値であるm01 b→i,m11 b→i,d ,d の値が小さく、誤差が与える影響が大きい場合であっても、上述した手法により精度良く歪み係数αを求めることができる。ローリングシャッタ歪みは画素センサの仕様や画素センサの駆動の設定により発生の様子が異なる。上述した手法で、カメラ20すなわち画素センサの設定に対してそれぞれ歪み係数αを算出することにより、カメラ20固有の条件を反映させて正確にローリングシャッタ歪みを推定することができる。なお、実際の測定値を用いて歪み係数αを算出する場合には、どのような撮像環境条件で歪み係数αを算出したのかについても記録しておいてもよい。撮像環境条件としては、例えば、「明るさ」又は「気温」等が含まれる。
歪み成分推定部12は、カメラ情報記録部22を参照可能に構成されている。カメラ情報記録部22は、上記の方法で算出された歪み係数αを記録している。例えば、素子設定値と歪み係数αとを関連付けしたテーブルを備えている。素子設定値及び撮像環境と歪み係数αとを関連付けしたテーブルを備えていてもよい。歪み成分推定部12は、カメラ情報記録部22を参照し、画素センサの設定に応じて歪み係数αの値を取得し、カメラモーション成分を用いてローリングシャッタ歪み成分を推定する。画素センサの現状の設定情報や撮像環境に関する情報は、例えば、カメラ20から取得してもよい。また、カメラ情報記録部22に、フレーム画像の1ラインを読み込む時間、及び、フレーム画像全体を読み込む時間と次のフレーム画像を読み込むまでの時間が、設定情報や撮像環境に関する情報に関連付けされて記録されている場合には、カメラ情報記録部22から歪み係数αを直接取得するのではなく、カメラ情報記録部22に記録されている情報に基づいて歪み係数αを演算してもよい。歪み成分推定部12は、ローリングシャッタ歪み成分を補正パラメータ算出部13へ出力する機能を有している。
補正パラメータ算出部13は、カメラモーション成分及びローリングシャッタ歪み成分に基づいて、歪みを打ち消すための補正パラメータを算出する機能を有している。例えば、補正パラメータ算出部13は、動画手ブレ補正及びローリングシャッタ歪み補正のパラメータを算出する。ここで、動画手ブレ補正に関しては、以下のように補正パラメータを算出する。まず、カメラ20の静止位置の基準となるフレームからのカメラモーション成分の累積値を求める。そして、例えば、カメラモーション成分の累積値に基づいて手ブレの周波数のみを抽出する。この周波数を打ち消すように補正パラメータを算出する。動画手ブレ補正をする場合において、動き補正前の座標を(x,y,1)、動き補正後の座標を(x’,y’,1)で表現した場合、動画の動き補正は以下の数式(8)式で定式化される。
Figure 2013005316
ここで数式(8)で用いた以下の行列は、動き補正行列である。
Figure 2013005316
動き補正前の座標(x,y,1)は、歪みのある座標系である。ここで、補正パ動き補正前の座標(x,y,1)を、歪みのない座標系(x,y,1)へ一旦変換した後に、同一の動き補正行列による補正を適用するものとする。この場合、以下の数式(9)のように歪み量が表される。
Figure 2013005316
数式(9)に数式(2)を代入すると以下の数式(10)に示すように、計算することができる。
Figure 2013005316
上記数式(10)が、歪み補正及び動画手ブレ補正を同時に行うモデル式となる。なお上記数式(10)の平行移動成分(m02b→i+m12b→i・α・d ,m12 b→i・α・d については、歪み係数αの原点の位置に依存してバイアスをかける必要がある。
上述したように、補正パラメータ算出部13は、カメラモーション成分に基づき動き補正行列を求め、次に、動き補正行列及びローリングシャッタ歪み成分に基づき式(10)で表される演算により、動画手ブレ補正及びローリングシャッタ歪み補正のパラメータを算出する。補正パラメータ算出部13は、パラメータを画像補正部14へ出力する機能を有している。
画像補正部14は、動画手ブレ補正及びローリングシャッタ歪み補正のパラメータに基づいて、入力されたフレーム画像に対して動きの補正を行う機能を有している。例えば、画像補正部14は、パラメータに基づいてフレーム画像に対しアフィン変換等による画像変形及び画素補間を行う。画像補正部14は、手ブレによるフレーム画像間の平行移動、回転、拡大又は縮小等の動きとローリングシャッタ歪みを補正することが可能である。そして、画像補正部14は、必要に応じて補正の対象を選択し、画像の補正を行う。上述したとおり、本実施形態の画像処理装置1では、ローリングシャッタ歪みは、カメラモーションの平行移動成分のみに起因していると限定している。ここで、手ブレについても平行移動の動きに限定すると、補正前のフレーム画像から補正フレーム画像の各水平ラインに対応する位置の水平ラインの必要領域を、補正フレーム画像にラインコピーすることで画像の補正を行うことができる。この方法により、高速に画像補正を行うことが可能となる。画像補正部14は、手ブレ及びローリングシャッタ歪みが補正された補正フレーム画像を、表示部23へ出力する機能を有している。表示部23は、補正フレーム画像を表示する機能を有している。
次に、本実施形態に係る画像処理装置1の動作について説明する。図8は、本実施形態に係る画像処理装置1の動作を示すフローチャートである。図8に示す制御処理は、例えば携帯端末2の撮像機能をONしたタイミングで実行され、所定の周期で繰り返し実行される。
図8に示すように、最初に画像入力部10が処理対象のフレーム画像を入力する(S10:画像入力ステップ)。次に、動きベクトル取得部11が動きベクトルを取得する(S12:動きベクトル取得ステップ)。動きベクトル取得部11は、画像記録部21を参照し、直前に入力されたフレーム画像(直前画像)と、S10の処理で入力されたフレーム画像とに基づいて、動きベクトルを取得し、カメラモーション成分とする。S12の処理が終了すると、歪み成分推定処理へ移行する(S14:歪み成分推定ステップ)。
S14の処理では、歪み成分推定部12が、S12の処理で取得されたカメラモーション成分を用いてローリングシャッタ歪み成分を推定する。例えば、歪み成分推定部12は、カメラ情報記録部22を参照し、画素センサの設定に応じて歪み係数αの値を取得する。そして、歪み成分推定部12は、歪み係数αとカメラモーション成分を用いて、数式(2)に基づいてローリングシャッタ歪み成分を推定する。S14の処理が終了すると、補正パラメータ算出処理へ移行する(S16)。
S16の処理では、補正パラメータ算出部13が、S14の処理で推定された歪み成分を用いて補正パラメータを算出する。例えば、補正パラメータ算出部13は、数式(10)を用いて補正パラメータを算出する。S16の処理が終了すると、補正処理へ移行する(S18)。
S18の処理では、画像補正部14が、S16の処理で算出された補正パラメータを用いてフレーム画像を補正する。S18の処理が終了すると、表示処理へ移行する(S20)。
S20の処理では、表示部23が、S18の処理で補正されたフレーム画像を表示する。S20の処理が終了すると、図8に示す制御処理を終了する。
次に、携帯端末(コンピュータ)2を上記画像処理装置1として機能させるための画像処理プログラムを説明する。
画像処理プログラムは、メインモジュール、入力モジュール及び演算処理モジュールを備えている。メインモジュールは、画像処理を統括的に制御する部分である。入力モジュールは、入力画像を取得するように携帯端末2を動作させる。演算処理モジュールは、動きベクトル取得モジュール、歪み成分推定モジュール、補正パラメータ算出モジュール及び画像補正モジュールを備えている。メインモジュール、入力モジュール及び演算処理モジュールを実行させることにより実現される機能は、上述した画像処理装置1の画像入力部10、動きベクトル取得部11、歪み成分推定部12、補正パラメータ算出部13及び画像補正部14の機能とそれぞれ同様である。
画像処理プログラムは、例えば、ROM等の記憶媒体または半導体メモリによって提供される。また、画像処理プログラムは、データ信号としてネットワークを介して提供されてもよい。
以上、第1実施形態に係る画像処理装置1によれば、カメラ20の動きによって発生する動きベクトルを取得し、動きベクトルに基づいてフレーム画像のローリングシャッタ歪み成分を推定する。カメラ20の動きによって発生する動きベクトルは、画面全体の動きを示すグローバル動きベクトルに比べて自由度が制限されている。例えば、グローバル動きベクトルでは、平行移動成分、拡大縮小成分、回転成分、変形(歪み)成分等のパラメータが存在するが、カメラ20の動きは、変形や歪みのパラメータを考慮する必要がない。具体的には、グローバル動きベクトルでは、6つのパラメータのアフィンパラメータを検出する必要があるが、画像処理装置1によれば水平及び垂直方向の平行移動量、すなわち2つのパラメータを考慮すればよい。このため、動きベクトルは、グローバル動きベクトルに比べて、異なる動きの被写体が混在する撮像シーンであっても被写体の誤差を排除し易く安定して正確に取得することができる。よって、カメラ20の動きによって発生する動きベクトルを用いることにより、ローリングシャッタ歪み成分を安定して正確に推定することができる。さらに、2つのパラメータを用いた簡易な計算でローリングシャッタ歪み成分を推定するため、高速に処理することができる。
また、第1実施形態に係る画像処理装置1によれば、動きベクトルの中でも特に安定して正確に取得できる平行移動成分を用いることで、ローリングシャッタ歪み成分を一層安定して正確に推定することができる。
さらに、第1実施形態に係る画像処理装置1によれば、カメラ20の固有の要因や撮像時の環境情報等を勘案してローリングシャッタ歪み成分を推定することができる。このため、カメラ20の設定が変わりローリングシャッタ歪みの発生の様子が変化しても精度よく推定できる。
なお、第1実施形態に係る画像処理装置1の変形例として、ジャイロセンサで検出された動き情報を用いてローリングシャッタ歪み成分を推定してもよい。ジャイロセンサを用いた画像処理装置1の構成を図9に示す。図9に示すように、動きベクトル取得部11は、ジャイロセンサ24に接続されている。動きベクトル取得部11は、ジャイロセンサ24によって出力される動き情報(動きベクトル)をカメラモーションとして取得する。その他の構成は同様である。このようにジャイロセンサ24を用いることにより、1枚のフレーム画像であってもローリングシャッタ歪みを推定して補正することができる。
さらに、第1実施形態に係る画像処理方法及び画像処理プログラムも、画像処理装置1と同様の作用効果を奏する。
(第2実施形態)
第2実施形態に係る画像処理装置1は、第1実施形態に係る画像処理装置1とほぼ同様に構成され、歪み成分推定部12の一部機能が相違する。具体的には、歪み成分推定部12が、カメラ20から取得した情報に応じて複数のローリングシャッタ歪み成分のモデルを切り替えて使用する点が相違する。以下では、第1実施形態に係る画像処理装置1と相違する点を中心に説明し、重複する部分の説明は省略する。
歪み成分推定部12は、カメラ20の画素センサの走査順の方向に関する情報に基づいてローリングシャッタ歪み成分の推定手法を変更する機能を有している。例えば、カメラ情報記録部22には、カメラ20の設定情報として、現在の画素センサの走査順の方向に関する情報が記録されている。歪み成分推定部12は、カメラ情報記録部22を参照することで、上記情報を取得する。ローリングシャッタ歪み成分は、画素センサの走査の方向によって、図4の(A)、(B)及び図4の(C)、(D)のように歪みの発生の様子が異なる。図4の(A)、(B)のように、走査順が垂直方向の場合には、第1実施形態で説明した通り、数式(2)に示すモデルでローリングシャッタ歪みを表現できる。一方、図4の(C)、(D)のように走査順が水平方向の場合には、数式(2)に示すモデルでローリングシャッタ歪みを表現することができない。この場合、ローリングシャッタ歪み成分は、歪みのある座標系を(x,y,1)、歪みのない座標系を(X,Y,1)とすると、以下の数式(11)に示すモデルで表される。
Figure 2013005316
上記数式(11)に示すように、Xの値が歪み成分に影響を与える。
歪み成分推定部12は、カメラ情報記録部22を参照して得られた画素センサの走査順の方向に関する情報に基づいて、数式(2)又は数式(11)のモデルのどちらで推定するか否かを判定する。そして、決定したモデルに基づいて、ローリングシャッタ歪み成分を推定する。その他の構成は第1実施形態と同様である。また、本実施形態に係る画像処理プログラムは、第1実施形態に係る画像処理プログラムと同様に構成される。
以上、第2実施形態に係る画像処理装置1によれば、第1実施形態に係る画像処理装置1と同様の作用効果を奏するとともに、画像センサの走査順の方向に応じて適切なモデルを用いてローリングシャッタ歪みを推定することができる。このため、カメラ20の設定により画像センサの走査順の方向が変化しても正確な推定をすることが可能となる。
(第3実施形態)
第3実施形態に係る画像処理装置1は、第1実施形態に係る画像処理装置1とほぼ同様に構成され、歪み成分推定部12の一部機能が相違する。具体的には、歪み成分推定部12が、ローリングシャッタ歪みの変化を検知する点、当該変化に応じて推定値を調整する点が相違する。以下では、第1実施形態に係る画像処理装置1と相違する点を中心に説明し、重複する部分の説明は省略する。
図10は、本実施形態に係る画像処理装置1を搭載した携帯端末2の機能ブロック図である。図10に示すように、携帯端末2は、歪み成分記録部25を備えている。歪み成分記録部25は、歪み成分推定部12から読み出し及び書き込み可能に構成されている。歪み成分記録部25は、歪み成分推定部12によって推定されたローリングシャッタ歪み成分の履歴を格納する。
歪み成分推定部12は、ローリングシャッタ歪み成分を推定すると、歪み成分記録部25へ記録する。そして、歪み成分推定部12は、推定されたローリングシャッタ歪み成分が、歪み成分記録部25に格納された前回値と比べて急激に変化しているか否かを判定する。前回値とは、直前のフレーム画像で推定されたローリングシャッタ歪みの推定値である。歪み成分推定部12は、例えば、推定されたローリングシャッタ歪み成分と前回値との差分を算出し、差分値が第1の閾値より大きい値であれば、急激な変化があったものと判定する。そして、歪み成分推定部12は、急激な変化があったと判定した場合には、ローリングシャッタ歪み成分の推定値を調整する。歪み成分推定部12は、差分が小さくなるように調整する。例えば、歪み成分推定部12は、ローリングシャッタ歪みの推定値を、前回のフレーム画像のローリングシャッタ歪みの推定値と同じ値とする。あるいは、歪み成分推定部12は、ローリングシャッタ歪みの推定値、及び、前回以前のローリングシャッタ歪み成分を用いて、加重平均する。なお、歪み成分推定部12は、加重平均のために選択する前回以前のローリングシャッタ歪み成分の数を第2閾値以下とする。第2閾値を調整することにより、ローリングシャッタ歪みの変化をどの程度抑制するかを調整することができる。その他の構成については、第1実施形態に係る画像処理装置と同様である。また、本実施形態に係る画像処理プログラムは、第1実施形態に係る画像処理プログラムと同様に構成される。
次に、本実施形態に係る画像処理装置1の動作について説明する。図11は、本実施形態に係る画像処理装置1の動作を示すフローチャートである。図11に示す制御処理は、例えば携帯端末2の撮像機能をONしたタイミングで実行され、所定の周期で繰り返し実行される。
図11に示すフレーム画像入力処理(S30)、動きベクトル取得処理(S32)及び歪み成分推定処理(S34)については、図8に示す処理と同様である。
S36の処理では、歪み成分推定部12が、歪み成分記録部25を参照し、前回のフレーム画像で推定されたローリングシャッタ歪み成分(前回値)を取得する。そして、歪み成分推定部12は、S34の処理で算出したローリングシャッタ歪み成分と前回値との差分を算出する。S36の処理が終了すると、差分判定処理へ移行する(S38)。
S38の処理では、歪み成分推定部12が、S36の処理で算出された差分が所定値(第1の閾値)より大きいか否かを判定する。S38の処理において、差分が第1の閾値より大きいと判定した場合には、調整処理へ移行する(S40)。
S40の処理では、歪み成分推定部12が、S34の処理で推定されたローリングシャッタ歪み成分を調整する。例えば、S36の処理で用いた前回値と同じ値とする。あるいは、歪み成分推定部12は、S34の処理で推定されたローリングシャッタ歪み成分、及び、所定数の前回値を用いて加重平均する。S40の処理が終了すると、補正パラメータ算出処理へ移行する(S42)。
一方、S38の処理において、差分が第1の閾値より大きくないと判定した場合には、補正パラメータ算出処理へ移行する(S42)。
補正パラメータ算出処理(S42)、補正処理(S44)及び表示(S46)については、図8に示す処理と同様である。
以上、第3実施形態に係る画像処理装置1によれば、第1及び第2実施形態に係る画像処理装置1と同様の効果を奏するとともに、ローリングシャッタ歪み成分の変化のうち所定値より大きい変化を検出し、その変化を抑制するようにローリングシャッタ歪み成分を調整することができる。ところで、従来の画像処理装置であれば、ジャイロセンサ等を用いることなく画像から歪み成分を演算する場合において、被写体が画面に進入・退出するシーンでは、ローリングシャッタ歪みが急激に変化してしまう。このため、ローリングシャッタ歪み成分を用いてローリングシャッタ歪みを補正すると、画面(フレーム画像)にちらつきやがたつきが生じる。これに対して、第3実施形態に係る画像処理装置1は、ローリングシャッタ歪み成分の急激な変化を抑制することにより、画面にちらつきやがたつきが生じることを回避することができる。よって、例えば、画面に被写体が進入・退出するシーンであっても、画面が不自然に補正されることを回避することが可能となる。
(第4実施形態)
第4実施形態に係る画像処理装置1は、第1実施形態に係る画像処理装置1とほぼ同様に構成され、動きベクトル取得部11の一部機能が相違する。具体的には、動きベクトル取得部11が、動きベクトルの変化を検知する点、当該変化に応じてカメラモーションを調整する点が相違する。以下では、第1実施形態に係る画像処理装置1と相違する点を中心に説明し、重複する部分の説明は省略する。
図12は、本実施形態に係る画像処理装置1を搭載した携帯端末2の機能ブロック図である。図12に示すように、携帯端末2は、動きベクトル記録部26を備えている。動きベクトル記録部26は、動きベクトル取得部11から読み出し及び書き込み可能に構成されている。動きベクトル記録部26は、動きベクトル取得部11によって取得された動きベクトルの履歴を格納する。
動きベクトル取得部11は、動きベクトルを取得すると、動きベクトル記録部26へ記録する。そして、動きベクトル取得部11は、取得した動きベクトルが、動きベクトル記録部26に格納された前回値と比べて急激に変化しているか否かを判定する。前回値とは、直前のフレーム画像で取得された動きベクトルである。動きベクトル取得部11は、例えば、推定された動きベクトルと前回値との差分を算出し、差分値が第1の閾値より大きい値であれば、急激な変化があったものと判定する。そして、動きベクトル取得部11は、急激な変化があったと判定した場合には、動きベクトルを調整する。動きベクトル取得部11は、差分が小さくなるように調整する。例えば、動きベクトル取得部11は、動きベクトルを、前回のフレーム画像の動きベクトルと同じ値とする。あるいは、動きベクトル取得部11は、動きベクトル、及び、前回以前の動きベクトルを用いて、加重平均する。なお、歪み成分推定部12は、加重平均のために選択する前回以前の動きベクトルの数を第2閾値よりも小さい値とする。第2閾値を調整することにより、動きベクトルの変化をどの程度抑制するかを調整することができる。その他の構成については、第1実施形態に係る画像処理装置と同様である。また、本実施形態に係る画像処理プログラムは、第1実施形態に係る画像処理プログラムと同様に構成される。
次に、本実施形態に係る画像処理装置1の動作について説明する。図13は、本実施形態に係る画像処理装置1の動作を示すフローチャートである。図13に示す制御処理は、例えば携帯端末2の撮像機能をONしたタイミングで実行され、所定の周期で繰り返し実行される。
図11に示すフレーム画像入力処理(S50)、動きベクトル取得処理(S52については、図8に示す処理と同様である。
S54の処理では、動きベクトル取得部11が、動きベクトル記録部26を参照し、前回のフレーム画像で取得された動きベクトル(前回値)を取得する。そして、動きベクトル取得部11は、S52の処理で取得された動きベクトルと前回値との差分を算出する。S54の処理が終了すると、差分判定処理へ移行する(S56)。
S56の処理では、動きベクトル取得部11が、S54の処理で算出された差分が所定値(第1の閾値)より大きいか否かを判定する。S54の処理において、差分が第1の閾値より大きいと判定した場合には、調整処理へ移行する(S58)。
S58の処理では、動きベクトル取得部11が、S52の処理で取得された動きベクトルを調整する。例えば、S54の処理で用いた前回値と同じ値とする。あるいは、動きベクトル取得部11は、S52の処理で取得された動きベクトル、及び、所定数の前回値を用いて加重平均する。S58の処理が終了すると、歪み成分推定処理へ移行する(S60)。
一方、S56の処理において、差分が第1の閾値より大きくないと判定した場合には、歪み成分推定処理へ移行する(S60)。
歪み成分推定処理(S60)、補正パラメータ算出処理(S62)、補正処理(S64)及び表示(S66)については、図8に示す処理と同様である。
以上、第4実施形態に係る画像処理装置1によれば、第1及び第2実施形態に係る画像処理装置1と同様の効果を奏するとともに、動きベクトルの変化のうち所定値より大きい変化を検出し、その変化を抑制するように動きベクトルを調整することができる。ところで、従来の画像処理装置であれば、ジャイロセンサ等を用いることなく画像から歪み成分を演算する場合において、被写体が画面に進入・退出するシーンでは、ローリングシャッタ歪みが急激に変化してしまう。このため、動きベクトルを用いてローリングシャッタ歪みを補正すると、画面(フレーム画像)にちらつきやがたつきが生じる。これに対して、第4実施形態に係る画像処理装置1は、動きベクトルの急激な変化を抑制することにより、画面にちらつきやがたつきが生じることを回避することができる。よって、例えば、画面に被写体が進入・退出するシーンであっても、画面が不自然に補正されることを回避することが可能となる。
なお、上述した実施形態は本発明に係る画像処理装置の一例を示すものである。本発明に係る画像処理装置は、実施形態に係る画像処理装置1に限られるものではなく、各請求項に記載した要旨を変更しない範囲で、実施形態に係る画像処理装置を変形し、又は他のものに適用したものであってもよい。
例えば、上述した各実施形態では、カメラ20がフレーム画像を取得する例を説明したが、別の機器からネットワークを介して送信された画像であってもよい。
また、上述した各実施形態に係る画像処理装置1を、手ぶれ補正装置とともに動作させてもよい。例えば、手ぶれ補正装置において、連写された複数の連続するフレーム画像を用いて一枚の補正フレーム画像を出力する装置が存在する。このような手ぶれ補正装置において、上述した実施形態に係る画像処理装置1を採用することにより、連続するフレーム画像間のローリングシャッタ歪みを補正することができるので、手ぶれ補正を一層正確に行うことが可能となる。
さらに、上述した第3及び第4実施形態の変形例として、ジャイロセンサで検出された動き情報を利用し、動きベクトル取得部11で検出されたカメラモーション成分とジャイロセンサからの動き情報との差をとり、その差が急激に変化する場合にローリングシャッタ歪み成分を調整するように構成してもよい。
1…画像処理装置、10…画像入力部、11…動きベクトル取得部、12…歪み成分推定部、13…補正パラメータ算出部、14…画像補正部、20…カメラ(撮像装置)、21…画像記録部、22…カメラ情報記録部、23…表示部、24…ジャイロセンサ、25…歪み成分記録部、26…動きベクトル記録部。
すなわち、本発明の一側面に係る画像処理装置は、画像を処理する装置である。画像処理装置は、画像入力部、動きベクトル取得部及び歪み成分推定部を備える。画像入力部は、処理対象の画像である対象画像を入力する。動きベクトル取得部は、対象画像を撮像した撮像装置が当該対象画像の撮像時において当該対象画像に描画された被写体に対して相対的に移動したことによって発生する動きベクトルを取得する。歪み成分推定部は、画像間の動きを平行移動成分及びローリングシャッタ歪み成分のみを含む行列で近似し、行列及び動きベクトルの平行移動成分に基づいて、対象画像のローリングシャッタ歪み成分を推定する。
この画像処理装置によれば、撮像装置の動きによって発生する動きベクトルを取得し、動きベクトルに基づいて対象画像のローリングシャッタ歪み成分を推定する。撮像装置の動きによって発生する動きベクトルは、画面全体の動きを示すグローバル動きベクトルに比べて自由度が制限されている。このため、動きベクトルは、グローバル動きベクトルに比べて、異なる動きの被写体が混在する撮像シーンであっても被写体の誤差を排除し易く安定して正確に取得することができる。そして、動きベクトルの中でも特に安定して正確に取得できる平行移動成分を用いることで、ローリングシャッタ歪み成分を一層安定して正確に推定することができる。よって、撮像装置の動きによって発生する動きベクトルを用いることにより、ローリングシャッタ歪み成分を安定して正確に推定することができる。
また、本発明の他の側面に係る画像処理方法は、画像を処理する方法である。画像処理方法は、画像入力ステップ、動きベクトル取得ステップ及び歪み成分推定ステップを備える。画像入力ステップでは、処理対象の前記画像である対象画像を入力する。動きベクトル取得ステップでは、対象画像を撮像した撮像装置が当該対象画像の撮像時において当該対象画像に描画された被写体に対して相対的に移動したことによって発生する動きベクトルを取得する。歪み成分推定ステップでは、画像間の動きを平行移動成分及びローリングシャッタ歪み成分のみを含む行列で近似し、行列及び動きベクトルの平行移動成分に基づいて、対象画像のローリングシャッタ歪み成分を推定する。
また、本発明の他の側面に係る画像処理プログラムは、画像を処理するようにコンピュータを動作させるプログラムである。画像処理プログラムは、コンピュータを、画像入力部、動きベクトル取得部及び歪み成分推定部として動作させる。画像入力部は、処理対象の画像である対象画像を入力する。動きベクトル取得部は、対象画像を撮像した撮像装置が当該対象画像の撮像時において当該対象画像に描画された被写体に対して相対的に移動したことによって発生する動きベクトルを取得する。歪み成分推定部は、画像間の動きを平行移動成分及びローリングシャッタ歪み成分のみを含む行列で近似し、行列及び動きベクトルの平行移動成分に基づいて、対象画像のローリングシャッタ歪み成分を推定する。
すなわち、本発明の一側面に係る画像処理装置は、画像を処理する装置である。画像処理装置は、画像入力部、動きベクトル取得部及び歪み成分推定部を備える。画像入力部は、処理対象の画像である対象画像を入力する。動きベクトル取得部は、対象画像を撮像した撮像装置が当該対象画像の撮像時において当該対象画像に描画された被写体に対して相対的に移動したことによって発生する動きベクトルを取得する。歪み成分推定部は、画像間の動きを平行移動成分及びローリングシャッタ歪み成分のみを含む行列で近似することで算出された歪み係数、及び、動きベクトルの平行移動成分に基づいて、対象画像のローリングシャッタ歪み成分を推定する。
また、本発明の他の側面に係る画像処理方法は、画像を処理する方法である。画像処理方法は、画像入力ステップ、動きベクトル取得ステップ及び歪み成分推定ステップを備える。画像入力ステップでは、処理対象の前記画像である対象画像を入力する。動きベクトル取得ステップでは、対象画像を撮像した撮像装置が当該対象画像の撮像時において当該対象画像に描画された被写体に対して相対的に移動したことによって発生する動きベクトルを取得する。歪み成分推定ステップでは、画像間の動きを平行移動成分及びローリングシャッタ歪み成分のみを含む行列で近似することで算出された歪み係数、及び、動きベクトルの平行移動成分に基づいて、対象画像のローリングシャッタ歪み成分を推定する。
また、本発明の他の側面に係る画像処理プログラムは、画像を処理するようにコンピュータを動作させるプログラムである。画像処理プログラムは、コンピュータを、画像入力部、動きベクトル取得部及び歪み成分推定部として動作させる。画像入力部は、処理対象の画像である対象画像を入力する。動きベクトル取得部は、対象画像を撮像した撮像装置が当該対象画像の撮像時において当該対象画像に描画された被写体に対して相対的に移動したことによって発生する動きベクトルを取得する。歪み成分推定部は、画像間の動きを平行移動成分及びローリングシャッタ歪み成分のみを含む行列で近似することで算出された歪み係数、及び、動きベクトルの平行移動成分に基づいて、対象画像のローリングシャッタ歪み成分を推定する。
すなわち、本発明の一側面に係る画像処理装置は、画像を処理する装置である。画像処理装置は、画像入力部、動きベクトル取得部及び歪み成分推定部を備える。画像入力部は、処理対象の画像である対象画像を入力する。動きベクトル取得部は、対象画像を撮像した撮像装置が当該対象画像の撮像時において当該対象画像に描画された被写体に対して相対的に移動したことによって発生する動きベクトルを取得する。歪み成分推定部は、歪み係数及び動きベクトルの平行移動成分に基づいて、歪みのある前記対象画像における座標系と前記対象画像から歪みを除去した画像における座標系とを対応させるローリングシャッタ歪み成分を推定する。
また、本発明の他の側面に係る画像処理方法は、画像を処理する方法である。画像処理方法は、画像入力ステップ、動きベクトル取得ステップ及び歪み成分推定ステップを備える。画像入力ステップでは、処理対象の前記画像である対象画像を入力する。動きベクトル取得ステップでは、対象画像を撮像した撮像装置が当該対象画像の撮像時において当該対象画像に描画された被写体に対して相対的に移動したことによって発生する動きベクトルを取得する。歪み成分推定ステップでは、歪み係数及び動きベクトルの平行移動成分に基づいて、歪みのある前記対象画像における座標系と前記対象画像から歪みを除去した画像における座標系とを対応させるローリングシャッタ歪み成分を推定する。
また、本発明の他の側面に係る画像処理プログラムは、画像を処理するようにコンピュータを動作させるプログラムである。画像処理プログラムは、コンピュータを、画像入力部、動きベクトル取得部及び歪み成分推定部として動作させる。画像入力部は、処理対象の画像である対象画像を入力する。動きベクトル取得部は、対象画像を撮像した撮像装置が当該対象画像の撮像時において当該対象画像に描画された被写体に対して相対的に移動したことによって発生する動きベクトルを取得する。歪み成分推定部は、歪み係数及び動きベクトルの平行移動成分に基づいて、歪みのある前記対象画像における座標系と前記対象画像から歪みを除去した画像における座標系とを対応させるローリングシャッタ歪み成分を推定する。

Claims (10)

  1. 画像を処理する画像処理装置であって、
    処理対象の前記画像である対象画像を入力する画像入力部と、
    前記対象画像を撮像した撮像装置が当該対象画像の撮像時において当該対象画像に描画された被写体に対して相対的に移動したことによって発生する動きベクトルを取得する動きベクトル取得部と、
    前記動きベクトルに基づいて、前記対象画像のローリングシャッタ歪み成分を推定する歪み成分推定部と、
    を備える画像処理装置。
  2. 前記歪み成分推定部は、前記動きベクトルの平行移動成分に基づいて、前記対象画像のローリングシャッタ歪み成分を推定する請求項1に記載の画像処理装置。
  3. 前記歪み成分推定部は、前記動きベクトル、及び前記撮像装置の撮像条件の設定値に基づいて、前記ローリングシャッタ歪み成分を推定する請求項1又は2に記載の画像処理装置。
  4. 前記動きベクトル取得部は、前記対象画像の直前に撮像された画像である直前画像の直前に撮像された画像である直前画像を格納する記録部を参照可能に構成され、記録部に格納された直前画像及び前記対象画像に基づいて動きベクトルを取得する請求項1〜3の何れか一項に記載の画像処理装置。
  5. 前記動きベクトル取得部は、前記撮像装置に備わるジャイロセンサによって検出された動きベクトルを取得する請求項1〜3の何れか一項に記載の画像処理装置。
  6. 前記ローリングシャッタ歪み成分に基づいて、前記対象画像を補正する補正部を備える請求項1〜5の何れか一項に記載の画像処理装置。
  7. 前記補正部は、前記ローリングシャッタ歪み成分の直前の履歴を格納する記録部を参照可能に構成され、前記記録部に格納された直前の前記ローリングシャッタ歪み成分と前記対象画像における前記ローリングシャッタ歪み成分との差分が所定値より大きい場合には、前記差分が小さくなるように前記対象画像における前記ローリングシャッタ歪み成分を調整する請求項6に記載の画像処理装置。
  8. 前記動きベクトル取得部は、前記動きベクトルを格納する記録部を参照可能に構成され、前記記録部に格納された直前の前記動きベクトルと前記対象画像における前記動きベクトルとの差分が所定値より大きい場合には、前記差分が小さくなるように前記対象画像における前記動きベクトルを調整する請求項1〜6の何れか一項に記載の画像処理装置。
  9. 画像を処理する画像処理方法であって、
    処理対象の前記画像である対象画像を入力する画像入力ステップと、
    前記対象画像を撮像した撮像装置が当該対象画像の撮像時において当該対象画像に描画された被写体に対して相対的に移動したことによって発生する動きベクトルを取得する動きベクトル取得ステップと、
    前記動きベクトルに基づいて、前記対象画像のローリングシャッタ歪み成分を推定する歪み成分推定ステップと、
    を備える画像処理方法。
  10. 画像を処理するようにコンピュータを動作させる画像処理プログラムであって、
    処理対象の前記画像である対象画像を入力する画像入力部、
    前記対象画像を撮像した撮像装置が当該対象画像の撮像時において当該対象画像に描画された被写体に対して相対的に移動したことによって発生する動きベクトルを取得する動きベクトル取得部、及び、
    前記動きベクトルに基づいて、前記対象画像のローリングシャッタ歪み成分を推定する歪み成分推定部として前記コンピュータを動作させることを特徴とする画像処理プログラム。
JP2012557741A 2011-07-06 2011-07-06 画像処理装置、画像処理方法及び画像処理プログラム Active JP5531194B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/065475 WO2013005316A1 (ja) 2011-07-06 2011-07-06 画像処理装置、画像処理方法及び画像処理プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012284632A Division JP5401696B2 (ja) 2012-12-27 2012-12-27 画像処理装置、画像処理方法及び画像処理プログラム

Publications (2)

Publication Number Publication Date
JP5531194B2 JP5531194B2 (ja) 2014-06-25
JPWO2013005316A1 true JPWO2013005316A1 (ja) 2015-02-23

Family

ID=46679088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012557741A Active JP5531194B2 (ja) 2011-07-06 2011-07-06 画像処理装置、画像処理方法及び画像処理プログラム

Country Status (5)

Country Link
US (2) US8976280B2 (ja)
EP (2) EP2688282B1 (ja)
JP (1) JP5531194B2 (ja)
CN (2) CN103503432B (ja)
WO (1) WO2013005316A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005517257A (ja) * 2002-02-06 2005-06-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ セグメント化装置及び方法
EP2114080A1 (en) * 2008-04-30 2009-11-04 Thomson Licensing Method for assessing the quality of a distorted version of a frame sequence
US20130107065A1 (en) * 2011-10-27 2013-05-02 Qualcomm Incorporated Inertial sensor aided stationary object detection in videos
US8860825B2 (en) * 2012-09-12 2014-10-14 Google Inc. Methods and systems for removal of rolling shutter effects
US9374532B2 (en) 2013-03-15 2016-06-21 Google Inc. Cascaded camera motion estimation, rolling shutter detection, and camera shake detection for video stabilization
WO2014182815A1 (en) * 2013-05-08 2014-11-13 Raytheon Company Misregistration correction using non-pinhole camera model and non-linear scan equations
WO2014182811A1 (en) * 2013-05-08 2014-11-13 Raytheon Company Misregistration correction
DE102013012988A1 (de) * 2013-08-03 2015-02-05 Carl Zeiss Microscopy Gmbh Verfahren zur Kalibrierung eines digitalen optischen Abbildungssystems, Verfahren zur Korrektur von Abbildungsfehlern in einem digitalen optischen Abbildungssystem, sowie digitales optisches Abblildungssystem
KR102003460B1 (ko) * 2013-08-27 2019-07-24 한화테크윈 주식회사 왜곡제거장치 및 방법
US9357132B2 (en) 2014-05-30 2016-05-31 Apple Inc. Video rolling shutter correction for lens movement in optical image stabilization cameras
GB2523253B (en) 2015-01-23 2017-04-12 Visidon Oy Image processing method
US10708571B2 (en) * 2015-06-29 2020-07-07 Microsoft Technology Licensing, Llc Video frame processing
KR102352681B1 (ko) 2015-07-27 2022-01-18 삼성전자주식회사 동영상 안정화 방법 및 이를 위한 전자 장치
US10328271B2 (en) * 2015-11-12 2019-06-25 Medtronic, Inc. Implantable electrical stimulator with deflecting tip lead
CN105590302B (zh) * 2016-02-05 2018-06-12 中国科学院国家空间科学中心 一种用于图像传感器标定的干涉条纹畸变矫正方法
KR102317683B1 (ko) * 2016-07-28 2021-10-26 삼성전자주식회사 영상을 처리하는 방법, 디바이스 및 기록매체
CN108431869A (zh) * 2016-08-06 2018-08-21 深圳市大疆创新科技有限公司 用于移动平台成像的系统和方法
JP7152137B2 (ja) * 2017-08-28 2022-10-12 株式会社トプコン 写真測量システム及び写真測量方法
WO2019165611A1 (zh) * 2018-02-28 2019-09-06 深圳市大疆创新科技有限公司 图像的水波纹检测方法及其装置、无人机和存储装置
CN109040525B (zh) * 2018-08-31 2021-10-22 腾讯科技(深圳)有限公司 图像处理方法、装置、计算机可读介质及电子设备
CN109379536B (zh) * 2018-12-29 2020-07-31 深圳看到科技有限公司 画面生成方法、装置、终端及对应的存储介质

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757168A (en) * 1980-09-16 1982-04-06 Mitsubishi Electric Corp Controller for elevator
JPH0783469B2 (ja) 1985-07-26 1995-09-06 ソニー株式会社 動きベクトル検出装置
WO2000007373A1 (fr) 1998-07-31 2000-02-10 Matsushita Electric Industrial Co., Ltd. Procede et appareil d'affichage d'images
US6188058B1 (en) 1998-09-17 2001-02-13 Agilent Technologies Inc. System for taking displacement measurements having photosensors with imaged pattern arrangement
JP4389371B2 (ja) 2000-09-28 2009-12-24 株式会社ニコン 画像修復装置および画像修復方法
US6977985B2 (en) 2002-12-17 2005-12-20 Agilent Technologies, Inc. X-ray laminography system having a pitch, roll and Z-motion positioning system
US7924327B2 (en) 2003-10-22 2011-04-12 Panasonic Corporation Imaging apparatus and method for producing the same, portable equipment, and imaging sensor and method for producing the same
JP2005252753A (ja) 2004-03-05 2005-09-15 Seiko Epson Corp 画像処理装置、位置ずれ記憶方法、及びシーン記憶方法
JP2007074488A (ja) 2005-09-08 2007-03-22 Konica Minolta Holdings Inc 撮像装置
JP4509917B2 (ja) 2005-11-21 2010-07-21 株式会社メガチップス 画像処理装置及びカメラシステム
JP4509925B2 (ja) 2005-12-27 2010-07-21 株式会社メガチップス 画像処理装置及びカメラシステム並びに画像処理方法及び動画像表示方法
JP2009141717A (ja) 2007-12-07 2009-06-25 Hitachi Ltd 撮像装置
US8054335B2 (en) * 2007-12-20 2011-11-08 Aptina Imaging Corporation Methods and system for digitally stabilizing video captured from rolling shutter cameras
JP4689687B2 (ja) 2008-01-29 2011-05-25 株式会社モルフォ 撮像方法および撮像装置
JP4915424B2 (ja) 2009-02-19 2012-04-11 ソニー株式会社 画像処理装置、カメラモーション成分算出方法、画像処理プログラム及び記録媒体
JP4915423B2 (ja) * 2009-02-19 2012-04-11 ソニー株式会社 画像処理装置、フォーカルプレーン歪み成分算出方法、画像処理プログラム及び記録媒体
JP2010193301A (ja) 2009-02-19 2010-09-02 Sony Corp 画像処理装置、角度変化推定方法、画像処理プログラム及び記録媒体
JP5272916B2 (ja) * 2009-06-17 2013-08-28 ペンタックスリコーイメージング株式会社 撮像装置
JP5560739B2 (ja) * 2009-07-08 2014-07-30 株式会社ニコン 電子カメラ
JP2011114649A (ja) * 2009-11-27 2011-06-09 Sanyo Electric Co Ltd 撮像装置

Also Published As

Publication number Publication date
CN103503432A (zh) 2014-01-08
US20130011020A1 (en) 2013-01-10
US8831376B2 (en) 2014-09-09
EP2688282A1 (en) 2014-01-22
EP2544445A1 (en) 2013-01-09
EP2544445B1 (en) 2016-12-07
EP2688282A4 (en) 2014-09-17
CN103503432B (zh) 2016-11-02
JP5531194B2 (ja) 2014-06-25
WO2013005316A9 (ja) 2013-03-28
US20130182135A1 (en) 2013-07-18
CN102868858B (zh) 2016-04-13
US8976280B2 (en) 2015-03-10
EP2688282B1 (en) 2016-11-30
WO2013005316A1 (ja) 2013-01-10
CN102868858A (zh) 2013-01-09

Similar Documents

Publication Publication Date Title
JP5531194B2 (ja) 画像処理装置、画像処理方法及び画像処理プログラム
JP5906493B2 (ja) 画像処理装置、画像処理方法、画像処理プログラム及び記録媒体
US9055217B2 (en) Image compositing apparatus, image compositing method and program recording device
US8274570B2 (en) Image processing apparatus, image processing method, hand shake blur area estimation device, hand shake blur area estimation method, and program
JP5424835B2 (ja) 画像処理装置、画像処理方法
JP4869049B2 (ja) 補間フレーム画像作成方法および補間フレーム画像作成装置
JP2014150443A (ja) 撮像装置、その制御方法及びプログラム
JP5729237B2 (ja) 画像処理装置、画像処理方法、及びプログラム
JP5424068B2 (ja) 画像処理装置、画像処理方法、画像処理プログラム及び記憶媒体
JP2007243335A (ja) 手振れ補正方法、手振れ補正装置および撮像装置
WO2016152358A1 (ja) 画像処理装置、画像処理方法及び画像処理プログラム
JP2006140885A (ja) 撮像装置と撮像システムおよび画像の撮影方法
JP6532328B2 (ja) 画像処理装置、その制御方法、および制御プログラム
JP5401696B2 (ja) 画像処理装置、画像処理方法及び画像処理プログラム
JP6980480B2 (ja) 撮像装置および制御方法
CN110692235B (zh) 图像处理装置、图像处理程序及图像处理方法
JP6223135B2 (ja) 撮像装置およびその制御方法
JPWO2007026452A1 (ja) 画像処理装置、及び画像処理方法
JP6671975B2 (ja) 画像処理装置、撮像装置、画像処理方法およびコンピュータプログラム
JP2021044653A (ja) 動きベクトル検出装置及び動きベクトル検出方法
JP2020061687A (ja) ブレ補正装置、撮像装置、ブレ補正方法、及びプログラム
JP2018173746A (ja) 画像処理装置、画像処理方法、及びプログラム

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5531194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250