JPWO2012050190A1 - Back surface protection sheet for solar cell module and solar cell module - Google Patents

Back surface protection sheet for solar cell module and solar cell module Download PDF

Info

Publication number
JPWO2012050190A1
JPWO2012050190A1 JP2012538726A JP2012538726A JPWO2012050190A1 JP WO2012050190 A1 JPWO2012050190 A1 JP WO2012050190A1 JP 2012538726 A JP2012538726 A JP 2012538726A JP 2012538726 A JP2012538726 A JP 2012538726A JP WO2012050190 A1 JPWO2012050190 A1 JP WO2012050190A1
Authority
JP
Japan
Prior art keywords
solar cell
back surface
cell module
protection sheet
surface protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012538726A
Other languages
Japanese (ja)
Inventor
野口 克弘
克弘 野口
直也 今井
直也 今井
理嗣 山地
理嗣 山地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okura Kogyo KK
Original Assignee
Okura Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okura Kogyo KK filed Critical Okura Kogyo KK
Publication of JPWO2012050190A1 publication Critical patent/JPWO2012050190A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

【課題】表面に所定の凹凸構造を転写・再現性良く形成し、電気変換効率を高めることができる裏面保護シートおよびそれを用いた太陽電池モジュールを提供することを課題とする。【解決手段】片面光入射型の太陽電池素子を備えた太陽電池モジュール用裏面保護シートにおいて、該裏面保護シートの少なくとも片側表面が、DSC測定の昇温時における吸熱ピーク温度と降温時の発熱ピーク温度との温度差が40℃以下であるポリブチレンテレフタレート、またはポリブチレンテレフタレート共重合体よりなり、その表面が斜面で形成された凹凸構造を有する太陽電池モジュール用裏面保護シート。It is an object of the present invention to provide a back surface protection sheet that can form a predetermined uneven structure on the surface with good transfer and reproducibility and increase electric conversion efficiency, and a solar cell module using the same. In a back surface protection sheet for a solar cell module provided with a single-sided light incident type solar cell element, at least one surface of the back surface protection sheet has an endothermic peak temperature at the time of DSC measurement and a heat generation peak at the time of temperature decrease. A back surface protective sheet for a solar cell module, which is made of polybutylene terephthalate or a polybutylene terephthalate copolymer having a temperature difference of 40 ° C. or less, and has a concavo-convex structure whose surface is formed by a slope.

Description

本発明は、複数の片面光入射型の太陽電池素子を封入した太陽電池モジュール用裏面保護シートおよび太陽電池モジュールに関するものであり、詳しくは、発電変換効率を高めた太陽電池用裏面保護シートおよび太陽電池モジュールに関するものである。   The present invention relates to a solar cell module back surface protective sheet and a solar cell module in which a plurality of single-sided light incident type solar cell elements are enclosed, and more specifically, to a solar cell back surface protective sheet and a solar cell with improved power conversion efficiency. The present invention relates to a battery module.

近年、環境への意識の高まりにより、クリーンエネルギーを利用した発電手段の一つとして、太陽電池モジュールを備えた太陽電池発電システムが普及している。太陽電池モジュールは板状の太陽電池素子が複数枚配置されており、これらの太陽電池素子を封止材と呼ばれるエチレン−酢酸ビニル共重合体で挟み込み、太陽光が当る側にガラスなどの前面板が、反対側に耐候性、防湿性を有する太陽電池モジュール用裏面保護シート(以下、裏面保護シートと略記する)がこの順に重ね合わされる。そして、真空加熱ラミネーション法などにより一体成形されている。   2. Description of the Related Art In recent years, a solar cell power generation system including a solar cell module has become widespread as one of power generation means using clean energy due to an increase in environmental awareness. The solar cell module has a plurality of plate-like solar cell elements arranged. These solar cell elements are sandwiched between ethylene-vinyl acetate copolymers called sealing materials, and a front plate such as glass is placed on the side where the sunlight strikes. However, the back surface protection sheet for solar cell modules (hereinafter abbreviated as back surface protection sheet) having weather resistance and moisture resistance is superimposed on the opposite side in this order. And it is integrally molded by a vacuum heating lamination method or the like.

この裏面保護シートは、太陽電池素子や封止材を保護するものであって、外部からの機械的衝撃、圧力から太陽電池素子を保護し、水分の浸透を防いで太陽電池素子の劣化を防ぐなどの機能が要求されている。そのため、裏面保護シートは封止材との接着性が重要であり、高温高湿中に長期間放置されても剥離しない接着力が必要である。   This back surface protection sheet protects the solar cell element and the sealing material, protects the solar cell element from external mechanical shock and pressure, prevents moisture penetration, and prevents deterioration of the solar cell element. Functions such as are required. Therefore, the adhesiveness with the sealing material is important for the back surface protection sheet, and it is necessary to have an adhesive force that does not peel even if left for a long time in high temperature and high humidity.

このような中で、太陽電池モジュールの開発においては、太陽電池モジュールへ入射した太陽光エネルギーを効率良く電気エネルギーに変換する、いわゆる電力変換効率をいかに高めるかが大きな課題となっており、太陽電池素子はもちろん、裏面保護シートにも様々な工夫が提案されている。   Under such circumstances, in the development of solar cell modules, how to increase the so-called power conversion efficiency of efficiently converting the solar energy incident on the solar cell module into electric energy has become a major issue. Various devices have been proposed for not only the elements but also the back surface protection sheet.

特許文献1には、透光性前面板と太陽電池素子と封止材と裏面保護シートとを有する太陽電池モジュールにおいて、裏面保護シートの前面板側に光散乱反射機能を有する凹凸構造が形成されている裏面保護シートが提案されている。裏面保護シートの凹凸構造は、平面スタンパなどの凹凸形成面に熱硬化型樹脂や紫外線硬化型樹脂などを塗布、または注入し、その上にポリエチレンテレフタレート等の基材を配置して、硬化処理後にスタンパからポリエチレンテレフタレートシートを離型するとうい方法で形成し、さらに好ましくは白色顔料、金属粒子、高屈折粒子、中空粒子の散乱要素を樹脂中に分散させたものを凹凸構造表面に塗布することにより得られる。このように、光散乱反射機能を有する裏面保護シートを製造するには多くの工程が必要であるという課題を有していた。   In Patent Document 1, in a solar cell module having a light-transmitting front plate, a solar cell element, a sealing material, and a back surface protection sheet, an uneven structure having a light scattering reflection function is formed on the front plate side of the back surface protection sheet. A back protection sheet has been proposed. The uneven structure of the back surface protective sheet is obtained by applying or injecting a thermosetting resin or an ultraviolet curable resin to an uneven surface such as a flat stamper, and placing a base material such as polyethylene terephthalate on the surface. By separating the polyethylene terephthalate sheet from the stamper, it is formed by a process, and more preferably by applying a scattering element of white pigment, metal particles, highly refractive particles and hollow particles dispersed in the resin to the surface of the concavo-convex structure can get. Thus, it had the subject that many processes were required in order to manufacture the back surface protection sheet which has a light-scattering reflection function.

ポリエチレンテレフタレートのシート表面へ凹凸構造を形成するために、上記のようなスタンパなどで形成した熱硬化型樹脂や紫外線硬化型樹脂からなる凹凸構造をポリエチレンテレフタレートシート表面へ載置・接着するという手段を選択しなければならないのは、所望の凹凸構造を形成したエンボスロールなどで加熱溶融したポリエチレンテレフタレートシート表面へ賦形加工を行っても冷却過程で凹凸構造が緩和するため転写、再現性が悪く、凸部の頂上がなだらかになってしまうという現象が起こり、所望の表面形状が得られないという問題があるからである。また、仮に何らかの方法で所望の凹凸構造を形成したポリエチレンテレフタレートシートを得たとしても、該ポリエチレンテレフタレートシートを封止材であるエチレン−酢酸ビニル共重合体へ貼合するために両者を減圧下で密着させながら150℃で30分間加熱すると、ポリエチレンテレフタレートシート表面に形成されていた凹凸構造が平坦化し初期の目的を達成できないという問題もある。   In order to form a concavo-convex structure on the surface of the polyethylene terephthalate sheet, there is a means for placing and bonding the concavo-convex structure made of a thermosetting resin or an ultraviolet curable resin formed with a stamper as described above on the surface of the polyethylene terephthalate sheet. It is necessary to select because the concavo-convex structure is relaxed in the cooling process even if shaping is performed on the surface of the polyethylene terephthalate sheet heated and melted with an embossing roll or the like in which the desired concavo-convex structure is formed. This is because a phenomenon that the top of the convex portion becomes smooth occurs and a desired surface shape cannot be obtained. Moreover, even if a polyethylene terephthalate sheet having a desired concavo-convex structure formed by any method is obtained, in order to bond the polyethylene terephthalate sheet to an ethylene-vinyl acetate copolymer that is a sealing material, both are used under reduced pressure. When heated at 150 ° C. for 30 minutes while in close contact, the uneven structure formed on the surface of the polyethylene terephthalate sheet is flattened and the initial purpose cannot be achieved.

特開2010−123720号公報JP 2010-123720 A

本発明は上記課題に鑑みなされたもので、表面に所定の凹凸構造の転写、再現性良く形成し、電気変換効率を高めることができる裏面保護シートおよびそれを用いた太陽電池モジュールを提供することを目的とする。   The present invention has been made in view of the above problems, and provides a back surface protective sheet that can form a predetermined uneven structure on the surface, can be formed with good reproducibility, and can increase electrical conversion efficiency, and a solar cell module using the same. With the goal.

本発明者らは、示差走査熱量測定機による測定(以下、DSC測定と略記する)の昇温時における吸熱ピーク温度と降温時の発熱ピーク温度との温度差(以下、△Tmcと略記する)が小さいポリブチレンテレフタレート(以下、PBTと略記する)またはポリブチレンテレフタレート共重合体(以下、PBT共重合体と略記する)は、所定の凹凸構造を形成したエンボスロールなどを溶融状態のシート表面へ押圧させることにより、シート表面に所定の凹凸構造を転写、再現性がよく賦形できることを見出し、本発明を完成するに到った。   The inventors of the present invention measured the temperature difference between the endothermic peak temperature at the time of temperature rise and the exothermic peak temperature at the time of temperature drop (hereinafter abbreviated as ΔTmc) in the measurement with a differential scanning calorimeter (hereinafter abbreviated as DSC measurement). Is a polybutylene terephthalate (hereinafter abbreviated as PBT) or a polybutylene terephthalate copolymer (hereinafter abbreviated as PBT copolymer) having a small embossing roll formed with a predetermined concavo-convex structure on the molten sheet surface. It has been found that by pressing, a predetermined concavo-convex structure can be transferred to the sheet surface, and the reproducibility can be shaped well, and the present invention has been completed.

すなわち、本発明によれば、
(1)片面光入射型の太陽電池素子を備えた太陽電池モジュール用裏面保護シートにおいて、裏面保護シートの少なくとも片側表面層が、DSC測定の昇温時における吸熱ピーク温度と降温時の発熱ピーク温度との温度差が40℃以下であるポリブチレンテレフタレート、またはポリブチレンテレフタレート共重合体よりなり、該表面が斜面で形成された凹凸構造を有する太陽電池モジュール用裏面保護シートが提供され、
(2)(1)記載の裏面保護シートを用いた片面光入射型の太陽電池モジュールが提供され、
(3)裏面保護シートが式(1)を満足する(2)記載の太陽電池モジュールが提供され、

1/n≦sin2θ≦x/(x+y1/2 式(1)
(但し、0<θ<45)

θ:前面板表面と裏面保護シート凹凸構造の斜面の延長面とのなす角度(度)
x:隣り合う太陽電池素子の間隔(mm)
y:太陽電池素子の前面板側表面と裏面保護シートの谷部との間隔(mm)
n:前面板の屈折率

(4)裏面保護シート表面の凹凸構造の最短距離にある凸部間を結ぶ線の方向と太陽電池素子の並びの方向とのなす角度が10度〜80度である(2)または(3)記載の太陽電池モジュールが提供される。
That is, according to the present invention,
(1) In a back surface protection sheet for a solar cell module provided with a single-sided light incident type solar cell element, at least one side surface layer of the back surface protection sheet has an endothermic peak temperature at the time of temperature rise in DSC measurement and an exothermic peak temperature at the time of temperature drop. A back surface protective sheet for a solar cell module comprising a polybutylene terephthalate having a temperature difference of 40 ° C. or less, or a polybutylene terephthalate copolymer, and having a concavo-convex structure in which the surface is formed as a slope,
(2) A single-sided light-incident solar cell module using the back surface protective sheet according to (1) is provided,
(3) The solar cell module according to (2), wherein the back surface protection sheet satisfies the formula (1),

1 / n ≦ sin 2θ ≦ x / (x 2 + y 2 ) 1/2 equation (1)
(However, 0 <θ <45)

θ: Angle (degrees) between the front plate surface and the extended surface of the slope of the back surface protection sheet uneven structure
x: Spacing between adjacent solar cell elements (mm)
y: Distance (mm) between the front plate side surface of the solar cell element and the valley portion of the back surface protection sheet
n: Refractive index of the front plate

(4) The angle formed by the direction of the line connecting the convex portions at the shortest distance of the concavo-convex structure on the surface of the back surface protective sheet and the direction in which the solar cell elements are arranged is 10 to 80 degrees (2) or (3) The described solar cell module is provided.

本発明の裏面保護シートは、△Tmcが40℃以下のPBT、またはPBT共重合体を用いているために、シート表面に所定の凹凸構造を転写、再現性が良く形成させることができ、本来は損失となっていた太陽光を有効利用して発電変換効率を高めることができるという効果を有する。また、表面の凹凸構造により動摩擦係数が小さく太陽電池モジュールを組み立てる際の取り扱いが容易であるという効果をも有する。   Since the back surface protection sheet of the present invention uses PBT or PBT copolymer having a ΔTmc of 40 ° C. or less, a predetermined uneven structure can be transferred to the sheet surface and formed with good reproducibility. Has the effect of improving the power conversion efficiency by effectively using the sunlight that has been lost. In addition, the rugged structure on the surface has an effect that the dynamic friction coefficient is small and handling when assembling a solar cell module is easy.

本発明の裏面保護シートの一実施形態を示す模式的斜視図である。It is a typical perspective view which shows one Embodiment of the back surface protection sheet of this invention. 本発明の裏面保護シートの他の実施形態を示す模式的斜視図である。It is a typical perspective view which shows other embodiment of the back surface protection sheet of this invention. 図1に示す裏面保護シートのIII−III’の断面図である。FIG. 3 is a cross-sectional view taken along III-III ′ of the back surface protection sheet shown in FIG. 1. 本発明の裏面保護シートを用いた太陽電池モジュールの模式的部分断面図である。It is a typical fragmentary sectional view of the solar cell module using the back surface protection sheet of this invention. 本発明の太陽電池モジュールの一実施形態を示す模式的平面図である。It is a typical top view which shows one Embodiment of the solar cell module of this invention. 図2に示す裏面保護シートを用いた太陽電池モジュールの模式的平面図である。It is a typical top view of the solar cell module using the back surface protection sheet shown in FIG. 実施例1で得られた裏面保護シート表面付近のレーザースコープによる断面図である。3 is a cross-sectional view of the vicinity of the surface of the back surface protective sheet obtained in Example 1 using a laser scope. FIG. 実施例2で得られた裏面保護シート表面付近のレーザースコープによる断面図である。4 is a cross-sectional view of the vicinity of the surface of the back surface protective sheet obtained in Example 2 using a laser scope. FIG.

以下、本発明の太陽電池モジュール用裏面保護シートおよび太陽電池モジュールについて詳細に説明する。   Hereinafter, the back surface protection sheet for solar cell modules and solar cell module of this invention are demonstrated in detail.

図4は、本発明の裏面保護シートを用いた太陽電池モジュール1の模式的部分断面図である。本発明の太陽電池モジュール1は、裏面保護シート11と、封止材12と、太陽電池素子13と、前面板14を有する。太陽光L1は前面板より入射し、大部分の太陽光L2は太陽電池素子表面へ入射する。一方、太陽電池素子間を通過した太陽光L3は、本発明の裏面保護シートを用いた太陽電池モジュールの場合、斜面で形成された複数の凹凸からなる表面を有する裏面保護シートで反射され太陽光L4となり、さらに前面板で反射され太陽光L5となって太陽電池素子へ入射し、太陽光エネルギーが電気エネルギーへ変換され、発電変換効率を高めることができる。これに対し、従来の裏面保護シートを用いた太陽電池モジュールでは、太陽電池素子間を通過した太陽光L3は裏面保護シートで散乱し、効率よく太陽電池素子へ入射せず太陽光エネルギーの損失となっている。   FIG. 4 is a schematic partial cross-sectional view of the solar cell module 1 using the back surface protective sheet of the present invention. The solar cell module 1 of the present invention includes a back surface protection sheet 11, a sealing material 12, a solar cell element 13, and a front plate 14. The sunlight L1 enters from the front plate, and most of the sunlight L2 enters the surface of the solar cell element. On the other hand, in the case of the solar cell module using the back surface protection sheet of the present invention, the sunlight L3 that has passed between the solar cell elements is reflected by the back surface protection sheet having a surface composed of a plurality of irregularities formed by slopes, and sunlight. It becomes L4, is further reflected by the front plate, becomes sunlight L5 and enters the solar cell element, solar energy is converted into electric energy, and power generation conversion efficiency can be increased. On the other hand, in the solar cell module using the conventional back surface protection sheet, the sunlight L3 that has passed between the solar cell elements is scattered by the back surface protection sheet and is not incident on the solar cell elements efficiently and is a loss of solar energy. It has become.

このように、所定の凹凸構造を形成した裏面保護シートを用いることにより、従来は損失となっていた太陽電池素子間を通過する太陽光を有効に利用できる太陽電池モジュールが得られるのであるが、前述の如く、従来は所定の凹凸構造を有する裏面保護シートを得るには多くの工程が必要であった。   In this way, by using the back surface protective sheet having a predetermined concavo-convex structure, it is possible to obtain a solar cell module that can effectively use sunlight passing between solar cell elements that has conventionally been a loss, As described above, conventionally, many steps are required to obtain a back surface protective sheet having a predetermined uneven structure.

本発明の太陽電池モジュール用裏面保護シートは、△Tmcが40℃以下であるPBTまたはPBT共重合体を好適に用いることができる。また、PBTまたはPBT共重合体へポリカーボネートやポリエチレンテレフタレートなどの熱可塑性樹脂を少量混合したものも用いることができる。ここで、△Tmcは、PBTまたはPBT共重合体のDSC測定における、昇温時(昇温速度10℃/min)の吸熱ピーク温度(Tm)と降温時(降温速度10℃/min)の発熱ピーク温度(Tc)との温度差(△Tmc=Tm−Tc)を意味する。   For the back surface protective sheet for solar cell module of the present invention, PBT or PBT copolymer having ΔTmc of 40 ° C. or lower can be suitably used. Moreover, what mixed a small amount of thermoplastic resins, such as a polycarbonate and a polyethylene terephthalate, to PBT or a PBT copolymer can also be used. Here, ΔTmc is an endothermic peak temperature (Tm) at the time of temperature increase (temperature increase rate 10 ° C./min) and heat generation at the time of temperature decrease (temperature decrease rate 10 ° C./min) in DSC measurement of PBT or PBT copolymer. It means the temperature difference (ΔTmc = Tm−Tc) from the peak temperature (Tc).

PBTとしては、1,4−ブタンジオールとテレフタル酸とを重縮合させる方法、1,4−ブタンジオールとテレフタル酸の低級アルキルエステルとを重縮合させる方法などがあり、いずれの方法で得られたPBTでも用いることができる。本発明で用いられるPBTの固有粘度は0.6〜1.5が好ましく、さらには0.8〜1.4が好ましい。   As PBT, there are a method of polycondensation of 1,4-butanediol and terephthalic acid, a method of polycondensation of 1,4-butanediol and a lower alkyl ester of terephthalic acid, and the like. PBT can also be used. The intrinsic viscosity of the PBT used in the present invention is preferably 0.6 to 1.5, and more preferably 0.8 to 1.4.

一方、PBT共重合体としては、ブチレングリコールの一部をエチレングリコール、プロピレングリコール、またはシクロヘキサンジメタノールに置き換えたもの、あるいはテレフタル酸の一部をイソフタル酸、2,6−ナフタレンジカルボン酸、またはアジピン酸に置き換えたものを挙げることができる。   On the other hand, as a PBT copolymer, a part of butylene glycol is replaced with ethylene glycol, propylene glycol, or cyclohexanedimethanol, or a part of terephthalic acid is isophthalic acid, 2,6-naphthalenedicarboxylic acid, or adipine. The thing replaced with the acid can be mentioned.

太陽電池モジュールは、長期に渡って安定して太陽光エネルギーを電気エネルギーに変換することが求められており、本発明の太陽電池モジュール用裏面保護シートにも、長期に渡ってその特性を大きく低下させないことが求められる。本発明に好適な上記PBT及びPBT共重合体はエステル結合を含有しており、水分により加水分解を起こして分子量が低下し、長期に渡って使用すると物性が低下する恐れがある。したがって、本願発明に用いられるPBTやPBT共重合体は、高温高湿下において加水分解を起こり難くするために末端のカルボキシル基の数が少ないものが好ましい。具体的には、カルボキシル基当量が40meq/kg以下、更に好ましくは30meq/kg以下のPBT、またはPBT共重合体が好ましい。   The solar cell module is required to stably convert solar energy into electric energy over a long period of time, and the characteristics of the back surface protection sheet for the solar cell module of the present invention are greatly deteriorated over a long period of time. It is required not to let it. The PBT and PBT copolymer suitable for the present invention contain an ester bond, cause hydrolysis due to moisture, reduce the molecular weight, and may deteriorate physical properties when used over a long period of time. Therefore, the PBT or PBT copolymer used in the present invention preferably has a small number of terminal carboxyl groups in order to prevent hydrolysis under high temperature and high humidity. Specifically, PBT or a PBT copolymer having a carboxyl group equivalent of 40 meq / kg or less, more preferably 30 meq / kg or less is preferable.

本発明の裏面保護シートには、加水分解を抑制するために上記PBTやPBT共重合体へカルボジイミド系化合物を、シート状に溶融加工する際の熱劣化を防ぐためにフェノール系、リン系、イオウ系などの酸化防止剤を、太陽光に含まれる紫外線による劣化を防ぐために紫外線吸収剤や光安定剤を、その他必要に応じてアンチブロッキング剤や難燃剤などを添加することもできる。   In the back surface protective sheet of the present invention, the carbodiimide compound is added to the PBT or PBT copolymer in order to suppress hydrolysis, and the phenolic, phosphorus, or sulfur type is used to prevent thermal degradation when melted into a sheet. In order to prevent deterioration due to ultraviolet rays contained in sunlight, an antioxidant such as an ultraviolet absorber or a light stabilizer, and an anti-blocking agent or a flame retardant as necessary can be added.

また、裏面保護シートは白色に着色することにより反射率が上がり、太陽光エネルギーから電気エネルギーへの太陽電池モジュールの電気変換効率が高まると共に、裏面保護シートの耐候性が向上するという効果も得られる。裏面保護シートを白色に着色するには、裏面保護シートへ酸化チタン、酸化亜鉛、酸化アルミニウムなどの白色系顔料(金属酸化物)を添加するのが好ましい。これらのうち、酸化チタンは屈折率が高く、PBTやPBT共重合体へ分散させやすいので特に好ましい。また、これらの添加量は、PBTまたはPBT共重合体100重量部に対し5重量部〜30重量部が好ましい。   Further, the back surface protection sheet is colored white, so that the reflectance is increased, the electric conversion efficiency of the solar cell module from solar energy to electrical energy is increased, and the weather resistance of the back surface protection sheet is improved. . In order to color the back surface protective sheet in white, it is preferable to add a white pigment (metal oxide) such as titanium oxide, zinc oxide, or aluminum oxide to the back surface protective sheet. Of these, titanium oxide is particularly preferable because it has a high refractive index and is easily dispersed in PBT or PBT copolymer. Moreover, these addition amounts are preferably 5 to 30 parts by weight with respect to 100 parts by weight of PBT or PBT copolymer.

本発明の裏面保護シートは、シート表面に特定の凹凸構造を付与するためにエンボスロールなどのスタンパによりエンボス加工を行うが、上記△Tmcが40℃以下であるPBTまたはPBT共重合体は、凹凸構造を付与するスタンパの表面形状をより忠実に転写、再現することができ、所望の凹凸構造が得られやすいので好ましい。一方、△Tmcが40℃を超える熱可塑性樹脂、例えばポリエチレンテレフタレートを用いた場合は、スタンパでシート表面にエンボス加工を行っても、ポリエチレンテレフタレートシートが冷却固化する間に転写した凹凸構造が緩和し、表面形状を忠実に転写、再現できず、得られたポリエチレンテレフタレートシート表面の、特に凹凸構造の頂上付近の形状がなだらかとなり、太陽光を有効に利用できないので好ましくない。   The back surface protective sheet of the present invention is embossed by a stamper such as an embossing roll in order to give a specific uneven structure to the sheet surface. The PBT or PBT copolymer having the ΔTmc of 40 ° C. or less is uneven. It is preferable because the surface shape of the stamper that imparts the structure can be transferred and reproduced more faithfully, and a desired uneven structure can be easily obtained. On the other hand, when a thermoplastic resin having a ΔTmc exceeding 40 ° C., such as polyethylene terephthalate, is used, the uneven structure transferred while the polyethylene terephthalate sheet is cooled and solidified is eased even if the stamper is embossed on the sheet surface. The surface shape cannot be faithfully transferred or reproduced, and the shape of the obtained polyethylene terephthalate sheet surface, particularly in the vicinity of the top of the concavo-convex structure, becomes gentle, and sunlight cannot be used effectively.

このように、△Tmcが40℃以下のPBTまたはPBT共重合体がエンボスロールなどのスタンパの表面形状をより忠実に転写、再現することができるのは、次のように推察される。即ち、溶融状態の熱可塑性樹脂は、エンボスロールなどで賦形後冷却される際、冷却に伴って体積収縮するが、△Tmcが小さいPBTまたはPBT共重合体は、冷却固化後速やかに結晶化が進行するため、結晶化が遅い熱可塑性樹脂よりも冷却による体積収縮が小さくなるためと考えられる。以上のように、△Tmcが小さいPBTまたはPBT共重合体は、固化後速やかに結晶化が始まると共に全体が急速に固化するため体積収縮が小さく、エンボスロール表面の凹凸構造を裏面保護シート表面へ忠実に転写、再現できるものと推定される。   As described above, it is assumed that the PBT or PBT copolymer having ΔTmc of 40 ° C. or less can more faithfully transfer and reproduce the surface shape of a stamper such as an emboss roll. That is, when the molten thermoplastic resin is cooled after shaping with an embossing roll or the like, the volume shrinks with cooling, but the PBT or PBT copolymer having a small ΔTmc is crystallized immediately after cooling and solidification. This is considered to be because the volume shrinkage due to cooling is smaller than that of a thermoplastic resin that is slow to crystallize. As described above, the PBT or PBT copolymer having a small ΔTmc begins to crystallize immediately after solidification and the whole solidifies rapidly, so that the volume shrinkage is small, and the uneven structure on the surface of the embossing roll is transferred to the back protective sheet surface. Presumably one that can be faithfully transferred and reproduced.

上記裏面保護シートの凹凸構造は、周期構造を有していても良く、不定形でも良い。凹凸構造のピッチとしては500μm以下であることが好ましく、400μm以下がより好ましい。前記凹凸構造のピッチが500μmより大きい場合は、凹凸構造形成時に凹凸構造の先端部分に樹脂が充填されにくく転写性が悪くなるので好ましくない。一方、凹凸構造のピッチが小さすぎるとエンボスロールなどのスタンパの製作が難しくなるため、上記凹凸構造のピッチは25μm以上が好ましい。また、凹凸構造の凸部の高さは、50μm以下が好ましく、さらには40μm以下が好ましく、この高さが50μmを超える場合はスタンパ表面の凹凸構造を裏面保護シートへ転写する際の転写、再現性が悪く、凸部の先端部分が欠けやすい。一方、凹凸構造の凸部の高さは5μm以上が好ましく、さらには10μm以上が好ましく、この高さが5μm未満の場合は太陽光を有効に利用できない。ここで、「凹凸構造のピッチ」とは隣接する2つの凸部の山部15(図3参照)の頂点間距離を意味する。また、「凹凸構造の凸部の高さ」とは凸部の山部頂点15と谷部16との間の、裏面保護シート平面に垂直な方向の距離を意味する。   The uneven structure of the back surface protective sheet may have a periodic structure or an irregular shape. The pitch of the concavo-convex structure is preferably 500 μm or less, and more preferably 400 μm or less. When the pitch of the concavo-convex structure is larger than 500 μm, it is not preferable because a resin is hardly filled in the tip portion of the concavo-convex structure when the concavo-convex structure is formed, and transferability is deteriorated. On the other hand, if the pitch of the concavo-convex structure is too small, it becomes difficult to produce a stamper such as an embossing roll. Therefore, the pitch of the concavo-convex structure is preferably 25 μm or more. Further, the height of the projections of the concavo-convex structure is preferably 50 μm or less, more preferably 40 μm or less. When this height exceeds 50 μm, transfer and reproduction when transferring the concavo-convex structure on the stamper surface to the back surface protection sheet The tip of the convex part is easily chipped. On the other hand, the height of the convex part of the concavo-convex structure is preferably 5 μm or more, more preferably 10 μm or more, and when this height is less than 5 μm, sunlight cannot be used effectively. Here, “the pitch of the concavo-convex structure” means the distance between the apexes of the peak portions 15 (see FIG. 3) of two adjacent convex portions. Further, the “height of the convex portion of the concavo-convex structure” means a distance in a direction perpendicular to the back surface protection sheet plane between the peak portion 15 and the valley portion 16 of the convex portion.

さらに、上記凹凸構造は、斜面で形成されていることが好ましく、その斜面が平面に近い形状であることが更に好ましい。凹凸構造を平面に近い斜面で形成すると、太陽電池素子間から入射した太陽光を任意の方向に反射させることが可能であり、さらに該斜面の角度を適切に選択することにより、裏面保護シートからの反射光を前面板へ臨界角以上で入射させ、裏面保護シートからの反射光を太陽電池モジュール内へ閉じ込めることができるのでより好ましい。   Furthermore, the concavo-convex structure is preferably formed by a slope, and more preferably, the slope has a shape close to a plane. When the concavo-convex structure is formed with an inclined surface close to a flat surface, it is possible to reflect sunlight incident between the solar cell elements in an arbitrary direction, and further by appropriately selecting the angle of the inclined surface, Is more preferable because it can be incident on the front plate at a critical angle or more and the reflected light from the back surface protection sheet can be confined in the solar cell module.

前記裏面保護シート表面の規則性のある凹凸構造が図1、または図2に示すような周期構造をしている場合は、最短距離にある凸部間を結ぶ線(D1、またはD2)と図5に示す太陽電池素子の並びの方向(D3)とのなす角度α(図6参照)を10度〜80度となるように、太陽電池素子と裏面保護シートを積層するのが特に好ましい。凹凸構造の最短距離にある凸部間を結ぶ線(D1、またはD2)と太陽電池素子の並びの方向(D3)とのなす角度αが90度に近い場合は、裏面保護シートで反射された太陽光が臨界角以上の角度で前面板に入射しても、その反射光は太陽電池素子間の前面板と裏面保護シートとの間で反射を繰り返すのみで太陽電池素子間を往復減衰し、太陽電池素子表面に当る太陽光が少なくなるので効果が減少する。   When the regular concavo-convex structure on the surface of the back surface protective sheet has a periodic structure as shown in FIG. 1 or FIG. 2, a line (D1 or D2) connecting the convex portions at the shortest distance and the figure It is particularly preferable that the solar cell element and the back surface protective sheet are laminated so that an angle α (see FIG. 6) formed with the alignment direction (D3) of the solar cell elements shown in FIG. When the angle α formed by the line (D1 or D2) connecting the convex portions at the shortest distance of the concavo-convex structure and the alignment direction (D3) of the solar cell elements is close to 90 degrees, it was reflected by the back surface protection sheet. Even if sunlight is incident on the front plate at an angle greater than the critical angle, the reflected light is reciprocally attenuated between the solar cell elements only by repeated reflection between the front plate and the back surface protective sheet between the solar cell elements, Since the sunlight hitting the surface of the solar cell element is reduced, the effect is reduced.

前述のように裏面保護シートからの反射光を太陽電池モジュール内へ閉じ込めるためには、前面板表面と裏面保護シート凹凸構造の斜面の延長面とのなす角度θが式(1)を満足することが好ましい。

1/n≦sin2θ≦x/(x+y1/2 式(1)
(但し、0<θ<45)

θ:前面板表面と裏面保護シート凹凸構造の斜面の延長面とのなす角度(度)
x:隣り合う太陽電池素子の間隔(mm)
y:太陽電池素子の前面板側表面と裏面保護シートの谷部との間隔(mm)
n:前面板の屈折率
As described above, in order to confine the reflected light from the back surface protection sheet in the solar cell module, the angle θ formed by the front plate surface and the extended surface of the inclined surface of the back surface protection sheet uneven structure satisfies the formula (1). Is preferred.

1 / n ≦ sin 2θ ≦ x / (x 2 + y 2 ) 1/2 equation (1)
(However, 0 <θ <45)

θ: Angle (degrees) between the front plate surface and the extended surface of the slope of the back surface protection sheet uneven structure
x: Spacing between adjacent solar cell elements (mm)
y: Distance (mm) between the front plate side surface of the solar cell element and the valley portion of the back surface protection sheet
n: Refractive index of the front plate

前面板表面と裏面保護シート凹凸構造の斜面の延長面とのなす角度θが式(1)を満足する場合は、裏面保護シートで反射された太陽光は前面板へ入射する角度が臨界角以上となり、前面板で全反射し、太陽光を太陽電池モジュール内へ閉じ込めることができるのでより好ましい。   If the angle θ between the front plate surface and the extended surface of the slope of the back surface protection sheet concavo-convex structure satisfies Equation (1), the angle at which sunlight reflected by the back surface protection sheet is incident on the front plate is greater than the critical angle It is more preferable because it is totally reflected by the front plate and sunlight can be confined in the solar cell module.

本発明の裏面保護シートは、少なくとも片側表面が、△Tmcが40℃以下のPBTまたはPBT共重合体をシート状に成形、所定の表面形状を賦形することにより得られるが、裏面保護シートは単層でも良く、共押出しにより他の目的を持った層を積層した多層構成の裏面保護シートとしてもよい。さらに、ガスバリア性を付与するために、無機酸化物を蒸着したガスバリア性フィルムなどを貼合して多層の裏面保護シートとしても良い。その際、少なくとも片側表面に、△Tmcが40℃以下のPBTまたはPBT共重合体の層に賦形した凹凸構造が裏面保護シートの最表面に位置するように貼合することが好ましい。   The back surface protective sheet of the present invention is obtained by forming a PBT or PBT copolymer having a ΔTmc of 40 ° C. or lower into a sheet shape and shaping a predetermined surface shape, at least one side surface. It may be a single layer, or may be a back surface protective sheet having a multilayer structure in which layers having other purposes are laminated by coextrusion. Furthermore, in order to provide gas barrier properties, a gas barrier film or the like on which an inorganic oxide is deposited may be bonded to form a multilayer back surface protective sheet. In that case, it is preferable to bond on at least one surface so that the uneven structure formed on the layer of PBT or PBT copolymer having a TMC of 40 ° C. or lower is located on the outermost surface of the back surface protective sheet.

このような裏面保護シートを得るには、例えば、フラットダイを装着した押出し機へ、△Tmcが40℃以下のPBTまたはPBT共重合体を供給し、押出し機のフラットダイから押出されたPBTまたはPBT共重合体シートを所定の凹凸構造を形成させたエンボスロールで挟んで引き取ることにより、PBTまたはPBT共重合体シートの表面へ所定の凹凸構造を転写、再現性がよく形成することができる。得られた裏面保護シートは未延伸のまま使用に供することができる。特に、PBTまたはPBT共重合体は他のポリエステルに比べて結晶化速度が速く、延伸することなく実用に耐え得る機械的特性のフィルムが得られるという効果をも有する。なお、前記多層構成の裏面保護シートを得るには、複数の押出し機を装着したフラットダイより共押出しして、通常の方法で得ることができる。   In order to obtain such a back surface protective sheet, for example, PBT or PBT copolymer having ΔTmc of 40 ° C. or lower is supplied to an extruder equipped with a flat die, and PBT extruded from the flat die of the extruder or By pulling the PBT copolymer sheet between the embossing rolls having a predetermined concavo-convex structure formed thereon, the predetermined concavo-convex structure can be transferred to the surface of the PBT or PBT copolymer sheet with good reproducibility. The obtained back surface protective sheet can be used in an unstretched state. In particular, PBT or PBT copolymer has a higher crystallization rate than other polyesters, and has an effect that a film having mechanical properties that can be used practically without stretching is obtained. In addition, in order to obtain the back surface protection sheet of the said multilayer structure, it can co-extrude from the flat die equipped with the several extruder, and can obtain it by a normal method.

裏面保護シートの表面へ凹凸構造を形成するには、PBTまたはPBT共重合体を押出して得られたシートを、次工程で加熱下に所定の凹凸構造を有するスタンパなどで賦形加工することによっても得られるが、押出し成形でPBTまたはPBT共重合体がフラットダイから押出された直後に所定の凹凸構造を有するエンボスロールで挟みこんで引き取る方法が、通常の押出し成形と同様な工程で所定の凹凸構造を有する裏面保護シートが得られるので好ましい。   In order to form a concavo-convex structure on the surface of the back surface protection sheet, the sheet obtained by extruding PBT or PBT copolymer is shaped by a stamper having a predetermined concavo-convex structure under heating in the next step. However, immediately after the PBT or PBT copolymer is extruded from the flat die by extrusion molding, the method of sandwiching it with an embossing roll having a predetermined concavo-convex structure and taking it out is the same as in ordinary extrusion molding. Since the back surface protection sheet which has an uneven structure is obtained, it is preferable.

本発明の裏面保護シート表面へ凹凸構造を形成するには、エンボスロールを用いる方法があるが、エンボスロール表面へ凹凸構造を形成するには、例えば、グラビアシリンダー版を製造する際に用いるダイアモンドスタイラスで彫刻する彫刻製版法やミル押し法などが挙げられる。   In order to form the concavo-convex structure on the surface of the back surface protection sheet of the present invention, there is a method using an embossing roll. To form the concavo-convex structure on the surface of the embossing roll, for example, a diamond stylus used when manufacturing a gravure cylinder plate The engraving plate making method and the mill pressing method are enumerated.

このように、PBT、またはPBT共重合体は、製膜した後延伸することなく用いることができるため、製膜時に付与されたシートの凹凸構造をそのまま維持することができる。それに対し、ポリエチレンテレフタレート等の他のポリエステルは、製膜した後、延伸工程が不可欠であり、製膜工程で付与したシート表面の凹凸構造は延伸工程で引き延ばされ、所定の凹凸構造を維持できないという問題が生じる。このような点からも、所定の凹凸構造を有する裏面保護シートには、PBT、またはPBT共重合体を用いて製造する必要がある。   Thus, since PBT or a PBT copolymer can be used without stretching after film formation, the concavo-convex structure of the sheet imparted during film formation can be maintained as it is. In contrast, other polyesters such as polyethylene terephthalate require a stretching process after film formation, and the uneven structure on the sheet surface provided in the film forming process is stretched in the stretching process to maintain a predetermined uneven structure. The problem that it is not possible arises. Also from such a point, it is necessary to manufacture a back surface protection sheet having a predetermined uneven structure using PBT or a PBT copolymer.

本発明の裏面保護シートは、太陽電池モジュール内へ水分を透過させないために、厚さ100μm〜600μmが好ましい。裏面保護シートの厚さが100μm未満の場合は、水分が太陽電池モジュール内へ浸透しやすく、更に裏面保護シートの厚さが薄いためコシが弱く取扱い時にシワが発生しやすいなど、裏面保護シートの取扱いが難しくなるので好ましくなく、厚さが600μmを超える場合は、得られた裏面保護シートをロール状に巻き取ることが困難となるため好ましくない。   The back protective sheet of the present invention preferably has a thickness of 100 μm to 600 μm so as not to allow moisture to penetrate into the solar cell module. When the thickness of the back surface protection sheet is less than 100 μm, moisture easily penetrates into the solar cell module, and the back surface protection sheet is thin, so that the stiffness is weak and wrinkles are likely to occur during handling. Since it becomes difficult to handle, it is not preferable, and when the thickness exceeds 600 μm, it is not preferable because it is difficult to wind the obtained back surface protective sheet into a roll.

このようにして得られた裏面保護シートは、裏面保護シートの凹凸構造を形成した面を封止材側となるように、前面板、封止材、太陽電池素子、封止材、裏面保護シートをこの順に一体化することによって太陽電池モジュールとすることができる。   Thus, the obtained back surface protection sheet is a front plate, a sealing material, a solar cell element, a sealing material, a back surface protection sheet so that the surface which formed the uneven structure of the back surface protection sheet may turn into a sealing material side. Are integrated in this order to form a solar cell module.

以下に、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。なお、特性の評価は次の方法で行った。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. The characteristics were evaluated by the following method.

(1)DSC測定
示差走査熱量測定機(DSC)を用い、昇温速度10℃/min、降温速度10℃/minにて測定し、昇温時における吸熱ピーク温度、および降温時の発熱ピーク温度を測定した。
(1) DSC measurement Using a differential scanning calorimeter (DSC), measured at a rate of temperature increase of 10 ° C / min and a rate of temperature decrease of 10 ° C / min. The endothermic peak temperature at the time of temperature increase and the exothermic peak temperature at the time of temperature decrease Was measured.

(2)溶液粘度の測定
PBTをフェノール−テトラクロロエタン混合溶媒(重量比で1:1)に溶解し、25℃でウベローデ型粘度計を用いて測定することにより固有粘度を求めた。
(2) Measurement of solution viscosity Intrinsic viscosity was calculated | required by melt | dissolving PBT in a phenol-tetrachloroethane mixed solvent (1: 1 by weight ratio), and measuring at 25 degreeC using an Ubbelohde viscometer.

(3)電気変換効率の評価
図4に示す太陽電池素子の前面板側表面と裏面保護シートの谷部との間隔yを0.6mm、図5に示す太陽電池素子の間隔をそれぞれa:2.5mm、b:2.5mmとなるように、前面板、封止材、太陽電池素子(4枚を田の字型に配置)、封止材、裏面保護シートをこの順に一体化して太陽電池モジュールを得た。太陽電池モジュールの電気変換効率は、ソーラーシミュレーター(日清紡績製、測定条件:全天日射基準太陽光をフィルターで調整した光を照射、エアマス1.5)を用いて測定した。
[参考例]
(3) Evaluation of electrical conversion efficiency The space | interval y of the front plate side surface of the solar cell element shown in FIG. 4 and the trough part of a back surface protection sheet is 0.6 mm, and the space | interval of the solar cell element shown in FIG. The front plate, the sealing material, the solar cell elements (four are arranged in a square shape), the sealing material, and the back surface protection sheet are integrated in this order so that the thickness becomes 0.5 mm and b: 2.5 mm. Got a module. The electrical conversion efficiency of the solar cell module was measured using a solar simulator (manufactured by Nisshinbo Industries, Inc., measurement conditions: irradiation of light adjusted with a solar radiation standard sunlight with a filter, air mass 1.5).
[Reference example]

PBT、ポリエチレンテレフタレートについてDSC測定を行い、吸熱ピーク温度と発熱ピーク温度より△Tmcを求め表1に示す。   DSC measurement was performed on PBT and polyethylene terephthalate, and ΔTmc was determined from the endothermic peak temperature and the exothermic peak temperature, and is shown in Table 1.

Figure 2012050190
[実施例1]
Figure 2012050190
[Example 1]

フラットダイを装着した単層製膜装置を用い、PBT(固有粘度:1.1、カルボキシル基当量:7meq/kg)100重量部に対し酸化チタン10重量部を配合した混合物を押出し、一辺78μm、高さ27μm、斜面の角度(θ)35度の正四角錐の凹部を全面に有するエンボスロールで賦形しながら引き取り、表面に正四角錐の凸構造を有する厚み188μmの裏面保護シートを得た。得られた裏面保護シート表面の凹凸構造部分の断面測定結果を図7に示す。また、裏面保護シートの凹凸構造の最短距離にある凸部間を結ぶ線の方向と太陽電池素子の並びの方向とのなす角度(α)を45度として組み立てた太陽電池モジュールの特性を表2に示す。
[実施例2]
Using a single-layer film forming apparatus equipped with a flat die, a mixture containing 10 parts by weight of titanium oxide per 100 parts by weight of PBT (inherent viscosity: 1.1, carboxyl group equivalent: 7 meq / kg) was extruded, and a side of 78 μm, It was taken up while being shaped with an embossing roll having a regular quadrangular pyramid recess having a height of 27 μm and a slope angle (θ) of 35 degrees to obtain a back protective sheet having a thickness of 188 μm having a convex structure of a regular quadrangular pyramid on the surface. The cross-sectional measurement result of the uneven structure part of the obtained back surface protection sheet surface is shown in FIG. Table 2 shows the characteristics of the solar cell module assembled by setting the angle (α) between the direction of the line connecting the convex portions at the shortest distance of the concavo-convex structure of the back surface protection sheet and the direction of arrangement of the solar cell elements to 45 degrees. Shown in
[Example 2]

表面がセミマット仕上げのゴムロールを用いた以外は実施例1と同様にして、表面がセミマット調の裏面保護シートを得た。得られた裏面保護シートの凹凸構造部分の断面測定結果を図8に、得られた裏面保護シートを用いて組み立てた太陽電池モジュールの特性を表2に示す。   A back protective sheet having a semi-matte surface was obtained in the same manner as in Example 1 except that a rubber roll having a semi-matte surface was used. The cross-sectional measurement result of the uneven structure portion of the obtained back surface protection sheet is shown in FIG. 8, and the characteristics of the solar cell module assembled using the obtained back surface protection sheet are shown in Table 2.

Figure 2012050190
Figure 2012050190

実施例1、実施例2のPBTを用いて凹凸を有する裏面保護シートを用いた太陽電池モジュールは従来の凹凸を有しない裏面保護シートを用いた太陽電池モジュールより電気変換効率が良くなった。さらに、実施例1のPBTを用いた裏面保護シート表面は凸部が平面に近い斜面よりなり、エンボスロール表面の凹凸構造を再現性良く転写されているので、実施例1の裏面保護シートを用いた太陽電池モジュールは、実施例2のランダムな凹凸を有する裏面保護シートを用いた太陽電池モジュールに比べ、電気変換効率を0.2%向上させることができた。   The solar cell module using the back surface protection sheet having unevenness using the PBTs of Example 1 and Example 2 has improved electrical conversion efficiency than the conventional solar cell module using the back surface protection sheet having no unevenness. Further, the surface of the back surface protection sheet using the PBT of Example 1 has a convex portion having a slope close to a flat surface, and the uneven structure on the surface of the embossing roll is transferred with good reproducibility. Compared with the solar cell module using the back surface protection sheet having the random irregularities of Example 2, the solar cell module that was obtained was able to improve the electrical conversion efficiency by 0.2%.

本発明の裏面保護シートはその表面に所定の凹凸構造を有しているので、本来損失となっていた太陽光を有効に利用することにより電気変換効率を高めることができるという効果を有すると共に、表面の凹凸構造により動摩擦係数が小さく太陽電池モジュールへ組み立てる際に滑りが良く取り扱いが容易であるという効果をも有する。さらに、PBTおよびPBT共重合体の特長である優れた機械的特性、耐湿熱性、封止材との良好な接着性、低い水蒸気透過率をも有しているため、電気変換効率を高めるだけでなく、太陽電池素子の劣化を抑え、太陽電池モジュール用裏面保護シートとして長期間にわたって好適に用いることができる。
Since the back surface protective sheet of the present invention has a predetermined concavo-convex structure on its surface, it has the effect that the electrical conversion efficiency can be increased by effectively using sunlight that was originally lost, Due to the uneven structure on the surface, the coefficient of dynamic friction is small, and there is also an effect that it is easy to handle when assembled into a solar cell module. In addition, it has excellent mechanical properties, heat and moisture resistance, good adhesion to the sealing material, and low water vapor transmission rate, which are the features of PBT and PBT copolymer. In addition, the deterioration of the solar cell element can be suppressed, and the solar cell module back surface protective sheet can be suitably used for a long period of time.

1 : 太陽電池モジュール
11 : 裏面保護シート
12 : 封止材
13 : 太陽電池素子
14 : 前面板
15 : 凹凸構造の山部
16 : 凹凸構造の谷部
D1 : 凹凸構造の最短距離にある凸部間を結ぶ線の方向
D2 : 凹凸構造の最短距離にある凸部間を結ぶ線の方向
D3 : 太陽電池素子の並びの方向
L1 : 太陽電池モジュールへ入射する太陽光
L2 : 太陽電池素子へ入射する太陽光
L3 : 太陽電池素子間を直進する太陽光
L4 : 裏面保護シートで反射された太陽光
L5 : 前面板で反射された太陽光
θ : 前面板表面と裏面保護シート凹凸構造の斜面の延長面とのなす角度
x : 隣り合う太陽電池素子の間隔
y : 太陽電池素子の前面板側表面と裏面保護シートの谷部との間隔
a : 隣り合う太陽電池素子の間隔
b : 隣り合う太陽電池素子の間隔
α : D2とD3とのなす角度

DESCRIPTION OF SYMBOLS 1: Solar cell module 11: Back surface protection sheet 12: Sealing material 13: Solar cell element 14: Front plate 15: Peak part of uneven structure 16: Valley part of uneven structure D1: Between convex parts in shortest distance of uneven structure D2: Direction of a line connecting convex portions at the shortest distance of the concavo-convex structure D3: Direction of arrangement of solar cell elements L1: Sunlight incident on solar cell module L2: Sun incident on solar cell element Light L3: Sunlight straightly traveling between solar cell elements L4: Sunlight reflected by the back surface protection sheet L5: Sunlight reflected by the front surface plate θ: Extension surface of the slope of the front surface and the back surface protection sheet uneven structure X: Interval between adjacent solar cell elements y: Interval between front plate side surface of solar cell element and valley portion of back surface protection sheet a: Interval between adjacent solar cell elements b: Adjacent Spacing of solar cell elements α: Angle formed by D2 and D3

Claims (4)

片面光入射型の太陽電池素子を備えた太陽電池モジュール用裏面保護シートにおいて、裏面保護シートの少なくとも片側表面層が、DSC測定の昇温時における吸熱ピーク温度と降温時の発熱ピーク温度との温度差が40℃以下であるポリブチレンテレフタレート、またはポリブチレンテレフタレート共重合体よりなり、該表面が斜面で形成された凹凸構造を有することを特徴とする太陽電池モジュール用裏面保護シート。
In the back surface protection sheet for a solar cell module provided with a single-sided light incident type solar cell element, at least one side surface layer of the back surface protection sheet has a temperature between an endothermic peak temperature at the time of DSC measurement and an exothermic peak temperature at the time of temperature decrease. A back surface protective sheet for a solar cell module, comprising a polybutylene terephthalate or a polybutylene terephthalate copolymer having a difference of 40 ° C. or less and having a concavo-convex structure having a surface formed by a slope.
請求項1記載の裏面保護シートを用いたことを特徴とする片面光入射型の太陽電池モジュール。
A single-sided light incident type solar cell module using the back surface protective sheet according to claim 1.
裏面保護シートが式(1)を満足することを特徴とする請求項2記載の太陽電池モジュール。

1/n≦sin2θ≦x/(x+y1/2 式(1)
(但し、0<θ<45)

θ:前面板表面と裏面保護シート凹凸構造の斜面の延長面とのなす角度(度)
x:隣り合う太陽電池素子の間隔(mm)
y:太陽電池素子の前面板側表面と裏面保護シートの谷部との間隔(mm)
n:前面板の屈折率
The solar cell module according to claim 2, wherein the back surface protection sheet satisfies the formula (1).

1 / n ≦ sin 2θ ≦ x / (x 2 + y 2 ) 1/2 equation (1)
(However, 0 <θ <45)

θ: Angle (degrees) between the front plate surface and the extended surface of the slope of the back surface protection sheet uneven structure
x: Spacing between adjacent solar cell elements (mm)
y: Distance (mm) between the front plate side surface of the solar cell element and the valley portion of the back surface protection sheet
n: Refractive index of the front plate
裏面保護シート表面の規則性のある凹凸構造の最短距離にある凸部間を結ぶ線の方向と太陽電池素子の並びの方向とのなす角度αが10度〜80度であることを特徴とする請求項2または3記載の太陽電池モジュール。

The angle α between the direction of the line connecting the convex portions at the shortest distance of the regular concavo-convex structure on the surface of the back surface protective sheet and the direction in which the solar cell elements are arranged is 10 to 80 degrees. The solar cell module according to claim 2 or 3.

JP2012538726A 2010-10-16 2011-10-14 Back surface protection sheet for solar cell module and solar cell module Pending JPWO2012050190A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010233160 2010-10-16
JP2010233160 2010-10-16
PCT/JP2011/073666 WO2012050190A1 (en) 2010-10-16 2011-10-14 Back-surface protective sheet for solar cell module, and solar cell module

Publications (1)

Publication Number Publication Date
JPWO2012050190A1 true JPWO2012050190A1 (en) 2014-02-24

Family

ID=45938410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012538726A Pending JPWO2012050190A1 (en) 2010-10-16 2011-10-14 Back surface protection sheet for solar cell module and solar cell module

Country Status (3)

Country Link
JP (1) JPWO2012050190A1 (en)
TW (1) TW201230353A (en)
WO (1) WO2012050190A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201526269A (en) * 2013-11-05 2015-07-01 Okura Industrial Co Ltd Reverse-surface protective sheet for solar cell module, and method for manufacturing same
JP2016072540A (en) * 2014-09-30 2016-05-09 大日本印刷株式会社 Rear surface protective sheet and solar cell module using the same
JP6471501B2 (en) * 2015-01-08 2019-02-20 大日本印刷株式会社 Back surface protection sheet for solar cell module and solar cell module using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003107439A1 (en) * 2002-06-12 2003-12-24 Rwe Schott Solar, Inc. Photovoltaic module with light reflecting backskin
WO2008083042A2 (en) * 2006-12-29 2008-07-10 Bp Corporation North America Inc. Photovoltaic modules with a transparent material having a camouflaged pattern
WO2009063932A1 (en) * 2007-11-16 2009-05-22 Okura Industrial Co., Ltd. Rear surface protection sheet for solar cell module and solar cell module protected by such protection sheet
WO2010018662A1 (en) * 2008-08-12 2010-02-18 ウィンテックポリマー株式会社 Polybutylene terephthalate resin mixture and film
WO2010038482A1 (en) * 2008-10-03 2010-04-08 凸版印刷株式会社 Solar battery module
JP2010109240A (en) * 2008-10-31 2010-05-13 Toppan Printing Co Ltd Solar cell back sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003107439A1 (en) * 2002-06-12 2003-12-24 Rwe Schott Solar, Inc. Photovoltaic module with light reflecting backskin
WO2008083042A2 (en) * 2006-12-29 2008-07-10 Bp Corporation North America Inc. Photovoltaic modules with a transparent material having a camouflaged pattern
WO2009063932A1 (en) * 2007-11-16 2009-05-22 Okura Industrial Co., Ltd. Rear surface protection sheet for solar cell module and solar cell module protected by such protection sheet
WO2010018662A1 (en) * 2008-08-12 2010-02-18 ウィンテックポリマー株式会社 Polybutylene terephthalate resin mixture and film
WO2010038482A1 (en) * 2008-10-03 2010-04-08 凸版印刷株式会社 Solar battery module
JP2010109240A (en) * 2008-10-31 2010-05-13 Toppan Printing Co Ltd Solar cell back sheet

Also Published As

Publication number Publication date
TW201230353A (en) 2012-07-16
WO2012050190A1 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
CN101518971B (en) Polyester laminated film and solar panel using same
CN101431115B (en) Solar cell panel and manufacturing method thereof
KR101114919B1 (en) Backsheet for solar cell comprising fluorine-based copolymer and preparation methode thereof
CN101431107A (en) Laminated film and solar cell panel employing the same
CN103650161B (en) Backboard used for solar batteries
KR20100090680A (en) Polyester film, method for production of the same, and area light source, solar battery back-sheet and solar battery each comprising the same
US8222514B2 (en) Backskin material for solar energy modules
CN104143578A (en) Solar energy backing plate and manufacturing method thereof
CN203690316U (en) Solar cell module
CN106626645A (en) Polyester film, solar cell back plate and preparation method of solar cell back plate
JP2011129850A (en) Back sheet for solar cell, and solar cell module using the same
WO2012050190A1 (en) Back-surface protective sheet for solar cell module, and solar cell module
CN101807610A (en) Adhesive film for improving light capturing efficiency and solar cell panel using same
CN115579414B (en) Color photovoltaic assembly for increasing incident light and application thereof
JP2016046505A (en) Reflection film for solar battery backsheet, manufacturing method therefor, solar battery backsheet, and solar battery module
CN101817245A (en) Solar cell pack
WO2012111749A1 (en) Protective sheet for back surface of solar cell module, process for production of the protective sheet, and solar cell module
JP2008047792A (en) Solar cell member, and solar cell member sheet
JP2012505542A (en) Multilayer weather resistant film for solar cells
JP2016072540A (en) Rear surface protective sheet and solar cell module using the same
CN106426992A (en) Plastic film with light trapping structure, and preparation method and application of plastic film
JP2008305822A (en) Film for solar cell module sealing sheet and solar cell module sealing sheet
CN111844986A (en) Fluoride-free multilayer co-extrusion solar backboard film and preparation method thereof
WO2015068675A1 (en) Reverse-surface protective sheet for solar cell module, and method for manufacturing same
WO2016060163A1 (en) Backside protective sheet for solar cell modules, solar cell module and method for producing backside protective sheet for solar cell modules

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160404