JPWO2011154993A1 - Isolation transformer and power supply - Google Patents

Isolation transformer and power supply Download PDF

Info

Publication number
JPWO2011154993A1
JPWO2011154993A1 JP2012519135A JP2012519135A JPWO2011154993A1 JP WO2011154993 A1 JPWO2011154993 A1 JP WO2011154993A1 JP 2012519135 A JP2012519135 A JP 2012519135A JP 2012519135 A JP2012519135 A JP 2012519135A JP WO2011154993 A1 JPWO2011154993 A1 JP WO2011154993A1
Authority
JP
Japan
Prior art keywords
iron core
primary
transformer
insulator
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012519135A
Other languages
Japanese (ja)
Inventor
叶田 玲彦
玲彦 叶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2011154993A1 publication Critical patent/JPWO2011154993A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/04Fixed transformers not covered by group H01F19/00 having two or more secondary windings, each supplying a separate load, e.g. for radio set power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/06Mounting, supporting or suspending transformers, reactors or choke coils not being of the signal type
    • H01F2027/065Mounting on printed circuit boards

Abstract

本発明で解決を図る課題は,高耐圧の絶縁トランスにおいて,1次・2次間の寄生容量を低減するとともに,絶縁トランスの体積を縮小することである。このため、絶縁トランスは、1次巻線が巻回された1次側鉄芯と,2次巻線が巻回された2次側鉄芯と,絶縁体を有し,1次側鉄芯と2次側鉄芯が,絶縁体を挟んで対向するように絶縁体に固定、配置される。また、電源装置は、1次巻線が巻回された1次側鉄芯と2次巻線が巻回された2次側鉄芯と絶縁体を有し,1次側鉄芯と2次側鉄芯が,絶縁体を挟んで対向するように絶縁体に固定、配置された絶縁トランスと、絶縁トランスの1次巻線に接続される一次側回路と、絶縁トランスの2次巻線に接続される二次側回路とを備え、絶縁トランスが、一次側回路や二次側回路を構成する回路部品と共にプリント基板上に搭載される。The problem to be solved by the present invention is to reduce the primary-secondary parasitic capacitance and reduce the volume of the insulation transformer in a high voltage insulation transformer. Therefore, the insulation transformer has a primary side iron core around which the primary winding is wound, a secondary side iron core around which the secondary winding is wound, and an insulator, and the primary side iron core. And the secondary iron core are fixed and arranged on the insulator so as to face each other with the insulator interposed therebetween. In addition, the power supply device includes a primary side iron core around which the primary winding is wound, a secondary side iron core around which the secondary winding is wound, and an insulator. An insulating transformer fixed and arranged on the insulator so that the side iron cores are opposed to each other with the insulator interposed therebetween, a primary circuit connected to the primary winding of the insulating transformer, and a secondary winding of the insulating transformer The isolation transformer is mounted on the printed circuit board together with circuit components constituting the primary side circuit and the secondary side circuit.

Description

本発明は,絶縁された電力を得る絶縁トランスと,絶縁トランスを用いて構成された電源装置に関わるものである。   The present invention relates to an insulation transformer that obtains insulated power and a power supply device configured using the insulation transformer.

鉄道車両用インバータのゲートドライブ用電源や大型産業機器用電源などにおいては,1次・2次間の絶縁耐圧として,6〜25kVという比較的高い電圧が必要である。また,雷サージが発生した場合に,ノイズ電流による装置の誤動作を防止する観点から,1次・2次間の寄生容量を可能な限り小さくすることが求められる。   In a power supply for a gate drive of a railway vehicle inverter, a power supply for a large industrial device, etc., a relatively high voltage of 6 to 25 kV is required as a withstand voltage between primary and secondary. In addition, when a lightning surge occurs, it is required to make the parasitic capacitance between the primary and secondary as small as possible from the viewpoint of preventing malfunction of the device due to noise current.

このため,絶縁機能を実現するためには高耐圧でかつ低寄生容量の絶縁トランスが用いられる。また,絶縁トランスは,1次巻線と2次巻線の距離を大きくとる必要が生じ,絶縁トランスの体積が大きくなるという課題があった。   For this reason, an insulating transformer having a high withstand voltage and a low parasitic capacitance is used to realize the insulating function. In addition, the insulation transformer needs to increase the distance between the primary winding and the secondary winding, and there is a problem that the volume of the insulation transformer increases.

これら解決すべき課題のうち、寄生容量の低減に対しては,特許文献1に見られるような低寄生容量トランスが提案されている。このトランスは,多層巻きのトランスで,一次コイルの第4のコイル層と二次コイルの第3のコイル層間の絶縁体をそれ以外のコイル層間の絶縁体の厚みよりも厚くすることにより,第3と第4のコイル層間の間隔が広くなり一次コイルと二次コイル間の寄生容量が低減するというものである。   Among these problems to be solved, a low parasitic capacitance transformer as shown in Patent Document 1 has been proposed for reducing parasitic capacitance. This transformer is a multi-layered transformer, and the insulation between the fourth coil layer of the primary coil and the third coil layer of the secondary coil is made thicker than the thickness of the insulation between the other coil layers. The space between the third and fourth coil layers is widened, and the parasitic capacitance between the primary coil and the secondary coil is reduced.

特開平10−106855号公報JP-A-10-106855

上記の特許文献1においては,絶縁体の厚みを厚くして絶縁耐圧を確保するとともに,寄生容量を低減する方法であるが,多層トランス構成となることから,1次・2次巻線間の絶縁体が複数必要となり,トランスの体積を低減することは難しい。   In the above-mentioned Patent Document 1, a method of increasing the thickness of an insulator to ensure a withstand voltage and reducing parasitic capacitance is used. Multiple insulators are required, and it is difficult to reduce the transformer volume.

本発明で解決を図る課題は,高耐圧の絶縁トランスにおいて,1次・2次間の寄生容量を低減するとともに,絶縁トランスの体積を縮小することである。   The problem to be solved by the present invention is to reduce the primary-secondary parasitic capacitance and reduce the volume of the insulation transformer in a high voltage insulation transformer.

本発明の絶縁トランスは、1次巻線が巻回された1次側鉄芯と,2次巻線が巻回された2次側鉄芯と,絶縁体を有し,1次側鉄芯と2次側鉄芯が,絶縁体を挟んで対向するように絶縁体に固定、配置される。   The insulation transformer of the present invention has a primary side iron core around which a primary winding is wound, a secondary side iron core around which a secondary winding is wound, and an insulator. And the secondary iron core are fixed and arranged on the insulator so as to face each other with the insulator interposed therebetween.

なお、1次側鉄芯および2次側鉄芯は、ポット型のフェライトコアであり,1次巻線および2次巻線はそれぞれコアの開口部内に配設され,開口部同士が相対するように絶縁体を挟んで対向されるのがよい。   The primary side iron core and the secondary side iron core are pot-type ferrite cores, and the primary winding and the secondary winding are respectively disposed in the openings of the core so that the openings are opposed to each other. It is preferable to face each other with an insulator interposed therebetween.

また、1次側鉄芯および2次側鉄芯はE型のフェライトコアであり,コアの脚部同士が相対するように絶縁体を挟んで対向されるのがよい。   The primary side iron core and the secondary side iron core are E-type ferrite cores, and are preferably opposed to each other with an insulator interposed therebetween so that the legs of the cores face each other.

また、絶縁体は、中間に空隙を有する2つの絶縁体からなり、一方の絶縁体側に1次側鉄芯が、他方の絶縁体側に2次側鉄芯が、絶縁体を挟んで対向する位置に配置されるのがよい。   The insulator is composed of two insulators having a gap in the middle. The primary iron core on one insulator side and the secondary iron core on the other insulator side face each other across the insulator. It is good to be arranged.

また、絶縁体は、電子部品を搭載するプリント基板とするのがよい。   The insulator is preferably a printed board on which electronic components are mounted.

本発明の絶縁トランスは、1次巻線が巻回された1次側鉄芯と2次巻線が巻回された2次側鉄芯を、空隙を介して配置し、少なくとも空隙に絶縁性の樹脂を充填すると共に、1次側鉄芯と2次側鉄芯巻線の巻面同士が対向するように配置されている。   The insulating transformer of the present invention has a primary side iron core around which a primary winding is wound and a secondary side iron core around which a secondary winding is wound, arranged via a gap, and is insulated at least in the gap. The primary side iron core and the secondary side iron core winding are disposed so as to face each other.

本発明の絶縁トランスは、1次巻線が巻回された1次側鉄芯と2次巻線が巻回された2次側鉄芯を、絶縁体を介して配置し、少なくとも鉄芯の周囲を絶縁性の樹脂で覆うと共に、1次側鉄芯と2次側鉄芯巻線の巻面同士が対向するように配置されている。   An insulating transformer according to the present invention includes a primary iron core around which a primary winding is wound and a secondary iron core around which a secondary winding is wound, arranged via an insulator, at least of the iron core. The periphery is covered with an insulating resin, and the winding surfaces of the primary side iron core and the secondary side iron core winding are arranged to face each other.

本発明の電源装置は、1次巻線が巻回された1次側鉄芯と,2次巻線が巻回された2次側鉄芯と,絶縁体を有し,1次側鉄芯と2次側鉄芯が,絶縁体を挟んで対向するように絶縁体に固定、配置された絶縁トランスを備え、絶縁トランスを励磁する回路方式は絶縁トランスの漏れインダクタンスを利用した直列共振方式とされる。   The power supply device of the present invention has a primary side iron core around which a primary winding is wound, a secondary side iron core around which a secondary winding is wound, and an insulator. And a secondary side iron core is provided with an insulating transformer fixed and arranged on the insulator so as to face each other across the insulator, and the circuit method for exciting the insulating transformer is a series resonance method using the leakage inductance of the insulating transformer. Is done.

本発明の電源装置は、1次巻線が巻回された1次側鉄芯と2次巻線が巻回された2次側鉄芯と絶縁体を有し,1次側鉄芯と2次側鉄芯が,絶縁体を挟んで対向するように絶縁体に固定、配置された絶縁トランスと、絶縁トランスの1次巻線に接続される一次側回路と、絶縁トランスの2次巻線に接続される二次側回路とを備え、絶縁トランスが、前記一次側回路や二次側回路を構成する回路部品と共にプリント基板上に搭載されている。   The power supply device of the present invention has a primary side iron core around which a primary winding is wound, a secondary side iron core around which a secondary winding is wound, and an insulator. An insulation transformer fixed and arranged on the insulator so that the secondary iron core is opposed to the insulator, a primary circuit connected to the primary winding of the insulation transformer, and a secondary winding of the insulation transformer And an isolation transformer is mounted on a printed circuit board together with circuit components constituting the primary side circuit and the secondary side circuit.

なお、絶縁トランスの絶縁体は、前記プリント基板であり、プリント基板の各面にそれぞれ前記1次側鉄芯と2次側鉄芯が配置されているのがよい。   The insulator of the insulating transformer is the printed board, and the primary side iron core and the secondary side iron core are preferably arranged on each surface of the printed board.

また、絶縁トランスの絶縁体は、プリント基板上に絶縁体が垂直方向に固定されるとともに,1次側鉄芯が1次側回路に隣接するように配置され,かつ2次側鉄芯が2次側回路に隣接するように配置されているのがよい。   The insulator of the insulation transformer is arranged such that the insulator is fixed vertically on the printed circuit board, the primary iron core is adjacent to the primary circuit, and the secondary iron core is 2 It is good to arrange | position so that a secondary side circuit may be adjoined.

また、二次側回路を構成する回路部品は、プリント基板上に面実装されるのがよい。   Further, the circuit components constituting the secondary circuit are preferably surface-mounted on the printed board.

少なくとも1つのパワースイッチングデバイスとその駆動回路とを内蔵する本発明の電源装置は、駆動回路に電源を給電する絶縁トランスを内蔵し,絶縁トランスは,1次巻線が巻回された1次側鉄芯と,2次巻線が巻回された2次側鉄芯とを有し,1次側鉄芯と2次側鉄芯が,駆動回路基板上に充填される充填材を挟んで対向するように配置されるとともに,少なくとも前記1次側鉄芯は充填材により固着される。   The power supply apparatus of the present invention incorporating at least one power switching device and its drive circuit incorporates an insulation transformer for supplying power to the drive circuit, and the insulation transformer is a primary side around which a primary winding is wound. It has an iron core and a secondary iron core around which a secondary winding is wound, and the primary iron core and the secondary iron core face each other with a filler filled on the drive circuit board interposed therebetween. And at least the primary iron core is fixed by a filler.

なお、搭載される絶縁トランスの数は、パワースイッチング素子の数と同じであるのがよい。   The number of insulation transformers to be mounted is preferably the same as the number of power switching elements.

また、パワースイッチング素子の数と同じだけの絶縁トランスを直列接続するのがよい。   Also, it is preferable to connect as many isolation transformers as the number of power switching elements in series.

本発明によれば,1次・2次間の寄生容量を低減することができ,雷サージ発生時のノイズ電流の発生を抑制することができる絶縁トランスを提供できる。   According to the present invention, it is possible to provide an isolation transformer that can reduce the primary-secondary parasitic capacitance and can suppress the generation of noise current when a lightning surge occurs.

絶縁トランスの第1の実施形態を示す分解構成図。The exploded block diagram which shows 1st Embodiment of an insulation transformer. 絶縁トランスの第2の実施形態を示す分解構成図。The exploded block diagram which shows 2nd Embodiment of an insulation transformer. 絶縁トランスを用いた電源装置の一例を示す回路構成図。The circuit block diagram which shows an example of the power supply device using an insulation transformer. 絶縁トランスを用いた電源装置の一例を示す回路構成図。The circuit block diagram which shows an example of the power supply device using an insulation transformer. 絶縁トランスを用いた電源装置の基板実装の一例を示す配置図。The layout which shows an example of the board | substrate mounting of the power supply device using an insulation transformer. 絶縁トランスを用いた電源装置の基板実装の一例を示す配置図。The layout which shows an example of the board | substrate mounting of the power supply device using an insulation transformer. 絶縁トランスを用いた電源装置の基板実装の一例を示す配置図。The layout which shows an example of the board | substrate mounting of the power supply device using an insulation transformer. モールド形成された絶縁トランスの一例を示す断面図。Sectional drawing which shows an example of the insulation transformer by which the mold was formed. モールド形成された絶縁トランスの一例を示す断面図。Sectional drawing which shows an example of the insulation transformer by which the mold was formed. 絶縁トランスを用いたパワーモジュールのブロック図。The block diagram of the power module using an insulation transformer. 絶縁トランスを用いたパワーモジュールの断面図。Sectional drawing of the power module using an insulation transformer. 絶縁トランスを用いたパワーモジュール用の電源装置の断面図。Sectional drawing of the power supply device for power modules using an insulation transformer.

以下、本発明の実施形態について図面を用いて詳細に説明する。特に絶縁トランスの構成、絶縁トランスを含む電源装置回路構成、電源装置のプリント板への実装、絶縁トランスのモールド形成化、並びにパワーモジュールとして構成された電源装置について、数例ずつ順次説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In particular, the configuration of the insulation transformer, the configuration of the power supply device including the insulation transformer, the mounting of the power supply device on the printed board, the molding of the insulation transformer, and the power supply device configured as a power module will be described sequentially by several examples.

最初に、本発明の絶縁トランスの構成の一例について,図1と図2を用いて説明する。   First, an example of the configuration of the insulation transformer of the present invention will be described with reference to FIGS.

図1は、本発明の絶縁トランス19の分解構成図である。この構造では、絶縁板3の片面にトランス一次部11を、他面にトランス二次部12を配置する。トランス一次部11、トランス二次部12は、ポット型フェライトコア1内に一次、二次巻線2,4を収納する。絶縁板3は孔などを設けず、トランス一次部11、トランス二次部12が絶縁板を介して対峙するように配置される。   FIG. 1 is an exploded configuration diagram of an insulating transformer 19 according to the present invention. In this structure, the transformer primary part 11 is arranged on one side of the insulating plate 3 and the transformer secondary part 12 is arranged on the other side. The transformer primary part 11 and the transformer secondary part 12 house the primary and secondary windings 2 and 4 in the pot type ferrite core 1. The insulating plate 3 is not provided with a hole or the like, and is disposed so that the transformer primary portion 11 and the transformer secondary portion 12 face each other through the insulating plate.

以下、より詳細に説明すると、図1において、コア1aと1bは、円形のいわゆるポット型フェライトコアであり,円の中心部に円柱状の脚(1a1と1b1)を有するとともに,周縁部にも筒状の脚(1a2と1b2)を有し,開口部からみると内側がドーナツ型に窪んだ空間部(1a3と1b3)を有する形状をしている。   Hereinafter, in more detail, in FIG. 1, cores 1a and 1b are circular so-called pot-type ferrite cores, which have cylindrical legs (1a1 and 1b1) at the center of the circle, and also at the periphery. It has a cylindrical leg (1a2 and 1b2), and has a shape having a space (1a3 and 1b3) recessed in a donut shape when viewed from the opening.

1次巻線2は,コア1aの中央の脚を中心とした窪みの部分1a3にスパイラル状に巻回され,トランス1次部11を形成する。コア1bの窪みの部分1b3にも、コア1aと同様にスパイラル状に2次巻線4aと4bが巻回され,トランス2次部12を形成する。1次巻線2,2次巻線4aおよび4bには、エナメル線(単線)が用いられるが,リッツ線を用いても良い。   The primary winding 2 is wound in a spiral shape around a hollow portion 1 a 3 centered on the center leg of the core 1 a to form a transformer primary portion 11. Similarly to the core 1a, the secondary windings 4a and 4b are also spirally wound around the hollow portion 1b3 of the core 1b to form the transformer secondary portion 12. An enameled wire (single wire) is used for the primary winding 2 and the secondary windings 4a and 4b, but a litz wire may be used.

絶縁板3は絶縁体であって,かつ誘電率が比較的低い材質を用いる。絶縁体の誘電率は,紙:2.0〜2.5,ポリエチレン:2.3〜2.4,ポリエステル:2.8〜8.1,フェノール樹脂:3.0〜12.0,磁器:4.0〜7.0,ガラス・エポキシ基板:4.5〜5.2,ポリウレタン:5.0〜5.3,マイカ:5.7〜7.0などとなっており,同じ材質でも誘電率の数値の低い特性を持つ材質を特に選定することにより、寄生容量の低減を図ることができる。   The insulating plate 3 is an insulator and uses a material having a relatively low dielectric constant. The dielectric constant of the insulator is: paper: 2.0 to 2.5, polyethylene: 2.3 to 2.4, polyester: 2.8 to 8.1, phenol resin: 3.0 to 12.0, porcelain: 4.0 to 7.0, glass / epoxy substrate: 4.5 to 5.2, polyurethane: 5.0 to 5.3, mica: 5.7 to 7.0, etc. The parasitic capacitance can be reduced by particularly selecting a material having a low rate characteristic.

絶縁板3は,ポット型フェライトコア1a、1bの底面の大きさと同じか,それよりも広くする。広くした場合には,1次・2次間の縁面距離をより長く確保することが可能である。   The insulating plate 3 is the same as or larger than the bottom surface of the pot type ferrite cores 1a and 1b. In the case of widening, it is possible to ensure a longer edge distance between the primary and secondary sides.

一方,絶縁板3の厚みは概ね0.3mm〜5.0mmである。厚みが厚い程絶縁耐圧は高くなり,寄生容量も低減することができる。その一方で1次・2次間の結合は低下し,電源の効率低下につながる。しかし,本発明では,1次・2次間の結合よりも、耐圧や寄生容量低減による信頼性向上と低コスト化を優先させた。   On the other hand, the thickness of the insulating plate 3 is approximately 0.3 mm to 5.0 mm. The thicker the thickness, the higher the withstand voltage, and the parasitic capacitance can be reduced. On the other hand, the coupling between the primary and secondary is reduced, leading to a reduction in power supply efficiency. However, in the present invention, priority is given to improving reliability and reducing costs by reducing the withstand voltage and parasitic capacitance over the coupling between the primary and secondary.

前記したトランス1次部11とトランス2次部12は,それぞれ巻線を巻回したコアの窪み部(1a3と1b3)が絶縁板3の方を向くようにして,絶縁板3の表側と裏側に対向させて絶縁板3に固定する。このとき,トランス1次部11とトランス2次部12と絶縁板3の間からは,それぞれの巻線に接続されたリード線が引き出される。   The transformer primary part 11 and the transformer secondary part 12 described above are such that the core recesses (1a3 and 1b3) wound with the windings face the insulating plate 3 so that the front side and the back side of the insulating plate 3 are facing each other. It fixes to the insulating board 3 so that it may oppose. At this time, lead wires connected to the respective windings are drawn from between the transformer primary part 11, the transformer secondary part 12 and the insulating plate 3.

図2は本発明の絶縁トランス19の第2の実施の形態を示す分解構成図である。図2の場合にも基本的な原理は図1と同じであるが、図1の場合には磁束が漏れにくいという長所があるが、その半面製造が比較的に困難なポット型フェライトコアを使用し、高価になることを避けられないため、一般に使用されている製造容易な既存のコアを使用したものである。   FIG. 2 is an exploded configuration diagram showing a second embodiment of an insulating transformer 19 according to the present invention. In FIG. 2, the basic principle is the same as in FIG. 1, but in the case of FIG. 1, there is an advantage that the magnetic flux is difficult to leak, but a pot type ferrite core that is relatively difficult to manufacture is used. However, since it is unavoidable to be expensive, an existing core that is generally used and easy to manufacture is used.

図2では、コア1aと1bはそれぞれ,E形のフェライトコアであって,計3つの脚を有しており,中央の脚が太く,両端の2つの脚が細い。1次巻線2は,コア1aの中央の脚を中心に巻回され,トランス1次部11を形成する。コア1bの中央脚にもコア1aと同様に2次巻線4aと4bが巻回され,トランス2次部を形成する。なお,図示していないが,1次巻線および2次巻線を巻回してコアに固定する際にはボビンを用いても良い。1次巻線2,2次巻線4aおよび4bにはエナメル線(単線)が用いられるが,リッツ線を用いても良い。   In FIG. 2, each of the cores 1a and 1b is an E-shaped ferrite core, and has a total of three legs, the center leg is thick, and the two legs at both ends are thin. The primary winding 2 is wound around the center leg of the core 1 a to form a transformer primary portion 11. Similarly to the core 1a, secondary windings 4a and 4b are wound around the center leg of the core 1b to form a transformer secondary portion. Although not shown, a bobbin may be used when the primary winding and the secondary winding are wound and fixed to the core. An enameled wire (single wire) is used for the primary winding 2 and the secondary windings 4a and 4b, but a litz wire may be used.

絶縁板3は絶縁体であって,かつ誘電率が比較的低い材質を用いる。誘電率の数値の低い特性を持つ材質を特に選定することにより寄生容量の低減を図ることができる。絶縁板3は,E型フェライトコアの底面の大きさよりも広くすることにより,1次・2次間の縁面距離を十分に確保することが可能である。   The insulating plate 3 is an insulator and uses a material having a relatively low dielectric constant. The parasitic capacitance can be reduced by selecting a material having a low dielectric constant value. By making the insulating plate 3 wider than the size of the bottom surface of the E-type ferrite core, it is possible to sufficiently secure the edge distance between the primary and secondary.

一方,絶縁板3の厚みは概ね0.3mm〜5.0mmである。厚みが厚い程絶縁耐圧は高くなり,寄生容量も低減することができる。その一方で1次・2次間の結合は低下し,電源の効率低下につながる。しかし,本発明では,1次・2次間の結合よりも耐圧や寄生容量低減による信頼性向上と低コスト化を優先させた。   On the other hand, the thickness of the insulating plate 3 is approximately 0.3 mm to 5.0 mm. The thicker the thickness, the higher the withstand voltage, and the parasitic capacitance can be reduced. On the other hand, the coupling between the primary and secondary is reduced, leading to a reduction in power supply efficiency. However, in the present invention, priority is given to improving the reliability and reducing the cost by reducing the withstand voltage and parasitic capacitance over the coupling between the primary and secondary.

前記したトランス1次部11とトランス2次部12は,それぞれ巻線を巻回したコア脚部の先端部が絶縁板3の方を向くようにして,絶縁板3の表側と裏側に対向させて絶縁板3に固定する。   The transformer primary portion 11 and the transformer secondary portion 12 are opposed to the front side and the back side of the insulating plate 3 so that the tip ends of the core legs wound with the windings face the insulating plate 3. And fix to the insulating plate 3.

なお、図1、図2においてコアは幾つかの形状のものがあるが、要するに1次・2次巻線の巻面を対向配置させることが重要である。   1 and 2, the core has several shapes. In short, it is important to arrange the winding surfaces of the primary and secondary windings to face each other.

次に、図1あるいは図2の絶縁トランス19を含む電源装置の回路構成例について、図3、図4を用いて説明する。図3は、絶縁トランス19の出力を全波整流して負荷に電力供給する電源装置の回路構成、図4は絶縁トランス19の出力を整流して複数負荷に電力供給する電源装置の回路構成である。なお、図1、図2の絶縁トランス19を用いて電源構成をする場合に、その一次側回路8、二次側回路9が任意のものにできることはいうまでもなく、ここでは典型的な一例を示している。   Next, a circuit configuration example of the power supply device including the insulating transformer 19 of FIG. 1 or FIG. 2 will be described with reference to FIGS. FIG. 3 is a circuit configuration of a power supply device that rectifies the output of the isolation transformer 19 and supplies power to the load, and FIG. 4 is a circuit configuration of a power supply device that rectifies the output of the isolation transformer 19 and supplies power to a plurality of loads. is there. Needless to say, when the power supply is configured using the insulating transformer 19 of FIGS. 1 and 2, the primary side circuit 8 and the secondary side circuit 9 can be arbitrarily set. Is shown.

まず、図3の構成を説明する。図3は図1あるいは図2の絶縁トランス19を用いた電源装置の回路構成図である。この図で、中央の絶縁板3、トランス1次部11、トランス2次部12から成る部分が図1あるいは図2の絶縁トランスである。トランス1次部11側は、一次側回路8を介して直流電源7に接続され、トランス2次部12側は二次側回路9を介して負荷10aに接続されている。   First, the configuration of FIG. 3 will be described. FIG. 3 is a circuit configuration diagram of a power supply device using the insulating transformer 19 of FIG. 1 or FIG. In this figure, the portion comprising the central insulating plate 3, the transformer primary portion 11, and the transformer secondary portion 12 is the insulating transformer of FIG. 1 or FIG. The transformer primary part 11 side is connected to the DC power source 7 via the primary side circuit 8, and the transformer secondary part 12 side is connected to the load 10 a via the secondary side circuit 9.

以下、より詳細に説明すると、図3において,直流電源7は1次側回路8に接続される。1次側回路8には平滑コンデンサ20aと,直列接続されたパワーMOSFET21a,21b,駆動回路22,共振コンデンサ23,ロスレススナバキャパシタ24,絶縁信号受信部25,制御回路29があり,パワーMOSFET21aと21bの直列体の中点には共振コンデンサ23が接続される。   Hereinafter, in more detail, in FIG. 3, the DC power supply 7 is connected to the primary circuit 8. The primary side circuit 8 includes a smoothing capacitor 20a, power MOSFETs 21a and 21b connected in series, a drive circuit 22, a resonance capacitor 23, a lossless snubber capacitor 24, an insulation signal receiving unit 25, and a control circuit 29, and the power MOSFETs 21a and 21b. A resonance capacitor 23 is connected to the midpoint of the series body.

共振コンデンサ23とパワーMOSFET21bのソース極は1次側回路8の外部にあるトランス1次部11と接続される。トランス1次部11は絶縁板3を介してトランス2次部12と磁気的に結合する。トランス2次部12はセンタタップ構成となっており,2次側回路9の内部の整流ダイオード26a,26bと接続される。   The source electrodes of the resonance capacitor 23 and the power MOSFET 21 b are connected to the transformer primary unit 11 outside the primary circuit 8. The transformer primary part 11 is magnetically coupled to the transformer secondary part 12 via the insulating plate 3. The transformer secondary unit 12 has a center tap configuration and is connected to rectifier diodes 26 a and 26 b in the secondary side circuit 9.

また,2次側回路9の内部には,整流ダイオード26a,26bと接続された平滑コンデンサ20b,出力電圧誤差増幅回路27と絶縁信号発信部28があり,光ケーブル18を介して1次側回路8の絶縁信号受信部25から制御回路29に信号が伝達される。   Further, in the secondary side circuit 9, there are a smoothing capacitor 20 b connected to the rectifier diodes 26 a and 26 b, an output voltage error amplifier circuit 27, and an insulation signal transmission unit 28, and the primary side circuit 8 is connected via the optical cable 18. A signal is transmitted to the control circuit 29 from the insulated signal receiving unit 25.

次に図3の回路の動作を説明する。制御回路29では絶縁信号受信部25から入力される信号に従いパルス信号を生成し,駆動回路22に出力する。駆動回路22はパワーMOSFET21a,21bにゲート信号を送出してパワーMOSFET 21a,21bをスイッチングする。このとき,出力制御は周波数制御であり,パワーMOSFET21a,21bのON/OFFの時比率は出力に応じて変化せず一定であり,その代わり駆動周波数が変化する。   Next, the operation of the circuit of FIG. 3 will be described. The control circuit 29 generates a pulse signal in accordance with the signal input from the insulation signal receiving unit 25 and outputs it to the drive circuit 22. The drive circuit 22 sends a gate signal to the power MOSFETs 21a and 21b to switch the power MOSFETs 21a and 21b. At this time, the output control is frequency control, and the ON / OFF time ratio of the power MOSFETs 21a and 21b is constant without changing according to the output, and the drive frequency changes instead.

トランス1次部11とトランス2次部12とは、絶縁板3を介して磁気結合するが,フェライト製の鉄芯は絶縁板3で分離されているために漏れインダクタンスは従来の絶縁トランスよりも比較的大きい。そこで,本実施例においては,この漏れインダクタンスを有効に利用する。すなわち,パワーMOSFET 21a,21bをこの回路の共振周波数よりも高い周波数で駆動することにより,漏れインダクタンスと共振コンデンサ24により形成される直列共振回路に共振電流が流れ,トランス2次部12にパワーが伝達される。   The transformer primary part 11 and the transformer secondary part 12 are magnetically coupled via the insulating plate 3, but since the ferrite iron core is separated by the insulating plate 3, the leakage inductance is higher than that of the conventional insulating transformer. Relatively large. Therefore, in this embodiment, this leakage inductance is used effectively. That is, by driving the power MOSFETs 21a and 21b at a frequency higher than the resonance frequency of this circuit, a resonance current flows through the series resonance circuit formed by the leakage inductance and the resonance capacitor 24, and the transformer secondary unit 12 receives power. Communicated.

2次側回路9では、整流ダイオード26a,26bにおいてトランス2次部に伝達された高周波交流を整流し、平滑コンデンサ20bに蓄積する。負荷10aはこの平滑コンデンサ20bにより安定な出力を得る。平滑コンデンサ20bの電圧は出力電圧誤差増幅回路27により出力電圧指令値との誤差が増幅され,絶縁信号発信部28,光ケーブル18,絶縁信号受信部25を介して制御回路29に信号が伝達され,パワーMOSFET21a,21bを駆動する周波数が変化して出力電圧を一定に制御する。   In the secondary side circuit 9, the rectification diodes 26a and 26b rectify the high-frequency alternating current transmitted to the transformer secondary part and store it in the smoothing capacitor 20b. The load 10a obtains a stable output by the smoothing capacitor 20b. The voltage of the smoothing capacitor 20b is amplified from the output voltage command value by the output voltage error amplification circuit 27, and a signal is transmitted to the control circuit 29 via the insulation signal transmission unit 28, the optical cable 18, and the insulation signal reception unit 25. The frequency for driving the power MOSFETs 21a and 21b changes to control the output voltage to be constant.

なお、図2で絶縁信号発信部28,光ケーブル18,絶縁信号受信部25は,オプトワイヤなどの光ファイバ伝送リンク,トスリンクと呼称されるEAIJ optical光ファイバーコネクタなどのアイソレータを用いても良い。また,出力電圧誤差増幅回路27にはシャントレギュレータを用いても良い。   In FIG. 2, the insulation signal transmission unit 28, the optical cable 18, and the insulation signal reception unit 25 may use an optical fiber transmission link such as an opt-wire or an isolator such as an EAIJ optical fiber optic connector called a toss link. Further, a shunt regulator may be used for the output voltage error amplifier circuit 27.

次に図4の構成を説明する。図4は、図1あるいは図2の絶縁トランス19を用いた電源装置の他の実施例に係る回路構成図である。図4において,図3と同じ機能を持つデバイスには同じ記号を付与している。尚、特に一次側については図3の回路構成と重複するので、その説明を割愛する。   Next, the configuration of FIG. 4 will be described. FIG. 4 is a circuit configuration diagram according to another embodiment of the power supply device using the insulating transformer 19 of FIG. 1 or FIG. In FIG. 4, devices having the same functions as those in FIG. In particular, since the primary side overlaps with the circuit configuration of FIG. 3, its description is omitted.

トランス2次部12はセンタタップ構成となっており,2次側回路9の内部の整流ダイオード26a,26bと接続される。図4は図3とは異なり,2次側回路9に平滑コンデンサ20bとは別に平滑コンデンサ20cを設けている。そして,整流ダイオードの構成も図3とは異なっており,平滑コンデンサ20cは,平滑コンデンサ20bのグランド電位を正極とする負電位の電源を形成して、第2の負荷10bに電力供給する。この他,2次側回路9の内部には,出力電圧誤差増幅回路27と絶縁信号発信部28があり,光ケーブル18を介して1次側回路8の絶縁信号受信部25を介して制御回路29に信号が伝達される。   The transformer secondary unit 12 has a center tap configuration and is connected to rectifier diodes 26 a and 26 b in the secondary side circuit 9. 4 differs from FIG. 3 in that the secondary side circuit 9 is provided with a smoothing capacitor 20c in addition to the smoothing capacitor 20b. The configuration of the rectifier diode is also different from that shown in FIG. 3, and the smoothing capacitor 20c forms a negative potential power supply having the ground potential of the smoothing capacitor 20b as a positive electrode, and supplies power to the second load 10b. In addition, the secondary side circuit 9 includes an output voltage error amplification circuit 27 and an insulation signal transmission unit 28, and the control circuit 29 via the optical cable 18 and the insulation signal reception unit 25 of the primary side circuit 8. A signal is transmitted to.

次に図4の回路動作を説明する。制御回路29では絶縁信号受信部25から入力される信号に従いパルス信号を生成し,駆動回路22に出力する。駆動回路22はパワーMOSFET21a,21bにゲート信号を送出してパワーMOSFET 21a,21bをスイッチングする。このとき,出力制御は周波数制御であり,パワーMOSFET21a,21bのON/OFFの時比率は出力に応じて変化せず一定であり,その代わり駆動周波数が変化する。   Next, the circuit operation of FIG. 4 will be described. The control circuit 29 generates a pulse signal in accordance with the signal input from the insulation signal receiving unit 25 and outputs it to the drive circuit 22. The drive circuit 22 sends a gate signal to the power MOSFETs 21a and 21b to switch the power MOSFETs 21a and 21b. At this time, the output control is frequency control, and the ON / OFF time ratio of the power MOSFETs 21a and 21b is constant without changing according to the output, and the drive frequency changes instead.

トランス1次部11とトランス2次部12とは絶縁板3を介して磁気結合するが,フェライト製の鉄芯は絶縁板3で分離されているために漏れインダクタンスは従来の絶縁トランスよりも比較的大きい。そこで,本発明においては,この漏れインダクタンスを有効に利用する。すなわち,パワーMOSFET 21a,21bをこの回路の共振周波数よりも高い周波数で駆動することにより,漏れインダクタンスと共振コンデンサ24により形成される直列共振回路に共振電流が流れ,トランス2次部12にパワーが伝達される。   The transformer primary part 11 and the transformer secondary part 12 are magnetically coupled via the insulating plate 3, but since the ferrite iron core is separated by the insulating plate 3, the leakage inductance is compared with the conventional insulating transformer. Big. Therefore, in the present invention, this leakage inductance is effectively used. That is, by driving the power MOSFETs 21a and 21b at a frequency higher than the resonance frequency of this circuit, a resonance current flows through the series resonance circuit formed by the leakage inductance and the resonance capacitor 24, and the transformer secondary unit 12 receives power. Communicated.

2次側回路9において、整流ダイオード26a,26bではトランス2次部に伝達された高周波交流を整流し平滑コンデンサ20bおよび20cに蓄積する。負荷10a,10bはこの平滑コンデンサ20b,20cによりそれぞれ安定な電圧を得る。   In the secondary side circuit 9, the rectifier diodes 26a and 26b rectify the high-frequency alternating current transmitted to the secondary part of the transformer and store it in the smoothing capacitors 20b and 20c. The loads 10a and 10b obtain stable voltages by the smoothing capacitors 20b and 20c, respectively.

平滑コンデンサ20bの電圧は出力電圧誤差増幅回路27により出力電圧指令値との誤差が増幅され,絶縁信号発信部28,光ケーブル18,絶縁信号受信部25を介して制御回路29に信号が伝達され,パワーMOSFET21a,21bを駆動する周波数が変化して出力電圧を一定に制御する。   The voltage of the smoothing capacitor 20b is amplified from the output voltage command value by the output voltage error amplification circuit 27, and a signal is transmitted to the control circuit 29 via the insulation signal transmission unit 28, the optical cable 18, and the insulation signal reception unit 25. The frequency for driving the power MOSFETs 21a and 21b changes to control the output voltage to be constant.

図4で絶縁信号発信部28,光ケーブル18,絶縁信号受信部25は,オプトワイヤなどの光ファイバ伝送リンク,トスリンクと呼称されるEAIJ optical光ファイバーコネクタなどのアイソレータを用いても良い。また,出力電圧誤差増幅回路27にはシャントレギュレータを用いても良い。   In FIG. 4, the insulation signal transmission unit 28, the optical cable 18, and the insulation signal reception unit 25 may use an optical fiber transmission link such as an opt-wire or an isolator such as an EAIJ optical fiber connector called a toslink. Further, a shunt regulator may be used for the output voltage error amplifier circuit 27.

次に図3あるいは図4の電源装置を構成する回路部品をプリント板に実装する技術について図5、図6、図7を用いて説明する。これらの実施例では絶縁トランス以外に、一次側回路8と二次側回路9もプリント板6上に搭載する。   Next, a technique for mounting circuit components constituting the power supply device of FIG. 3 or FIG. 4 on a printed board will be described with reference to FIG. 5, FIG. 6, and FIG. In these embodiments, a primary circuit 8 and a secondary circuit 9 are also mounted on the printed board 6 in addition to the insulating transformer.

まず,図5について説明する。図5は、図3あるいは図4の電源装置を構成する回路部品を実装した基板を、横方向からみた断面図である。図5のプリント基板6には、図1の構造の絶縁トランス19のほかに、一次側回路8、二次側回路9が実装されて電源装置をユニットとして形成する。   First, FIG. 5 will be described. FIG. 5 is a cross-sectional view of a substrate on which circuit components constituting the power supply device of FIG. 3 or FIG. 4 are mounted as seen from the lateral direction. In addition to the insulating transformer 19 having the structure shown in FIG. 1, a primary side circuit 8 and a secondary side circuit 9 are mounted on the printed board 6 shown in FIG. 1 to form a power supply device as a unit.

以下、より詳細に説明すると、図5において,プリント基板6の左側に1次側回路8が実装される。中央部に図1あるいは図2の絶縁トランス19が実装配置される。絶縁トランス19は,プリント基板6に直立して設けられた絶縁板3を中心として,1次側回路8の実装される左側がトランス1次部11,2次側回路9の実装される右側がトランス2次部12となるように実装される。   Hereinafter, in more detail, the primary circuit 8 is mounted on the left side of the printed circuit board 6 in FIG. The insulating transformer 19 shown in FIG. 1 or FIG. 2 is mounted and arranged at the center. The insulating transformer 19 is centered on the insulating plate 3 provided upright on the printed circuit board 6, and the left side where the primary side circuit 8 is mounted is the right side where the transformer primary part 11 and the secondary side circuit 9 are mounted. It is mounted so as to be the transformer secondary unit 12.

なお、1次側回路8の実装部品としては、平滑コンデンサ20a,パワーMOSFET21a,共振コンデンサ23,絶縁信号受信部25などが、また2次側回路9の実装部品としては、整流ダイオード26a、平滑コンデンサ20bなどが実装される。   The mounting components for the primary side circuit 8 include a smoothing capacitor 20a, a power MOSFET 21a, a resonance capacitor 23, and an insulation signal receiving unit 25. The mounting components for the secondary side circuit 9 include a rectifier diode 26a and a smoothing capacitor. 20b etc. are mounted.

また,このプリント基板6は挿入基板を用いているが,1次側回路8はリードタイプ部品(平滑コンデンサ20a,パワーMOSFET21a,共振コンデンサ23)と面実装部品(絶縁信号受信部25)にて構成し,2次側回路9の部品は面実装部品(整流ダイオード26a、平滑コンデンサ20b)のみを用いる。これにより,2次側回路9に関しては、プリント基板裏面には一切の配線パターンがなく,プリント基板裏面側で絶縁不良が発生しないようにしている。   The printed circuit board 6 uses an insertion board, but the primary circuit 8 is composed of lead type components (smoothing capacitor 20a, power MOSFET 21a, resonance capacitor 23) and surface mount components (insulated signal receiving unit 25). However, only the surface mount components (rectifier diode 26a, smoothing capacitor 20b) are used as the components of the secondary circuit 9. Thus, with respect to the secondary side circuit 9, there is no wiring pattern on the back side of the printed board, and insulation failure does not occur on the back side of the printed board.

図6も、基板を横方向からみた断面図である。図6において,絶縁板3の一方の面上にプリント基板6が配置され,プリント基板6の表面には1次側回路8の構成部品が実装されるとともに,トランス1次部11が実装され固定される。なお、プリント基板6は、取り付け部品100により、絶縁板3に適当な間隔hを置いて設置される。   FIG. 6 is also a cross-sectional view of the substrate viewed from the lateral direction. In FIG. 6, the printed circuit board 6 is disposed on one surface of the insulating plate 3, and the components of the primary circuit 8 are mounted on the surface of the printed circuit board 6, and the transformer primary section 11 is mounted and fixed. Is done. Note that the printed circuit board 6 is installed on the insulating plate 3 at an appropriate interval h by the attachment component 100.

他方,絶縁板3のもう一方の面上に、面実装基板30が直接配置される。面実装基板30の表面には2次側回路9の構成部品が表面実装されるとともに,トランス2次部12も実装される。このとき,トランス1次部11とトランス2次部12は、絶縁板3、並びに間隔hの空隙を挟んで対向するように配置され固定される。   On the other hand, the surface mounting substrate 30 is directly disposed on the other surface of the insulating plate 3. The components of the secondary circuit 9 are surface-mounted on the surface of the surface mounting substrate 30 and the transformer secondary portion 12 is also mounted. At this time, the transformer primary part 11 and the transformer secondary part 12 are arranged and fixed so as to face each other with the gap between the insulating plate 3 and the interval h.

絶縁板3は,プリント基板6,面実装基板30の底面サイズと同じか,それよりも広くする。広くした場合には,1次・2次間の縁面距離をより長く確保することが可能である。   The insulating plate 3 is the same as or larger than the size of the bottom surface of the printed circuit board 6 and the surface mounting substrate 30. In the case of widening, it is possible to ensure a longer edge distance between the primary and secondary sides.

一方,絶縁板3の厚みは概ね0.3mm〜5.0mmである。厚みが厚い程絶縁耐圧は高くなり,寄生容量も低減することができる。その一方で1次・2次間の結合は低下し,電源の効率低下につながる。しかし,本発明では,1次・2次間の結合よりも耐圧や寄生容量低減による信頼性向上と低コスト化を優先させた。   On the other hand, the thickness of the insulating plate 3 is approximately 0.3 mm to 5.0 mm. The thicker the thickness, the higher the withstand voltage, and the parasitic capacitance can be reduced. On the other hand, the coupling between the primary and secondary is reduced, leading to a reduction in power supply efficiency. However, in the present invention, priority is given to improving the reliability and reducing the cost by reducing the withstand voltage and parasitic capacitance over the coupling between the primary and secondary.

また,このプリント基板6は挿入基板を用いており,1次側回路8はリードタイプ部品と面実装部品にて構成する。2次側回路9の部品は面実装部品のみを用いる。なお,プリント基板6についても面実装基板を用いて構成しても良い。   The printed circuit board 6 uses an insertion board, and the primary circuit 8 is composed of a lead type component and a surface mounting component. As the components of the secondary circuit 9, only surface mount components are used. Note that the printed circuit board 6 may also be configured using a surface mounting board.

図7も図3あるいは図4の回路部品を実装した基板を横方向からみた断面図である。図7において,プリント基板6の左側に1次側回路8が実装される。プリント基板6の中央部の裏面B側に、トランス1次部11が実装,固定される。トランス1次部11が実装された位置に対し,プリント基板6の表面A側にあたる位置に、トランス2次部12が実装され固定される。プリント基板6表面A側のトランス2次部12が実装された位置から右側には、2次側回路9が実装される。   FIG. 7 is also a cross-sectional view of the substrate on which the circuit component of FIG. 3 or FIG. In FIG. 7, the primary circuit 8 is mounted on the left side of the printed circuit board 6. The transformer primary portion 11 is mounted and fixed on the back surface B side of the central portion of the printed circuit board 6. The transformer secondary part 12 is mounted and fixed at a position corresponding to the surface A side of the printed circuit board 6 with respect to the position where the transformer primary part 11 is mounted. A secondary circuit 9 is mounted on the right side from the position where the transformer secondary part 12 on the surface A side of the printed circuit board 6 is mounted.

また,このプリント基板6は挿入基板を用いているが,1次側回路8の構成部品はリードタイプ部品と面実装部品にて構成し,2次側回路9の構成部品は面実装部品のみを用いる。これにより,2次側回路9に関してはプリント基板裏面Bには一切の配線パターンがなく,プリント基板裏面B側での絶縁不良が発生を防止できる。   The printed circuit board 6 uses an insertion board, but the constituent parts of the primary circuit 8 are composed of lead type parts and surface mounting parts, and the constituent parts of the secondary circuit 9 are only surface mounting parts. Use. Thereby, there is no wiring pattern on the back surface B of the printed circuit board with respect to the secondary circuit 9, and it is possible to prevent the occurrence of insulation failure on the back surface B side of the printed circuit board.

プリント基板6の板厚は概ね0.3mm〜2.4mmである。板厚が厚い程絶縁耐圧は高くなり,寄生容量も低減することができる。   The board thickness of the printed circuit board 6 is approximately 0.3 mm to 2.4 mm. The thicker the plate, the higher the withstand voltage, and the parasitic capacitance can be reduced.

以上に述べた実施例に依れば,絶縁トランス19は,1次巻線と2次巻線のみならず,1次側鉄芯と2次側鉄芯の間がプリント基板6により確実に遮断されているため,1次巻線と2次巻線は確実に分離される。また,1次・2次間の寄生容量については,プリント基板の材料に低誘電率の絶縁材料を使うことにより低減できる。また,トランスの耐圧向上はプリント基板6の厚みを厚くすることにより可能であり,同時に1次・2次間の寄生容量の低減も図ることが出来る。このように,本発明においては,プリント基板を用いて単純な構造で絶縁耐圧の高い絶縁トランスを得ることが出来るため,低コスト化が実現できる。   According to the embodiment described above, the insulating transformer 19 reliably cuts off not only the primary winding and the secondary winding but also the primary side iron core and the secondary side iron core by the printed circuit board 6. Therefore, the primary winding and the secondary winding are reliably separated. In addition, the parasitic capacitance between the primary and secondary can be reduced by using an insulating material having a low dielectric constant as the material of the printed circuit board. Further, the breakdown voltage of the transformer can be improved by increasing the thickness of the printed circuit board 6, and at the same time, the parasitic capacitance between the primary and secondary can be reduced. As described above, in the present invention, an insulating transformer having a high withstand voltage can be obtained with a simple structure using a printed circuit board, so that the cost can be reduced.

次に、図1あるいは図2の絶縁トランス19をモールド形成することについて図8、図9を用いて説明する。   Next, forming the insulating transformer 19 shown in FIG. 1 or FIG. 2 by molding will be described with reference to FIGS.

図8は絶縁トランス19の断面図である。図1の絶縁トランスとする場合、コア1aと1bは円形のいわゆるポット型フェライトコアであり,円の中心部に円柱状の脚を有するとともに,周縁部にも筒状の脚を有し,開口部からみると内側がドーナツ型に窪んだ形状をしている。   FIG. 8 is a sectional view of the insulating transformer 19. In the case of the insulating transformer shown in FIG. 1, the cores 1a and 1b are so-called pot-type ferrite cores having a circular shape, and have a cylindrical leg at the center of the circle and a cylindrical leg at the periphery, When viewed from the side, the inside has a shape that is recessed into a donut shape.

また、図2の絶縁トランスとする場合、コア1aと1bはE型フェライトコアであり,中心と周縁部に脚を有するので、脚の間が窪んだ形状をしている。従って、断面形状は図1の場合も、図2の場合も同じであるので、以下の説明では図1の絶縁トランス(コア1aと1bは円形のいわゆるポット型フェライトコア)とする場合について説明する。   Further, in the case of the insulating transformer of FIG. 2, the cores 1a and 1b are E-type ferrite cores and have legs at the center and the peripheral part, so that the shape between the legs is recessed. Therefore, since the cross-sectional shape is the same in both FIG. 1 and FIG. 2, in the following description, the case where the insulating transformer of FIG. 1 is used (the cores 1a and 1b are circular so-called pot type ferrite cores) will be described. .

図8の断面形状において、1次巻線2は,コア1aの中央の脚を中心とした窪みの部分にスパイラル状に巻回されている。また、コア1bの窪みの部分にもコア1aと同様にスパイラル状に2次巻線4aと4bが巻回されている。   In the cross-sectional shape of FIG. 8, the primary winding 2 is wound in a spiral shape around a hollow portion with the center leg of the core 1 a as the center. Further, the secondary windings 4a and 4b are also wound around the hollow portion of the core 1b in the same spiral manner as the core 1a.

そして,巻線を収納したコア1aとコア1bを、コイル面が向き合う形で所定の距離Hを保って対向させる。次に、図示のようにコア1aとコア1bに挟まれた部分30と、コア1a,1bの周辺部40に、絶縁材5を充填して固め,絶縁トランス19を形成させる。なお、図8のモールド形成を実施するに当り、コアの所定位置への配置、固定あるいは、樹脂充填のための型枠などが適宜準備されることは言うまでもない。   Then, the core 1a and the core 1b housing the windings are opposed to each other while maintaining a predetermined distance H so that the coil surfaces face each other. Next, as shown, the portion 30 sandwiched between the cores 1a and 1b and the peripheral portion 40 of the cores 1a and 1b are filled with the insulating material 5 and hardened to form the insulating transformer 19. Needless to say, when the mold shown in FIG. 8 is formed, a mold for the placement, fixation, or resin filling of the core in a predetermined position is appropriately prepared.

この場合、コア1aとコア1bに挟まれた部分30によって、図1、図2の絶縁板3の機能を達成させることになるので、充填する絶縁材の特性あるいは、コイル面が向き合う距離Hは、絶縁の観点から決定される。具体的には、絶縁材5は絶縁体であって,かつ誘電率が比較的低い樹脂あるいはセラミックなど,製造過程では自由に変形可能で,かつ,後に固まる特性を持つ材料を用いる。誘電率の数値の低い特性を持つ材質を特に選定することにより寄生容量の低減を図ることができる。   In this case, since the function of the insulating plate 3 in FIGS. 1 and 2 is achieved by the portion 30 sandwiched between the core 1a and the core 1b, the characteristics of the insulating material to be filled or the distance H at which the coil surfaces face each other is Determined from the point of view of insulation. Specifically, the insulating material 5 is an insulator, and a material such as a resin or ceramic having a relatively low dielectric constant, which can be freely deformed in the manufacturing process and has a characteristic of solidifying later. The parasitic capacitance can be reduced by selecting a material having a low dielectric constant value.

コア1aとコア1bの対向距離Hは概ね0.3mm〜5.0mmである。厚みが厚い程絶縁耐圧は高くなり,寄生容量も低減することができる。なお,コア1a,1bの材料については,アモルファスなど他の磁性体を用いても良い。   The facing distance H between the core 1a and the core 1b is approximately 0.3 mm to 5.0 mm. The thicker the thickness, the higher the withstand voltage, and the parasitic capacitance can be reduced. In addition, about the material of core 1a, 1b, you may use other magnetic bodies, such as an amorphous.

本実施の形態によれば,コア1a,1bの距離Hと,絶縁材の材質により絶縁耐圧と寄生容量を調整することができる。また,1次巻線と2次巻線間の絶縁のみならず,1次側鉄芯と2次側鉄芯が分離される構造になるため,トランスの構造を単純化でき,低コスト化が図れる。   According to the present embodiment, the withstand voltage and the parasitic capacitance can be adjusted by the distance H between the cores 1a and 1b and the material of the insulating material. In addition to the insulation between the primary and secondary windings, the primary iron core and secondary iron core are separated so that the transformer structure can be simplified and the cost can be reduced. I can plan.

図8の事例では、絶縁板3を準備せず、モールドするときの樹脂5に絶縁板の機能を持たせているが、図9のモールド形成事例では、対向するコア1aと1bの間に、最初から絶縁板3を準備している。   In the example of FIG. 8, the insulating plate 3 is not prepared, and the resin 5 at the time of molding has the function of an insulating plate, but in the mold formation example of FIG. 9, between the opposing cores 1 a and 1 b, The insulating plate 3 is prepared from the beginning.

絶縁板3は、直径がコア1a,1bとほぼ同じ円盤状の絶縁材であり,コア1aとコア1bをコイル面が向き合う形で対向させ,絶縁板3を挟むように配置する。そして,図示のようにコア1a,1bの周辺部40を絶縁材5で固め,絶縁トランス19を形成させる。   The insulating plate 3 is a disk-shaped insulating material having substantially the same diameter as the cores 1a and 1b, and is arranged so that the core 1a and the core 1b face each other with their coil surfaces facing each other and the insulating plate 3 is sandwiched between them. Then, as shown in the figure, the peripheral portions 40 of the cores 1a and 1b are hardened with the insulating material 5 to form the insulating transformer 19.

絶縁材5は絶縁体であって,かつ誘電率が比較的低い樹脂あるいはセラミックなど,製造過程では自由に変形可能で,かつ,後に固まる特性を持つ材料を用いる。また,絶縁板3には誘電率の数値の低い特性を持つ材質を特に選定することにより寄生容量の低減を図ることができる。コア1aとコア1bの対向距離は概ね0.3mm〜5.0mmである。厚みが厚い程絶縁耐圧は高くなり,寄生容量も低減することができる。なお,コア材については,アモルファスなど他の磁性体を用いても良い。   The insulating material 5 is an insulator, and a material such as a resin or ceramic having a relatively low dielectric constant, which can be freely deformed in the manufacturing process and has a characteristic of solidifying later. The parasitic capacitance can be reduced by selecting a material having a low dielectric constant value for the insulating plate 3 in particular. The facing distance between the core 1a and the core 1b is approximately 0.3 mm to 5.0 mm. The thicker the thickness, the higher the withstand voltage, and the parasitic capacitance can be reduced. For the core material, other magnetic materials such as amorphous may be used.

本実施の形態によれば,絶縁板3の材質と厚みにより絶縁耐圧と寄生容量を調整することができる。また,1次巻線と2次巻線間の絶縁のみならず,1次側鉄芯と2次側鉄芯が分離される構造になるため,トランスの構造を単純化でき,低コスト化が図れる。   According to the present embodiment, the withstand voltage and the parasitic capacitance can be adjusted by the material and thickness of the insulating plate 3. In addition to the insulation between the primary and secondary windings, the primary iron core and secondary iron core are separated so that the transformer structure can be simplified and the cost can be reduced. I can plan.

最後に、パワーモジュールとして構成された電源装置について,図10,図11,および図12を用いて説明する。まず図10は、本実施例の絶縁トランス19を用いたパワーモジュールのブロック図である。   Finally, a power supply device configured as a power module will be described with reference to FIGS. 10, 11, and 12. First, FIG. 10 is a block diagram of a power module using the insulating transformer 19 of this embodiment.

図10において,パワーモジュール13の内部には,絶縁トランスとその二次側回路9で構成される2組の電源部50a、50bと、ゲート回路60で構成される。なお、図3の一次側回路8はここではモジュール化範囲に含まれないので、適宜の一次側回路が適用可能である。また、ゲート回路60を組み込んでいるので、制御信号線61,62、ゲート出力端子などが設置される。   In FIG. 10, the power module 13 includes two sets of power supply units 50 a and 50 b configured by an insulating transformer and its secondary circuit 9, and a gate circuit 60. Note that the primary side circuit 8 in FIG. 3 is not included in the modularization range here, so an appropriate primary side circuit can be applied. Since the gate circuit 60 is incorporated, control signal lines 61 and 62, a gate output terminal, and the like are installed.

この図には、トランス1次部11a,11b,トランス2次部12a,12b,2次側回路9a,9b,ドライブ回路16a,16b,パワーデバイス14a,14bがあり,トランス1次部11aと11bは直列に接続される。トランス2次部12aは、2次側回路9aに接続され,2次側回路9aはドライブ回路16aに接続され,ドライブ回路16aはパワーデバイス14aのゲートエミッタ間に接続される。   In this figure, there are transformer primary parts 11a and 11b, transformer secondary parts 12a and 12b, secondary side circuits 9a and 9b, drive circuits 16a and 16b, power devices 14a and 14b, and transformer primary parts 11a and 11b. Are connected in series. The transformer secondary section 12a is connected to the secondary circuit 9a, the secondary circuit 9a is connected to the drive circuit 16a, and the drive circuit 16a is connected between the gate and emitter of the power device 14a.

同様にトランス2次部12bは2次側回路9bに接続され,2次側回路9bはドライブ回路16bに接続され,ドライブ回路16bはパワーデバイス14bのゲートエミッタ間に接続される。パワーデバイス14aと14bは直列接続される。   Similarly, the transformer secondary section 12b is connected to the secondary side circuit 9b, the secondary side circuit 9b is connected to the drive circuit 16b, and the drive circuit 16b is connected between the gate and emitter of the power device 14b. Power devices 14a and 14b are connected in series.

図11は、本発明の絶縁トランスを適用したパワーモジュールの断面構造を示す図である。図11において,ヒートシンク15の上にパワーモジュール13がネジ止めされる。パワーモジュールの底面部にパワーデバイス14aおよび14bが実装される。パワーデバイス14a,14bの上部にプリント基板6が実装され,プリント基板6にはドライブ回路16a,16bとともに,2次側回路9a,9b,トランス2次部12a,12bも実装される。プリント基板6の上部には充填材17が充填されるが,トランス2次部12a,12bの上部にあたる部分には,充填材17を挟んでトランス1次部11a,11bが実装される。   FIG. 11 is a diagram showing a cross-sectional structure of a power module to which the insulating transformer of the present invention is applied. In FIG. 11, the power module 13 is screwed onto the heat sink 15. Power devices 14a and 14b are mounted on the bottom surface of the power module. The printed circuit board 6 is mounted on the power devices 14a and 14b, and the secondary circuits 9a and 9b and the transformer secondary parts 12a and 12b are mounted on the printed circuit board 6 together with the drive circuits 16a and 16b. The upper portion of the printed circuit board 6 is filled with the filler 17, but the transformer primary portions 11 a and 11 b are mounted on the portions corresponding to the upper portions of the transformer secondary portions 12 a and 12 b with the filler 17 interposed therebetween.

図12は、本実施例の絶縁トランスを用いたパワーモジュール用の電源装置の回路図である。図12において,直流電源7は1次側回路8に接続される。1次側回路8には平滑コンデンサ20aと,直列接続されたパワーMOSFET21a,21b,駆動回路22,共振コンデンサ23,ロスレススナバキャパシタ24があり,パワーMOSFET21aと21bの直列体の中点には共振コンデンサ23が接続される。   FIG. 12 is a circuit diagram of a power module for a power module using the insulating transformer of this embodiment. In FIG. 12, the DC power source 7 is connected to the primary circuit 8. The primary circuit 8 includes a smoothing capacitor 20a, power MOSFETs 21a and 21b connected in series, a drive circuit 22, a resonance capacitor 23, and a lossless snubber capacitor 24. A resonance capacitor is provided at the midpoint of the series of power MOSFETs 21a and 21b. 23 is connected.

共振コンデンサ23とパワーMOSFET21bのソース極は1次側回路の外部にあるトランス1次部11a,11bと直列に接続される。トランス1次部11a,11bは図11に示したように充填材17を介してそれぞれパワーモジュール内部のトランス2次部12a,12bと磁気的に結合する。   The source electrodes of the resonant capacitor 23 and the power MOSFET 21b are connected in series with the transformer primary parts 11a and 11b outside the primary circuit. The transformer primary parts 11a and 11b are magnetically coupled to the transformer secondary parts 12a and 12b inside the power module via the filler 17, as shown in FIG.

トランス2次部12a,12bはそれぞれセンタタップ構成となっており,トランス2次部12aは2次側回路9a内部の整流ダイオード26a,26bと接続される。トランス2次部12bは2次側回路9b内部の整流ダイオード26c,26dと接続される。整流ダイオード26a,26bは平滑コンデンサ20bに接続される。整流ダイオード26c,26dは平滑コンデンサ20cに接続される。図12の回路は図2,図5とは異なり,フィードバック回路を持たない。その代わりに,定電圧回路31a,31bを持つ。   The transformer secondary parts 12a and 12b each have a center tap configuration, and the transformer secondary part 12a is connected to rectifier diodes 26a and 26b in the secondary side circuit 9a. The transformer secondary unit 12b is connected to rectifier diodes 26c and 26d in the secondary side circuit 9b. The rectifier diodes 26a and 26b are connected to the smoothing capacitor 20b. The rectifier diodes 26c and 26d are connected to the smoothing capacitor 20c. The circuit of FIG. 12 does not have a feedback circuit unlike FIGS. Instead, constant voltage circuits 31a and 31b are provided.

図12において,駆動回路22では一定の周波数かつパルス幅の決まったパルスを発生し,パワーMOSFET21a,21bにこのパルスに従ったゲート信号を送出してパワーMOSFET 21a,21bをスイッチングする。   In FIG. 12, the drive circuit 22 generates a pulse having a constant frequency and a fixed pulse width, and sends a gate signal according to this pulse to the power MOSFETs 21a and 21b to switch the power MOSFETs 21a and 21b.

トランス1次部11aとトランス2次部12a,トランス1次部11bとトランス2次部12bとはそれぞれ充填材17を介して磁気結合する。フェライト製の鉄芯は充填材17で分離されているために漏れインダクタンスは従来の絶縁トランスよりも比較的大きい。そこで,本発明においては,この漏れインダクタンスを有効に利用する。すなわち,パワーMOSFET 21a,21bをこの回路の共振周波数よりも高い周波数で駆動することにより,漏れインダクタンスと共振コンデンサ24により形成される直列共振回路に共振電流が流れ,トランス2次部12aおよび12bにパワーが伝達される。   The transformer primary part 11a and the transformer secondary part 12a, and the transformer primary part 11b and the transformer secondary part 12b are magnetically coupled via the filler 17, respectively. Since the iron core made of ferrite is separated by the filler 17, the leakage inductance is relatively larger than that of the conventional insulating transformer. Therefore, in the present invention, this leakage inductance is effectively used. That is, by driving the power MOSFETs 21a and 21b at a frequency higher than the resonance frequency of this circuit, a resonance current flows in the series resonance circuit formed by the leakage inductance and the resonance capacitor 24, and the transformer secondary parts 12a and 12b are passed through. Power is transmitted.

2次側回路9aでは整流ダイオード26a,26bでトランス2次部に伝達された高周波交流を整流し平滑コンデンサ20bに蓄積する。同様に2次側回路9bでは整流ダイオード26c,26dでトランス2次部に伝達された高周波交流を整流し平滑コンデンサ20cに蓄積する。本実施の形態においては,フィードバック回路を持たないため,負荷変動や温度変化等による出力電圧変動は定電圧回路31a,31bにより安定化する。ドライブ回路16a,16bはこの定電圧回路31a,31bにより安定な電圧を得る。   In the secondary side circuit 9a, the high-frequency alternating current transmitted to the transformer secondary part is rectified by the rectifier diodes 26a and 26b and accumulated in the smoothing capacitor 20b. Similarly, in the secondary side circuit 9b, the high-frequency alternating current transmitted to the transformer secondary part is rectified by the rectifier diodes 26c and 26d and accumulated in the smoothing capacitor 20c. In this embodiment, since there is no feedback circuit, output voltage fluctuations due to load fluctuations, temperature changes, and the like are stabilized by the constant voltage circuits 31a and 31b. The drive circuits 16a and 16b obtain stable voltages by the constant voltage circuits 31a and 31b.

次に図10において,ドライブ回路16a,16bには2次側回路9a,9bからパワーデバイス14a,14bの駆動電力が供給される。一方,パワーデバイス14a,14bの駆動信号はパワーモジュール13の外部から入力される。パワーデバイス14a,14bはIGBTと逆並列ダイオードの例を図示しているが,パワーMOSFETやSiCスイッチングデバイスなどでも良い。このように,本実施の形態においては,パワーモジュールにおける充填材によりパワーデバイス駆動電源用の絶縁トランスの1次・2次間の絶縁をとる方法を示した。これによりパワーデバイス駆動電源の絶縁トランスの構造が簡単になり,小形化が可能になるとともに,低コスト化も可能になる。   Next, in FIG. 10, drive power of the power devices 14a and 14b is supplied from the secondary circuits 9a and 9b to the drive circuits 16a and 16b. On the other hand, drive signals for the power devices 14 a and 14 b are input from the outside of the power module 13. The power devices 14a and 14b are illustrated as examples of IGBTs and anti-parallel diodes, but may be power MOSFETs or SiC switching devices. As described above, in the present embodiment, the method of insulating between the primary and secondary of the insulating transformer for the power device driving power source by the filler in the power module is shown. This simplifies the structure of the isolation transformer of the power device drive power supply, enabling downsizing and cost reduction.

このように,本実施の形態においては,パワースイッチングデバイスであるIGBTの数(2個)と同じだけの絶縁トランス(2組)をパワーモジュールに搭載している。また,これら絶縁トランスを励磁するために必要な1次側回路は図12に示すように1回路で良い。パワーモジュールに搭載されるIGBTの数が4個,6個と増加した場合には,図12のトランス1次部の直列数をIGBTの数に合わせて4個,6個と増やすことにより,対応することが可能であり,パワーモジュールを駆動するための電源の体積とコストを低減することができる。   Thus, in the present embodiment, the same number of insulated transformers (two sets) as the number of IGBTs (two) as power switching devices are mounted on the power module. Further, the primary side circuit necessary for exciting these insulating transformers may be one circuit as shown in FIG. When the number of IGBTs mounted on a power module increases to 4 or 6, it can be handled by increasing the number of transformer primary parts in Fig. 12 to 4 or 6 according to the number of IGBTs. It is possible to reduce the volume and cost of the power source for driving the power module.

なお,トランスの1次,2次間は充填剤17により絶縁する他,モジュール構成部材である樹脂材で絶縁する構造としてもよい。   In addition, the primary and secondary transformers may be insulated by the filler 17 and may be insulated by a resin material that is a module constituent member.

以上述べた本発明によれば、雷サージ発生時のノイズ電流の発生を抑制することによって,絶縁トランスを用いた電源装置の小型化と高信頼化を図ることができる。また,絶縁トランスとそれを用いた電源装置の低コスト化を図ることができる。さらに、絶縁トランスを用いた電源装置の小型化かつ高信頼化という効果を持つ。さらに,1次巻線と2次巻線間の絶縁のみならず,1次側鉄芯と2次側鉄芯が分離される構造であるため,トランスの構造が単純化でき,低コスト化を図ることができる。   According to the present invention described above, it is possible to reduce the size and increase the reliability of a power supply device using an insulating transformer by suppressing the generation of noise current when a lightning surge occurs. In addition, the cost of the insulation transformer and the power supply device using the insulation transformer can be reduced. Furthermore, it has the effect of reducing the size and increasing the reliability of a power supply device using an insulating transformer. In addition to the insulation between the primary and secondary windings, the primary iron core and secondary iron core are separated from each other, so the transformer structure can be simplified and the cost can be reduced. Can be planned.

本発明は,鉄道車両用インバータに用いられるゲート駆動電源装置や,産業用電源装置などに適用できる。   The present invention can be applied to a gate drive power supply device used in a railway vehicle inverter, an industrial power supply device, and the like.

1a,1b:コア
2:1次巻線
3:絶縁板
4a,4b:2次巻線
5:絶縁材
6:プリント基板
7:直流電源
8:1次側回路
9,9a,9b:2次側回路
10a,10b:負荷
11,11a,11b:トランス1次部
12,12a,12b:トランス2次部
13:パワーモジュール
14a,14b:パワーデバイス
15:ヒートシンク
16a,16b:ドライブ回路
17:充填材
18:光ケーブル
19:絶縁トランス
20a,20b,20c:平滑コンデンサ
21a,21b:パワーMOSFET
22:駆動回路
23:共振コンデンサ
24:ロスレススナバキャパシタ
25:絶縁信号受信部
26a,26b:整流ダイオード
27:出力電圧誤差増幅回路
28:絶縁信号発信部
29:制御回路
30:面実装基板
31a,31b:定電圧回路
1a, 1b: Core 2: Primary winding 3: Insulating plates 4a, 4b: Secondary winding 5: Insulating material 6: Printed circuit board 7: DC power supply 8: Primary side circuits 9, 9a, 9b: Secondary side Circuits 10a, 10b: Loads 11, 11a, 11b: Transformer primary part 12, 12a, 12b: Transformer secondary part 13: Power module 14a, 14b: Power device 15: Heat sink 16a, 16b: Drive circuit 17: Filler 18 : Optical cable 19: Insulation transformers 20a, 20b, 20c: Smoothing capacitors 21a, 21b: Power MOSFET
22: Drive circuit 23: Resonance capacitor 24: Lossless snubber capacitor 25: Insulation signal receiving unit 26a, 26b: Rectifier diode 27: Output voltage error amplification circuit 28: Insulation signal transmission unit 29: Control circuit 30: Surface mount substrates 31a, 31b : Constant voltage circuit

Claims (15)

1次巻線が巻回された1次側鉄芯と,2次巻線が巻回された2次側鉄芯と,絶縁体を有し,前記1次側鉄芯と2次側鉄芯が,前記絶縁体を挟んで対向するように絶縁体に固定、配置されることを特徴とする絶縁トランス。   A primary side iron core wound with a primary winding, a secondary side iron core wound with a secondary winding, and an insulator, the primary side iron core and the secondary side iron core However, the insulating transformer is fixed and arranged on an insulator so as to face each other with the insulator interposed therebetween. 請求項1の絶縁トランスにおいて,
前記1次側鉄芯および2次側鉄芯は、ポット型のフェライトコアであり,前記1次巻線および2次巻線はそれぞれ前記コアの開口部内に配設され,前記開口部同士が相対するように前記絶縁体を挟んで対向されることを特徴とする絶縁トランス。
The insulation transformer according to claim 1,
The primary side iron core and the secondary side iron core are pot-type ferrite cores, and the primary winding and the secondary winding are respectively disposed in the openings of the core, and the openings are relative to each other. An insulating transformer, wherein the insulating transformers are opposed to each other with the insulator interposed therebetween.
請求項1の絶縁トランスにおいて,
前記1次側鉄芯および2次側鉄芯はE型のフェライトコアであり,前記コアの脚部同士が相対するように前記絶縁体を挟んで対向されることを特徴とする絶縁トランス。
The insulation transformer according to claim 1,
2. The insulation transformer according to claim 1, wherein the primary iron core and the secondary iron core are E-type ferrite cores, and are opposed to each other with the insulator interposed therebetween so that legs of the cores face each other.
請求項1の絶縁トランスにおいて,
前記絶縁体は、中間に空隙を有する2つの絶縁体からなり、一方の絶縁体側に前記1次側鉄芯が、他方の絶縁体側に前記2次側鉄芯が、前記絶縁体を挟んで対向する位置に配置されることを特徴とする絶縁トランス。
The insulation transformer according to claim 1,
The insulator is composed of two insulators having a gap in the middle, with the primary iron core facing one insulator and the secondary iron core facing the other insulator with the insulator sandwiched therebetween. An insulating transformer characterized by being arranged at a position where
請求項1から請求項4に記載のいずれかの絶縁トランスにおいて,
前記絶縁体は、電子部品を搭載するプリント基板であることを特徴とする絶縁トランス。
The insulation transformer according to any one of claims 1 to 4,
An insulating transformer, wherein the insulator is a printed circuit board on which an electronic component is mounted.
1次巻線が巻回された1次側鉄芯と2次巻線が巻回された2次側鉄芯を、空隙を介して配置し、少なくとも当該空隙に絶縁性の樹脂を充填すると共に、前記1次側鉄芯と2次側鉄芯巻線の巻面同士が対向するように配置されることを特徴とする絶縁トランス。   The primary side iron core around which the primary winding is wound and the secondary side iron core around which the secondary winding is wound are arranged via a gap, and at least the gap is filled with an insulating resin. An insulating transformer, wherein the winding surfaces of the primary side iron core and the secondary side iron core winding are opposed to each other. 1次巻線が巻回された1次側鉄芯と2次巻線が巻回された2次側鉄芯を、絶縁体を介して配置し、少なくとも鉄芯の周囲を絶縁性の樹脂で覆うと共に、前記1次側鉄芯と2次側鉄芯巻線の巻面同士が対向するように配置されることを特徴とする絶縁トランス。   A primary side iron core around which the primary winding is wound and a secondary side iron core around which the secondary winding is wound are arranged via an insulator, and at least the periphery of the iron core is made of an insulating resin. An insulating transformer, wherein the insulating transformer is arranged so as to cover the winding surfaces of the primary side iron core and the secondary side iron core winding. 1次巻線が巻回された1次側鉄芯と,2次巻線が巻回された2次側鉄芯と,絶縁体を有し,前記1次側鉄芯と2次側鉄芯が,前記絶縁体を挟んで対向するように絶縁体に固定、配置された絶縁トランスを備え、前記絶縁トランスを励磁する回路方式は前記絶縁トランスの漏れインダクタンスを利用した直列共振方式であることを特徴とする電源装置。   A primary side iron core wound with a primary winding, a secondary side iron core wound with a secondary winding, and an insulator, the primary side iron core and the secondary side iron core However, a circuit system that includes an insulating transformer fixed and arranged on the insulator so as to face each other with the insulator interposed therebetween, and the circuit system that excites the insulating transformer is a series resonance system that uses a leakage inductance of the insulating transformer. A featured power supply. 1次巻線が巻回された1次側鉄芯と2次巻線が巻回された2次側鉄芯と絶縁体を有し,前記1次側鉄芯と2次側鉄芯が,前記絶縁体を挟んで対向するように絶縁体に固定、配置された絶縁トランスと、該絶縁トランスの前記1次巻線に接続される一次側回路と、前記絶縁トランスの前記2次巻線に接続される二次側回路とを備え、前記絶縁トランスが、前記一次側回路や二次側回路を構成する回路部品と共にプリント基板上に搭載されていることを特徴とする電源装置。   A primary side iron core around which the primary winding is wound, a secondary side iron core around which the secondary winding is wound, and an insulator, the primary side iron core and the secondary side iron core being An insulating transformer fixed and arranged on the insulator so as to face each other with the insulator interposed therebetween, a primary circuit connected to the primary winding of the insulating transformer, and the secondary winding of the insulating transformer And a secondary side circuit to be connected, wherein the insulating transformer is mounted on a printed circuit board together with circuit components constituting the primary side circuit and the secondary side circuit. 請求項9に記載の電源装置において、
前記絶縁トランスの絶縁体は、前記プリント基板であり、プリント基板の各面にそれぞれ前記1次側鉄芯と2次側鉄芯が配置されていることを特徴とする電源装置。
The power supply device according to claim 9, wherein
The insulator of the insulation transformer is the printed circuit board, and the primary side iron core and the secondary side iron core are arranged on each surface of the printed circuit board, respectively.
請求項9に記載の電源装置において、
前記絶縁トランスの絶縁体は、前記プリント基板上に前記絶縁体が垂直方向に固定されるとともに,前記1次側鉄芯が前記1次側回路に隣接するように配置され,かつ前記2次側鉄芯が前記2次側回路に隣接するように配置されていることを特徴とする電源装置。
The power supply device according to claim 9, wherein
The insulator of the isolation transformer is arranged such that the insulator is fixed vertically on the printed circuit board, the primary iron core is adjacent to the primary circuit, and the secondary side A power supply device, wherein an iron core is disposed adjacent to the secondary circuit.
請求項9に記載の電源装置において、
前記二次側回路を構成する回路部品は、プリント基板上に面実装されることを特徴とする電源装置。
The power supply device according to claim 9, wherein
The power supply apparatus according to claim 1, wherein the circuit components constituting the secondary circuit are surface-mounted on a printed board.
少なくとも1つのパワースイッチングデバイスとその駆動回路とを内蔵する電源装置において,
前記駆動回路に電源を給電する絶縁トランスを内蔵し,前記絶縁トランスは,1次巻線が巻回された1次側鉄芯と,2次巻線が巻回された2次側鉄芯とを有し,前記1次側鉄芯と2次側鉄芯が,前記駆動回路基板上に充填される充填材を挟んで対向するように配置されるとともに,少なくとも前記1次側鉄芯は前記充填材により固着されることを特徴とする電源装置。
In a power supply device incorporating at least one power switching device and its drive circuit,
An insulating transformer for supplying power to the drive circuit is incorporated, and the insulating transformer includes a primary iron core wound with a primary winding, and a secondary iron core wound with a secondary winding. The primary side iron core and the secondary side iron core are arranged so as to face each other with a filler filled on the drive circuit board interposed therebetween, and at least the primary side iron core is A power supply device fixed by a filler.
請求項13に記載の電源装置おいて,
搭載される絶縁トランスの数は、パワースイッチング素子の数と同じであることを特徴とする電源装置。
The power supply device according to claim 13,
A power supply device characterized in that the number of mounted isolation transformers is the same as the number of power switching elements.
請求項13に記載の電源装置おいて,
パワースイッチング素子の数と同じだけの絶縁トランスを直列接続することを特徴とする電源装置。
The power supply device according to claim 13,
A power supply device characterized in that as many insulating transformers as the number of power switching elements are connected in series.
JP2012519135A 2010-06-08 2010-06-08 Isolation transformer and power supply Withdrawn JPWO2011154993A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/003811 WO2011154993A1 (en) 2010-06-08 2010-06-08 Isolation transformer and power source device

Publications (1)

Publication Number Publication Date
JPWO2011154993A1 true JPWO2011154993A1 (en) 2013-08-01

Family

ID=45097628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012519135A Withdrawn JPWO2011154993A1 (en) 2010-06-08 2010-06-08 Isolation transformer and power supply

Country Status (3)

Country Link
JP (1) JPWO2011154993A1 (en)
DE (1) DE112010005649T5 (en)
WO (1) WO2011154993A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013007850B4 (en) * 2013-05-08 2023-08-10 Sew-Eurodrive Gmbh & Co Kg transformer arrangement
WO2015121113A1 (en) * 2014-02-14 2015-08-20 Koninklijke Philips N.V. Transformer for providing feeding and data signals
GB2530321B (en) * 2014-09-19 2019-04-17 Murata Manufacturing Co Electronic device
JP6358134B2 (en) * 2015-03-10 2018-07-18 オムロン株式会社 Insulated bidirectional DC-DC converter and power conversion system
KR102295096B1 (en) * 2015-12-29 2021-08-31 한국전자기술연구원 Power converter for high density power
US11322286B2 (en) * 2016-04-14 2022-05-03 Signify Holding B.V. Split transformer assembly
CN105761910B (en) * 2016-05-14 2017-10-10 保定元辰变压器制造有限公司 A kind of improved dry-type transformer and its assemble method
KR101639579B1 (en) * 2016-06-17 2016-07-22 제룡전기 주식회사 Manufacturing method of dry type transformer for outdoor and dry type transformer for outdoor manufactured using the method
JP6119012B1 (en) * 2016-09-26 2017-04-26 音羽電機工業株式会社 Lightning transformer
CN110462765A (en) * 2017-03-16 2019-11-15 西门子股份公司 Transformer for DC voltage converter
CN110462973B (en) 2017-04-07 2023-06-27 索尤若驱动有限及两合公司 Method for producing a system for inductively transmitting energy to a movable object and device for carrying out said method
KR102047245B1 (en) * 2018-02-19 2019-11-21 청주대학교 산학협력단 Low-profile DC-DC Converter
KR102135111B1 (en) * 2018-03-14 2020-08-26 청주대학교 산학협력단 Switching power device with laminated structure
JP7026015B2 (en) * 2018-07-17 2022-02-25 株式会社日立製作所 Transformers, power converter units, and power converters
JP2021002913A (en) * 2019-06-20 2021-01-07 サンデン・アドバンストテクノロジー株式会社 Switching power supply device, on-vehicle electric compressor equipped with the same, and method for manufacturing switching power supply device
EP3905283B1 (en) * 2020-04-30 2023-11-22 ABB E-mobility B.V. Inductive fast charger

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132146A (en) * 1992-10-15 1994-05-13 Matsushita Electric Ind Co Ltd Transformer and electronic device using it
JPH09115739A (en) * 1995-10-24 1997-05-02 Seikosha Co Ltd Electromagnetic device
JP2000058336A (en) * 1998-08-06 2000-02-25 Tdk Corp Mold structure of electronic component
JP2000124032A (en) * 1998-03-06 2000-04-28 Nippon Paint Co Ltd Film composed of amorphous metal foils and insulating resin layer, and coil or transformer
JP2001119114A (en) * 1999-10-21 2001-04-27 Ricoh Co Ltd Structure and method for mounting
JP2002093625A (en) * 2000-09-18 2002-03-29 Totoku Electric Co Ltd Method of rorming depletion layer
JP2002270435A (en) * 2001-03-07 2002-09-20 Tdk Corp Transformer and switching power supply using it
JP2003051414A (en) * 2001-05-29 2003-02-21 Toyota Motor Corp Resin mold sealed electromagnetic equipment and method of manufacturing the same
JP2005168276A (en) * 2003-11-12 2005-06-23 Sony Corp Switching power supply
JP2009303474A (en) * 2008-05-14 2009-12-24 Fuji Electric Device Technology Co Ltd Switching power supply

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646855A (en) 1987-06-30 1989-01-11 Toshiba Corp Production of moisture sensitive element
JP3437428B2 (en) * 1997-12-09 2003-08-18 いわき電子株式会社 Trance
JP2009302158A (en) * 2008-06-10 2009-12-24 Toyota Motor Corp Voltage conversion device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132146A (en) * 1992-10-15 1994-05-13 Matsushita Electric Ind Co Ltd Transformer and electronic device using it
JPH09115739A (en) * 1995-10-24 1997-05-02 Seikosha Co Ltd Electromagnetic device
JP2000124032A (en) * 1998-03-06 2000-04-28 Nippon Paint Co Ltd Film composed of amorphous metal foils and insulating resin layer, and coil or transformer
JP2000058336A (en) * 1998-08-06 2000-02-25 Tdk Corp Mold structure of electronic component
JP2001119114A (en) * 1999-10-21 2001-04-27 Ricoh Co Ltd Structure and method for mounting
JP2002093625A (en) * 2000-09-18 2002-03-29 Totoku Electric Co Ltd Method of rorming depletion layer
JP2002270435A (en) * 2001-03-07 2002-09-20 Tdk Corp Transformer and switching power supply using it
JP2003051414A (en) * 2001-05-29 2003-02-21 Toyota Motor Corp Resin mold sealed electromagnetic equipment and method of manufacturing the same
JP2005168276A (en) * 2003-11-12 2005-06-23 Sony Corp Switching power supply
JP2009303474A (en) * 2008-05-14 2009-12-24 Fuji Electric Device Technology Co Ltd Switching power supply

Also Published As

Publication number Publication date
DE112010005649T5 (en) 2013-11-28
WO2011154993A1 (en) 2011-12-15

Similar Documents

Publication Publication Date Title
WO2011154993A1 (en) Isolation transformer and power source device
US10991501B2 (en) Transformer and power supply device including the same
KR102174244B1 (en) Transformer and power supply unit including the same
RU2374713C2 (en) Planar high-voltage transformer
US20160307690A1 (en) Embedded solenoid transformer for power conversion
WO2006092991A1 (en) Resonance transformer and power supply unit employing it
CN109686540B (en) Capacitance-resistance voltage conversion device
CN105529157A (en) Embedded magnetic component transformer device
KR101604325B1 (en) A transformer and high voltage power supply apparatus having the same
JP2016006816A (en) Transformer and multilayer substrate
US10276298B2 (en) Transformer, and switching power supply and isolator including transformer
JP2011087396A (en) Power unit and power module
KR20230038159A (en) Transformer and flat panel display device including the same
KR102444844B1 (en) Magnetic coupling device and flat panel display device including the same
CN116762146A (en) transformer
CN114520109A (en) Symmetrical split transformer for reducing EMI
JP2012069997A (en) Power module
KR102513410B1 (en) Transformer and flat panel display device including the same
KR102552586B1 (en) Transformer and flat panel display device including the same
JP6260261B2 (en) Pulse drive and gate drive circuit using pulse transformer
US20240087800A1 (en) Transformer
KR20220010444A (en) Transformer and flat panel display device including the same
JP2020167880A (en) Switching power supply device and medical system
KR20230024523A (en) Coil component
CN116134562A (en) Transformer and flat panel display device including the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140402

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20140707