JPWO2012173154A1 - ガラス溶融炉、溶融ガラスの製造方法、ガラス物品の製造方法およびガラス物品の製造装置 - Google Patents

ガラス溶融炉、溶融ガラスの製造方法、ガラス物品の製造方法およびガラス物品の製造装置

Info

Publication number
JPWO2012173154A1
JPWO2012173154A1 JP2013520568A JP2013520568A JPWO2012173154A1 JP WO2012173154 A1 JPWO2012173154 A1 JP WO2012173154A1 JP 2013520568 A JP2013520568 A JP 2013520568A JP 2013520568 A JP2013520568 A JP 2013520568A JP WO2012173154 A1 JPWO2012173154 A1 JP WO2012173154A1
Authority
JP
Japan
Prior art keywords
glass
raw material
material particle
particles
molten glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013520568A
Other languages
English (en)
Other versions
JP6032201B2 (ja
Inventor
千禾夫 田中
千禾夫 田中
達也 山下
達也 山下
酒本 修
修 酒本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2012173154A1 publication Critical patent/JPWO2012173154A1/ja
Application granted granted Critical
Publication of JP6032201B2 publication Critical patent/JP6032201B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/102Forming solid beads by blowing a gas onto a stream of molten glass or onto particulate materials, e.g. pulverising
    • C03B19/1025Bead furnaces or burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • C03B3/023Preheating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • C03B3/026Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet by charging the ingredients into a flame, through a burner or equivalent heating means used to heat the melting furnace
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/06Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in pot furnaces
    • C03B5/08Glass-melting pots
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/12Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/23Cooling the molten glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/2353Heating the glass by combustion with pure oxygen or oxygen-enriched air, e.g. using oxy-fuel burners or oxygen lances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

本発明は、バーナー先端部へのガラス原料の付着を抑制でき、またガラス原料粒子の大きさの制約が少ない、ガラス溶融炉などの提供を目的とする。本発明のガラス溶融炉10は、溶融ガラスGを収容する炉体1と、炉体1の上部に配置され、目的のガラスの組成に合わせて原料粉末を混合して集合させたガラス原料粒子GMを炉体1の内側に投入する原料粒子投入部5と、原料粒子投入部5と離隔して設けられ、かつガラス原料粒子GMを加熱溶融して溶融ガラス粒子Uにするための加熱気相雰囲気Kを原料粒子投入部5の下方に形成する燃焼バーナー7と、を備える。

Description

本発明は、ガラス溶融炉、溶融ガラスの製造方法、ガラス物品の製造方法およびガラス物品の製造装置に関する。
現在、板ガラス、瓶ガラス、繊維ガラスを始めとして表示装置用ガラスに至るまで、量産規模のガラスの多くはガラス原料をガラス溶融炉(以下、単に「溶融炉」とも呼ぶ。)にて溶融するシーメンス型の溶融炉(Siemens type furnace)に基づき生産されている。シーメンス型の溶融炉による溶融法では、粉末状ガラス原料の混合物を、溶融炉で先に溶融したガラス融液面上に投入し、それが塊(以下「バッチ」ともいう。)となったものをバーナーなどにより加熱してその表面から融解を進行させ、徐々にガラス融液とする。このとき、融液上のバッチは、反応あるいは溶融しやすい物質から順次溶け出るため、原料層内に難溶融性物質が形成されやすい。また、同様の理由で、融液形成の初期状態においては、局所的に見るとバッチと組成が異なったガラス融液が生じ、融液の不均一化が生じやすい。さらに、シーメンス型の溶融炉は大量のエネルギーを必要とするため、溶融炉の消費エネルギー削減が望まれている。最近では、表示装置用途のガラス板として高品質、高付加価値のガラス物品の需要が増大の一途にあり、エネルギー消費も増大しており、ガラス物品の製造にかかる省エネルギー技術の開発は重要かつ緊急の課題とされている。
このような背景から、省エネルギー型のガラス製造技術の一例として、ガラス原料の混合物からなる微細粒子(造粒体)を高温の気相雰囲気中で加熱し溶かして溶融ガラス粒子とし、次いで溶融ガラス粒子を集積して液体相(ガラス融液)を形成するガラス物品の製造方法が提案されている(例えば、特許文献1、2参照。)。なお、以下では、この溶融ガラスの製造方法を、気中溶融法(in-flight glass melting method)と呼ぶこととする。この気中溶融法によれば、従来のシーメンス型の溶融炉による溶融法と比較して、ガラス溶融工程の消費エネルギーを1/3程度まで低減できると言われており、短時間で溶融が可能になり、溶融炉の小型化、蓄熱室の省略、品質の向上、COの削減、ガラス品種の変更時間の短縮化を図ることができる技術として注目されている。
図10は特許文献1に記載の溶融炉を示す断面模式図である。特許文献1の溶融炉100は、高温の気相雰囲気K100を形成する加熱手段として、複数本のアーク電極102と酸素燃焼ノズル103を備えている。これら複数のアーク電極102が形成する熱プラズマアークまたは酸素燃焼ノズル103による酸素燃焼炎(フレーム)F100によって炉体101内に約1600℃以上の高温の気相雰囲気K100を形成する。この高温の気相雰囲気K100中に、ガラス原料粒子R100を投入することにより、高温の気相雰囲気K100内でガラス原料粒子R100を液状ガラス粒子U100(以下「溶融ガラス粒子」ともいう。)に変化させる。液状ガラス粒子U100は落下して炉体101の炉底部101Aに溜まり、ガラス融液G100となる。
気中溶融法において、加熱手段として酸素バーナーを用いる場合、図10に示すように、酸素バーナーの燃焼火炎中にガラス原料粒子を投入し、火炎中で液状ガラス粒子を形成している。そのため、ガラス原料粒子を供給する原料供給路と、燃焼ガスおよび燃料ガスをそれぞれ供給するガス供給路を備える酸素バーナーが使用される。
例えば、特許文献2に記載の溶融炉は、溶融炉の天井壁に下向きに取り付けられた酸素バーナーを備えており、この酸素バーナーには、酸素を含む支燃ガスと燃料ガスを供給するガス供給系と、ガラス原料粒子を供給する原料供給系とが接続されている。この溶融炉では、酸素バーナーを燃焼させ下向きに火炎を形成するとともに、酸素バーナーからガラス原料粒子をその火炎中に下向きに供給し、火炎中で液状ガラス粒子を生成させ、生成した液状ガラス粒子を火炎直下の炉底部に集積させてガラス融液を形成している。
日本特開2007−297239号公報 日本特開2008−290921号公報
上述したように、気中溶融法に用いられる従来の酸素バーナーは、バーナーの先端部に原料の吐出口と燃料ガスや燃焼ガスの吐出口を一体として備えている。このようなバーナーは、火炎の形成とともに粉体をその火炎中に導入でき、溶融手段と溶融する材料の供給手段とを一体化しているため利用しやすく、装置全体のスペースも小さくできるメリットがあり一般的に利用されている。しかしながら、本発明者らが、このような構成のバーナーを用いてガラスの気中溶融法の研究を行ったところ、直径数μm〜数10μmの微細なガラス原料粒子が、バーナー先端部の原料の吐出口付近に部分的に滞留して、バーナー先端部に付着しやすいことが判明した。さらに、バーナーの先端部にガラス原料粒子およびそれからの飛散物・揮発物が付着して徐々に肥大化してつらら状となると、火炎が不安定になるだけでなく、ガラス原料粒子が通過する吐出口が徐々に閉塞するという問題が明らかとなった。このようなつらら状物がバーナー先端部に形成されると、前述の火炎の不安定化や吐出口の閉塞を引き起こすだけでなく、肥大化したつらら状物がバーナー下方のガラス融液へと落下する場合がある。その結果、落下したつらら状物とガラス融液との組成差に起因して、製造される溶融ガラスおよびガラス物品が不均質になり、ガラス物品の品質が低下するおそれがある。
また、通常、気中溶融法は長期間の連続稼働で行われるため、バーナーも長期間連続使用される。バーナーの先端部にガラス原料粒子が付着してつらら状物が形成されると、バーナーを停止してバーナーの清掃または交換を行う必要があるため、生産性の面においてバーナー先端部へガラス原料粒子が付着し難く、つらら状の付着物が形成されない技術の開発は重要である。
さらに、ガラス原料粒子の粒子径が小さいことは、ガラス溶融炉内での粉塵、つらら状物の原因となることがある。ガラス原料粒子は、高温の気相雰囲気中でガラス原料粒子が溶融できる範囲で、粒子径が大きい方がよい。他方、従来のガラス原料粒子を供給する原料供給路と、燃焼ガスおよび燃料ガスをそれぞれ供給するガス供給路とを一体に備える燃料バーナーの場合、その構造上、ガラス原料粒子の粒子径が限定される。このため、ガラス原料粒子の粒子径に制限がない方法が望まれる。
以上のような背景から本発明は、バーナー先端部へのガラス原料の付着を抑制でき、またガラス原料粒子の大きさの制約が少ない、ガラス溶融炉および溶融ガラスの製造方法の提供を目的とする。
また、本発明は、上述の溶融ガラスの製造方法を用いるガラス物品の製造方法の提供を目的とする。
さらに、本発明は、上述のガラス溶融炉を備えたガラス物品の製造装置の提供を目的とする。
本発明は、溶融ガラスを収容する炉体と、前記炉体の上部に配置され、ガラス原料粒子を前記炉体の内側に投入する原料粒子投入部と、前記原料粒子投入部と離隔して設けられ、かつ前記ガラス原料粒子を加熱溶融して溶融ガラス粒子にするための加熱気相雰囲気を前記原料粒子投入部の下方に形成する燃焼バーナーと、を備えるガラス溶融炉を提供する。
本発明のガラス溶融炉においては、前記燃焼バーナーの先端部が、前記原料粒子投入部の投入口と少なくとも水平方向に離隔しかつ別体で設けられていることが好ましい。
本発明のガラス溶融炉においては、前記燃焼バーナーの先端部が、前記原料粒子投入部の投入口の周囲に下向きに設置されていることが好ましい。
本発明のガラス溶融炉においては、前記ガラス原料粒子が前記原料粒子投入部に入る手前および前記原料粒子投入部のうち少なくとも一箇所に、前記ガラス原料粒子を予熱する原料粒子予熱手段を有することが好ましい。
本発明のガラス溶融炉においては、前記燃焼バーナーを複数備え、これら複数の燃焼バーナーの先端部が前記原料粒子投入部の投入口の周囲に、該原料粒子投入部を中心とする円周上に配置されてもよい。
本発明のガラス溶融炉においては、前記原料粒子投入部が、さらに前記ガラス原料粒子の投入位置とは別の位置にカレット片を投入するガラスカレット投入部を有してもよい。
本発明のガラス溶融炉においては、前記原料粒子投入部が、原料粒子投入管と、該原料粒子投入管の周囲に配置された気体供給管と、を備えてもよい。
本発明のガラス溶融炉においては、前記燃焼バーナーが前記原料粒子投入部での鉛直下向きの原料粒子投入軸に対して、当該燃焼バーナーによる燃焼炎のなす角度αが0度≦α≦45度となるように設置されていることが好ましい。
本発明は、燃焼バーナーの燃焼炎により加熱気相雰囲気を形成し、該加熱気相雰囲気の上方に前記燃焼バーナーとは別体で設けた原料粒子投入部から、目的のガラスの組成に合わせて原料粉末を混合したガラス原料粒子を前記加熱気相雰囲気中に送ることによって、前記ガラス原料粒子を溶融させて溶融ガラス粒子とする溶融ガラスの製造方法を提供する。
本発明の溶融ガラスの製造方法においては、前記原料粒子投入部の投入口が前記燃焼バーナーの先端部と少なくとも水平方向に離隔しかつ別体で設けられることによって、前記ガラス原料粒子が前記原料粒子投入部の投入口から離れたところで燃焼炎と接触することが好ましい。
本発明の溶融ガラスの製造方法においては、前記ガラス原料粒子は、重量平均粒径が30〜1000μmの範囲であることが好ましい。
本発明の溶融ガラスの製造方法においては、前記ガラス原料粒子を前記加熱気相雰囲気に送る前に、該ガラス原料粒子を予め加熱することが好ましい。
本発明の溶融ガラスの製造方法においては、前記ガラス原料粒子は、重量平均粒径が50〜3000μmの範囲であることが好ましい。
本発明の溶融ガラスの製造方法においては、前記原料粒子投入部の投入口の周囲に、該投入口を中心とする円周上に配置した前記燃焼バーナーの先端部から燃焼炎を噴出してもよい。
本発明の溶融ガラスの製造方法においては、前記原料粒子投入部の一部から、前記ガラス原料粒子の投入位置とは別の位置でガラスカレット片を投入してもよい。
本発明の溶融ガラスの製造方法においては、前記原料粒子投入部の投入口の先端の外周から下方に気体を噴出してもよい。
本発明の溶融ガラスの製造方法において、前記原料粒子投入部での鉛直下向きの原料粒子投入軸に対して、燃焼炎のなす角度αが0度≦α≦45度となるように、前記燃焼バーナーから下向きに燃焼炎を噴出することが好ましい。
本発明は、前記のいずれかに記載の溶融ガラスの製造方法を用いて溶融ガラスを製造する工程と、該溶融ガラスを成形する工程と、成形後のガラスを徐冷する工程と、を含むガラス物品の製造方法を提供する。
本発明は、前記のいずれかに記載のガラス溶融炉と、該ガラス溶融炉により製造された溶融ガラスを成形する成形手段と、成形後のガラスを徐冷する徐冷手段とを備えるガラス物品の製造装置を提供する。
本発明は、前記のいずれかに記載の溶融ガラスの製造方法を用いて溶融ガラスを製造する工程と、該溶融ガラスを冷却する工程と、を含むガラスビーズの製造方法を提供する。
本発明のガラス溶融炉は、ガラス原料粒子を投入する原料粒子投入部と、ガラス原料粒子を加熱溶融する加熱気相雰囲気を形成するための燃焼バーナーとを離隔して別体で備えることにより、ガラス原料粒子や溶融ガラス粒子などがバーナー先端部に付着することを抑制できる。また、本発明のガラス溶融炉は、ガラス原料粒子の粒子径の制約が小さいため、所定の粒子径以上のガラス原料粒子を用いることによってガラス溶融炉内での粉塵の抑制ができる。
本発明の溶融ガラスの製造方法は、燃焼バーナーの燃焼炎により加熱気相雰囲気を形成し、この加熱気相雰囲気中に燃焼バーナーとは別体で設けた原料粒子投入部よりガラス原料粒子を投入して、ガラス原料粒子を加熱溶融して溶融ガラス粒子とする構成である。そのため、ガラス原料粒子や溶融ガラス粒子などがバーナー先端部に付着して肥大化することを抑制でき、肥大化した付着物のガラス融液への落下を抑止でき、また所定の粒子径以上のガラス原料粒子を用いることによってガラス溶融炉内での粉塵の抑制ができるので、均質な溶融ガラスを製造できる。
また、本発明のガラス物品の製造方法は、上述の溶融ガラスの製造方法を用いることにより、均質で高品質なガラス物品を提供できる。
さらに、本発明のガラス物品の製造装置は、上述のガラス溶融炉を備えることにより、均質で高品質なガラス物品を製造できる。
図1は本発明に係るガラス溶融炉の第1実施形態を模式的に示す断面図である。 図2は本発明に係るガラス溶融炉が備える原料粒子投入部の第1の例を示す断面図である。 図3は本発明に係るガラス溶融炉が備える原料粒子投入部の第2の例を示す断面図である。 図4は図1に示すガラス溶融炉における酸素燃焼バーナーと原料粒子投入部の配置を示す模式図である。 図5は本発明に係るガラス溶融炉における酸素燃焼バーナーと原料粒子投入部の配置の第2の例を示す模式図である。 図6は本発明に係るガラス溶融炉における酸素燃焼バーナーの配置の第3の例を示す模式図である。 図7は本発明に係るガラス溶融炉における酸素燃焼バーナーの配置の第4の例を示す模式図である。 図8は本発明に係る溶融ガラスの製造方法を用いてガラス物品を製造する方法の一例を示すフロー図である。 図9は本発明に係る溶融ガラスの製造方法を実施してガラスビーズを製造する装置の一実施形態を示す構成図である。 図10は特許文献1に記載のガラス溶融炉を示す断面模式図である。
以下、本発明に係るガラス溶融炉、溶融ガラスの製造方法、ガラスビーズの製造方法、ガラス物品の製造方法およびガラス物品の製造装置の一実施形態について説明するが、本発明は以下の実施形態に制限されるものではない。
図1は本発明に係るガラス溶融炉の第1実施形態を模式的に示す断面図である。図1に示すガラス溶融炉は、本発明に係る溶融ガラスの製造方法およびガラス物品の製造方法に用いられる。
図1に示す本実施形態のガラス溶融炉10は、炉体1内の加熱気相雰囲気K中で、ガラス原料の混合物からなるガラス原料粒子GMを加熱溶融して溶融ガラス粒子Uとする装置である。
本発明において、ガラス原料粒子GMとは、最終目的とするガラスの組成に合わせた、目的のガラスの各成分の粒子状の原料粉末、あるいはそれらの原料粉末を混合して集合させた造粒体、あるいは原料粉末と造粒体が混合されたものである。また、これらにはガラス原料として、ガラスカレット片を含んでもよい。本発明のガラス原料粒子の粒子径は、従来の気中溶融バーナーで利用するものよりも大きくできる。これによって、ガラス溶融炉10の炉体1内の気流によって舞い上がるガラス原料粒子GMを少なくできるので粉塵の抑制ができる。ガラス原料粒子GMの一例を拡大して図1に示すが、原料粉末を混合して集合させた造粒体である一つのガラス原料粒子GMにおいて最終目的とするガラスの組成にほぼ合致するか近似した組成となっていてもよい。なお、ガラス原料粒子GMの詳細については、後述する。
基本的に気中溶融法は、複数(通常3成分以上)の成分から成るガラスを製造するために造粒体を溶融してガラスを製造する方法であるが、本発明において、ガラス原料粒子GMは、前記のとおり造粒体である場合に限定されず、造粒されていなくてもよい。ガラス原料粒子GMは、加熱気相雰囲気K中で、ガラス原料の熱分解(たとえば、金属炭酸塩から金属酸化物への熱分解など)、ガラス化反応と呼ばれるガラスとなる成分の反応と融解、などの化学反応により液状のガラス粒子(溶融ガラス粒子U)となる。炉体1内に投入されたガラス原料粒子GMは、高温の加熱気相雰囲気Kを通過する間に、溶融されて溶融ガラス粒子Uとなり、この溶融ガラス粒子Uは下方に落下して炉体1の底部に集積し、溶融ガラスGを形成する。ガラス原料粒子GMが造粒体からなる場合は、その一粒一粒が溶融されて溶融ガラス粒子Uとなるが、造粒体の中には、溶融が終了しないで溶融ガラスG上に落下するものが一部あってもよい。また、造粒体の中には、造粒体が溶融ガラス粒子Uになる前に崩れたものが一部あってもよい。
図1に示すガラス溶融炉10は、中空箱型の炉体1と、炉体1の上部の炉壁部1Aに下向きに設置されたガラス原料粒子GMを下方に投入するための原料粒子投入部5と、原料粒子投入部5と離隔して設けられ、かつ原料粒子投入部5の下方に向けて酸素燃焼炎Fを形成するために炉体1の上部の炉壁部1Aを貫通して、原料粒子投入部5の周囲に斜め下向きに設置された複数の酸素燃焼バーナー7(図1に示す例では2基)と、炉体1の底部に形成された溶融ガラスGの貯留部1Bとを備える。原料粒子投入部5の噴出口と酸素バーナー7の噴出口との位置関係は、それらの噴出口の外周部間の水平方向の最低距離が、1cm以上又は酸素バーナー7の最大外周径の10%以上のいずれか大きい値となることが好ましい。また、原料粒子投入部5と酸素バーナー7との位置関係は、それらの噴出口の外周部間の水平方向の最低距離が、3cm以上又は酸素バーナー7の最大外周径の20%以上のいずれか大きい値となることがより好ましい。さらに、原料粒子投入部5と酸素バーナー7との位置関係は、それらの噴出口の外周部間の水平方向の最低距離が、5cm以上又は酸素バーナー7の最大外周径の30%以上のいずれか大きい値となることがさらに好ましい。ここで、酸素バーナー7は、酸素バーナー自体を冷却するための水冷管を酸素バーナーの外周に有する場合がある。この場合の酸素バーナーの噴出口の最大外周径とは、水冷管を含めた最大外周径をいう。なお、以下では、原料粒子投入部5の噴出口を投入口5Aと、酸素バーナー7の噴出口を先端部7Aと表す。
酸素燃焼バーナー7は、その燃焼炎の噴射方向先端側(図1では下方側)に加熱気相雰囲気Kを形成できるようになっている。加熱気相雰囲気Kは、酸素燃焼バーナー7から噴射される酸素燃焼炎Fおよび酸素燃焼炎F近傍の高温部から構成される。
このような構成のガラス溶融炉において、燃焼バーナーの燃焼炎により加熱気相雰囲気を形成し、該加熱気相雰囲気の上方に前記燃焼バーナーとは別体で設けた原料粒子投入部より、目的のガラスの組成に合わせて原料粉末を混合したガラス原料粒子を前記加熱気相雰囲気中に送ることで、前記ガラス原料粒子を溶融させて溶融ガラス粒子とし、溶融ガラスを得ることができる。
本発明において、炉体1の上部とは、炉体1の炉壁部1Aおよび側壁1Cの上部を含む範囲を意味する。なお、炉体1の形状は図1に示す箱型の直方体形状に限定されるものではなく、円筒状に構成されたものであってもよい。また、原料粒子投入部5を鉛直方向下向きに設置しているが、これに限らず、下向きであれば傾斜して設置してもよい。さらに、炉体1の炉壁部1Aをフラットな形状としたが、これに限らず、アーチ形状、ドーム形状等の形状であってもよい。
炉体1の底部側は溶融ガラスGの貯留部1Bとされており、炉体1の側壁1Cの底部側に形成された排出口4を介して炉体1から溶融ガラスGを外部に排出できるように構成されている。なお、本実施形態のガラス溶融炉10を備えたガラス物品の製造装置は、炉体1から溶融ガラスGを排出する方向の下流側に、一例として、成形装置20などが接続され、形成した溶融ガラスGを成形装置20により目的の形状に成形してガラス物品を得ることができるように構成されている。なお、泡品質によっては、成形装置20の前に減圧脱泡装置を設けてもよい。
炉体1は耐火レンガなどの耐火材からなり、高温の溶融ガラスGを貯留できるように構成されている。炉体1の貯留部1Bには図示していないが加熱ヒータが設置され、必要に応じて貯留部1Bに貯留されている溶融ガラスGを目的の温度(たとえば1400℃程度)に溶融状態で保持できるように構成されている。炉体1の側壁部1Cに排気口2および排気管2aを介し排ガス処理装置3が接続されている。
原料粒子投入部5は、筒状の原料粒子投入管を備えており、原料粒子投入部5の上部側には供給管9を介してガラス原料粒子GMを収容したホッパからなる原料供給器8が接続されており、供給管9にはガラス原料粒子GMを原料粒子投入部5の原料粒子投入管へと搬送するためのキャリアガスを供給するキャリアガス供給源(図示略)が接続されている。これにより、原料粒子投入部5の下端に形成された投入口5Aからガラス原料粒子GMが投下される。なお、ここではキャリアガスを供給する場合について説明しているが、キャリアガスによらず、ガラス原料粒子GMを機械的手段によって自由落下させて加熱気相雰囲気Kに投入する方法でもよい。
また、本発明では、ガラス原料粒子GMの粒子径を大きくする場合には、そのガラス原料粒子GMを溶融するために、加熱気相雰囲気Kで与えるエネルギーが大きくなる。本発明では、原料粒子投入部5に予めガラス原料粒子GMを加熱する原料粒子予熱手段60、61を設け、ガラス原料粒子を前記加熱気相雰囲気に送る前に、ガラス原料粒子を予め加熱することが好ましい。このように予めガラス原料粒子GMを加熱する原料粒子予熱手段60、61を設けることにより、加熱気相雰囲気Kでガラス原料粒子GMに与えるエネルギーを少なくできる。原料粒子予熱手段60、61での加熱は、ガラス原料粒子GMを溶融するためではない。原料粒子投入部5の構造が簡単なため、原料粒子予熱手段60、61を設置することは容易で、特に原料粒子投入部5の原料粒子投入管に設けられた原料粒子予熱手段60でその効果が高い。また、この原料粒子予熱手段60、61を設けることは、ガラス原料粒子GMがガラスカレット片を含む場合に、ガラスカレット片も含めて予熱できるので、加熱気相雰囲気Kでガラス原料粒子GMに与えるエネルギーを少なくすることができるという効果がある。さらに、ガラス原料粒子GMの粒子径を従来よりも大きくできることは、ガラス溶融炉10の炉体1内での粉塵の抑制に非常に大きな効果を奏する。なお、ガラス原料粒子GMが比較的小さい場合においても、ガラス溶融炉10の炉体1内に投入する前に予熱することは、エネルギー節減の効果がある。
さらに、本発明では、酸素バーナー7と別に原料粒子投入部5を有するので、酸素バーナー7の燃焼条件に影響されず種々のガスを噴出させることができる。これにより、例えば、ガラス溶融の初期において、ガラス溶融炉10の炉体1内の雰囲気の成分調整が容易にできる効果がある。
図2は原料粒子投入部5の第1の例を示す断面図であり、図3は原料粒子投入部5の第2の例を示す断面図である。
図2に示す原料粒子投入部5は、筒状の原料粒子投入管51からなる単管構造である。本発明では、このような単純な構造を採用できるので、ガラス原料粒子GMの粒子径の自由度が高く、また、粒子径のばらつきの許容範囲を広くできる。このため、前述したようにガラス原料粒子GMなどに、ガラスカレット片を含ませてもよく、ガラスカレット片の粒度のばらつきも一定条件下存在してもよい。なお、ガラスカレット片の大きさは、加熱気相雰囲気Kで溶融可能なサイズを限度として、酸素燃焼バーナー7の出力に応じて決定される。原料粒子投入管51の材質は、金属またはセラミックスなどが例示できる。原料粒子投入管51は水冷構造を備えていてもよい。本実施形態のガラス溶融炉10が備える原料粒子投入部5は、図2に示すように原料粒子投入管51より構成される単管構造であってもよいが、図3に示す構造であることが好ましい。
図3に示す原料粒子投入部50は、原料粒子投入管51を中心に備え、この原料粒子投入管51の外側に原料粒子投入管51と同心円状に配置された筒状の気体供給管52を備える二重管構造である。気体供給管52の材質は、前記した原料粒子投入管51の材質と同じものが例示できる。気体供給管52には気体供給装置(図示略)が接続されている。この例の原料粒子投入部50は、原料粒子投入管51からガラス原料粒子GMを炉体1内に投下するとともに、空気、酸素のほか、窒素やアルゴンなどの不活性ガスなどの気体を気体供給管52から原料粒子投入部50の投入口5Aを取り囲むように下向きに噴出することができる。なお、当該気体は、燃焼ガスを除くものである。これにより、原料粒子投入管51の先端部の外周に、気体供給管52から気体を吹きつけることができる。そのため、ガラス原料粒子GMが原料粒子投入部50の投入口5Aに付着し難くなる。すなわち、ガラス原料粒子GMが原料粒子投入管51の噴出口の外周および気体供給管52の噴出口に付着し難くなる。したがって、原料粒子投入部50にてガラス原料粒子GMの付着物の肥大化が起こらず、つらら状物が生成しないので、投入口5Aの閉塞を抑制し、その他、外周からの気体供給は原料送入管を冷却する効果、湿潤雰囲気から遮断して結露防止効果を有する。気体供給管52から吹き付ける気体は、ガラス溶融炉10の炉体1から発生する熱との交換によって加熱してもよい。
原料粒子投入部5、50の原料粒子予熱手段60は、例えば、原料粒子投入管51を誘導加熱する方法、ラジアントヒーターによって加熱する方法、電気ヒータによって加熱する方法、ガラス溶融炉10の炉体1で発生する熱を利用する方法などがある。原料粒子予熱手段60は、図1に示すように原料粒子投入部5の外部側に設けられていてもよく、原料粒子投入部5の原料粒子投入管51の内部側に設けられていてもよい。本発明では、酸素バーナー7と別に原料粒子投入部5を有するので、原料粒子投入部5の大きさに自由度があり、原料粒子予熱手段60を原料粒子投入部5の外または内に設けることができる。その他、図1に示すように供給管9の途中に原料粒子予熱手段61を設けるなど、原料粒子投入管51の手前に加熱領域を設けて予熱する方法もある。また、原料粒子予熱手段は、図1に示す原料粒子予熱手段60、61のように、原料粒子投入部5と、供給管9の途中の両方にあってもよい。
ガラス原料粒子GMが、後述するスプレードライ造粒法ではなく、特に転動造粒法、攪拌造粒法などの乾式造粒法による造粒体の場合には、造粒後に乾燥する必要がある。よって、ガラス原料粒子GMが乾式造粒法による造粒体の場合には、特に原料粒子予熱手段60、61によって、ガラス溶融炉10の炉体1に投入する前に造粒体を乾燥し、より低い水分含有の状態でガラス溶融炉10の炉体1に投入することが好ましい。ガラス原料粒子GMが特に大きい場合は、原料粒子予熱手段61の方が適する。
酸素燃焼バーナー7は、酸素燃焼バーナーとして公知の、燃料、酸素供給ノズルが適切に配置された酸素燃焼バーナーである。酸素燃焼バーナー7には、燃料を燃料供給ノズルに供給する燃料供給装置(図示略)、および酸素を含む燃焼ガスを燃焼ガス供給ノズルに供給するガス供給装置(図示略)が接続されている。
酸素燃焼バーナー7の酸素燃焼炎Fの温度は、ガラス原料粒子GMに含まれる気体成分を迅速にガス化散逸させ、ガラス化反応を進行させるために、ガラス原料の珪砂の溶融温度以上である1600℃以上に設定することが好ましい。これにより、原料粒子投下部5から炉体1内に投下されたガラス原料粒子GMは、酸素燃焼炎Fにより形成される加熱気相雰囲気Kによって、迅速にガス化散逸されるとともに、高温で加熱されることにより溶融ガラス粒子Uとなり、炉体1の底部に着地して溶融ガラスGとなる。
酸素燃焼バーナー7から噴射される酸素燃焼炎Fにより形成される加熱気相雰囲気Kの中心部の温度は、酸素燃焼炎Fが例えば水素酸素燃焼炎の場合約2000〜3000℃である。
酸素燃焼バーナー7の先端部7Aは、原料粒子投入部5の投入口5Aの周囲に複数配置されていることが好ましい。図1に示す例では、2基の酸素燃焼バーナー7、7の先端部7Aが炉体1の上部の炉壁部1Aに原料粒子投入部5の投入口5Aを挟んで左右対称に斜め下向き、かつ内向きに、具体的には酸素燃焼バーナー7、7の先端部7Aと原料粒子投入部5の投入口5Aとが所定の間隔を持って直線状に並ぶように配置されている。このように原料粒子投入部5の投入口5Aを中心として左右対称に酸素燃焼バーナー7、7の先端部7Aを配置することにより、酸素燃焼バーナー7、7の酸素燃焼炎Fにより形成される加熱気相雰囲気Kを良好な対称性で形成でき、原料粒子投入部5から投入されるガラス原料粒子GMを均一に加熱できる。
図4は、図1に示すガラス溶融炉10における酸素燃焼バーナー7、7と原料粒子投入部5の配置を示す模式図であり、図5はガラス溶融炉10における酸素燃焼バーナー7、7と原料粒子投入部5の配置の第2の例を示す模式図である。
図4に示すように、酸素燃焼バーナー7、7は、原料粒子投入部5によるガラス原料粒子GMの投入軸(図4に符号Aで示す。)に対して、その酸素燃焼炎Fの噴射方向(図4に符号Bで示す。)のなす角度αが0度≦α≦45度となるように傾斜して配置されていることが好ましい。すなわち、酸素燃焼バーナー7、7が、原料粒子投入部5での鉛直下向きの原料粒子投入軸Aに対して、その酸素燃焼炎Fのなす角度αが0度≦α≦45度となるように設置されていることが好ましい。ここで、ガラス原料粒子GMの投入軸Aとは、原料粒子投入部5から投下されたガラス原料粒子GMの中心軸を示す。また、酸素燃焼炎Fの噴射方向Bとは、酸素燃焼バーナー7より噴射される酸素燃焼炎Fの中心軸を示す。このような範囲の角度αで酸素燃焼バーナー7、7が設置されることにより、酸素燃焼バーナー7、7は、鉛直軸であるガラス原料粒子GMの投入軸Aに向かって、原料粒子投入部5の下方に酸素燃焼炎F、Fを吹き付けることができる。これにより、原料粒子投入部5の投入口5Aから投入軸Aに沿って落下中のガラス原料粒子GMは、その酸素燃焼炎F、Fにより形成される加熱気相雰囲気Kを効率よく通過できる。
ここで、酸素燃焼バーナー7の先端部7Aの中心と、原料粒子投入部5の投入口5Aの中心との水平距離は、落下中のガラス原料粒子GMを酸素燃焼炎Fにより形成される加熱気相雰囲気Kを効率よく通過させるという目的と、酸素燃焼バーナー7の能力とに応じて適宜設定される。たとえば、ガラス原料粒子GMの落下高さd(原料粒子投入部5の投入口5Aから、酸素燃焼炎F、Fの接点までの距離)が0.2〜0.7mの場合には、酸素燃焼バーナー7が投入軸Aに対して10度≦α≦30度の角度をもって設置されることが好ましい。これにより、酸素燃焼バーナー7による酸素燃焼炎Fとガラス原料粒子GMの接触時間をより長時間とすることができ、より効率的にガラス原料粒子GMを加熱溶融して溶融ガラス粒子Uとすることができる。なお、酸素燃焼炎F、Fの接点は、加熱気相雰囲気Kにおいて、サーモグラフィー(たとえばJenoptik社製、Vario THERMO InSb)により測定されるガス温度が1700℃を超えた領域の上端位置とする。
また、ガラス原料粒子GMの落下高さdが0.2〜0.7mである場合、原料粒子投入部5によるガラス原料粒子GMの投入軸Aと、原料粒子投入部5の投入口5Aから投下されるガラス原料粒子GMの拡散軸(図4に符号Cで示す。)と、がなす角度βを0度≦β≦15度の範囲に設定することが好ましい。これにより、原料粒子投下部5の投入口5Aから投下されたガラス原料粒子GMを、酸素燃焼バーナー7による酸素燃焼炎F中に効果的に分散でき、効率的にガラス原料粒子GMを加熱溶融して溶融ガラス粒子Uとすることができる。ここで、ガラス原料粒子GMの拡散軸Cとは、原料粒子投入部5から投下されたガラス原料粒子GMの広がる範囲の外縁をなぞる線を示す。
酸素燃焼バーナー7、7は、図5に示すように鉛直下向き(角度α=0度)で、原料粒子投入部5と略平行に設置されていてもよい。この場合、酸素燃焼バーナー7の先端部7Aの中心と原料粒子投入部5の投入口5Aの中心との水平距離と、酸素燃焼バーナー7の能力とに応じて、原料粒子投入部5によるガラス原料粒子GMの投入軸Aと、原料粒子投入部5の投入口5Aから投下されるガラス原料粒子GMの拡散軸Cとがなす角度βを調整する必要がある。図5に示すように酸素燃焼バーナー7、7が鉛直下向きで設置される場合、たとえば、ガラス原料粒子GMの落下高さdが0.2〜0.7mである場合には、角度βを0度≦β≦15度の範囲に設定することが好ましい。これにより、原料粒子投下部5の投入口5Aから投下されたガラス原料粒子GMを、酸素燃焼バーナー7による酸素燃焼炎F中に効果的に分散でき、効率的にガラス原料粒子GMを加熱溶融して溶融ガラス粒子Uとすることができる。
本実施形態のガラス溶融炉10における酸素燃焼バーナー7の設置数は、2基に限定されず、3基以上であることも好ましい。
図6は、図1に示すガラス溶融炉10における酸素燃焼バーナー7の配置の第3の例を示す模式図であり、図7は、図1に示すガラス溶融炉10における酸素燃焼バーナー7の配置の第4の例を示す模式図である。図6および図7において、酸素燃焼バーナー7の配置をわかりやすくするために、ガラス溶融炉10の炉壁部1Aを除き、ガラス溶融炉10の上方から、酸素燃焼バーナー7、酸素燃焼炎F、原料粒子投入部5から投下されたガラス原料粒子GMの様子を模式的に示している。
図6に示す実施形態では、3基の酸素燃焼バーナー7が、原料粒子投入部5の周囲に、原料粒子投入部5を中心とする円周上に等間隔で、下向きに配置されている。また、図7に示す実施形態では、6基の酸素燃焼バーナー7が、原料粒子投入部5の周囲に、原料粒子投入部5を中心とする円周上に等間隔で、下向きに配置されている。図6および図7に示す各酸素燃焼バーナー7の設置角度αは図4または図5に示した場合と同じである。
このように、複数の酸素燃焼バーナー7を、原料粒子投入部5を中心とする円周上に等間隔で配置することにより、複数の酸素燃焼バーナー7の酸素燃焼炎Fにより形成される加熱気相雰囲気Kの対称性をより高めることができ、原料粒子投入部5から投入されるガラス原料粒子GMをより均一に加熱できる。
なお、本発明において、酸素燃焼バーナー7の設置数は、上記した2基、3基、6基に限定されず、1基、4基、5基、7基以上のいずれでもよいが、酸素燃焼バーナー7の酸素燃焼炎Fより形成される加熱気相雰囲気Kの対称性を向上させる観点から、2基以上の酸素燃焼バーナー7を、原料粒子投入部5を中心とする円周上に等間隔で配置することが好ましい。
本実施形態のガラス溶融炉10は、ガラス原料粒子GMを投入する原料粒子投入部5と、ガラス原料粒子GMを加熱溶融する加熱気相雰囲気Kを形成するための酸素燃焼炎Fを噴出する酸素燃焼バーナー7とを少なくとも水平方向に分離してかつ別体として備えることにより、ガラス原料粒子が前記原料粒子投入部の投入口から離れたところで燃焼炎と接触するようにすることができる。このようにすることにより、ガラス原料粒子GMが酸素燃焼バーナー7の先端部に付着することを抑え、この付着物の肥大化を無くし、つらら状物の形成を抑止できる。したがって、酸素燃焼バーナー7の燃焼炎が不安定になることがなく、また、酸素燃焼バーナー7の吐出口が閉塞することがない。また、つらら状物が形成されないので、つらら状物が酸素燃焼バーナー7下方の溶融ガラスGへと落下することがなく、落下したつらら状物とガラス融液との組成差によりガラスが不均質化することがなく、高品質の溶融ガラスGを得ることができる。
さらに、原料粒子投入部50を図3に示す二重管構造とすることにより、原料粒子投入部5の投入口5A付近にも、ガラス原料粒子GMが付着することを低減でき、この付着物の肥大化を無くし、つらら状物の形成を抑止できる。
本実施形態のガラス溶融炉10を用いて製造する溶融ガラスGは、気中溶融法により製造されるガラスである限り、組成的には制限されない。したがって、ソーダライムガラス、混合アルカリ系ガラス、あるいは、無アルカリガラスのいずれであってもよい。また、製造されるガラス物品の用途は、建築用や車両用に限定されず、フラットパネルディスプレイ用、その他の各種用途が挙げられる。
建築用または車両用の板ガラスに使用されるソーダライムガラスの場合には、酸化物基準の質量百分率表示で、SiO:65〜75%、Al:0〜3%、CaO:5〜15%、MgO:0〜15%、NaO:10〜20%、KO:0〜3%、LiO:0〜5%、Fe:0〜3%、TiO:0〜5%、CeO:0〜3%、BaO:0〜5%、SrO:0〜5%、B:0〜5%、ZnO:0〜5%、ZrO:0〜5%、SnO:0〜3%、SO:0〜0.5%、という組成を有することが好ましい。
液晶ディスプレイ用または有機ELディスプレイ用の基板に使用される無アルカリガラスの場合には、酸化物基準の質量百分率表示で、SiO:39〜75%、Al:3〜27%、B:0〜20%、MgO:0〜13%、CaO:0〜17%、SrO:0〜20%、BaO:0〜30%、という組成を有することが好ましい。
プラズマディスプレイ用の基板に使用される混合アルカリ系ガラスの場合には、酸化物基準の質量百分率表示で、SiO:50〜75%、Al:0〜15%、MgO+CaO+SrO+BaO+ZnO:6〜24%、NaO+KO:6〜24%、という組成を有することが好ましい。
その他の用途として、耐熱容器または理化学用器具等に使用されるホウケイ酸ガラスの場合には、酸化物基準の質量百分率表示で、SiO:60〜85%、Al:0〜5%、B:5〜20%、NaO+KO:2〜10%、という組成を有することが好ましい。
本実施形態においては、前記いずれかの用途のガラスの原料の各成分の粒子状の原料粉末、またはそれらの原料粉末を目的のガラスの組成に合わせて混合して集合させた造粒体、あるいは原料粉末と造粒体が混合されたもの、のいずれかであるガラス原料粒子GMを用意する。また、これらのガラス原料粒子GMには、ガラス原料として、ガラスカレット片を含ませてよい。これが可能になるのは、従来の気中溶融用のいわゆる粉体バーナーと異なり、原料粒子投入部5と酸素燃焼バーナー7を別体として設けているためである。なお、通常のガラス原料では、ガラス原料粒子とガラスカレット片とをミキサーなどで混合して投入することが多い。しかしながら、本発明の原料粒子投入部5においては、ガラス原料粒子GMとガラスカレット片とを混合しておく必要はなく、原料粒子投入部5において、ガラス原料粒子GMとガラスカレット片を別の位置から投入することができる。具体的には、ガラス原料粒子GMの投入管とガラスカレット片の投入管とを別に設ければよい。これは、原料粒子投入管51などの筒状の原料粒子投入部5から自由落下させることによって、加熱気相雰囲気K中に投入できるからである。このことは、ガラス原料粒子GMとガラスカレット片とをミキサーなどで混合する必要がないので、ガラス原料粒子GMがさらに細片化しない効果がある。特に造粒体の場合に、造粒体がミキシングによって壊れて微粉となることがないので、一層の効果がある。
以下では、ガラス原料粒子GMが造粒体である場合について説明する。たとえば、ガラス原料粒子GMが造粒体の場合の一例として、無アルカリガラスの一例を適用する場合、珪砂、アルミナ(Al)、ホウ酸(HBO)、水酸化マグネシウム(Mg(OH))、炭酸カルシウム(CaCO)、炭酸ストロンチウム(SrCO)、炭酸バリウム(BaCO)などの原料粉末を目的のガラスの組成に合致するように調合し、たとえばスプレードライ造粒法により集合することにより、重量平均粒径30〜1000μmの造粒体として、ガラス原料粒子GMを得ることができる。
原料粉末から造粒体としてのガラス原料粒子GMを調製する方法としては、スプレードライ造粒法などの方法が使用でき、原料粉末を分散溶解させた水溶液を高温雰囲気中に噴霧させて乾燥固化させる造粒法が好ましい。また、この造粒体は目的とするガラスの成分組成に対応する混合比の原料のみで構成してもよいが、その造粒体に更に同一組成のガラスカレット微粉を混合して、これをガラス原料粒子GMとして用いることもできる。
スプレードライ造粒によりガラス原料粒子GMを得るための一例方法として、上述の各成分の原料粉末として2〜500μmの範囲の原料粉末を蒸留水などの溶媒中に分散してスラリーを構成し、このスラリーをボールミルなどの攪拌装置で所定時間攪拌し、混合し、粉砕したのちにスプレードライ造粒することで上述の各成分の原料粉末がほぼ均一に分散されたガラス原料粒子GMが得られる。
なお、前述のスラリーを攪拌装置で攪拌する際、原料粉末の均一分散の目的で2−アミノエタノールなどの分散剤を、造粒原料の強度を向上させる目的で、PVA(ポリビニルアルコール)などのバインダーを混合してから攪拌してもよい。
本実施形態において用いるガラス原料粒子GMは、上述のスプレードライ造粒法の他に、転動造粒法、攪拌造粒法などの乾式造粒法により形成することもできる。
ガラス原料粒子GMの重量平均粒径は、原料粒子予熱手段60、61を設けない場合には、30〜1000μmの範囲が好ましい。より好ましくは、重量平均粒径が50〜500μmの範囲内のガラス原料粒子GMが使用され、さらに70〜300μmの範囲内のガラス原料粒子GMが好ましい。このガラス原料粒子GMの一例を拡大して図1に示すが、1つのガラス原料粒子GMにおいて最終目的とするガラスの組成にほぼ合致するか近似した組成となっていることが好ましい。
原料粒子予熱手段60を設ける場合には、ガラス原料粒子GMは、上記よりも大きな原料粉末、造粒体、あるいはこれらの混合物でもよい。大きめの造粒体を利用する場合には、上記のスプレードライ造粒法よりも、混合攪拌造粒法、圧縮造粒法などの乾式造粒法の方が一般的には製造しやすい。原料粒子投入部5からガラス原料粒子GMを連続的に投下しながら予熱することを考慮すると、原料の予熱に必要な熱量は粒子径の2乗に比例するため、ガラス原料粒子GMの重量平均粒径は、原料粒子予熱手段60を設ける場合には、50〜3000μmの範囲が好ましい。より好ましくは、重量平均粒径が50〜1500μmの範囲内のガラス原料粒子GMが使用され、さらに70〜1000μmの範囲内のガラス原料粒子GMが好ましい。
原料粒子予熱手段61を設ける場合には、ガラス原料粒子GMは、上記よりもさらに大きな原料粉末、造粒体、あるいはこれらの混合物でもよい。原料粒子予熱手段61としてロータリーキルン、流動層加熱などの方法を考慮すると、必要に応じた加熱時間が設定できるが、粉体の取扱性、原料粒子投入管51での流動性を考えると、ガラス原料粒子GMの重量平均粒径は、原料粒子予熱手段61を設ける場合には、50〜50000μmの範囲が好ましい。より好ましくは、重量平均粒径が50〜10000μmの範囲内のガラス原料粒子GMが使用され、さらに50〜3000μmの範囲内のガラス原料粒子GMが好ましい。
このように、原料粒子予熱手段60、61を用いることは、造粒コストがスプレードライ造粒法に比べて低い乾式造粒法による造粒体で、しかも大きめの造粒体を利用できるため、ガラス溶融炉10の炉体1内の粉塵が少なくなり、かつ溶融ガラスGを製造する上での材料コスト、エネルギーコストを含むトータルの製造コストを低減できる点でも効果がある。
ガラス原料粒子GMが溶融した溶融ガラス粒子Uの重量平均粒径は、通常ガラス原料粒子GMの重量平均粒径の80%程度となることが多い。ガラス原料粒子GMの粒径は、短時間で加熱でき、発生ガスの放散が容易である点、および粒子間の組成変動の低減の点から、前述の範囲を選択することが好ましい。
また、これらのガラス原料粒子GMは、必要に応じて、副原料として清澄剤、着色剤、溶融助剤、乳白剤等を含むことができる。また、これらのガラス原料粒子GM中のホウ酸などは、高温時の蒸気圧が比較的高いため加熱により蒸発しやすいことから、最終製品であるガラスの組成よりも余分に混合しておくことができる。
本実施形態において、副原料として清澄剤を含有する場合、塩素(Cl)、硫黄(S)、フッ素(F)の中から1種または2種以上の元素を選択して含む清澄剤を必要量添加することができる。その他の清澄剤として、酸化スズ(SnO)を用いることができる。
また、従来から用いられているSb、As酸化物などの清澄剤は、泡削減効果が生じたとしても、これら清澄剤の元素は環境負荷低減の面で望ましくない元素であり、それらの利用は環境負荷低減の方向性から見て削減することが好ましい。
本発明に係るガラス物品の製造装置は、上述した本発明のガラス溶融炉10と、該溶融炉10により製造された溶融ガラスを成形する成形手段と、成形後のガラスを徐冷する徐冷手段とを備えている。このガラス物品の製造装置においては、ガラス溶融炉10で製造した溶融ガラスGを所定の速度で排出口4から排出し、必要に応じ脱泡装置に導入し、さらに脱泡した後、成形装置20に移送して目的の形状に成形し、ガラス物品を製造できる。
以上のように製造されたガラス物品は、上述のように高品質の溶融ガラスGより形成されているため、高い品質のガラス物品を得ることができる。
また、本発明のガラス物品の製造方法は、上述した本発明のガラス溶融炉により溶融ガラスを製造する工程と、該溶融ガラスを成形する工程と、成形後のガラスを徐冷する工程と、を含む。図8は本発明に係る溶融ガラスの製造方法を用いてガラス物品を製造する方法の一例を示すフロー図である。
図8に示す方法に従い、ガラス物品を製造するには、上述のガラス溶融炉10を用いた上述の溶融ガラスの製造方法によるガラス溶融工程S1により溶融ガラスGを得たならば、溶融ガラスGを成形装置20に送って目的の形状に成形する成形工程S2を経た後、徐冷工程S3にて徐冷し、切断工程S4において必要な長さに切断することでガラス物品G5を得ることができる。
なお、必要に応じて、成形後の溶融ガラスを研磨する工程を設けて、ガラス物品G5を製造できる。
本発明のガラス溶融炉およびガラス物品の製造装置は図1に示す例に限定せず、加熱気相雰囲気Kを形成する加熱手段として、酸素燃焼バーナー7に加えて、さらに、熱プラズマを発生させる、一対以上の電極で構成される多相アークプラズマ発生装置を備えていてもよい。なお、酸素燃焼炎Fの場合、その中心温度は酸素燃焼のケースで約2000℃であり、熱プラズマの場合は5000〜20000℃である。
図9は本発明に係る溶融ガラスの製造方法を実施してガラスビーズ(ガラス粒体)を製造する装置の一実施形態を示すもので、本実施形態の製造装置30は、収容部34と、収容部34の天井部34Aを貫通するように下向きに設置されたガラス原料粒子GMを下方に投入するための原料粒子投入部5と、原料粒子投入部5の下方に向けて酸素燃焼炎Fを形成するために収容部34の天井部34Aを貫通して、原料粒子投入部5の周囲に下向きに設置された複数の酸素燃焼バーナー7、7とを備えて構成されている。図9に示す製造装置30は、先の実施形態のガラス溶融炉10と類似の構造であり、先の装置の炉体1を収容部34に変更した点が異なる。その他の構成は先の図1に示すガラス溶融炉10の構成と同等であり、同一の要素には同一の符号を付し、同一要素の説明は省略する。なお、この場合には、ガラス原料粒子GMとして、造粒体を用いることが好ましい。
本実施形態の製造装置30において、収容部34の内部には、ステンレス鋼製のバケツ状の貯留部31を備えた搬送台車32が収容されている。また、図示されていないが収容部34の筐体表面は冷却水で冷却されている。さらに、収容部34の側壁部に排気管33を介し排ガス装置35が接続されている。
なお、図9では略しているが、収容部34の側壁部には収容部34を密閉状態とすることが可能な開閉扉が形成されていて、搬送台車32は開閉扉を開けることで収容部34の外部に移動できるようになっている。
先に説明した実施形態の場合と同様に、酸素燃焼バーナー7の酸素燃焼炎Fからなる加熱気相雰囲気Kに、原料粒子投入部5からガラス原料粒子GMを投入することで、ガラス原料粒子GMを加熱気相雰囲気K中で溶融させて溶融ガラス粒子Uとすることができ、この溶融ガラス粒子Uをステンレス鋼製の貯留部31に落下させて冷却することで、ガラスビーズGBを得ることができる。したがって、本実施形態の装置30において貯留部31は、溶融ガラス粒子Uを冷却してガラスビーズGBとし、ガラスビーズGBを集積する構成とされている。図示していないが、溶融ガラス粒子Uの生成直後に冷却するために、加熱気相雰囲気Kの先端よりも下方のところで、冷却気体を吹き付ける装置を付けてもよい。なお、本実施形態の装置30において、貯留部31と搬送台車32は必須ではなく、これらを略して収容部34の床部34Bにおいて溶融ガラス粒子Uを受ける構造としてもよく、その場合は収容部34の内部空間と床部34Bが溶融ガラス粒子Uを冷却するように構成する。
図9に示す製造装置30は、ガラス原料粒子GMを投入する原料粒子投入部5と、ガラス原料粒子GMを加熱溶融する加熱気相雰囲気Kを形成するための酸素燃焼炎Fを噴出する酸素燃焼バーナー7とを分離して別体として備える構成である。そのため、酸素燃焼バーナー7の先端部へのガラス原料粒子GMの付着、および、この付着物が肥大化したつらら状物の形成を抑制できる。したがって、つらら状物が落下することがないため、均一な品質のガラスビーズGBを製造できる。
このようにして得られたガラスビーズGBは、ガラスビーズとしてそのまま利用されたり、他の原料と混合されて利用されたり、その他の溶融炉の中に投入されてガラス物品の製造に利用される。
本発明のガラスビーズの製造方法は、上述した本発明のガラス溶融炉により溶融ガラスを製造する工程と、該溶融ガラスを冷却する工程と、を含む。
本発明の技術は、建築用ガラス、車両用ガラス、光学用ガラス、医療用ガラス、表示装置用ガラス、ガラスビーズ、その他一般のガラス物品の製造に広く適用できる。
なお、2011年6月17日に出願された日本特許出願2011−135182号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
1…炉体、1A…炉壁部、1B…貯留部、1C…側壁、2…排気口、2a…排気管、3…排ガス処理装置、4…排出口、5、50…原料粒子投入部、5A…投入口、7…酸素燃焼バーナー、7A…先端部、8…原料供給器、9…供給管、10…ガラス溶融炉、20…成形装置、30…製造装置、31…貯留部、33…排気管、34…収容部、35…排ガス処理装置、51…原料粒子投入管、52…気体供給管、60、61…原料粒子予熱手段、K…加熱気相雰囲気、G…溶融ガラス、GM…ガラス原料粒子、U…溶融ガラス粒子、F…酸素燃焼炎、GB…ガラスビーズ。

Claims (20)

  1. 溶融ガラスを収容する炉体と、
    前記炉体の上部に配置され、ガラス原料粒子を前記炉体の内側に投入する原料粒子投入部と、
    前記原料粒子投入部と離隔して設けられ、かつ前記ガラス原料粒子を加熱溶融して溶融ガラス粒子にするための加熱気相雰囲気を前記原料粒子投入部の下方に形成する燃焼バーナーと、
    を備えるガラス溶融炉。
  2. 前記燃焼バーナーの先端部が、前記原料粒子投入部の投入口と少なくとも水平方向に離隔しかつ別体で設けられている請求項1に記載のガラス溶融炉。
  3. 前記燃焼バーナーの先端部が、前記原料粒子投入部の投入口の周囲に下向きに設置されている請求項1または2に記載のガラス溶融炉。
  4. 前記ガラス原料粒子が前記原料粒子投入部に入る手前および前記原料粒子投入部のうち少なくとも一箇所に、前記ガラス原料粒子を予熱する原料粒子予熱手段を有する請求項1〜3のいずれか一項に記載のガラス溶融炉。
  5. 前記燃焼バーナーを複数備え、これら複数の燃焼バーナーの先端部が前記原料粒子投入部の投入口の周囲に、該原料粒子投入部を中心とする円周上に配置されている請求項1〜4のいずれか一項に記載のガラス溶融炉。
  6. 前記原料粒子投入部が、さらに前記ガラス原料粒子の投入位置とは別の位置にカレット片を投入するガラスカレット投入部を有する請求項1〜5のいずれか一項に記載のガラス溶融炉。
  7. 前記原料粒子投入部が、原料粒子投入管と、該原料粒子投入管の周囲に配置された気体供給管と、を備える請求項1〜6のいずれか一項に記載のガラス溶融炉。
  8. 前記燃焼バーナーが、前記原料粒子投入部での鉛直下向きの原料粒子投入軸に対して、当該燃焼バーナーによる燃焼炎のなす角度αが0度≦α≦45度となるように設置されている請求項1〜7のいずれか一項に記載のガラス溶融炉。
  9. 燃焼バーナーの燃焼炎により加熱気相雰囲気を形成し、該加熱気相雰囲気の上方に前記燃焼バーナーとは別体で設けた原料粒子投入部から、目的のガラスの組成に合わせて原料粉末を混合したガラス原料粒子を前記加熱気相雰囲気中に送ることによって、前記ガラス原料粒子を溶融させて溶融ガラス粒子とする溶融ガラスの製造方法。
  10. 前記原料粒子投入部の投入口が前記燃焼バーナーの先端部と少なくとも水平方向に離隔しかつ別体で設けられることによって、前記ガラス原料粒子が前記原料粒子投入部の投入口から離れたところで燃焼炎と接触する請求項9に記載の溶融ガラスの製造方法。
  11. 前記ガラス原料粒子は、重量平均粒径が30〜1000μmの範囲である請求項9または10に記載の溶融ガラスの製造方法。
  12. 前記ガラス原料粒子を前記加熱気相雰囲気に送る前に、該ガラス原料粒子を予め加熱する請求項9または10に記載の溶融ガラスの製造方法。
  13. 前記ガラス原料粒子は、重量平均粒径が50〜3000μmの範囲である請求項12に記載の溶融ガラスの製造方法。
  14. 前記原料粒子投入部の投入口の周囲に、該投入口を中心とする円周上に配置した前記燃焼バーナーの先端部から燃焼炎を噴出する請求項9〜13のいずれか一項に記載の溶融ガラスの製造方法。
  15. 前記原料粒子投入部の一部から、前記ガラス原料粒子の投入位置とは別の位置でガラスカレット片を投入する請求項9〜14のいずれか一項に記載の溶融ガラスの製造方法。
  16. 前記原料粒子投入部の投入口の先端の外周から下方に気体を噴出する請求項9〜15のいずれか一項に記載の溶融ガラスの製造方法。
  17. 前記原料粒子投入部での鉛直下向きの原料粒子投入軸に対して、燃焼炎のなす角度αが0度≦α≦45度となるように、前記燃焼バーナーから下向きに燃焼炎を噴出する請求項9〜16のいずれか一項に記載の溶融ガラスの製造方法。
  18. 請求項9〜17のいずれか一項に記載の溶融ガラスの製造方法を用いて溶融ガラスを製造する工程と、該溶融ガラスを成形する工程と、成形後のガラスを徐冷する工程と、を含むガラス物品の製造方法。
  19. 請求項1〜8のいずれか一項に記載のガラス溶融炉と、該ガラス溶融炉により製造された溶融ガラスを成形する成形手段と、成形後のガラスを徐冷する徐冷手段とを備えるガラス物品の製造装置。
  20. 請求項9〜17のいずれか一項に記載の溶融ガラスの製造方法を用いて溶融ガラスを製造する工程と、該溶融ガラスを冷却する工程と、を含むガラスビーズの製造方法。
JP2013520568A 2011-06-17 2012-06-13 ガラス溶融炉、溶融ガラスの製造方法、ガラス物品の製造方法およびガラス物品の製造装置 Active JP6032201B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011135182 2011-06-17
JP2011135182 2011-06-17
PCT/JP2012/065159 WO2012173154A1 (ja) 2011-06-17 2012-06-13 ガラス溶融炉、溶融ガラスの製造方法、ガラス物品の製造方法およびガラス物品の製造装置

Publications (2)

Publication Number Publication Date
JPWO2012173154A1 true JPWO2012173154A1 (ja) 2015-02-23
JP6032201B2 JP6032201B2 (ja) 2016-11-24

Family

ID=47357139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013520568A Active JP6032201B2 (ja) 2011-06-17 2012-06-13 ガラス溶融炉、溶融ガラスの製造方法、ガラス物品の製造方法およびガラス物品の製造装置

Country Status (5)

Country Link
JP (1) JP6032201B2 (ja)
KR (1) KR20140027217A (ja)
CN (1) CN103596888B (ja)
TW (1) TW201302646A (ja)
WO (1) WO2012173154A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199549A (ja) * 2005-01-21 2006-08-03 Tokyo Institute Of Technology ガラス原料の溶解方法および溶解装置、ならびにガラス製造装置
JP2010515646A (ja) * 2007-01-15 2010-05-13 ロックウール インターナショナル アー/エス 鉱物繊維の製造方法及び製造装置
WO2011001757A1 (ja) * 2009-06-29 2011-01-06 旭硝子株式会社 溶融ガラスの製造方法、ガラス溶融炉、ガラス製品の製造装置、及びガラス製品の製造方法
WO2011004851A1 (ja) * 2009-07-08 2011-01-13 旭硝子株式会社 ガラス溶融炉、溶融ガラスの製造方法、ガラス製品の製造装置、及びガラス製品の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5380671B2 (ja) * 2006-04-28 2014-01-08 国立大学法人東京工業大学 ガラスの原料溶解方法および溶解装置ならびにガラス製造装置
JP4761575B2 (ja) * 2007-05-28 2011-08-31 大同特殊鋼株式会社 ガラス製品の製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199549A (ja) * 2005-01-21 2006-08-03 Tokyo Institute Of Technology ガラス原料の溶解方法および溶解装置、ならびにガラス製造装置
JP2010515646A (ja) * 2007-01-15 2010-05-13 ロックウール インターナショナル アー/エス 鉱物繊維の製造方法及び製造装置
WO2011001757A1 (ja) * 2009-06-29 2011-01-06 旭硝子株式会社 溶融ガラスの製造方法、ガラス溶融炉、ガラス製品の製造装置、及びガラス製品の製造方法
WO2011004851A1 (ja) * 2009-07-08 2011-01-13 旭硝子株式会社 ガラス溶融炉、溶融ガラスの製造方法、ガラス製品の製造装置、及びガラス製品の製造方法

Also Published As

Publication number Publication date
CN103596888B (zh) 2016-08-17
JP6032201B2 (ja) 2016-11-24
KR20140027217A (ko) 2014-03-06
TW201302646A (zh) 2013-01-16
WO2012173154A1 (ja) 2012-12-20
CN103596888A (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5605767B2 (ja) ガラス溶融炉、溶融ガラスの製造方法、ガラス製品の製造装置、及びガラス製品の製造方法
JP5664872B2 (ja) 溶融ガラスの製造方法、ガラス溶融炉、ガラス製品の製造装置、及びガラス製品の製造方法
JP5585581B2 (ja) ガラス溶融炉、溶融ガラスの製造方法、ガラス製品の製造装置、及びガラス製品の製造方法
KR101899171B1 (ko) 유리 용융로, 유리 소지의 변성 방법, 용융 유리의 제조 방법, 유리 제품의 제조 방법 및 유리 제품의 제조 장치
KR101807320B1 (ko) 용융 유리의 제조 방법, 유리 용융로, 유리 제품의 제조 방법, 및 유리 제품의 제조 장치
KR101759749B1 (ko) 유리 용융로, 용융 유리의 제조 방법, 유리 제품의 제조 장치, 및 유리 제품의 제조 방법
TW201127765A (en) Glass melting furnace, molten glass producing method, glass product producing device, and glass product producing method
JP5966933B2 (ja) ガラス溶融炉、溶融ガラスの製造方法、ガラス製品の製造方法、およびガラス製品の製造装置
JP6015741B2 (ja) ガラス溶融炉、溶融ガラスの製造方法、ガラス製品の製造装置、およびガラス製品の製造方法
KR101965003B1 (ko) 용융 유리의 제조 방법, 유리 용융로, 유리 물품의 제조 방법 및 유리 물품의 제조 장치
JP6032201B2 (ja) ガラス溶融炉、溶融ガラスの製造方法、ガラス物品の製造方法およびガラス物品の製造装置
JP2012096941A (ja) 気中溶融バーナー、ガラス原料の溶融方法、溶融ガラスの製造方法、ガラスビーズの製造方法、ガラス製品の製造方法、気中溶融装置およびガラス製品の製造装置
JP2012232868A (ja) ガラス溶融炉、溶融ガラスの製造方法、ガラスビーズの製造方法およびガラス物品の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161010

R150 Certificate of patent or registration of utility model

Ref document number: 6032201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250