JPWO2011104870A1 - 空気調和装置および空調給湯システム - Google Patents

空気調和装置および空調給湯システム Download PDF

Info

Publication number
JPWO2011104870A1
JPWO2011104870A1 JP2012501598A JP2012501598A JPWO2011104870A1 JP WO2011104870 A1 JPWO2011104870 A1 JP WO2011104870A1 JP 2012501598 A JP2012501598 A JP 2012501598A JP 2012501598 A JP2012501598 A JP 2012501598A JP WO2011104870 A1 JPWO2011104870 A1 JP WO2011104870A1
Authority
JP
Japan
Prior art keywords
air
conditioning
air conditioning
heat exchanger
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012501598A
Other languages
English (en)
Other versions
JP5395950B2 (ja
Inventor
小谷 正直
正直 小谷
智弘 小松
智弘 小松
陽子 國眼
陽子 國眼
麻理 内田
麻理 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2011104870A1 publication Critical patent/JPWO2011104870A1/ja
Application granted granted Critical
Publication of JP5395950B2 publication Critical patent/JP5395950B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • F24D11/0221Central heating systems using heat accumulated in storage masses using heat pumps water heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1015Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0003Exclusively-fluid systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/14Solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0064Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Abstract

【課題】設備コストを増大させることなく1つの冷凍サイクルで除湿運転を行うことができるチラー型の空気調和装置を提供する。【解決手段】冷房運転と暖房運転とを切替えて行う空調用冷媒回路(5)と、被冷却空間(60)の空調を行う空調用熱搬送媒体循環回路(8)とを備えた空気調和装置であって、空調用冷媒回路に、第1の空調用利用側熱交換器(28a)と第2の空調用利用側熱交換器(28b)との接続を直列と並列とに切替えるための接続切替手段(34a,34b)を設け、第1の空調用利用側熱交換器と第2の空調用利用側熱交換器との間の位置に第2の空調用膨張弁を設ける。空調用熱搬送媒体循環回路(8)は、第1の空調利用側熱交換器と第1の室内熱交換器(61a)とを配管で繋いで環状に形成された第1の空調用熱搬送媒体回路(8a)と、第2の空調利用側熱交換器と第2の室内熱交換器(61b)とを配管で繋いで環状に形成された第2の空調用熱搬送媒体回路(8b)とを備えている。【選択図】図1

Description

本発明は、空気調和装置および空調給湯システムに係り、特に、被冷却空間に設置された室内熱交換器に水や熱媒体を循環させることにより空調を行うチラー型の空気調和装置および空調給湯システムに好適なものである。
一般家屋やオフィスビル等をセントラル方式(一カ所で冷水や温水を作り、各室に循環する方式のこと)で除湿運転を行う従来の技術としては、例えば、特許文献1または特許文献2に記載された技術がある。特許文献1に記載の技術は、ボイラと冷凍機を備えた空調装置において、暖房時はボイラを運転し、冷房時は冷凍機を運転する事によって冷温水を生成して冷暖房運転を行うと共に、除湿運転時はボイラと冷凍機を同時に運転し、二次回路の制御弁を切替えて除湿運転を行う技術である。また、特許文献2に記載の技術は、利用側熱交換器と再熱用熱交換器を室内送風機の送風方向に対して再熱用熱交換器が利用側熱交換器の下流に設ける事によって、除湿運転を行う技術である。
特開平8−261516号公報 特開2002−206795号公報
しかしながら、特許文献1に記載の従来技術では、除湿運転を行うためにボイラと冷凍機の2種類の熱源機が必要になるため、設備コストが増大するといった課題がある。また、この特許文献1に記載の技術では、除湿運転では2次回路の制御弁の切替えが必要になるため、制御が複雑になるといった課題がある。
一方、特許文献2に記載の技術は、1つの冷凍サイクルで冷房・暖房・除湿の3つの運転が可能な技術であるが、その除湿運転は冷房運転を中心にして行われる運転であるため、再加熱量が不足した際に加熱量を大きくとる事が出来ないといった課題を有している。また、特許文献2に記載の技術では、冷房運転や暖房運転においては、再熱用熱交換器(暖房時は利用側熱交換器)が空気流に対して後流側に設置されるため、空気と冷媒の温度差を大きく取る事ができず、熱交換器を効率良く利用することができないといった課題を有している。
本発明は、上記した実情に鑑みてなされたものであり、その目的とするところは、設備コストを増大させることなく1つの冷凍サイクルで除湿運転を行うことができるチラー型の空気調和装置および空調給湯システムを提供することにある。
上記した課題を解決するために、本発明に係る空気調和装置は、冷房運転と暖房運転とを切替えて行う空調用冷媒回路(5)と、被冷却空間(60)の空調を行う空調用熱搬送媒体循環回路(8)とを備えた空気調和装置であって、前記空調用冷媒回路(5)は、空調用圧縮機(21)、空調用流路切替弁(22)、空調用熱源側の熱搬送媒体(例えば、大気)と熱交換を行うための空調用熱源側熱交換器(24)、第1の空調用膨張弁(27a)、空調用利用側の熱搬送媒体(例えば、水またはブライン)と熱交換を行うための第1の空調用利用側熱交換器(28a)を順次冷媒配管で接続して環状に形成された空調用冷媒メイン回路(5a)を備え、前記空調用冷媒メイン回路に、前記第1の空調用利用側熱交換器をバイパスする第1の空調用冷媒分岐路(5b)を設け、前記第1の空調用利用側熱交換器と並列に接続されるように、前記第1の空調用冷媒分岐路に空調用利用側の熱搬送媒体(水またはブライン)と熱交換を行うための第2の空調用利用側熱交換器(28b)を設け、前記第1の空調用利用側熱交換器と前記第2の空調用利用側熱交換器とが直列に接続されるように、前記空調用冷媒メイン回路と前記第1の空調用冷媒分岐路とを空調用バイパス配管(29)で接続し、前記空調用冷媒回路に、第1の空調用利用側熱交換器と前記第2の空調用利用側熱交換器との接続を直列と並列とに切替えるための接続切替手段(34a,34b)を設け、前記接続切替手段により前記第1の空調用利用側熱交換器と前記第2の空調用利用側熱交換器とが直列に接続された状態における前記空調用冷媒回路の前記第1の空調用利用側熱交換器と前記第2の空調用利用側熱交換器との間の位置に、第2の空調用膨張弁(27b)を設け、前記空調用熱搬送媒体循環回路は、前記第1の空調利用側熱交換器と前記被冷却空間に設置された第1の室内熱交換器(61a)とを配管で繋いで環状に形成された第1の空調用熱搬送媒体回路(8a)と、前記第2の空調利用側熱交換器と前記被冷却空間に設置された第2の室内熱交換器(61b)とを配管で繋いで環状に形成された第2の空調用熱搬送媒体回路(8b)とを備え、前記第1の空調用熱搬送媒体回路および前記第2の空調用熱搬送媒体回路に、前記空調用利用側の熱搬送媒体として水またはブラインをそれぞれ循環させるようにしたことを特徴としている。
本発明に係る空気調和装置によれば、第2の空調用膨張弁を設けているため、例えば冷房運転においては、第1の空調用膨張弁で空調用冷媒の減圧量・流量を制御し、第2の空調用膨張弁を全開にすることによって、空調用熱源側熱交換器を凝縮器として作用させ、第1の空調用利用側熱交換器および第2の空調用利用側熱交換器を共に蒸発器として作用させる事ができる。
また、本発明に係る空気調和装置によれば、暖房運転においては、第1の空調用膨張弁で空調用冷媒の減圧量・流量を制御し、第2の空調用膨張弁を全開にすることによって、第1の空調用利用側熱交換器および第2の空調用利用側熱交換器を共に凝縮器として作用させ、空調用熱源側熱交換器を蒸発器として作用させることができる。
また、本発明に係る空気調和装置によれば、除湿運転において、第1の空調用膨張弁を全開にし、第2の空調用膨張弁を制御する事によって、次のような運転を行うことができる。例えば、冷却・除湿負荷が比較的高い場合には、空調用流路切替弁を冷房側に切替えて、空調用熱源側熱交換器を凝縮器として作用させる。この際、空調用熱源側熱交換器で放熱する放熱量は、冷却・除湿後の空気を再加熱する再加熱量に対応した放熱量になるように、室外ファンを制御する。空調用熱源側熱交換器を通過した空調用冷媒は、第1の空調用利用側熱交換器を凝縮器として作用させることにより、空調用利用側の熱搬送媒体へ熱を放熱する。その後、空調用冷媒は、空調用バイパス配管を通過し、第2の空調用膨張弁を通過して減圧・膨張する。第2の空調用膨張弁を通過した空調用冷媒は、第2の空調用利用側熱交換器で空調用利用側の熱搬送媒体から熱を吸熱し、空調用流路切替弁を通って空調用圧縮機へと還流する。このような除湿運転が、本発明に係る空気調和装置では可能である。
また、本発明に係る空気調装置では、空調用流路切替弁を暖房側に切替えて、第1の空調用膨張弁および第2の空調用膨張弁を制御する事で、除湿負荷が比較的少なく、加熱負荷があるような負荷形態に適した除湿運転を行う事ができる。この場合、第2の空調用利用側熱交換器を凝縮器として作用させることにより、空調用冷媒は、第2の空調用利用側熱交換器で空調用利用側の熱搬送媒体へ放熱し、冷却される。第2の空調用利用側熱交換器を通過した空調用冷媒は第2の空調用膨張弁で減圧され、第1の空調用利用側熱交換器で空調用利用側の熱搬送媒体から吸熱する。このとき、第2の空調用膨張弁の減圧量は、除湿量に応じた減圧量になるように制御される。第1の空調用利用側熱交換器を通過した空調用冷媒は、室外温度に応じた蒸発圧力になるように第1の空調用膨張弁で減圧され、空調用熱源側熱交換器で室外空気から吸熱した後、空調用流路切替弁を通って、空調用圧縮機へと還流する。このような除湿運転が、本発明に係る空気調和装置では可能である。
このように、本発明によれば、チラー型の空気調和装置においても、設備を増加させることなく、簡単な制御によって、冷房、暖房、冷房主体除湿、暖房主体除湿の4つのモードの運転ができる。また、本発明に係る空気調和装置は、第1の空調用利用側熱交換器および第2の空調用利用側熱交換器を効率良く使用する事ができるため、省エネ性にも優れている。
また、本発明に係る空気調和装置は、第1の空調用膨張弁に対して第1の空調用利用側熱交換器および第2の空調用利用側熱交換器を並列に接続させる事が可能なため、それぞれの空調用利用側熱交換器へ流入する空調用冷媒の温度(アプローチ温度)を同一に保つ事ができる。このため、第1の空調用利用側熱交換器および第2の空調用利用側熱交換器を流れる空調用冷媒と空調用利用側の熱搬送媒体との間で同一の温度差で熱交換を行う事ができる。よって、本発明に係る空気調和装置によれば、熱交換効率を良くする事ができる。
また、本発明に係る空気調和装置は、上記構成において、前記第1の空調用熱搬送媒体回路には、前記空調用利用側の熱搬送媒体の流れ方向を切替えるための第1の流路切替弁(64a)が設けられ、前記第2の空調用熱搬送媒体回路には、前記空調用利用側の熱搬送媒体の流れ方向を切替えるための第2の流路切替弁(64b)が設けられ、前記第1の空調用熱搬送媒体回路を構成する配管の一部に、前記第2の空調用熱搬送媒体回路を構成する配管の一部と共通で用いられる共通配管(65b)を組み込み、前記共通配管に、前記空調用利用側の熱搬送媒体を前記第1の空調用熱搬送媒体回路および前記第2の空調用熱搬送媒体回路に同時に循環させるための空調用熱搬送媒体循環ポンプ(67)を組み込んだことを特徴としている。
本発明に係る空気調和装置によれば、第1の空調用熱搬送媒体回路に第1の流路切替弁が設けられているので、第1の空調用利用側熱交換器を流れる空調用冷媒の流れ方向に対応させて、空調用利用側の熱搬送媒体の流れ方向を変更させることができる。よって、本発明に係る空気調和装置は、第1の空調用利用側熱交換器における熱交換効率を良くすることができる。同様に、本発明に係る空気調和装置によれば、第2の空調用熱搬送媒体回路に第2の流路切替弁が設けられているので、第2の空調用利用側熱交換器を流れる空調用冷媒の流れ方向に対応させて、空調用利用側の熱搬送媒体の流れ方向を変更させることができる。よって、本発明に係る空気調和装置は、第2の空調用利用側熱交換器における熱交換効率を良くことができる。
また、上記した課題を解決するために、本発明に係る空調給湯システムは、冷房運転と暖房運転とを切替えて行う空調用冷媒回路(5)と、被冷却空間(60)の空調を行う空調用熱搬送媒体循環回路(8)と、給湯を行う給湯用冷媒回路(6)と、温冷熱源を用いて前記空調用冷媒回路及び前記給湯用冷媒回路に放熱または吸熱を行う中間熱媒体回路(7)と、前記空調用冷媒回路を循環する空調用冷媒、前記給湯用冷媒回路を循環する給湯用冷媒および前記中間熱媒体回路を循環する熱源用熱搬送媒体の3流体間で熱交換を行う中間熱交換器(23)と、運転の制御を行う制御装置(1a)とを有する空調給湯システムであって、前記空調用冷媒回路(5)は、空調用圧縮機(21)、空調用流路切替弁(22)、空調用熱源側の熱搬送媒体(例えば、大気)と熱交換を行うための空調用熱源側熱交換器(24)、第1の空調用膨張弁(27a)、空調用利用側の熱搬送媒体(例えば、水またはブライン)と熱交換を行うための第1の空調用利用側熱交換器(28a)を順次冷媒配管で接続して環状に形成された空調用冷媒メイン回路(5a)を備え、前記空調用冷媒メイン回路(5a)に、前記第1の空調用利用側熱交換器(28a)をバイパスする第1の空調用冷媒分岐路(5b)と、前記空調用熱源側熱交換器(24)をバイパスする第2の空調用冷媒分岐路(5c)とを設け、前記第1の空調用冷媒分岐路(5b)に、空調用利用側の熱搬送媒体(例えば、水またはブライン)と熱交換を行うための第2の空調用利用側熱交換器(28b)を前記第1の空調用利用側熱交換器(28a)と並列に接続されるようにして設け、前記第1の空調用利用側熱交換器(28a)と前記第2の空調用利用側熱交換器(28b)とが直列に接続されるように、前記空調用冷媒メイン回路(5a)と前記空調用冷媒分岐路(5b)とを空調用バイパス配管(29)で接続し、前記第2の空調用冷媒分岐路(5c)に、前記中間熱交換器および前記中間熱交換器を流れる空調用冷媒の流量を調整するための空調用冷媒流量制御弁(26b)を設け、前記空調用冷媒回路(5)に、第1の空調用利用側熱交換器と前記第2の空調用利用側熱交換器との接続を直列と並列とに切替えるための接続切替手段(34a,34b)を設け、前記接続切替手段(34a,34b)により前記第1の空調用利用側熱交換器(28a)と前記第2の空調用利用側熱交換器(28b)とが直列に接続された状態における前記空調用冷媒回路(5)の前記第1の空調用利用側熱交換器(28a)と前記第2の空調用利用側熱交換器(28b)との間の位置に、第2の空調用膨張弁(27b)を設け、前記空調用熱搬送媒体循環回路(8)は、前記第1の空調用利用側熱交換器(28a)と前記被冷却空間(60)に設置された第1の室内熱交換器(61a)とを配管で繋いで環状に形成された第1の空調用熱搬送媒体回路(8a)と、前記第2の空調用利用側熱交換器(28b)と前記被冷却空間(60)に設置された第2の室内熱交換器(61b)とを配管で繋いで環状に形成された第2の空調用熱搬送媒体回路(8b)とを備え、前記第1の空調用熱搬送媒体回路(8a)および前記第2の空調用熱搬送媒体回路(8b)に、前記空調用利用側の熱搬送媒体として水またはブラインをそれぞれ循環させ、前記給湯用冷媒回路(6)は、給湯用圧縮機(41)、給湯用利用側の熱搬送媒体と熱交換を行う給湯用利用側熱交換器(42)、給湯用膨張弁(43)、前記中間熱交換器(23)を順次冷媒配管で接続して環状に形成された給湯用メイン回路(6a)を備え、前記給湯用冷媒メイン回路(6a)に、前記中間熱交換器をバイパスする給湯用冷媒分岐路(6b)を設け、前記給湯用冷媒分岐路(6b)に、給湯用熱源側の熱搬送媒体(例えば、大気)と前記給湯用冷媒との間で熱交換するための給湯用熱源側熱交換器(44)を設け、前記中間熱媒体回路(7)に、前記熱源用熱搬送媒体が吸熱した温熱または冷熱を蓄熱するための蓄熱タンク(50)を設けたことを特徴としている。
また、本発明に係る空調給湯システムは、上記構成において、前記制御装置(1a)は、前記接続切替手段を操作して前記第1の空調用利用側熱交換器と前記第2の空調用利用側熱交換器とを直列に接続して前記空調用冷媒回路による除湿運転を実行すると共に、前記第1の室内熱交換器または前記第2の室内熱交換器で熱交換される再加熱量に応じて、前記空調用冷媒流量制御弁の開度を制御することを特徴としている。
また、本発明に係る空調給湯システムは、上記構成において、太陽熱を集熱する太陽熱集熱器(4)と前記蓄熱タンクとを配管で接続して環状に形成された太陽熱循環回路(10)と、前記第1の空調用熱搬送媒体回路および前記第2の空調用熱搬送媒体回路の少なくとも一方と前記蓄熱タンクとを配管で接続して環状に形成された太陽熱間接循環回路(12)とを備え、前記太陽熱循環回路を循環する太陽熱搬送媒体と、前記太陽熱間接循環回路を循環する前記空調用利用側の熱搬送媒体とを前記蓄熱タンクを介して熱交換可能に構成したことを特徴としている。
本発明に係る空調給湯システムによれば、第2の空調用膨張弁を設けているため、例えば冷房運転においては、第1の空調用膨張弁で空調用冷媒の減圧量・流量を制御し、第2の空調用膨張弁を全開にすることによって、空調用熱源側熱交換器を凝縮器として作用させ、第1の空調用利用側熱交換器および第2の空調用利用側熱交換器を共に蒸発器として作用させる事ができる。
また、本発明に係る空調給湯システムによれば、暖房運転においては、第1の空調用膨張弁で空調用冷媒の減圧量・流量を制御し、第2の空調用膨張弁を全開にすることによって、第1の空調用利用側熱交換器および第2の空調用利用側熱交換器を共に凝縮器として作用させ、空調用熱源側熱交換器を蒸発器として作用させることができる。
また、本発明に係る空調給湯システムよれば、除湿運転において、第1の空調用膨張弁を全開にし、第2の空調用膨張弁を制御する事によって、次のような運転を行うことができる。例えば、冷却・除湿負荷が比較的高い場合には、空調用流路切替弁を冷房側に切替えて、空調用熱源側熱交換器を凝縮器として作用させる。この際、空調用熱源側熱交換器で放熱する放熱量は、冷却・除湿後の空気を再加熱する再加熱量に対応した放熱量になるように、室外ファンを制御する。空調用熱源側熱交換器を通過した空調用冷媒は、第1の空調用利用側熱交換器を凝縮器として作用させることにより、空調用利用側の熱搬送媒体へ熱を放熱する。その後、空調用冷媒は、空調用バイパス配管を通過し、第2の空調用膨張弁を通過して減圧・膨張する。第2の空調用膨張弁を通過した空調用冷媒は、第2の空調用利用側熱交換器で空調用利用側の熱搬送媒体から熱を吸熱し、空調用流路切替弁を通って空調用圧縮機へと還流する。このような除湿運転が、本発明に係る空調給湯システムでは可能である。
また、本発明に係る空調給湯システムでは、空調用流路切替弁を暖房側に切替えて、第1の空調用膨張弁および第2の空調用膨張弁を制御する事で、除湿負荷が比較的少なく、加熱負荷があるような負荷形態に適した除湿運転を行う事ができる。この場合、第2の空調用利用側熱交換器を凝縮器として作用させることにより、空調用冷媒は、第2の空調用利用側熱交換器で空調用利用側の熱搬送媒体へ放熱し、冷却される。第2の空調用利用側熱交換器を通過した空調用冷媒は第2の空調用膨張弁で減圧され、第1の空調用利用側熱交換器で空調用利用側の熱搬送媒体から吸熱する。このとき、第2の空調用膨張弁の減圧量は、除湿量に応じた減圧量になるように制御される。第1の空調用利用側熱交換器を通過した空調用冷媒は、室外温度に応じた蒸発圧力になるように第1の空調用膨張弁で減圧され、空調用熱源側熱交換器で室外空気から吸熱した後、空調用流路切替弁を通って、空調用圧縮機へと還流する。このような除湿運転が、本発明に係る空調給湯システムでは可能である。
このように、本発明に係る空調給湯システムよれば、設備を増加させることなく、簡単な制御によって冷房、暖房、冷房主体除湿、暖房主体除湿の4つのモードの運転ができる。また、本発明に係る空調給湯システムは、第1の空調用利用側熱交換器および第2の空調用利用側熱交換器を効率良く使用する事ができるため、省エネ性にも優れている。
また、本発明に係る空調給湯システムは、第1の空調用膨張弁に対して第1の空調用利用側熱交換器および第2の空調用利用側熱交換器を並列に接続させる事が可能なため、それぞれの空調用利用側熱交換器へ流入する空調用冷媒の温度(アプローチ温度)を同一に保つ事ができる。このため、第1の空調用利用側熱交換器および第2の空調用利用側熱交換器を流れる空調用冷媒と空調用利用側の熱搬送媒体との間で同一の温度差で熱交換を行う事ができる。よって、本発明によれば、熱交換効率を良くする事ができる。
さらに、本発明に係る空調給湯システムでは、空調排熱を給湯サイクルに利用することができるため、熱エネルギを有効利用することができる。しかも、制御装置により、第1の室内熱交換器または前記第2の室内熱交換器で熱交換される再加熱量に応じて、空調用冷媒流量制御弁の開度を制御するようにしているため、室外空気への放熱量を最小限に抑えることができる。また、本発明に係る空調給湯システムでは、太陽熱間接循環回路により、太陽熱と空調用利用側の熱搬送媒体とを熱交換させることができるため、省エネ性が向上する。このように、本発明に係る空調給湯システムでは、システム全体での消費電力の低減、および省エネ性の向上を実現できるのである。
本発明に係る空気調和装置および空調給湯システムは、設備コストを増大させることなく、1つの冷凍サイクルで除湿運転を行うことができる。しかも、本発明に係る空気調和装置および空調給湯システムは、運転の制御が簡単であるうえ、消費電力の低減および省エネ性の向上を実現できる。
本発明の実施の形態例に係る空気調和装置の系統図である。 図1に示す空気調和装置の運転モードNo.1における冷媒と熱搬送媒体の流れを示す動作図である。 図1に示す空気調和装置の運転モードNo.2における冷媒と熱搬送媒体の流れを示す動作図である。 図1に示す空気調和装置の運転モードNo.3における冷媒と熱搬送媒体の流れを示す動作図である。 図4に示す運転モードNo.3の圧力−エンタルピ線図である。 図1に示す空気調和装置の運転モードNo.4における冷媒と熱搬送媒体の流れを示す動作図である。 図6に示す運転モードNo.4の圧力−エンタルピ線図である。 図1に示す空気調和装置の運転モードNo.1〜No.4における各機器の状態を説明するための図である。 本発明の第1の実施の形態例に係る空調給湯システムの系統図である。 図9に示す空調給湯システムの運転パターンNo.1における冷媒と熱搬送媒体の流れを示す動作図である。 図9に示す空調給湯システムの運転パターンNo.2における冷媒と熱搬送媒体の流れを示す動作図である。 図9に示す空調給湯システムの運転パターンNo.3における冷媒と熱搬送媒体の流れを示す動作図である。 本発明の第2の実施の形態例に係る空調給湯システムの系統図である。
まず、本発明の実施の形態例に係る空気調和装置の構成について、図1を参照しながら説明する。
本発明の実施の形態例に係る空気調和装置1は、図1に示すように、冷房運転と暖房運転とを切り替えて行う空調用冷媒回路5と、住宅(被冷却空間)60の室内の空調を行う空調用冷温水循環回路(空調用熱搬送媒体循環回路)8とを備えている。この空気調和装置1は、室外に配置される。一方、住宅60には、空気調和装置1と接続される室内ユニット2が配置される。この室内ユニット2は、第1の室内熱交換器61a、第2の室内熱交換器61b、および室内ファン62を備えた構成となっている。
空調用冷媒回路5は、空調用冷媒が循環する回路であり、空調用冷媒を圧縮する空調用圧縮機21、空調用冷媒の流路を切り替える四方弁(空調用流路切替弁)22、ファン25により送られてくる大気と熱交換を行う空調用熱源側熱交換器24、空調用冷媒を減圧する第1の空調用膨張弁27aおよび第2の空調用膨張弁27b、空調用冷温水循環回路8と熱交換を行う第1の空調用利用側熱交換器28aおよび第2の空調用利用側熱交換器28bを冷媒配管で接続して環状に形成されている。この空調用冷媒回路5によって空調用の冷凍サイクル(空調サイクル)が形成されている。
空調用圧縮機21は、容量制御が可能な可変容量型圧縮機である。このような圧縮機としては、ピストン式、ロータリー式、スクロール式、スクリュー式、遠心式のものを採用可能である。具体的には、空調用圧縮機21は、スクロール式の圧縮機であり、インバータ制御により容量制御が可能で、低速から高速まで回転速度が可変である。
続いて、空調用冷媒回路5の構成の詳細について説明する。空調用冷媒回路5は、まず、空調用圧縮機21の吐出口21b、四方弁22、空調用熱源側熱交換器24、第1の空調用膨張弁27a、第1の空調用利用側熱交換器28a、四方弁22、空調圧縮機21の吸込口21aの順に冷媒配管で接続して環状に形成された空調用冷媒メイン回路5aを備えている。
空調用冷媒回路5は、この空調用冷媒メイン回路5aに後述する第1の空調用冷媒分岐路5bおよび空調用バイパス配管29が設けられて構成されている。
第1の空調用冷媒分岐路5bは、第1の空調利用側熱交換器28aをバイパスする空調用冷媒分岐路であり、具体的には、第1の空調利用側熱交換器28aと第1の空調用膨張弁27aとの間の位置にある分岐点Aと、第1の空調利用側熱交換器28aと四方弁22との間の位置にある分岐点Bとを冷媒配管で接続して形成された空調用冷媒分岐路である。この第1の空調用冷媒分岐路5bには、第2の空調利用側熱交換器28bが設けられていると共に、分岐点Aに三方弁34aが設けられている。
さらに、空調用冷媒メイン回路5aにおいて第1の空調利用側熱交換器28aと分岐点Bの間に形成された分岐点Cには、三方弁34bが設けられている。そして、空調用冷媒メイン回路5aの分岐点Cと第1の空調用冷媒分岐路5bのうち第2の空調利用側熱交換器28bと分岐点Aの間の位置にある分岐点Dとは、空調用バイパス配管29で接続されている。
よって、第1の空調用利用側熱交換器28aと第2の空調用利用側熱交換器28bとは、第1の空調用膨張弁27aおよび四方弁22に対して互いに並列に接続されているだけでなく、空調用バイパス配管29を介して互いに直列に接続されることになる。
さらに、第1の空調用利用側熱交換器28aと第2の空調用利用側熱交換器28bとが直列に接続されている状態において、第1の空調用利用側熱交換器28aと第2の空調用利用側熱交換器28bとの間の位置には、第2の空調用膨張弁27bが設けられている。より具体的に言うと、空調用バイパス配管29が第1の空調用冷媒分岐路5bと接続する位置(即ち、分岐点D)と第2の空調用利用側熱交換器28bとの間の位置に、第2の空調用膨張弁27bは組み込まれているのである。
このように構成された空調用冷媒回路5によれば、三方弁34aおよび三方弁34bを操作することにより、第1の空調用利用側熱交換器28aと第2の空調用利用側熱交換器28bとの接続が直列と並列との何れかに切り替わる。よって、空調用冷媒の流路として、空調用冷媒が第1の空調用利用側熱交換器28aと第2の空調用利用側熱交換器28bとの双方に分かれて流れていく流路と、空調用冷媒が第1の空調用利用側熱交換器28aと第2の空調用利用側熱交換器28bの一方から他方へ順に流れていく流路との2つの流路が形成される。ここで、この実施の形態例における三方弁34aおよび三方弁34bが、本発明の接続切替手段に相当する。
なお、空調用冷媒回路5を循環する空調用冷媒としては、例えば、R410a、R134a、HFO1234yf、HFO1234ze、CO2、C3H8を用いることができる。
次に、空調用冷温水循環回路(空調用熱搬送媒体循環回路)8は、第1の室内熱交換器61aと第1の空調用利用側熱交換器28aとを配管で接続して環状に形成された第1の空調用冷温水回路(第1の空調用熱搬送媒体回路)8aと、第2の室内熱交換器61bと第2の空調用利用側熱交換器28bとを配管で接続して環状に形成された第2の空調用冷温水回路(第2の空調用熱搬送媒体回路)8bとを有している。なお、第1の空調用冷温水回路8aおよび第2の空調用冷温水回路8bを流れる熱搬送媒体は水(冷水または温水)であるが、寒冷地で使用されるような場合には、水に代えてエチレングリコール等のブラインを用いても良い。
なお、以下の説明において、空調用冷温水循環回路8を流れる水として「冷水」または「温水」という言葉が用いられることがあるが、「冷水」とは冷房時に空調用冷温水循環回路8を流れる水の意味で用いられ、「温水」とは暖房時に空調用冷温水循環回路8を流れる水の意味で用いられていることを、ここで付言しておく。
第1の空調用冷温水回路8aは、住宅60に設置された第1の室内熱交換器61a、空調用冷温水循環ポンプ(空調用熱搬送媒体循環ポンプ)67、制御弁63、四方弁(第1の流路切替弁)64a、第1の空調用利用側熱交換器28aを空調用冷温水配管65a〜65fで順次接続して環状に形成された回路である。より詳細に説明すると、第1の室内熱交換器61aと四方弁64aとは、空調用冷温水配管65a、65b、65cで接続されており、空調用冷温水循環ポンプ67は、空調用冷温水配管65bに組み込まれている。この空調用冷温水配管65bは、第2の空調用冷温水回路8bを構成する空調用冷温水配管の一部としても用いられる共通配管である。また、四方弁64aと第1の空調用利用側熱交換器28aとは空調用冷温水配管65d、65eで環状に接続され、四方弁64aと第1の室内熱交換器61aとは空調用冷温水配管65fで接続されている。なお、空調用冷温水配管65cに設けられた制御弁63は、第1の空調用利用側熱交換器28aと第2の空調用利用側熱交換器28bとに流す水の量を調整するためのものである。
このように構成された第1の空調用冷温水回路8aによれば、空調用冷温水循環ポンプ67により送り出された水は、第1の空調用利用側熱交換器28aを流れ、次に第1の室内熱交換器61aを流れた後、空調用冷温水配管(共通配管)65bを通って再び空調用冷温水循環ポンプ67へと戻ってくる。なお、四方弁64aを操作し水の流路を切り替えれば、第1の空調用利用側熱交換器28aを流れる水の流れ方向を変更することができる。つまり、四方弁64aを設けることによって、第1の空調用利用側熱交換器28aを流れる空調用冷媒と水とを対向流にすることができるのである。
一方、第2の空調用冷温水回路8bは、住宅60に設置された第2の室内熱交換器61b、空調用冷温水循環ポンプ67、四方弁(第2の流路切替弁)64b、第2の空調用利用側熱交換器28bを空調用冷温水配管68a〜68eおよび空調用冷温水配管65bで順次接続して環状に形成された回路である。より詳細に説明すると、第2の室内熱交換器61bと四方弁64bとは、空調用冷温水配管68a、65b、68bで接続されており、空調用冷温水循環ポンプ67は、空調用冷温水配管65bに組み込まれている。この空調用冷温水配管65bは、第1の空調用冷温水回路8aを構成する空調用冷温水配管の一部としても用いられる共通配管である。また、四方弁64bと第2の空調用利用側熱交換器28bとは空調用冷温水配管68c、68dで環状に接続され、四方弁64bと第2の室内熱交換器61bとは空調用冷温水配管68eで接続されている。
このように構成された第2の空調用冷温水回路8bによれば、空調用冷温水循環ポンプ67により送り出された水は、第2の空調用利用側熱交換器28bを流れ、次に第2の室内熱交換器61bを流れた後、空調用冷温水配管(共通配管)65bを通って再び空調用冷温水循環ポンプ67へと戻ってくる。なお、四方弁64bを操作して水の流路を切り替えれば、第2の空調用利用側熱交換器28bを流れる水の流れ方向を変更することができる。つまり、四方弁64bを設けることによって、第2の空調用利用側熱交換器28bを流れる空調用冷媒と水とを対向流にすることができるのである。
なお、空気調和装置1を構成する空調用冷媒回路5および空調用冷温水循環回路8には、図示しないが、温度センサや流量センサが適宜設けられている。そして、これらの温度センサや流量センサの検出信号は、空気調和装置1に設けられた制御装置1aに取り込まれている。この制御装置1aは、図示しないリモコンの操作信号と、各温度センサおよび流量センサの信号とを入力し、これらの信号に基づいて、各回路5、8に組み込まれた各種機器(圧縮機、ポンプ、ファン、膨張弁、制御弁、四方弁、三方弁など)の動作を制御する。
続いて、上記した空気調和装置1によって行われる各種運転モードについて、図2〜図8を参照しながら説明する。ここで、図2〜図4および図6において、各熱交換器に付された矢印は熱の流れを示しており、空調用冷媒回路5および空調用冷温水循環回路8に付された矢印は、流体が各回路を流れる向きを示している。また、図2〜図4および図6において、白色の三方弁は、3つのポート全てが開状態であることを示しており、3つのポートのうち2つが白色で残り1つが黒色の三方弁は、白色のポートが開状態、黒色のポートが閉状態であることを示している。また、図2〜図4および図6において、四方弁に描かれた円弧状の実線は、四方弁を流れる流体の流路を示している。図中、白抜きの矢印は、熱の流れ方向を示している。
「運転モードNo.1<冷房運転>」(図2参照)
運転モードNo.1は、冷房運転を行うモードである。この運転モードNo.1では、図8の「運転モードNo.1」の欄に示すように、空調用熱源側熱交換器24が凝縮器として使用され、第1の空調用利用側熱交換器28aおよび第2の空調用利用側熱交換器28bは蒸発器として使用される。この運転モードNo.1では、第1の空調用利用側熱交換器28aと第2の空調用利用側熱交換器28bとは、三方弁34aおよび三方弁34bにより、並列に接続された状態となっている。なお、この運転モードNo.1では、第1の空調用膨張弁27aは所定の弁開度に制御され、第2の空調用膨張弁27bは全開となっている。
空調用冷媒回路5では、空調用圧縮機21の吐出口21bより吐出された高温高圧のガス冷媒は、四方弁22を通って、空調用熱源側熱交換器24に流入する。空調用熱源側熱交換器24に流入した高温高圧のガス冷媒は、大気へ放熱して凝縮し、液化する。そして、空調用熱源側熱交換器24から流れ出た高圧の液冷媒は、第1の空調用膨張弁27aで住宅60内の冷却・除湿負荷に応じた蒸発圧力になるように減圧され、低温低圧の気液二相冷媒となる。その気液二相冷媒は、三方弁34aを通って、第1の空調用利用側熱交換器28aおよび第2の空調用利用側熱交換器28bへとそれぞれ分かれて流入する。第1の空調用利用側熱交換器28aを流れる気液二相冷媒は、第1の空調用冷温水回路8aを流れる冷水から吸熱して蒸発し、低圧のガス冷媒となる。同様に、第2の空調用利用側熱交換器28bを流れる気液二相冷媒は、第2の空調用冷温水回路8bを流れる冷水から吸熱して蒸発し、低圧のガス冷媒となる。第1の空調用利用側熱交換器28aから流れ出たガス冷媒と第2の空調用利用側熱交換器28bから流れ出たガス冷媒は、分岐点Bで合流した後に、四方弁22を通って空調用圧縮機21の吸込口21aに流入し、空調用圧縮機21により再び圧縮されて高温高圧のガス冷媒となる。
第1の空調用冷温水回路8aでは、空調用冷温水循環ポンプ67を駆動することにより、第1の空調用利用側熱交換器28aを流れる空調用冷媒に放熱した冷水は、空調用冷温水配管65eを流れ、四方弁64aを通った後に、第1の室内熱交換器61aに流入する。第1の室内熱交換器61aでは、第1の空調用冷温水回路8a内の冷水と、住宅60内の高温の空気とで熱交換が行われ、住宅60の空気が冷却・除湿される。つまり、第1の室内熱交換器61aは冷却・除湿器として使用されるのである。このとき、第1の室内熱交換器61aを流れる冷水は、住宅60内の空気から吸熱して昇温される。この昇温された冷水は、第2の空調用冷温水回路8bと共通で用いられる空調用冷温水配管65bを流れて空調用冷温水循環ポンプ67へと戻り、再び、第1の空調用利用側熱交換器28aにて空調用冷媒へと放熱して冷却される。
第2の空調用冷温水回路8bでは、空調用冷温水循環ポンプ67を駆動することにより、第2の空調用利用側熱交換器28bを流れる空調用冷媒に放熱した冷水は、空調用冷温水配管68dを流れ、四方弁64bを通った後に、第2の室内熱交換器61bに流入する。第2の室内熱交換器61bでは、第2の空調用冷温水回路8b内の冷水と、住宅60内の高温の空気とで熱交換が行われ、住宅60の空気が冷却・除湿される。つまり、第2の室内熱交換器61bは冷却・除湿器として使用されるのである。このとき、第2の室内熱交換器61bを流れる冷水は、住宅60内の空気から吸熱して昇温される。この昇温された冷水は、第1の空調用冷温水回路8aと共通で用いられる空調用冷温水配管65bを流れて空調用冷温水循環ポンプ67へと戻り、再び、第2の空調用利用側熱交換器28bにて空調用冷媒へと放熱して冷却される。
この運転モードNo.1では、空調用冷媒は、第1の空調用利用側熱交換器28aと第2の空調用利用側熱交換器28bとに同一のアプローチ温度で流入するため、第1の空調用利用側熱交換器28aおよび第2の空調用利用側熱交換器28bは、共に空調用冷媒と冷水の温度差が同じ条件下で熱交換を行うことができる。よって、運転モードNo.1によれば、熱交換効率が良くなるといった利点がある。第1の室内熱交換器61aと第2の室内熱交換器61bについても、同様の理由により、熱交換効率が良くなるといった利点がある。
「運転モードNo.2<暖房運転>」(図3参照)
運転モードNo.2は、暖房運転を行うモードである。この運転モードNo.2では、図8の「運転モードNo.2」の欄に示すように、空調用熱源側熱交換器24が蒸発器として使用され、第1の空調用利用側熱交換器28aおよび第2の空調用利用側熱交換器28bは凝縮器として使用される。この運転モードNo.2では、第1の空調用利用側熱交換器28aと第2の空調用利用側熱交換器28bとは、三方弁34aおよび三方弁34bにより、並列に接続された状態となっている。なお、この運転モードNo.2では、第1の空調用膨張弁27aは所定の弁開度に制御され、第2の空調用膨張弁27bは全開となっている。
空調用冷媒回路5では、空調用圧縮機21の吐出口21bより吐出された高温高圧のガス冷媒は、四方弁22を通って、分岐点Bから第1の空調用利用側熱交換器28aおよび第2の空調用利用側熱交換器28bへとそれぞれ分かれて流入する。第1の空調用利用側熱交換器28aを流れる高温高圧のガス冷媒は、第1の空調用冷温水回路8aを流れる温水へ放熱して凝縮し、液化する。同様に、第2の空調用利用側熱交換器28bを流れる高温高圧のガス冷媒は、第2の空調用冷温水回路8bを流れる温水へ放熱して凝縮し、液化する。そして、第1の空調用利用側熱交換器28aから流れ出た液冷媒と第2の空調用利用側熱交換器28bから流れ出た液冷媒は、分岐点Aで合流した後に第1の空調用膨張弁27aで室外空気温度に応じた蒸発圧力になるように減圧され、低温低圧の気液二相冷媒となって空調用熱源側熱交換器24に流入する。空調用熱源側熱交換器24に流入した気液二相冷媒は、大気から吸熱して蒸発し、低圧のガス冷媒となる。そして、その低圧のガス冷媒は、四方弁22を通って空調用圧縮機21の吸込口21aに流入し、空調用圧縮機21により再び圧縮されて高温高圧のガス冷媒となる。
第1の空調用冷温水回路8aでは、空調用冷温水循環ポンプ67を駆動することにより、第1の空調用利用側熱交換器28aを流れる空調用冷媒から吸熱した温水は、空調用冷温水配管65dを流れ、四方弁64aを通った後に、第1の室内熱交換器61aに流入する。第1の室内熱交換器61aでは、第1の空調用冷温水回路8a内の温水と、住宅60内の低温の空気とで熱交換が行われ、住宅60の空気が加熱される。つまり、第1の室内熱交換器61aは加熱器として使用されるのである。このとき、第1の室内熱交換器61aを流れる温水は、住宅60内の空気へ放熱して冷却される。この冷却された温水は、第2の空調用冷温水回路8bと共通で用いられる空調用冷温水配管65bを流れて空調用冷温水循環ポンプ67へと戻り、再び、第1の空調用利用側熱交換器28aにて空調用冷媒から吸熱して昇温される。
第2の空調用冷温水回路8bでは、空調用冷温水循環ポンプ67を駆動することにより、第2の空調用利用側熱交換器28bを流れる空調用冷媒から吸熱した温水は、空調用冷温水配管68cを流れ、四方弁64bを通った後に、第2の室内熱交換器61bに流入する。第2の室内熱交換器61bでは、第2の空調用冷温水回路8b内の温水と、住宅60内の低温の空気とで熱交換が行われ、住宅60の空気が加熱される。つまり、第2の室内熱交換器61bは加熱器として使用されるのである。このとき、第2の室内熱交換器61bを流れる温水は、住宅60内の空気へ放熱して冷却される。この冷却された温水は、第1の空調用冷温水回路8aと共通で用いられる空調用冷温水配管65bを流れて空調用冷温水循環ポンプ67へと戻り、再び、第2の空調用利用側熱交換器28bにて空調用冷媒から吸熱して昇温される。
この運転モードNo.2では、空調用冷媒は、第1の空調用利用側熱交換器28aと第2の空調用利用側熱交換器28bとに同一のアプローチ温度で流入するため、第1の空調用利用側熱交換器28aおよび第2の空調用利用側熱交換器28bは、共に空調用冷媒と温水の温度差が同じ条件下で熱交換を行うことができる。よって、運転モードNo.1によれば、熱交換効率が良くなるといった利点がある。第1の室内熱交換器61aと第2の室内熱交換器61bについても、同様の理由により、熱交換効率が良くなるといった利点がある。
「運転モードNo.3<冷房・除湿運転>」(図4参照)
運転モードNo.3は、冷房・除湿運転(冷房主体除湿運転)を行うモードである。この運転モードNo.3では、図8の「運転モードNo.3」の欄に示すように、空調用熱源側熱交換器24および第1の空調用利用側熱交換器28aは凝縮器として使用され、第2の空調用利用側熱交換器28bは蒸発器として使用される。この運転モードNo.3では、第1の空調用利用側熱交換器28aと第2の空調用利用側熱交換器28bとは、三方弁34aおよび三方弁34bにより、直列に接続された状態となっている。なお、この運転モードNo.3では、第1の空調用膨張弁27aは全開となっており、第2の空調用膨張弁27bは所定の弁開度に制御されている。
空調用冷媒回路5では、空調用圧縮機21の吐出口21bより吐出された高温高圧のガス冷媒は、四方弁22を通って、空調用熱源側熱交換器24に流入する。空調用熱源側熱交換器24に流入した高温高圧のガス冷媒は、大気へ放熱し、さらに、第1の空調用利用側熱交換器28aにて第1の空調用冷温水回路8aを流れる冷水へ放熱することにより、凝縮して液化する。このとき、ファン25の回転数は、除湿運転時の再加熱量(第1の室内熱交換器61aで行われる熱交換量)に応じた放熱量となるように制御されている。そして、液化した低温の空調用冷媒は、空調用バイパス配管29を流れていき、第2の空調用膨張弁27bにて冷却・除湿量に応じた蒸発圧力になるように減圧、膨張して気液二相冷媒となる。その気液二相冷媒は、第2の空調用利用側熱交換器28bにて第2の空調用冷温水回路8bを流れる冷水から吸熱して蒸発し、低圧のガス冷媒となる。そして、その低圧のガス冷媒は、四方弁22を通って空調用圧縮機21の吸込口21aに流入し、空調用圧縮機21により再び圧縮されて高温高圧のガス冷媒となる。
第1の空調用冷温水回路8aでは、空調用冷温水循環ポンプ67を駆動することにより、第1の空調用利用側熱交換器28aを流れる空調用冷媒から吸熱した冷水は、空調用冷温水配管65eを流れ、四方弁64aを通った後に、第1の室内熱交換器61aに流入する。第1の室内熱交換器61aでは、第1の空調用冷温水回路8a内の冷水に蓄えられた温熱により住宅60内の空気が再加熱される。つまり、第1の室内熱交換器61aは再加熱器として使用されるのである。このとき、第1の室内熱交換器61aを流れる冷水は、住宅60内の空気へ放熱して冷却される。この冷却された冷水は、第2の空調用冷温水回路8bと共通で用いられる空調用冷温水配管65bを流れて空調用冷温水循環ポンプ67へと戻り、再び、第1の空調用利用側熱交換器28aにて空調用冷媒から吸熱して昇温される。
第2の空調用冷温水回路8bでは、空調用冷温水循環ポンプ67を駆動することにより、第2の空調用利用側熱交換器28bを流れる空調用冷媒に放熱した冷水は、空調用冷温水配管68dを流れ、四方弁64bを通った後に、第2の室内熱交換器61bに流入する。第2の室内熱交換器61bでは、第2の空調用冷温水回路8b内の冷水と、住宅60内の高温の空気とで熱交換が行われ、住宅60の空気が冷却・除湿される。つまり、第2の室内熱交換器61bは、冷却・除湿器として使用されるのである。このとき、第2の室内熱交換器61bを流れる冷水は、住宅60内の空気から吸熱して昇温される。この昇温された冷水は、第1の空調用冷温水回路8aと共通で用いられる空調用冷温水配管65bを流れて空調用冷温水循環ポンプ67へと戻り、再び、第2の空調用利用側熱交換器28bにて空調用冷媒へと放熱して冷却される。
ここで、室内ユニット2では、第1の室内熱交換器61aにより再加熱された空気と、第2の室内熱交換器61bにより冷却・除湿された空気とが室内ファン62により撹拌されて、室内温度と同じ温度で除湿された空気となる。その空気は、室内ユニット2の図示しない吹出口から室内へと吹き出されていく。
この運転モードNo.3によれば、冷却・除湿と再加熱を同時に行うことができるため、住宅60の室内へ快適な空気を提供することができる。
なお、この運転モードNo.3を、図5に示す圧力−エンタルピ線図を用いて説明すると次の通りである。すなわち、空調用圧縮機21で圧縮・加熱された空調用冷媒はP1’になり、室外及び室内へ放熱を行う。室内外の放熱量に応じてP2’の位置が決定され、空調用熱源側熱交換器24を通過した空調用冷媒はP2’に変化する。この後、空調用冷媒は、第1の空調用利用側熱交換器28aで熱搬送媒体である冷水へ放熱しP3’になり、第2の空調用膨張弁27bで減圧・膨張する事によってP4’の状態になり、第2の空調用利用側熱交換器28bで熱搬送媒体である冷水から吸熱してP5’へ変化し、空調用圧縮機21の吸込口21aに還流するサイクルになる。したがって、再加熱量として使用できる熱量はP1’−P3’間の熱量となる。しかし、空調用熱源側熱交換器24への放熱が生ずるため、この運転モードNo.3では再加熱量を大きくとる事ができない。
「運転モードNo.4<暖房・除湿運転>」(図6参照)
運転モードNo.4は、冷房・除湿運転(暖房主体除湿運転)を行うモードである。この運転モードNo.4では、図8の「運転モードNo.4」の欄に示すように、空調用熱源側熱交換器24および第1の空調用利用側熱交換器28aは蒸発器として使用され、第2の空調用利用側熱交換器28bは凝縮器として使用される。この運転モードNo.4では、第1の空調用利用側熱交換器28aと第2の空調用利用側熱交換器28bとは、三方弁34aおよび三方弁34bにより、直列に接続された状態となっている。なお、この運転モードNo.4では、第1の空調用膨張弁27aおよび第2の空調用膨張弁27b共に所定の弁開度に制御されている。
空調用冷媒回路5では、空調用圧縮機21の吐出口21bより吐出された高温高圧のガス冷媒は、四方弁22を通って、第2の空調用利用側熱交換器28bに流入する。第2の空調用利用側熱交換器28bに流入した高温高圧のガス冷媒は、第2の空調用冷温水回路8bを流れる温水へ放熱することにより凝縮して液化する。低温の液冷媒は、第2の空調用膨張弁27bにより、冷却・除湿量(第1の室内熱交換器61aで行われる熱交換量)に応じた蒸発圧力になるように減圧、膨張して気液二相冷媒となる。その気液二相冷媒は、空調用バイパス配管29を流れていき、第1の空調用利用側熱交換器28aにて第1の空調用冷温水回路8aを流れる温水から吸熱して蒸発した後に、第1の空調用膨張弁27aにて室外温度に応じた蒸発圧力になるように減圧、膨張して空調用熱源側熱交換器24へと流入する。空調用熱源側熱交換器24に流入した空調用冷媒は、大気から吸熱して低圧のガス冷媒となる。そして、その低圧のガス冷媒は、四方弁22を通って空調用圧縮機21の吸込口21aに流入し、空調用圧縮機21により再び圧縮されて高温高圧のガス冷媒となる。
第1の空調用冷温水回路8aでは、空調用冷温水循環ポンプ67を駆動することにより、第1の空調用利用側熱交換器28aを流れる空調用冷媒へ放熱した温水は、空調用冷温水配管65dを流れ、四方弁64aを通った後に、第1の室内熱交換器61aに流入する。第1の室内熱交換器61aでは、第1の空調用冷温水回路8a内の温水と、住宅60内の高温の空気とで熱交換が行われ、住宅60の空気が冷却・除湿される。つまり、第1の室内熱交換器61aは、冷却・除湿器として使用されるのである。このとき、第1の室内熱交換器61aを流れる温水は、住宅60内の空気から吸熱して昇温される。この昇温された温水は、第2の空調用冷温水回路8bと共通で用いられる空調用冷温水配管65bを流れて空調用冷温水循環ポンプ67へと戻り、再び、第1の空調用利用側熱交換器28aにて空調用冷媒へと放熱して冷却される。
第2の空調用冷温水回路8bでは、空調用冷温水循環ポンプ67を駆動することにより、第2の空調用利用側熱交換器28bを流れる空調用冷媒から吸熱した温水は、空調用冷温水配管68dを流れ、四方弁64bを通った後に、第2の室内熱交換器61bに流入する。第2の室内熱交換器61bでは、第2の空調用冷温水回路8b内の温水に蓄えられた温熱により住宅60内の空気が再加熱される。つまり、第2の室内熱交換器61bは再加熱器として使用されるのである。このとき、第2の室内熱交換器61bを流れる温水は、住宅60内の空気へ放熱して冷却される。この冷却された温水は、第1の空調用冷温水回路8aと共通で用いられる空調用冷温水配管65bを流れて空調用冷温水循環ポンプ67へと戻り、再び、第2の空調用利用側熱交換器28bにて空調用冷媒から吸熱して昇温される。
ここで、室内ユニット2では、第1の室内熱交換器61aにより冷却・除湿された空気と第2の室内熱交換器61bにより再加熱された空気と、が室内ファン62により撹拌されて、室内温度と同じ温度で除湿された空気となる。その空気は、室内ユニット2の図示しない吹出口から室内へと吹き出されていく。
この運転モードNo.4によれば、冷却・除湿と再加熱を同時に行うことができるため、住宅60の室内へ快適な空気を提供することができる。
なお、この運転モードNo.4を、図7に示す圧力−エンタルピ線図を用いて説明すると次の通りである。すなわち、空調用圧縮機21で圧縮・加熱された空調用冷媒はP1になり、第2の空調用利用側熱交換器28bを流れる熱搬送媒体である温水へ放熱してP2になる。第2の空調用利用側熱交換器28bを通過した空調用冷媒は第2の空調用膨張弁27bを通過して第1の空調用利用側熱交換器28aを流れる熱搬送媒体である温水の温度もしくは第1の空調利用側熱交換器28aの除湿負荷に応じた蒸発圧力まで減圧される(P3)。第2の空調用膨張弁27bを通過した空調用冷媒は第1の空調用利用側熱交換器28aで第1の空調用利用側熱交換器28aを通過する熱搬送媒体である温水へ放熱し、P4になる。この後、空調用冷媒は、第1の空調用膨張弁27aを通過して室外空気温度に応じた蒸発圧力に減圧・膨張されてP5になる。そして、空調用冷媒は、空調用熱源側熱交換器24で室外空気と熱交換しP6になって圧縮機21の吸込口21aに還流する。このような動作を行うため、運転モードNo.4では、吸熱・圧縮過程で生じた熱を第2の空調用利用側熱交換器28bで放熱させる事が可能となり、加熱量の高めの除湿運転を行うことが可能となるのである。
以上、説明したように、本発明の実施の形態例に係る空気調和装置によれば、設備コストを掛けずに、簡単な制御で、空調サイクル1つで冷房運転、暖房運転、冷房・除湿運転、および加熱量が高めの暖房・除湿運転を行うことができるうえ、熱交換器を効率良く利用することができるのである。
次に、本発明の第1の実施の形態例に係る空調給湯システムの構成について図9を参照しながら説明する。なお、この空調給湯システムには、上記した本発明の実施の形態例に係る空気調和装置が組み込まれているため、この空気調和装置と同一の構成については、同一の符号を付して、その説明を省略する。
本発明の第1の実施の形態例に係る空調給湯システムは、冷房運転と暖房運転とを切り替えて行う空調用冷媒回路5と、給湯を行う給湯用冷媒回路6と、空調用冷媒回路5および給湯用冷媒回路6と熱交換を行うための水を循環させる中間温水循環回路(中間熱媒体回路)7と、住宅(被冷却空間)60の室内の空調を行う空調用冷温水循環回路(空調用熱搬送媒体循環回路)8と、給湯用冷媒回路6と熱交換するための水を循環させる給湯回路9と、太陽熱集熱器4で集められた太陽熱が蓄熱された水またはブラインを循環させる太陽熱循環回路10と、高温の水(お湯)を外部に供給するための出湯経路11とを備えている。
また、空調給湯システムは、室外に配置されるヒートポンプユニット100と、室内に配置される室内ユニット2と、室外に配置される給湯・蓄熱タンクユニット3と、室外に配置される太陽熱集熱器4とを備えたユニット構成となっている。なお、各ユニットは、図9に示すように、一点鎖線で囲まれた範囲にそれぞれ区分けされている。
空調用冷媒回路5は、空調用冷媒メイン回路5aと第1の空調用冷媒分岐路5bに加えて、空調用熱源側熱交換器24をバイパスする第2の空調用冷媒分岐路5cを備えている。そして、第2の空調用冷媒分岐路5cには、後述する中間熱交換器23と空調用冷媒流量制御弁26bが設けられている。つまり、空調用熱源側熱交換器24と中間熱交換器23とは、並列に接続されているのである。そして、空調用冷媒流量制御弁26bの弁開度を調整することにより、中間熱交換器23を流れる空調用冷媒の流量を制御することができるようになっている。なお、空調用冷媒メイン回路5aの空調用熱源側熱交換器24近傍の位置にも、空調用熱源側熱交換器24を流れる空調用冷媒の流量を制御するための空調用冷媒流量制御弁26aが設けられている。
次に、給湯用冷媒回路6は、給湯用冷媒が循環する回路であり、給湯用冷媒を圧縮する給湯用圧縮機41、給湯回路9と熱交換を行う給湯用利用側熱交換器42、給湯用冷媒を減圧する給湯用膨張弁43、中間熱交換器23、およびファン45により送られてくる大気と熱交換を行う給湯用熱源側熱交換器44を冷媒配管で接続して環状に形成されている。この給湯用冷媒回路6によって給湯用の冷凍サイクル(給湯サイクル)が形成されている。
給湯用圧縮機41は、空調用圧縮機21と同様にインバータ制御により容量制御が可能で、低速から高速まで回転速度が可変である。給湯用利用側熱交換器42は、給湯用冷媒が流れる給湯用冷媒伝熱管(図示せず)と、後述する給湯回路9の水が流れる給湯用水伝熱管(図示せず)とが熱的に接触するように構成されている。
続いて、給湯用冷媒回路6の構成の詳細について説明する。給湯用冷媒回路6は、まず、給湯用圧縮機41の吐出口41b、給湯用利用側熱交換器42、給湯用膨張弁43、中間熱交換器23、給湯用圧縮機41の吸込口41aの順に冷媒配管で接続して環状に形成された給湯用冷媒メイン回路6aを備えている。
給湯用冷媒回路6は、この給湯用冷媒メイン回路6aに給湯用冷媒分岐路6bが設けられて構成されている。給湯用冷媒分岐路6bは、中間熱交換器23をバイパスする給湯用冷媒分岐路である。この給湯用分岐路6bに、給湯用熱源側熱交換器44と給湯用冷媒流量制御弁46aが設けられている。つまり、給湯用熱源側熱交換器44と中間熱交換器23とは、並列に接続されているのである。そして、給湯用冷媒流量制御弁46aの弁開度を調整することにより、給湯用熱源側熱交換器44を流れる給湯用冷媒の流量を制御することができるようになっている。また、給湯用冷媒メイン回路6aの中間熱交換器23近傍の位置にも、中間熱交換器23を流れる給湯用冷媒の流量を制御するための給湯用冷媒流量制御弁46bが設けられている。
なお、給湯用冷媒回路6を循環する給湯用冷媒としては、例えば、R134a,HFO1234yf,HFO1234ze、CO2、C3H8を用いることができる。
次に、中間温水循環回路(中間熱媒体回路)7は、蓄熱タンク50と中間熱交換器23の一端とを中間温水用配管52で接続し、中間熱交換器23の他端と蓄熱タンク50とを中間温水用配管53で接続して、環状に形成された回路である。この中間温水循環回路7には、中間温水用循環ポンプ51、蓄熱タンク50へ水が戻る循環量を制御するための制御弁54、および水の全循環量を制御する制御弁55が組み込まれている。中間温水循環回路7内の水(熱源用熱搬送媒体)は、中間温水用循環ポンプ51を駆動することにより、中間熱交換器23へと流れていき、この中間熱交換器23で空調用冷媒回路5を流れる空調用冷媒および給湯用冷媒回路6を流れる給湯用冷媒とそれぞれ熱交換(放熱または吸熱)を行いながら、蓄熱タンク50へと戻っていく。そして、蓄熱タンク50には、蓄熱材が充填されているので、中間熱交換器23から得た温熱または冷熱は、この蓄熱タンク50で蓄熱されることとなる。
中間熱交換器23は、空調用冷媒回路5を循環する空調用冷媒と、給湯用冷媒回路6を循環する給湯用冷媒と、中間温水循環回路7を循環する水との3流体の間で互いに熱交換を行うことが可能な構造となっている。具体的には、中間熱交換器23は、中間温水循環回路7の水が流れる外管(図示せず)の中に、空調用冷媒が流れる空調用冷媒伝熱管(図示せず)と、給湯用冷媒が流れる給湯用冷媒伝熱管(図示せず)とが接合した状態で挿入された構造を成している。この構成により、空調用回路5の排熱と給湯用回路6の排熱と中間温水循環回路7に蓄えられた温冷熱を互いに有効利用できるのである。なお、本実施形態において、空調用冷媒伝熱管と給湯用冷媒伝熱管との接合にはロウ付けが用いられているが、伝熱管同士が熱的に接触できる構成であれば、溶接や伝熱管同士をバンドで巻き付けて固定する方法などを採用しても良い。
また、この中間熱交換器23は、空調用熱源側熱交換器24とヘッド差を有しており、空調用冷媒回路5に封入された空調用冷媒の飽和液と飽和ガスの密度差を利用して中間熱交換器23と空調用熱源側熱交換器24との間で空調用冷媒が自然循環するようになっている。同様に、中間熱交換器23は、後述する給湯用熱源側熱交換器44ともヘッド差を有しており、給湯用冷媒回路6に封入された給湯用冷媒の飽和液と飽和ガスの密度差を利用して中間熱交換器23と給湯用熱源側熱交換器44との間で給湯用冷媒が自然循環するようになっている。なお、中間熱交換器23は、熱交換効率を良くするために、空調用熱源側熱交換器24および給湯用熱源側熱交換器44と近接して設けられている。
次に、給湯回路9は、貯湯タンク70と給湯用利用側熱交換器42の一端とを給湯用配管72で接続し、給湯用利用側熱交換器42の他端と貯湯タンク70とを給湯用配管73で接続して、環状に形成された回路である。給湯用配管72には、給湯用循環ポンプ71が組み込まれている。貯湯タンク70内の水は、給湯用循環ポンプ71を駆動することにより、給湯用利用側熱交換器42へと流れていき、この給湯用利用側熱交換器42にて給湯用冷媒と熱交換を行って高温の水(お湯)となり、貯留タンク70へ戻っていく。そして、貯湯タンク70には、蓄熱材が充填されているので、給湯用利用側熱交換器42から得た温熱は、この貯湯タンク70で蓄熱されることとなる。
次に、太陽熱循環回路10は、住宅60の屋根に設置された太陽熱集熱器4と蓄熱タンク50とを太陽熱用配管82、83で接続して環状に形成された回路である。太陽熱用配管82には、太陽熱用循環ポンプ85が組み込まれている。太陽熱集熱器4で加熱された水またはブライン(太陽熱搬送媒体)は、太陽熱用循環ポンプ85を駆動することにより、太陽熱循環回路10内を循環し、蓄熱タンク50を流れる間に、蓄熱タンク50に貯留されている水と熱交換を行う。これにより、太陽熱を用いて蓄熱タンク50内の水を温めることができる。なお、太陽熱循環回路10を流れる水またはブラインの流量を制御するための流量制御弁84が太陽熱用配管82に設けられている。
次に、出湯経路11は、貯湯タンク70内に貯湯されている高温の水を給湯口79に供給するための配管74aと、蓄熱タンク50に貯留されている中間温度の水を給湯口79に供給するための配管75aと、給水口78から貯湯タンク70へ水道水を供給するための配管76aと、給水口78から蓄熱タンク50へ水道水を供給するための配管76bと、給水口78から給湯口79に直接水道水を供給するための配管76cとを備えて構成されている。また、配管74aと配管75aとは三方弁77aを介して接続され、配管74aと配管76cとは三方弁77bを介して接続されている。このように構成された出湯経路11によれば、三方弁77a、77bの各ポートの開閉を調整することにより、貯湯タンク70内の水と蓄熱タンク50内の水と給水口78から供給された水道水の3つの異なる温度の水を混合して好適な温度の水を生成することができる。なお、給湯口79と住宅60内に設けられた給湯用制御弁69とは配管74bで接続されており、給湯用制御弁69を開けると、お湯が給湯負荷側(浴槽、台所、洗面所など)に供給されることとなる。
なお、空調給湯システムを構成する各回路5〜11には、図示しないが、温度センサや流量センサが適宜設けられている。そして、これらの温度センサや流量センサの検出信号は、ヒートポンプユニット1に設けられた制御装置1aに取り込まれている。この制御装置1aは、図示しないリモコンの操作信号と、各温度センサおよび流量センサの信号とを入力し、これらの信号に基づいて、各回路5〜11に組み込まれた各種機器(圧縮機、ポンプ、ファン、膨張弁、四方弁、三方弁、二方弁など)の動作を制御する。
続いて、上記した空調給湯システムによって行われる各種運転モードについて、図10〜図13を参照しながら説明する。ここで、図10〜図13において、各熱交換器に付された矢印は熱の流れを示しており、各回路5〜11に付された矢印は、流体が各回路を流れる向きを示している。また、図10〜図13において、白色の流量制御弁は開状態であることを示し、黒色の流量制御弁は所定開度で閉状態となっていることを示している。また、図10〜図13において、白色の三方弁は、3つのポート全てが開状態であることを示しており、3つのポートのうち2つが白色で残り1つが黒色の三方弁は、白色のポートが開状態、黒色のポートが閉状態であることを示している。また、図10〜図13において、四方弁に描かれた円弧状の実線は、四方弁を流れる流体の流路を示している。図中、白抜きの矢印は、熱の流れ方向を示している。
「運転パターンNo.1<冷房除湿/給湯運転(単独)>」(図10参照)
運転パターンNo.1は、空調用冷媒回路5による冷房運転と、給湯用冷媒回路6による給湯運転とをそれぞれ行う運転パターンである。この運転パターンNo.1では、中間温水循環回路7に水を循環させておらず、空調用冷媒流量制御弁26bおよび給湯用冷媒流量制御弁46bは閉じられているため、中間熱交換器23を介して空調用冷媒回路5と給湯用冷媒回路6と中間温水循環回路7との間の熱交換は行われない。なお、太陽熱循環回路10では、太陽熱用循環ポンプ85は停止している。この運転パターンNo.1では、上記した運転モードNo.3と同じ空調サイクルの運転が行われている。そのため、この運転パターンNo.1に関する以下の説明において、空調用冷媒回路5の動作と空調用冷媒の流れ、並びに、空調用冷温水循環回路8の動作と水の流れについての説明は省略する。
この運転パターンNo.1では、空調用制御弁26aの弁開度が制御装置1aによって制御されている。具体的には、制御装置1aは、運転パターンNo.1において再加熱器として用いられる第1の室内熱交換器61aの再加熱量に応じて、空調用冷媒流量制御弁26aの弁開度を調整している。
給湯用冷媒回路6では、給湯用圧縮機41で圧縮され高温高圧となったガス冷媒は、給湯用利用側熱交換器42に流入する。給湯用利用側熱交換器42内を流れる高温高圧のガス冷媒は、給湯回路9内を流れる水へ放熱して凝縮し、液化する。液化した高圧の冷媒は、給湯用冷媒タンク46に流入した後に所定の開度に調節された給湯用膨張弁43で減圧、膨張して、低温低圧の気液二相冷媒となる。この気液二相冷媒は、給湯用熱源側熱交換器44に流入する。給湯用熱源側熱交換器44を流れる気液二相冷媒は、大気から吸熱して蒸発し、低圧のガス冷媒となる。給湯用熱源側熱交換器44を出た低圧のガス冷媒は、給湯用圧縮機41の吸込口41aに流入し、給湯用圧縮機41により再び圧縮されて高温高圧のガス冷媒となる。
給湯回路9では、貯湯タンク70に貯留している水は、給湯用循環ポンプ71によって給湯用利用側熱交換器42に送り込まれ、給湯用利用側熱交換器42を流れていく間に、給湯用冷媒回路6を流れる給湯用冷媒から温熱を吸収する。これにより、水が給湯用利用側熱交換器42によって高温の水となる。
出湯経路11では、給湯負荷側の要求に応じて、空調給湯システムの運転によって得られた所定温度の水が給湯負荷側へと供給される。
この運転パターンNo.1によれば、冷却・除湿と再加熱を同時に行うことができるため、住宅60の室内へ快適な空気を提供することができる。加えて、空調サイクルと給湯サイクルをそれぞれ単独で運転できるため、空調負荷と給湯負荷の要求に応じた運転を行うことができる。
「運転パターンNo.2<冷房除湿/給湯運転(排熱利用)>」(図11参照)
運転パターンNo.2は、空調用冷媒回路5による冷房運転と、給湯用冷媒回路6による給湯運転とをそれぞれ行う運転パターンである。この運転パターンNo.2では、中間温水循環回路7に水を循環させていないが、空調用冷媒流量制御弁26bおよび給湯用冷媒流量制御弁46bが開いているため、中間熱交換器23を介して空調用冷媒回路5と給湯用冷媒回路6との間の熱交換が行われる。それ以外の点は、殆ど運転パターンNo.1と同じであるため、以下の説明では、運転パターンNo.1と相違する点を中心に説明し、運転パターンNo.1と共通する動作については説明を省略する。
この運転パターンNo.2では、空調用冷媒流量制御弁26aおよび空調用冷媒流量制御弁26bの弁開度が制御装置1aによって制御されている。具体的には、制御装置1aは、運転パターンNo.2において再加熱器として用いられる第1の室内熱交換器61aの再加熱量に応じて、空調用冷媒流量制御弁26a、26bの弁開度をそれぞれ調整している。
空調用冷媒回路5では、空調用圧縮機41で圧縮され高温高圧となったガス冷媒は、空調用熱源側熱交換器24と中間熱交換器23とにそれぞれ分かれて流入する。空調用熱源側熱交換機24を流れる空調用冷媒は、大気へ放熱する。一方、中間熱交換器23を流れる空調用冷媒は、給湯用冷媒回路6を流れる給湯用冷媒へと放熱する。そして、空調用熱源側熱交換器24と中間熱交換器23をそれぞれ出た空調用冷媒は、合流した後に空調用膨張弁27aへと流れていく。それ以降は、運転パターンNo.1と同じである。
給湯用冷媒回路6では、給湯用流用制御弁46aが閉じているため、給湯用冷媒は、給湯用熱源側熱交換器44へは流れず、中間熱交換器23へと流れていき、この中間熱交換器23にて空調用冷媒回路5を流れる空調用冷媒から吸熱してガス冷媒となる点が運転パターンNo.1と相違する。
この運転パターンNo.2によれば、冷却・除湿と再加熱を同時に行うことができるため、住宅60の室内へ快適な空気を提供することができる。加えて、空調排熱を給湯サイクルの熱源として利用できるため、熱エネルギを有効利用でき、給湯サイクルの運転にかかる消費電力を低減することができる。よって、この運転パターンNo.2では、空調給湯システムの効率向上が図られることとなる。
「運転パターンNo.3<冷房除湿運転(排熱利用)>」(図12参照)
運転パターンNo.3は、空調用冷媒回路5による冷房運転は行われるが、給湯用冷媒回路6による給湯運転は停止している運転パターンである。この運転パターンNo.3では、中間温水循環ポンプ51が駆動して、中間温水循環回路7に水が循環している。そのため、中間熱交換器23を介して空調用冷媒回路5と中間温水循環回路7との間で熱交換が行われる。それ以外の点は、殆ど運転パターンNo.2と同じであるため、以下の説明では、運転パターンNo.2と相違する点を中心に説明し、運転パターンNo.2と共通する動作については説明を省略する。
この運転パターンNo.3では、空調用冷媒流量制御弁26aおよび空調用冷媒流量制御弁26bの弁開度が制御装置1aによって制御されている。具体的には、制御装置1aは、運転パターンNo.3において再加熱器として用いられる第1の室内熱交換器61aの再加熱量に応じて、空調用冷媒流量制御弁26a、26bの弁開度をそれぞれ調整している。
中間温水循環回路7を流れる水は、中間熱交換器23にて空調用冷媒回路5を流れる空調用冷媒から吸熱して、中間温度(水道水より高温だが貯湯タンク70に貯湯されている水より低温の温度)まで昇温される。昇温された水は、中間温水用配管53を通って蓄熱タンク50に流入し、この蓄熱タンク50にて温熱が蓄熱される。
この運転パターンNo.3によれば、冷却・除湿と再加熱を同時に行うことができるため、住宅60の室内へ快適な空気を提供することができる。加えて、給湯サイクルを運転することなく、空調排熱を利用して中間温度の水を作ることができるため、熱エネルギの有効利用が図られるうえ、給湯サイクルの運転にかかる消費電力を削減することができる。また、蓄熱タンク50にて温熱を蓄熱できるため、空調サイクルと給湯サイクルの運転に時間差があるような場合でも、空調排熱を給湯サイクルへ利用することができる。よって、この運転パターンNo.3では、空調給湯システムの効率を向上が図られることとなる。
以上、排熱利用に関する実施の形態を冷房除湿運転中心に説明を記述したが、冷房運転においても中間熱交換器23および空調用熱源側熱交換器24は凝縮器として作用するため、排熱利用による効率の向上は同等の効果を得る事ができる。
次に、本発明の第2の実施の形態例に係る空調給湯システムの構成について図13を参照しながら説明する。なお、本発明の第2の実施の形態例に係る空調給湯システムには、上記した本発明の第1の実施の形態例に係る空調給湯システムに対して、太陽集熱器4で集熱された太陽熱を空調用冷温水循環回路8に取り込んだ構成を備えている点、空調冷媒流量制御弁26bに代えて二方弁35aにした点、給湯用冷媒流量制御弁46bに代えて二方弁47aにした点で相違している。そのため、第2の実施の形態例に係る空調給湯システムの説明のうち第1の実施の形態例に係る空調給湯システムと同一の構成については、同一の符号を付して、その説明を省略する。
本発明の第2の実施の形態例に係る空調給湯システムは、蓄熱タンク50と第1の空調用冷温水回路8aとを空調用冷温水配管93および空調用冷温水配管94で接続し、空調用冷温水配管93に冷温水流量制御弁91を取り付け、空調用冷温水配管65fと空調用冷温水配管94との接続部に三方弁92を取り付けて環状に形成された太陽熱間接循環回路12を備えている。そして、太陽熱間接循環回路12を流れる水と太陽熱循環回路10を流れる水またはブラインが、蓄熱タンク50を介して熱交換可能な構成となっている。
この第2の実施の形態例に係る空調給湯システムによれば、空調用冷温水循環ポンプ67を駆動することにより、第1の空調用冷温水配管8a内の水を太陽熱間接循環回路12に設けられた冷温水流量制御弁91を経由して蓄熱タンク50へと導くことができる。ここで、太陽熱用循環ポンプ85を駆動して太陽熱循環回路10内の水またはブラインを循環させると、太陽集熱器4で集熱された太陽熱は、蓄熱タンク50にて蓄熱される。よって、蓄熱タンク50へ導かれた太陽熱間接循環回路12内の水は、蓄熱タンク50に蓄熱された温熱を吸熱して温められる。温められた水は、空調用冷温水配管94を流れていき、三方弁92を経由して第1の空調用冷温水回路8aへと戻される。
このように、第2の実施の形態例では、第1の空調用冷温水回路8aを流れる水は、第1の空調用利用側熱交換器28aで空調用冷媒から吸熱するたけでなく、太陽熱間接循環回路12により太陽熱集熱器4で集熱された太陽熱を間接的に受け取ることができる。よって、第2の実施の形態例は、太陽熱の熱量を除湿運転時の再加熱や暖房運転時の加熱に利用することができ、空調給湯システムの効率が向上する。
なお、第1の空調用冷温水回路8aから太陽熱間接循環回路12へ流す水の流量は、除湿運転時の再加熱量あるいは暖房運転時の加熱量に応じて、冷温水流量制御弁91の弁開度を制御装置1aが制御することで調整可能である。
以上、説明したように、本発明の第1の実施の形態例および第2の実施の形態例に係る空調給湯システムによれば、設備コストを掛けず、また複雑な制御も行うことなく、1つの空調サイクルで冷房運転、暖房運転、冷房・除湿運転(冷房主体除湿運転)、および加熱量が高めの暖房・除湿運転(暖房主体除湿運転)を行うことができる。しかも、第1の実施の形態例および第2の実施の形態例に係る空調給湯システムでは、空調排熱を給湯サイクルに利用することができるため、システム全体の効率が向上する。また、第1の実施の形態例および第2の実施の形態例に係る空調給湯システムは、太陽熱を空調サイクルに利用することもできるため、システム全体のさらなる効率の向上を図ることができる。勿論、消費電力が低減することは言うまでもない。
なお、上記した第2の実施の形態例に係る空調給湯システムでは、太陽熱間接循環回路12を第1の空調用冷媒回路8aに接続するようにしたが、太陽熱間接循環回路12を第2の空調用冷媒回路8bに接続するようにすることもできる。
1a…制御装置、4…太陽熱集熱器4、5…空調用冷媒回路、5a…空調用冷媒メイン回路、5b…第1の空調用冷媒分岐路、5c…第2の空調用冷媒分岐路、6…給湯用冷媒回路、7…中間温水循環回路(中間熱媒体回路)、8…空調用冷温水循環回路(空調用熱搬送媒体循環回路)、8a…第1の空調用冷温水回路(第1の空調用熱搬送媒体回路)、8b…第2の空調用冷温水回路(第2の空調用熱搬送媒体回路)、10…太陽熱循環回路、12…太陽熱間接循環回路、21…空調用圧縮機、21a…空調圧縮機の吸込口、21b…空調用圧縮機の吐出口、22…四方弁(空調用流路切替弁)、23…中間熱交換器、24…空調用熱源側熱交換器、26a、26b…空調用冷媒流量制御弁、27a…第1の空調用膨張弁、27b…第2の空調用膨張弁、28a…第1の空調用利用側熱交換器、28b…第2の空調用利用側熱交換器、29…空調用バイパス配管、34a、34b…三方弁(接続切替手段)、41…給湯用圧縮機、42…給湯用利用側熱交換器、43…給湯用膨張弁、44…給湯用熱源側熱交換器、50…蓄熱タンク、60…住宅(被冷却空間)、61a…第1の室内熱交換器、61b…第2の室内熱交換器、64a…四方弁(第1の流路切替弁)、64b…四方弁(第2の流路切替弁)、65b…空調用冷温水配管(共通配管)、67…空調用冷温水循環ポンプ(空調用熱搬送媒体循環ポンプ)

Claims (5)

  1. 冷房運転と暖房運転とを切替えて行う空調用冷媒回路と、被冷却空間の空調を行う空調用熱搬送媒体循環回路とを備えた空気調和装置であって、
    前記空調用冷媒回路は、空調用圧縮機、空調用流路切替弁、空調用熱源側の熱搬送媒体と熱交換を行うための空調用熱源側熱交換器、第1の空調用膨張弁、空調用利用側の熱搬送媒体と熱交換を行うための第1の空調用利用側熱交換器を順次冷媒配管で接続して環状に形成された空調用冷媒メイン回路を備え、
    前記空調用冷媒メイン回路に、前記第1の空調用利用側熱交換器をバイパスする第1の空調用冷媒分岐路を設け、
    前記第1の空調用利用側熱交換器と並列に接続されるように、前記第1の空調用冷媒分岐路に空調用利用側の熱搬送媒体と熱交換を行うための第2の空調用利用側熱交換器を設け、
    前記第1の空調用利用側熱交換器と前記第2の空調用利用側熱交換器とが直列に接続されるように、前記空調用冷媒メイン回路と前記第1の空調用冷媒分岐路とを空調用バイパス配管で接続し、
    前記空調用冷媒回路に、第1の空調用利用側熱交換器と前記第2の空調用利用側熱交換器との接続を直列と並列とに切替えるための接続切替手段を設け、
    前記接続切替手段により前記第1の空調用利用側熱交換器と前記第2の空調用利用側熱交換器とが直列に接続された状態における前記空調用冷媒回路の前記第1の空調用利用側熱交換器と前記第2の空調用利用側熱交換器との間の位置に、第2の空調用膨張弁を設け、
    前記空調用熱搬送媒体循環回路は、前記第1の空調利用側熱交換器と前記被冷却空間に設置された第1の室内熱交換器とを配管で繋いで環状に形成された第1の空調用熱搬送媒体回路と、前記第2の空調利用側熱交換器と前記被冷却空間に設置された第2の室内熱交換器とを配管で繋いで環状に形成された第2の空調用熱搬送媒体回路とを備え、
    前記第1の空調用熱搬送媒体回路および前記第2の空調用熱搬送媒体回路に、前記空調用利用側の熱搬送媒体として水またはブラインをそれぞれ循環させるようにした
    ことを特徴とする空気調和装置。
  2. 請求項1の記載において、
    前記第1の空調用熱搬送媒体回路には、前記空調用利用側の熱搬送媒体の流れ方向を切替えるための第1の流路切替弁が設けられ、
    前記第2の空調用熱搬送媒体回路には、前記空調用利用側の熱搬送媒体の流れ方向を切替えるための第2の流路切替弁が設けられ、
    前記第1の空調用熱搬送媒体回路を構成する配管の一部に、前記第2の空調用熱搬送媒体回路を構成する配管の一部と共通で用いられる共通配管を組み込み、
    前記共通配管に、前記空調用利用側の熱搬送媒体を前記第1の空調用熱搬送媒体回路および前記第2の空調用熱搬送媒体回路に同時に循環させるための空調用熱搬送媒体循環ポンプを組み込んだ
    ことを特徴とする空気調和装置。
  3. 冷房運転と暖房運転とを切替えて行う空調用冷媒回路と、被冷却空間の空調を行う空調用熱搬送媒体循環回路と、給湯を行う給湯用冷媒回路と、温冷熱源を用いて前記空調用冷媒回路及び前記給湯用冷媒回路に放熱または吸熱を行う中間熱媒体回路と、前記空調用冷媒回路を循環する空調用冷媒、前記給湯用冷媒回路を循環する給湯用冷媒および前記中間熱媒体回路を循環する熱源用熱搬送媒体の3流体間で熱交換を行う中間熱交換器と、運転の制御を行う制御装置とを有する空調給湯システムであって、
    前記空調用冷媒回路は、空調用圧縮機、空調用流路切替弁、空調用熱源側の熱搬送媒体と熱交換を行うための空調用熱源側熱交換器、第1の空調用膨張弁、空調用利用側の熱搬送媒体と熱交換を行うための第1の空調用利用側熱交換器を順次冷媒配管で接続して環状に形成された空調用冷媒メイン回路を備え、
    前記空調用冷媒メイン回路に、前記第1の空調用利用側熱交換器をバイパスする第1の空調用冷媒分岐路と、前記空調用熱源側熱交換器をバイパスする第2の空調用冷媒分岐路とを設け、
    前記第1の空調用冷媒分岐路に、空調用利用側の熱搬送媒体と熱交換を行うための第2の空調用利用側熱交換器を前記第1の空調用利用側熱交換器と並列に接続されるようにして設け、
    前記第1の空調用利用側熱交換器と前記第2の空調用利用側熱交換器とが直列に接続されるように、前記空調用冷媒メイン回路と前記空調用冷媒分岐路とを空調用バイパス配管で接続し、
    前記第2の空調用冷媒分岐路に、前記中間熱交換器および前記中間熱交換器を流れる空調用冷媒の流量を調整するための空調用冷媒流量制御弁を設け、
    前記空調用冷媒回路に、第1の空調用利用側熱交換器と前記第2の空調用利用側熱交換器との接続を直列と並列とに切替えるための接続切替手段を設け、
    前記接続切替手段により前記第1の空調用利用側熱交換器と前記第2の空調用利用側熱交換器とが直列に接続された状態における前記空調用冷媒回路の前記第1の空調用利用側熱交換器と前記第2の空調用利用側熱交換器との間の位置に、第2の空調用膨張弁を設け、
    前記空調用熱搬送媒体循環回路は、前記第1の空調用利用側熱交換器と前記被冷却空間に設置された第1の室内熱交換器とを配管で繋いで環状に形成された第1の空調用熱搬送媒体回路と、前記第2の空調用利用側熱交換器と前記被冷却空間に設置された第2の室内熱交換器とを配管で繋いで環状に形成された第2の空調用熱搬送媒体回路とを備え、
    前記第1の空調用熱搬送媒体回路および前記第2の空調用熱搬送媒体回路に、前記空調用利用側の熱搬送媒体として水またはブラインをそれぞれ循環させ、
    前記給湯用冷媒回路は、給湯用圧縮機、給湯用利用側の熱搬送媒体と熱交換を行う給湯用利用側熱交換器、給湯用膨張弁、前記中間熱交換器を順次冷媒配管で接続して環状に形成された給湯用メイン回路を備え、
    前記給湯用冷媒メイン回路に、前記中間熱交換器をバイパスする給湯用冷媒分岐路を設け、前記給湯用冷媒分岐路に、給湯用熱源側の熱搬送媒体と前記給湯用冷媒との間で熱交換するための給湯用熱源側熱交換器を設け、
    前記中間熱媒体回路に、前記熱源用熱搬送媒体が吸熱した温熱または冷熱を蓄熱するための蓄熱タンクを設けた
    ことを特徴とする空調給湯システム。
  4. 請求項3の記載において、
    前記制御装置は、前記接続切替手段を操作して前記第1の空調用利用側熱交換器と前記第2の空調用利用側熱交換器とを直列に接続して前記空調用冷媒回路による除湿運転を実行すると共に、前記第1の室内熱交換器または前記第2の室内熱交換器で熱交換される再加熱量に応じて、前記空調用冷媒流量制御弁の開度を制御する
    ことを特徴とする空調給湯システム。
  5. 請求項3または4の記載において、
    太陽熱を集熱する太陽熱集熱器と前記蓄熱タンクとを配管で接続して環状に形成された太陽熱循環回路と、前記第1の空調用熱搬送媒体回路および前記第2の空調用熱搬送媒体回路の少なくとも一方と前記蓄熱タンクとを配管で接続して環状に形成された太陽熱間接循環回路とを備え、
    前記太陽熱循環回路を循環する太陽熱搬送媒体と、前記太陽熱間接循環回路を循環する前記空調用利用側の熱搬送媒体とを前記蓄熱タンクを介して熱交換可能に構成した
    ことを特徴とする空調給湯システム。
JP2012501598A 2010-02-26 2010-02-26 空気調和装置および空調給湯システム Expired - Fee Related JP5395950B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/053124 WO2011104870A1 (ja) 2010-02-26 2010-02-26 空気調和装置および空調給湯システム

Publications (2)

Publication Number Publication Date
JPWO2011104870A1 true JPWO2011104870A1 (ja) 2013-06-17
JP5395950B2 JP5395950B2 (ja) 2014-01-22

Family

ID=44506313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012501598A Expired - Fee Related JP5395950B2 (ja) 2010-02-26 2010-02-26 空気調和装置および空調給湯システム

Country Status (4)

Country Link
EP (1) EP2541169A1 (ja)
JP (1) JP5395950B2 (ja)
CN (1) CN102753914B (ja)
WO (1) WO2011104870A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004467A (ja) * 2013-06-20 2015-01-08 三菱電機ビルテクノサービス株式会社 空気調和装置
BR112016006390A2 (pt) 2013-09-24 2017-08-01 Energen Chile S A sistema hidrotérmico modular e método para a operação do mesmo
JP2016003783A (ja) 2014-06-13 2016-01-12 三菱電機株式会社 ヒートポンプ装置
IN2015MU01611A (ja) * 2015-04-20 2015-05-01 Gunvant Mehta Alpesh
US10584895B2 (en) * 2015-08-17 2020-03-10 Mitsubishi Electric Corporation Heat utilizing apparatus
JP7154035B2 (ja) * 2018-05-08 2022-10-17 三菱電機株式会社 空気調和装置
DE102018111056A1 (de) * 2018-05-08 2019-11-14 Stiebel Eltron Gmbh & Co. Kg Heizungs- und/oder Warmwasserbereitungssystem
WO2021001714A1 (en) 2019-06-29 2021-01-07 Mehta Alpesh Automated modular heating cooling and ductless ventilation system
KR102021525B1 (ko) * 2019-07-04 2019-09-16 주식회사 우성에이스 냉난방 동시 급탕 및 제습 제상 기능을 갖는 다기능성 일체형 공기열원 히트펌프시스템
CN110848846B (zh) * 2019-11-19 2023-12-08 珠海格力电器股份有限公司 一种太阳能空调热泵系统、控制方法和空调器
CN115234976B (zh) * 2022-09-26 2023-01-10 宁波奥克斯电气股份有限公司 一种空调系统、控制方法及空调器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038539A (ja) * 1983-08-11 1985-02-28 Furukawa Electric Co Ltd:The 氷蓄冷式冷房と暖房給湯を兼ねた空調システム
JP3289224B2 (ja) * 1992-11-06 2002-06-04 株式会社日立製作所 蓄熱器付空気調和装置
JP3626517B2 (ja) * 1994-10-24 2005-03-09 東プレ株式会社 空気調和装置
JPH08261516A (ja) * 1995-03-22 1996-10-11 Sanden Corp 空気調和装置
JP3589184B2 (ja) * 2001-01-11 2004-11-17 ダイキン工業株式会社 空気調和機の室内機
JP4089326B2 (ja) * 2002-07-17 2008-05-28 富士電機リテイルシステムズ株式会社 冷媒回路、およびそれを用いた自動販売機
JP4828299B2 (ja) * 2006-05-17 2011-11-30 三菱電機株式会社 冷暖房システム
EP2182306B1 (en) * 2007-08-28 2017-11-01 Mitsubishi Electric Corporation Air conditioner
EP2282144B1 (en) * 2008-04-30 2017-04-05 Mitsubishi Electric Corporation Air conditioner

Also Published As

Publication number Publication date
JP5395950B2 (ja) 2014-01-22
WO2011104870A1 (ja) 2011-09-01
EP2541169A1 (en) 2013-01-02
CN102753914A (zh) 2012-10-24
CN102753914B (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5395950B2 (ja) 空気調和装置および空調給湯システム
JP5279919B2 (ja) 空気調和装置
JP5297968B2 (ja) 空気調和装置
JP5373964B2 (ja) 空調給湯システム
WO2012070192A1 (ja) 空気調和装置
JP5595521B2 (ja) ヒートポンプ装置
WO2012077166A1 (ja) 空気調和装置
JP5490245B2 (ja) 空気調和装置
WO2011030429A1 (ja) 空気調和装置
WO2014128970A1 (ja) 空気調和装置
WO2013008278A1 (ja) 空気調和装置
JP5335131B2 (ja) 空調給湯システム
WO2011052049A1 (ja) 空気調和装置
WO2014083652A1 (ja) 空気調和装置
JP5312681B2 (ja) 空気調和装置
JP5752135B2 (ja) 空気調和装置
JP5373959B2 (ja) 空気調和装置
JP5499153B2 (ja) 空気調和装置
WO2014128971A1 (ja) 空気調和装置
JP5791717B2 (ja) 空気調和装置
WO2011030420A1 (ja) 空気調和装置
WO2015079531A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees