JPWO2011096393A1 - Rubber composition and method for producing the same - Google Patents

Rubber composition and method for producing the same Download PDF

Info

Publication number
JPWO2011096393A1
JPWO2011096393A1 JP2011552783A JP2011552783A JPWO2011096393A1 JP WO2011096393 A1 JPWO2011096393 A1 JP WO2011096393A1 JP 2011552783 A JP2011552783 A JP 2011552783A JP 2011552783 A JP2011552783 A JP 2011552783A JP WO2011096393 A1 JPWO2011096393 A1 JP WO2011096393A1
Authority
JP
Japan
Prior art keywords
rubber
dispersion
microfibrillated plant
weight
rubber composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011552783A
Other languages
Japanese (ja)
Other versions
JP5846919B2 (en
Inventor
矢野 浩之
浩之 矢野
丈史 中谷
丈史 中谷
行夫 磯部
行夫 磯部
市川 直哉
直哉 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP2011552783A priority Critical patent/JP5846919B2/en
Publication of JPWO2011096393A1 publication Critical patent/JPWO2011096393A1/en
Application granted granted Critical
Publication of JP5846919B2 publication Critical patent/JP5846919B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/212Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase and solid additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • C08J2321/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2461/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2461/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2461/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08J2461/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

(A)ゴム成分、(B)パルプを機械的な解繊処理により得られるミクロフィブリル化植物繊維、及び(C)レゾール樹脂を含有するゴム組成物並びにその製造方法に関する。The present invention relates to (A) a rubber component, (B) a microfibrillated plant fiber obtained by mechanically defibrating pulp, and (C) a rubber composition containing a resole resin and a method for producing the same.

Description

本発明は、ミクロフィブリル化植物繊維及びレゾール樹脂を含有するゴム組成物に関する。   The present invention relates to a rubber composition containing a microfibrillated plant fiber and a resole resin.

ゴム組成物において、ゴム成分中に配合される充填剤としてセルロース繊維を含有することにより、ゴムの物理的特性の向上させることは、従来から知られている(例えば、特許文献1参照)。特許文献1では、セルロース短繊維の水分散液とゴムラテックスとを攪拌混合し、その混合液から水を除去して得られるマスターバッチについて開示されている。しかしながら、セルロース繊維は、ゴムとの相溶性が悪く、ゴム組成物として配合した場合に、破断特性や界面におけるエネルギーロス等の面で十分な効果が得られず、これらの特性を改善しなければ、各種用途への実用化は難しい。そのため、セルロース繊維とゴム成分との相溶性を改善させるために、アセチル化等の表面処理を施したセルロース短繊維の利用が提案されているが、この表面改質は、溶剤中で反応させる必要があり、表面処理には多くのプロセスが必要となる。また、このような表面処理によりセルロース繊維とゴム成分との相溶性は改善されるが、セルロース繊維とゴム成分との界面での化学的な結合が生じないことから、十分な補強効果が得られないという点で問題があった。   In rubber compositions, it has been conventionally known to improve physical properties of rubber by containing cellulose fibers as a filler blended in a rubber component (see, for example, Patent Document 1). Patent Literature 1 discloses a master batch obtained by stirring and mixing an aqueous dispersion of cellulose short fibers and rubber latex, and removing water from the mixed solution. However, cellulose fibers have poor compatibility with rubber, and when blended as a rubber composition, sufficient effects cannot be obtained in terms of breaking characteristics and energy loss at the interface, and these characteristics must be improved. It is difficult to put it into practical use for various purposes. Therefore, in order to improve the compatibility between cellulose fibers and rubber components, it has been proposed to use cellulose short fibers that have been subjected to surface treatment such as acetylation, but this surface modification requires reaction in a solvent. There are many processes for surface treatment. In addition, the compatibility between the cellulose fiber and the rubber component is improved by such a surface treatment, but since a chemical bond at the interface between the cellulose fiber and the rubber component does not occur, a sufficient reinforcing effect is obtained. There was a problem in that it was not.

特開2006−206864号公報JP 2006-206864 A

ミクロフィブリル化植物繊維がゴム成分中に良好に分散しているゴム組成物、及びその製造方法を提供することを目的とする。   An object of the present invention is to provide a rubber composition in which microfibrillated plant fibers are well dispersed in a rubber component, and a method for producing the same.

本発明者らは、上記課題を解決すべく、鋭意研究を重ねた結果、ミクロフィブリル化植物繊維を含有するゴム組成物において、さらにレゾール樹脂を含有することにより、ミクロフィブリル化植物繊維とゴム成分との界面における相互作用を改善させることができ、このような処理を水系で容易に行うことが可能であることを見出した。また、ゴム組成物中の繊維の分散性を改善することにより、破断強度等の物理的特性を向上させることのできるゴム組成物を見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that, in a rubber composition containing microfibrillated plant fibers, by further containing a resol resin, the microfibrillated plant fibers and the rubber component It has been found that the interaction at the interface can be improved, and that such treatment can be easily carried out in an aqueous system. Moreover, the rubber composition which can improve physical characteristics, such as breaking strength, was improved by improving the dispersibility of the fiber in a rubber composition.

本発明は、斯かる知見に基づき完成されたものである。   The present invention has been completed based on such findings.

項1.(A)ゴム成分、
(B)パルプを機械的に解繊処理することにより得られるミクロフィブリル化植物繊維、及び
(C)レゾール樹脂を含有するゴム組成物。
Item 1. (A) rubber component,
(B) A rubber composition containing microfibrillated plant fibers obtained by mechanically defibrating pulp, and (C) a resole resin.

項2.レゾール樹脂(C)が、ヒドロキシル基を少なくとも1個有するベンゼンとホルムアルデヒドの重合により得られる項1に記載のゴム組成物。   Item 2. Item 2. The rubber composition according to Item 1, wherein the resol resin (C) is obtained by polymerization of benzene having at least one hydroxyl group and formaldehyde.

項3.ヒドロキシル基を少なくとも1個有するベンゼンがレゾルシンである項2に記載のゴム組成物。   Item 3. Item 3. The rubber composition according to Item 2, wherein the benzene having at least one hydroxyl group is resorcin.

項4.ミクロフィブリル化植物繊維(B)の含有量が、ゴム成分(A)100重量部に対して、1〜50重量部である項1〜3のいずれかに記載のゴム組成物。   Item 4. Item 4. The rubber composition according to any one of Items 1 to 3, wherein the content of the microfibrillated plant fiber (B) is 1 to 50 parts by weight with respect to 100 parts by weight of the rubber component (A).

項5.レゾール樹脂(C)の含有量が、ゴム成分(A)100重量部に対して、0.01〜5重量部である項1〜4のいずれかに記載のゴム組成物。   Item 5. Item 5. The rubber composition according to any one of Items 1 to 4, wherein the content of the resole resin (C) is 0.01 to 5 parts by weight with respect to 100 parts by weight of the rubber component (A).

項6.ミクロフィブリル化植物繊維(B)における機械的な解繊処理が磨砕処理である項1〜5のいずれかに記載のゴム組成物。   Item 6. Item 6. The rubber composition according to any one of Items 1 to 5, wherein the mechanical fibrillation treatment in the microfibrillated plant fiber (B) is a grinding treatment.

項7.ミクロフィブリル化植物繊維(B)の平均繊維径が、10μm以下である項1〜6のいずれかに記載のゴム組成物。   Item 7. Item 7. The rubber composition according to any one of Items 1 to 6, wherein the microfibrillated plant fiber (B) has an average fiber diameter of 10 μm or less.

項8.タイヤ用に用いられる項1〜7のいずれかに記載のゴム組成物。   Item 8. Item 8. The rubber composition according to any one of Items 1 to 7, which is used for tires.

項9.ゴムラテックス成分全体に対して1〜60重量%のゴム成分を含有するゴムラテックスと、ヒドロキシル基を少なくとも1個有するベンゼン及びホルムアルデヒドを含有する溶液を配合し、レゾール樹脂−ゴム分散体を得る工程(a1)、
工程(a1)によって得られるレゾール樹脂−ゴム分散体とパルプを混合した後、機械的に解繊処理し、レゾール樹脂−ゴム分散体含有ミクロフィブリル化植物繊維を得る工程(b1)、
工程(b1)によって得られるレゾール樹脂−ゴム分散体含有ミクロフィブリル化植物繊維と、ゴムラテックス成分全体に対して1〜60重量%のゴム成分を含有するゴムラテックスを混合し、分散液を得る工程(c1)、及び
工程(c1)により得られる分散液を凝固した後、乾燥させ、マスターバッチを得る工程(d1)を含む
項1〜8のいずれかに記載のゴム組成物の製造方法。
Item 9. A step of blending a rubber latex containing 1 to 60% by weight of a rubber component with respect to the whole rubber latex component and a solution containing benzene and formaldehyde having at least one hydroxyl group to obtain a resole resin-rubber dispersion ( a1),
Step (b1) of obtaining resole resin-rubber dispersion-containing microfibrillated plant fiber by mechanically defibrating after mixing the resole resin-rubber dispersion obtained in step (a1) and pulp.
A step of mixing a resol resin-rubber dispersion-containing microfibrillated plant fiber obtained by the step (b1) and a rubber latex containing 1 to 60% by weight of a rubber component with respect to the entire rubber latex component to obtain a dispersion. Item 9. The method for producing a rubber composition according to any one of Items 1 to 8, further comprising a step (d1) of solidifying the dispersion obtained by the step (c1) and the step (c1) and then drying to obtain a master batch.

項10.ゴムラテックス成分全体に対して1〜60重量%のゴム成分を含有するゴムラテックスと、ヒドロキシル基を少なくとも1個有するベンゼン及びホルムアルデヒドを含有する溶液を配合し、レゾール樹脂−ゴム分散体を得る工程(a1)、
パルプを機械的に解繊処理しミクロフィブリル化植物繊維を得た後、ミクロフィブリル化植物繊維と工程(a1)によって得られたレゾール樹脂−ゴム分散体を混合し、レゾール樹脂−ゴム分散体含有ミクロフィブリル化植物繊維を得る工程(b2)、
工程(b2)によって得られたレゾール樹脂−ゴム分散体含有ミクロフィブリル化植物繊維と、ゴムラテックス成分全体に対して1〜60重量%のゴム成分を含有するゴムラテックスを混合し、分散液を得る工程(c1)、並びに
工程(c1)により得られる分散液を凝固した後、乾燥させ、マスターバッチを得る工程(d1)を含む
項1〜8のいずれかに記載のゴム組成物の製造方法。
Item 10. A step of blending a rubber latex containing 1 to 60% by weight of a rubber component with respect to the whole rubber latex component and a solution containing benzene and formaldehyde having at least one hydroxyl group to obtain a resole resin-rubber dispersion ( a1),
After the pulp is mechanically defibrated to obtain microfibrillated plant fibers, the microfibrillated plant fibers and the resole resin-rubber dispersion obtained in the step (a1) are mixed, and the resole resin-rubber dispersion is contained. Obtaining a microfibrillated plant fiber (b2),
The resole resin-rubber dispersion-containing microfibrillated plant fiber obtained in the step (b2) and the rubber latex containing 1 to 60% by weight of the rubber component with respect to the entire rubber latex component are mixed to obtain a dispersion. Item 9. The method for producing a rubber composition according to any one of Items 1 to 8, comprising a step (c1) and a step (d1) in which the dispersion obtained in the step (c1) is solidified and then dried to obtain a master batch.

項11.工程(b1)における機械的な解繊処理が磨砕処理である項9に記載のゴム組成物の製造方法。   Item 11. Item 10. The method for producing a rubber composition according to Item 9, wherein the mechanical defibrating treatment in the step (b1) is grinding treatment.

項12.工程(b2)における機械的な解繊処理が磨砕処理である項10に記載のゴム組成物の製造方法。   Item 12. Item 11. The method for producing a rubber composition according to Item 10, wherein the mechanical defibrating treatment in the step (b2) is grinding treatment.

項13.項1〜8のいずれかに記載のゴム組成物を用いた空気入りタイヤ。   Item 13. Item 15. A pneumatic tire using the rubber composition according to any one of Items 1 to 8.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のゴム組成物は、(A)ゴム成分、(B)パルプを機械的に解繊処理することにより得られるミクロフィブリル化植物繊維、及び(C)レゾール樹脂を含有する。   The rubber composition of the present invention contains (A) a rubber component, (B) microfibrillated plant fiber obtained by mechanically defibrating pulp, and (C) a resole resin.

ゴム成分(A)としては、ジエン系ゴム成分のものが挙げられ、具体的には、天然ゴム(NR)、ブタジエンゴム(BR)、スチレン−ブタジエン共重合体ゴム(SBR)、イソプレンゴム(IR)、ブチルゴム(IIR)、アクリロニトリル−ブタジエンゴム(NBR)、アクリロニトリル−スチレン−ブタジエン共重合体ゴム、クロロプレンゴム、スチレン−イソプレン共重合体ゴム、スチレン−イソプレン−ブタジエン共重合体ゴム、イソプレン−ブタジエン共重合体ゴム、クロロスルホン化ポリエチレン、エポキシ化天然ゴム(ENR)等の改質天然ゴム、水素化天然ゴム、脱タンパク天然ゴム等が挙げられる。また、ジエン系ゴム成分以外のゴム成分としては、エチレン−プロピレン共重合体ゴム、アクリルゴム、エピクロルヒドリンゴム、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム等が挙げられる。これらのゴム成分は、単独で使用してもよく、2種類以上をブレンドして用いてもよい。ブレンドする場合のブレンド比においても、各種用途に応じて適宜配合すればよい。   Examples of the rubber component (A) include diene rubber components. Specifically, natural rubber (NR), butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), isoprene rubber (IR) ), Butyl rubber (IIR), acrylonitrile-butadiene rubber (NBR), acrylonitrile-styrene-butadiene copolymer rubber, chloroprene rubber, styrene-isoprene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, isoprene-butadiene copolymer Examples thereof include polymer rubber, chlorosulfonated polyethylene, modified natural rubber such as epoxidized natural rubber (ENR), hydrogenated natural rubber, deproteinized natural rubber, and the like. Examples of the rubber component other than the diene rubber component include ethylene-propylene copolymer rubber, acrylic rubber, epichlorohydrin rubber, polysulfide rubber, silicone rubber, fluorine rubber, and urethane rubber. These rubber components may be used alone or in combination of two or more. What is necessary is just to mix | blend suitably also in the blend ratio in the case of blending according to various uses.

ミクロフィブリル化植物繊維(B)に含有するリグニンについては、化学的に除去したものであっても、除去していなくともよい。   The lignin contained in the microfibrillated plant fiber (B) may be chemically removed or not removed.

化学的にリグニンを完全には除去しない場合、ミクロフィブリル化セルロースの間を埋めているリグニン及びヘミセルロースからなるマトリックス部分が壊れて微小繊維化(ミクロフィブリル化)していると推測される。したがって、機械的な解繊処理により得られるミクロフィブリル化植物繊維(B)は、植物原料が本来有しているセルロース、ヘミセルロース及びプロトリグニン(植物組織中に存在する状態でのリグニン)から構成される構造を保持していると推測される。セルロースミクロフィブリル及び/又はセルロースミクロフィブリル束の周囲の一部又は全部をヘミセルロース及び/又はリグニンが被覆した構造、特に、セルロースミクロフィブリル及び/又はセルロースミクロフィブリル束の周囲をヘミセルロースが覆い、さらにこれをリグニンが覆った構造を有していると推測される。ただし、ヘミセルロース及び/又はリグニンが取れてヘミセルロース又はセルロース繊縦が表面に露出する部分も存在するであろうと推測される。   If the lignin is not completely removed chemically, it is presumed that the matrix portion composed of lignin and hemicellulose filling the space between the microfibrillated cellulose is broken and microfibrillated (microfibrillated). Therefore, the microfibrillated plant fiber (B) obtained by mechanical fibrillation treatment is composed of cellulose, hemicellulose and protolignin (lignin in a state existing in the plant tissue) inherent in the plant material. It is presumed that this structure is retained. A structure in which hemicellulose and / or lignin is coated partly or entirely around cellulose microfibrils and / or cellulose microfibril bundles, in particular, hemicellulose covers cellulose microfibrils and / or cellulose microfibril bundles, It is presumed to have a structure covered with lignin. However, it is presumed that there will also be a portion where hemicellulose and / or lignin is removed and the hemicellulose or cellulose fiber length is exposed on the surface.

ミクロフィブリル化植物繊維の繊維径の平均値(以下、平均繊維径ともいう)は、10μm以下が好ましく、4nm〜1μmであることがより好ましく、4nm〜200nmであることがさらに好ましく、4nm〜100nmであることがより一層好ましい。また、ミクロフィブリル化植物繊維は繊維が複雑に絡み合っている。ミクロフィブリル化植物繊維におけるリグニン含有率とセルロース含有率の関係は、リグニンはセルロース重量に対し、2〜70重量%、好ましくは5〜60重量%、より好ましくは10〜50重量%である。また、ミクロフィブリル化植物繊維においてリグニンを含有する場合、リグニンの含有率は、好ましくは1〜40重量%、より好ましくは3〜35重量%、より一層好ましくは5〜35重量%である。ミクロフィブリル化植物繊維(B)において、原料であるパルプ中のリグニンを除去しない場合、パルプにおけるリグニン含有率とミクロフィブリル化植物繊維におけるリグニン含有率とはほぼ同じとなる。これと同様に、パルプにおけるセルロース含有率とリグニン含有率の関係とミクロフィブリル化植物繊維におけるセルロース含有率とリグニン含有率の関係もほぼ同じである。   The average fiber diameter of the microfibrillated plant fibers (hereinafter also referred to as average fiber diameter) is preferably 10 μm or less, more preferably 4 nm to 1 μm, further preferably 4 nm to 200 nm, further preferably 4 nm to 100 nm. Is more preferable. Microfibrillated plant fibers are intricately intertwined. Regarding the relationship between the lignin content and the cellulose content in the microfibrillated plant fiber, the lignin is 2 to 70% by weight, preferably 5 to 60% by weight, more preferably 10 to 50% by weight, based on the weight of cellulose. Moreover, when lignin is contained in the microfibrillated plant fiber, the content of lignin is preferably 1 to 40% by weight, more preferably 3 to 35% by weight, and still more preferably 5 to 35% by weight. In the microfibrillated plant fiber (B), when the lignin in the pulp as a raw material is not removed, the lignin content in the pulp and the lignin content in the microfibrillated plant fiber are almost the same. Similarly, the relationship between the cellulose content and the lignin content in the pulp and the relationship between the cellulose content and the lignin content in the microfibrillated plant fiber are almost the same.

なお、特開2001−342353号公報には、木粉を脱脂処理(エタノール:ベンゼン=1:2溶液)した脱脂木粉に、フェノール誘導体のアセトン溶液を加えてフェノール誘導体を収着させ、リン酸処理して得られる組成物が記載されているが、この組成物は、ミクロフィブリル化されていない点で、本発明で用いられるミクロフィブリル化植物繊維(B)とは相違する。   In JP 2001-342353 A, an acetone solution of a phenol derivative is added to a defatted wood powder obtained by degreasing wood powder (ethanol: benzene = 1: 2 solution) to sorb the phenol derivative, and phosphoric acid is added. Although a composition obtained by treatment is described, this composition is different from the microfibrillated plant fiber (B) used in the present invention in that it is not microfibrillated.

ミクロフィブリル化植物繊維(B)を製造する際に用いられるパルプは、従来のミクロフィブリル化セルロースの製造に使用されていたパルプであればよく、リグニンが除去されていない、又は一部除去されているものであってもよい。   The pulp used in producing the microfibrillated plant fiber (B) may be any pulp that has been used in the production of conventional microfibrillated cellulose, and lignin is not removed or partly removed. It may be.

ミクロフィブリル化植物繊維(B)を製造する際に用いられるパルプを供給するための植物原料としては、従来のミクロフィブリル化セルロースの製造に使用されていたパルプを供給するための植物原料を広く使用でき、例えば木材、竹、麻、ジュート、ケナフ、農作物残廃物、布、再生パルプ、古紙が挙げられる。好ましくは、木材、竹、麻、ジュート、ケナフ、農作物残廃物である。   As a plant raw material for supplying pulp used in producing the microfibrillated plant fiber (B), a wide variety of plant raw materials for supplying pulp used in the production of conventional microfibrillated cellulose are used. For example, wood, bamboo, hemp, jute, kenaf, crop waste, cloth, recycled pulp, and waste paper. Preferred are wood, bamboo, hemp, jute, kenaf, and crop residue.

植物原料をパルプ化する方法は、特に限定されるものではなく、従来の方法によって行われる。例えば、植物原料を機械的にパルプ化するメカニカルパルプ化法等が適用できる。メカニカルパルプ化法により得られるメカニカルパルプ(MP)としては砕木パルプ(GP)、リファイナーメカニカルパルプ(RMP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)等を挙げることができる。   The method for pulping the plant material is not particularly limited, and is performed by a conventional method. For example, a mechanical pulping method for mechanically pulping plant materials can be applied. Examples of the mechanical pulp (MP) obtained by the mechanical pulping method include groundwood pulp (GP), refiner mechanical pulp (RMP), thermomechanical pulp (TMP), and chemithermomechanical pulp (CTMP).

また、植物原料を塩素処理、アルカリ処理、酸素酸化処理、次亜塩素酸ナトリウム処理、亜硫酸塩処理等により化学的に或いは化学的及び機械的にパルプ化することにより得られるケミカルパルプ(CP)、(クラフトパルプ(KP)、亜硫酸パルプ(SP)等)、セミケミカルパルプ(SCP)、ケミグランドパルプ(CGP)、ケミメカニカルパルプ(CMP)を用いることも可能である。また、パルプは、必要に応じてパルプ分野で慣用されている化学変性処理されていても良く、例えば、エステル化処理、エーテル化処理、アセタール化処理、リグニンの芳香環が処理されたパルプ等を施されたパルプが例示される。エステル化処理、エーテル化処理、アセタール化処理は、主として、セルロース、ヘミセルロース、リグニンに存在する水酸基をエステル化、エーテル化、アセタール化処理することを包含する。また、リグニンの芳香環の処理は、リグニンの芳香環に所望の置換基を導入することを包含する。   Moreover, chemical pulp (CP) obtained by pulverizing plant raw materials chemically or chemically and mechanically by chlorination, alkali treatment, oxygen oxidation treatment, sodium hypochlorite treatment, sulfite treatment, etc. (Craft pulp (KP), sulfite pulp (SP), etc.), semi-chemical pulp (SCP), chemiground pulp (CGP), chemimechanical pulp (CMP) can also be used. Further, the pulp may be subjected to chemical modification treatment commonly used in the pulp field as necessary, for example, esterification treatment, etherification treatment, acetalization treatment, pulp treated with an aromatic ring of lignin, etc. The applied pulp is illustrated. The esterification treatment, etherification treatment, and acetalization treatment mainly include esterification, etherification, and acetalization treatment of hydroxyl groups present in cellulose, hemicellulose, and lignin. Further, the treatment of the lignin aromatic ring includes introducing a desired substituent into the lignin aromatic ring.

ミクロフィブリル化植物繊維(B)の含有量は、ゴム中でのミクロフィブリル化植物繊維(B)の分散性が悪化せずに補強性と破壊特性のバランスを良好に保つことができるという観点から、ゴム成分(A)100重量部に対して、1〜50重量部の範囲内が好ましく、2〜35重量部の範囲内がより好ましく、3〜20重量部の範囲内がさらに好ましい。   From the viewpoint that the content of the microfibrillated plant fiber (B) can maintain a good balance between the reinforcing property and the fracture property without deteriorating the dispersibility of the microfibrillated plant fiber (B) in the rubber. The amount of the rubber component (A) is preferably in the range of 1 to 50 parts by weight, more preferably in the range of 2 to 35 parts by weight, and still more preferably in the range of 3 to 20 parts by weight.

レゾール樹脂(C)は、ヒドロキシル基を少なくとも1個有するベンゼンとホルムアルデヒドが重合することにより得られる。ヒドロキシル基を少なくとも1個有するベンゼンとしては、フェノール、レゾルシン、クレゾール、変性レゾルシン、変性フェノール、カテコール等が挙げられる。これらは、単独で用いても複数組み合わせて用いてもよく、ホルムアルデヒドとの反応によるレゾール樹脂の生成効率において良好であるという観点から、レゾルシン、フェノール、クレゾールが好ましい。ヒドロキシル基を少なくとも1個有するベンゼンとホルムアルデヒドが重合する際に、触媒としてアルカリが用いられる。アルカリとしては、水酸化ナトリウム、水酸化カリウム等が挙げられるが特に限定されるものではない。   The resole resin (C) is obtained by polymerizing benzene having at least one hydroxyl group and formaldehyde. Examples of benzene having at least one hydroxyl group include phenol, resorcin, cresol, modified resorcin, modified phenol, catechol and the like. These may be used singly or in combination. Resorcinol, phenol and cresol are preferred from the viewpoint of good production efficiency of resole resin by reaction with formaldehyde. An alkali is used as a catalyst when benzene having at least one hydroxyl group and formaldehyde are polymerized. Examples of the alkali include sodium hydroxide and potassium hydroxide, but are not particularly limited.

レゾール樹脂(C)の含有量は、ミクロフィブリル化植物繊維とゴムの界面における相互作用を発現し、かつ破断強度等の物理的特性が良好であるという観点から、ゴム成分(A)100重量部に対して、0.01重量部以上が好ましく、0.05重量部以上がより好ましく、0.1重量部以上がさらに好ましい。また、レゾール樹脂(C)の含有量は、ミクロフィブリル化植物繊維の分散を悪化させず、かつ破断強度等の物理的特性が良好であるという観点から、ゴム成分(A)100重量部に対して、5重量部以下が好ましく、3重量部以下がより好ましく、2重量部以下がさらに好ましい。   The content of the resole resin (C) is 100 parts by weight of the rubber component (A) from the viewpoint of expressing the interaction at the interface between the microfibrillated plant fiber and the rubber and having good physical properties such as breaking strength. Is preferably 0.01 parts by weight or more, more preferably 0.05 parts by weight or more, and still more preferably 0.1 parts by weight or more. In addition, the content of the resole resin (C) does not deteriorate the dispersion of the microfibrillated plant fiber, and the physical properties such as breaking strength are good, with respect to 100 parts by weight of the rubber component (A). 5 parts by weight or less is preferable, 3 parts by weight or less is more preferable, and 2 parts by weight or less is more preferable.

本発明のゴム組成物において含有される、レゾール樹脂(C)は、ゴム成分(A)と一部化学的に結合し、かつ、ミクロフィブリル化植物繊維(B)とも一部化学的に結合するものと推測される。そのため、ゴム組成物中のゴム成分(A)とミクロフィブリル化植物繊維(B)との界面における乖離を抑えることができ、かつゴム成分(A)中にミクロフィブリル化植物繊維(B)を良好に分散させることができる。   The resole resin (C) contained in the rubber composition of the present invention is partially chemically bonded to the rubber component (A) and partially chemically bonded to the microfibrillated plant fiber (B). Presumed to be. Therefore, the separation at the interface between the rubber component (A) and the microfibrillated plant fiber (B) in the rubber composition can be suppressed, and the microfibrillated plant fiber (B) is excellent in the rubber component (A). Can be dispersed.

本発明のゴム組成物は、ゴムラテックスと、ヒドロキシル基を少なくとも1個有するベンゼン及びホルムアルデヒドを含有する溶液を配合し、レゾール樹脂−ゴム分散体を得る工程(a1)、工程(a1)によって得られるレゾール樹脂−ゴム分散体とパルプを混合した後、機械的に解繊処理を行い、レゾール樹脂−ゴム分散体含有ミクロフィブリル化植物繊維を得る工程(b1)、工程(b1)によって得られるレゾール樹脂−ゴム分散体含有ミクロフィブリル化植物繊維と、ゴムラテックスを混合し、分散液を得る工程(c1)、及び工程(c1)により得られる分散液を乾燥し、マスターバッチを得る工程(d1)により製造することができる(以下、製造方法1ともいう)。   The rubber composition of the present invention is obtained by the steps (a1) and (a1) of blending a rubber latex with a solution containing benzene having at least one hydroxyl group and formaldehyde to obtain a resol resin-rubber dispersion. Steps (b1) and (b1) obtained by mixing the resol resin-rubber dispersion and the pulp and then mechanically performing a defibrating process to obtain the resole resin-rubber dispersion-containing microfibrillated plant fiber. -By mixing the rubber dispersion-containing microfibrillated plant fiber and rubber latex, obtaining a dispersion (c1), and drying the dispersion obtained by the step (c1) to obtain a master batch (d1) It can manufacture (henceforth the manufacturing method 1).

前記製造方法1においては、レゾール樹脂−ゴム分散体とパルプを混合した後に、機械的に解繊処理を行うことを特徴とするものであり、製造方法1によって得られるレゾール樹脂−ゴム分散体含有ミクロフィブリル化植物繊維は、繊維の表面が比較的均一に処理されているため、ゴム組成物中での繊維の分散性がより高まるという効果が得られる。   In the production method 1, the resol resin-rubber dispersion and the pulp are mixed and then mechanically defibrated, and the resol resin-rubber dispersion obtained by the production method 1 is contained. Since the surface of the microfibrillated plant fiber is treated relatively uniformly, the effect of further increasing the dispersibility of the fiber in the rubber composition can be obtained.

また、前記製造方法1とは別の製造方法として、本発明のゴム組成物は、ゴムラテックスとヒドロキシル基を少なくとも1個有するベンゼン及びホルムアルデヒドを含有する溶液を配合し、レゾール樹脂−ゴム分散体を得る工程(a1)、パルプを機械的に解繊処理しミクロフィブリル化植物繊維を得た後、ミクロフィブリル化植物繊維と工程(a1)によって得られたレゾール樹脂−ゴム分散体を混合し、レゾール樹脂−ゴム分散体含有ミクロフィブリル化植物繊維を得る工程(b2)、工程(b2)によって得られたレゾール樹脂−ゴム分散体含有ミクロフィブリル化植物繊維と、ゴムラテックスを混合し、分散液を得る工程(c1)、及び工程(c1)により得られる分散液を乾燥し、マスターバッチを得る工程(d1)により製造することもできる(以下、製造方法2ともいう)。   Further, as a production method different from the production method 1, the rubber composition of the present invention comprises a rubber latex and a solution containing benzene having at least one hydroxyl group and formaldehyde, and a resole resin-rubber dispersion is obtained. Step (a1), after the pulp is mechanically defibrated to obtain microfibrillated plant fibers, the microfibrillated plant fibers and the resole resin-rubber dispersion obtained in step (a1) are mixed, and resole Step (b2) of obtaining resin-rubber dispersion-containing microfibrillated plant fiber, resole resin-rubber dispersion-containing microfibrillated plant fiber obtained by step (b2) and rubber latex are mixed to obtain a dispersion. The dispersion obtained by the step (c1) and the step (c1) is dried and manufactured by the step (d1) of obtaining a master batch. It may (hereinafter also referred to as the production method 2).

前記製造方法2においては、パルプを機械的に解繊処理して、ミクロフィブリル化植物繊維を製造した後に、レゾール樹脂−ゴム分散体と混合することを特徴とするものであり、製造方法2は、解繊処理前のパルプとレゾール樹脂−ゴム分散体との混合作業を排除できるため、マスターバッチを得るまでの工程を簡略化できる。   In the production method 2, the pulp is mechanically defibrated to produce microfibrillated plant fibers, and then mixed with a resol resin-rubber dispersion. Since the mixing operation of the pulp before the defibrating treatment and the resol resin-rubber dispersion can be eliminated, the process until obtaining the master batch can be simplified.

製造方法1及び2における工程(a1)で使用されるゴムラテックス中のゴム成分は、工程(c1)で配合されるゴムラテックス中のゴム成分と同一の種類であっても異なっていてもよいが、ミクロフィブリル化植物繊維を良好に分散できるという観点から、同じ種類のゴム成分を用いることが好ましい。   The rubber component in the rubber latex used in the step (a1) in the production methods 1 and 2 may be the same or different from the rubber component in the rubber latex compounded in the step (c1). From the viewpoint that the microfibrillated plant fiber can be dispersed well, it is preferable to use the same kind of rubber component.

製造方法1及び2における工程(a1)のゴムラテックスに含有されるゴム成分は、ゴム組成物におけるミクロフィブリル化植物繊維の接着性や分散性において、良好であるという点から、ゴム組成物中に含むゴム成分全体に対して、0.1重量%以上が好ましく、0.2重量%以上がより好ましく、0.3重量%以上がさらに好ましい。また、製造方法1及び2における工程(a1)のゴムラテックスに含有されるゴム成分は、ゴム組成物におけるミクロフィブリル化植物繊維の接着性を高め、かつミクロフィブリル化植物繊維どうしの凝集を回避するうえで、良好であるという点から、ゴム組成物中に含むゴム成分全体に対して、10重量%以下が好ましく、5重量%以下がより好ましく、2重量%以下がさらに好ましい。ゴム成分の具体例は、前記で挙げられたものを用いることができる。   In the rubber composition, the rubber component contained in the rubber latex in the step (a1) in the production methods 1 and 2 is excellent in the adhesion and dispersibility of the microfibrillated plant fiber in the rubber composition. It is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, and further preferably 0.3% by weight or more based on the total rubber component contained. Moreover, the rubber component contained in the rubber latex in the step (a1) in the production methods 1 and 2 increases the adhesion of the microfibrillated plant fibers in the rubber composition and avoids the aggregation of the microfibrillated plant fibers. From the viewpoint of being good, the content is preferably 10% by weight or less, more preferably 5% by weight or less, and still more preferably 2% by weight or less based on the entire rubber component contained in the rubber composition. Specific examples of the rubber component may be those listed above.

なお、残りのゴム成分は、製造方法1及び2における工程(c1)において配合されるゴムラテックス中のゴム成分として配合される。すなわち、工程(c1)におけるゴム成分の配合量は、ゴム組成物中に含むゴム成分全体に対して、90〜99.9重量%が好ましく、95〜99.8重量%がより好ましく、98〜99.7重量%がさらに好ましい。   The remaining rubber component is blended as a rubber component in the rubber latex blended in the step (c1) in the production methods 1 and 2. That is, the blending amount of the rubber component in the step (c1) is preferably 90 to 99.9% by weight, more preferably 95 to 99.8% by weight, and 98 to 99.7% by weight with respect to the entire rubber component contained in the rubber composition. Further preferred.

製造工程1及び2における工程(a1)において、ゴムラテックスとヒドロキシル基を少なくとも1個有するベンゼン及びホルムアルデヒドを含有する溶液を配合することにより、ヒドロキシル基を少なくとも1個有するベンゼンとホルムアルデヒドが重合し、レゾール樹脂が形成されると共にゴムラテックス中に分散される。ヒドロキシル基を少なくとも1個有するベンゼンは、前記で挙げたものと同様のものを用いることができる。また、ヒドロキシル基を少なくとも1個有するベンゼンとホルムアルデヒドとの重合の際に、触媒としてアルカリを配合してもよい。アルカリの具体例としては、前記で挙げたものと同様のものを用いることができる。   In the step (a1) in the production steps 1 and 2, by mixing a rubber latex with a solution containing benzene having at least one hydroxyl group and formaldehyde, the benzene having at least one hydroxyl group and formaldehyde are polymerized to form a resole A resin is formed and dispersed in the rubber latex. As benzene having at least one hydroxyl group, the same ones as mentioned above can be used. Further, an alkali may be blended as a catalyst in the polymerization of benzene having at least one hydroxyl group and formaldehyde. Specific examples of the alkali can be the same as those mentioned above.

ヒドロキシル基を少なくとも1個有するベンゼン、及びホルムアルデヒドのそれぞれの配合量は、前記ゴム組成物に含有するレゾール樹脂の含有量となるように、適宜配合すればよい。   What is necessary is just to mix | blend suitably each compounding quantity of benzene which has at least 1 hydroxyl group, and formaldehyde so that it may become content of the resole resin contained in the said rubber composition.

製造方法1の工程(b1)におけるレゾール樹脂−ゴム分散体とパルプを混合した後の機械的な解繊処理の方法、及び製造方法2の工程(b2)におけるパルプを機械的に解繊処理する方法としては、リファイナー、二軸混錬機(二軸押出機)、二軸混錬押出機、高圧ホモジナイザー、媒体撹拌ミル、石臼、グラインダー、振動ミル、サンドグラインダー等により機械的に磨砕ないし叩解する方法が挙げられる。これらの方法により、パルプが解繊又は微細化され、ミクロフィブリル化植物繊維とされる。解繊処理における好ましい温度は0〜99℃、より好ましくは0〜90℃である。解繊処理の原料となるパルプは、このような解繊処理に適した形状(例えば粉末状等)であることが望ましい。また、解繊処理に先立って、パルプを蒸気で蒸す(例えば、圧力釜中、水分存在下で加熱する)と解繊エネルギーの低減の点で有利である。   A mechanical defibrating method after mixing the resole resin-rubber dispersion and the pulp in the step (b1) of the manufacturing method 1 and the pulp in the step (b2) of the manufacturing method 2 are mechanically defibrated. As a method, it is mechanically ground or beaten by a refiner, twin screw kneader (double screw extruder), twin screw kneader, high pressure homogenizer, medium stirring mill, stone mill, grinder, vibration mill, sand grinder, etc. The method of doing is mentioned. By these methods, the pulp is defibrated or refined into microfibrillated plant fibers. A preferable temperature in the defibrating treatment is 0 to 99 ° C, more preferably 0 to 90 ° C. It is desirable that the pulp that is the raw material for the defibrating process has a shape (for example, a powder form) suitable for the defibrating process. In addition, it is advantageous in terms of reducing the defibrating energy when the pulp is steamed with steam (for example, heated in a pressure cooker in the presence of moisture) prior to the defibrating treatment.

好ましい解繊方法は磨砕処理であり、石臼式磨砕機、二軸混練押出機を用いることが好ましい。磨砕は繊維径が所望の大きさになるまで行えばよい。   A preferable defibrating method is grinding treatment, and it is preferable to use a stone mill type grinding machine or a twin screw kneading extruder. The grinding may be performed until the fiber diameter reaches a desired size.

製造方法1及び2の工程(c1)において得られる分散液は、酸により凝固させ、その後、乾燥させる。   The dispersion obtained in step (c1) of production methods 1 and 2 is solidified with an acid and then dried.

分散液中の固形分を凝固させる際の酸は、ギ酸、酢酸、塩酸、硫酸等が挙げられる。   Examples of the acid for solidifying the solid content in the dispersion include formic acid, acetic acid, hydrochloric acid, and sulfuric acid.

前記の方法により得られるゴム組成物(マスターバッチ)は、さらに、カーボンブラック、シリカ等の補強用充填剤;シランカップリング剤等のシラン化合物;プロセスオイル;ワックス;老化防止剤;硫黄及び加硫促進剤等の加硫剤;酸化亜鉛、ステアリン酸等の加硫助剤等を適宜配合することができる。   The rubber composition (masterbatch) obtained by the above method further comprises reinforcing fillers such as carbon black and silica; silane compounds such as silane coupling agents; process oils; waxes; anti-aging agents; sulfur and vulcanization. Vulcanizing agents such as accelerators; vulcanizing aids such as zinc oxide and stearic acid can be appropriately blended.

本発明のゴム組成物は、ゴム成分(A)中にレゾール樹脂(C)を介してミクロフィブリル化植物繊維(B)が良好に分散される。そのため、破断特性及び剛性が向上する。よって、タイヤ用として好適に用いられ、タイヤ用として用いた場合、低燃費特性を低下させずに、かつ操縦安定性を向上させることができる。   In the rubber composition of the present invention, the microfibrillated plant fiber (B) is well dispersed in the rubber component (A) through the resol resin (C). Therefore, the fracture characteristics and rigidity are improved. Therefore, it is suitably used for tires, and when used for tires, it is possible to improve steering stability without deteriorating low fuel consumption characteristics.

本発明のゴム組成物をタイヤ用として用いる場合、バンバリーミキサーやニーダー、オープンロール等で前記で調製したゴム成分(A)、ミクロフィブリル化植物繊維(B)及びレゾール樹脂(C)を含有するゴム組成物に、さらに、所望の添加剤を混練したのち、加硫することによりゴム組成物を製造することができる。   When the rubber composition of the present invention is used for tires, rubber containing the rubber component (A), microfibrillated plant fiber (B), and resole resin (C) prepared as described above with a Banbury mixer, kneader, open roll or the like A rubber composition can be produced by further kneading a desired additive into the composition and then vulcanizing it.

また、本発明は、前記ゴム組成物を用いた空気入りタイヤにも関する。   The present invention also relates to a pneumatic tire using the rubber composition.

空気入りタイヤは、本発明のゴム組成物を用いて通常の方法で製造される。すなわち、本発明のゴム組成物にさらに、所望の配合剤を配合して混練し、得られる混練物を、未加硫の段階でタイヤの各種部材の形状にあわせて押出し加工し、タイヤ成形機上にて通常の方法で成形することにより、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧することによりタイヤを得ることができる。   A pneumatic tire is manufactured by a normal method using the rubber composition of the present invention. That is, the rubber composition of the present invention is further mixed with a desired compounding agent and kneaded, and the resulting kneaded product is extruded in accordance with the shape of various members of the tire at an unvulcanized stage. An unvulcanized tire is formed by molding in the usual manner. A tire can be obtained by heating and pressurizing this unvulcanized tire in a vulcanizer.

本発明のゴム組成物は、レゾール樹脂及びミクロフィブリル化植物繊維を含有するため、ゴム成分とセルロースとの界面がレゾール樹脂を介して部分的に化学的に結合するため、ゴム成分とミクロフィブリル化植物繊維との界面相互作用が改善され、また、ミクロフィブリル化植物繊維のゴム成分への分散性が良好となる。そのため、ゴム組成物の破断特性が向上する。このようなゴム組成物を空気入りタイヤに用いた場合、低燃費性を低下させずに、剛性の向上により、操縦安定性を改善することが可能となる。   Since the rubber composition of the present invention contains a resole resin and microfibrillated plant fibers, the interface between the rubber component and cellulose is partially chemically bonded through the resole resin. Interfacial interaction with plant fibers is improved, and the dispersibility of the microfibrillated plant fibers in the rubber component is improved. Therefore, the breaking characteristics of the rubber composition are improved. When such a rubber composition is used for a pneumatic tire, it is possible to improve steering stability by improving rigidity without reducing fuel efficiency.

[実施例]
以下に実施例及び比較例を示して、本発明をさらに具体的に説明する。なお、本発明は、以下の実施形態に限定されるものではない。
[Example]
The present invention will be described more specifically with reference to the following examples and comparative examples. In addition, this invention is not limited to the following embodiment.

<レゾール樹脂-ゴム分散体1の調製>
水酸化ナトリウム0.5gを水242.2gに溶解し、さらにホルマリン(濃度:37重量%のホルムアルデヒド水溶液)16.2g及びレゾルシン11.0gを添加し、均一化させ、30℃で5時間熟成させることでA液を得た。ついでA液80.0gと天然ゴムラテックス64.8g(ゴールデン・ホープ・プランテーションズ社製、HYTEX-HA、固形分60重量%)及び水63.8gを撹拌混合し、30℃で1時間熟成することでレゾール樹脂-ゴム分散体1を得た。
<Preparation of Resole Resin-Rubber Dispersion 1>
Dissolve 0.5 g of sodium hydroxide in 242.2 g of water, and then add 16.2 g of formalin (concentration: 37% by weight formaldehyde aqueous solution) and 11.0 g of resorcin, homogenize, and aged at 30 ° C for 5 hours to liquid A Got. Next, 80.0 g of Liquid A, 64.8 g of natural rubber latex (Golden Hope Plantations, HYTEX-HA, solid content 60% by weight) and 63.8 g of water were mixed with stirring and aged for 1 hour at 30 ° C. A resin-rubber dispersion 1 was obtained.

<レゾール樹脂-ゴム分散体2の調製>
水酸化ナトリウム1.0gを水368.5gに溶解し、さらにホルマリン(濃度:37重量%のホルムアルデヒド水溶液)26.5g及びレゾルシン17.0gを添加し、均一化させ、25℃で8時間熟成させることでA液を得た。ついでA液全量と変性スチレンブタジエンゴムラテックス259.7g(日本エイアンドエル株式会社製、PYRATEX、固形分41重量%)、スチレンブタジエンゴムラテックス114.1g(JSR株式会社製、JSR2108、固形分40重量%)及び水213.2gを撹拌混合し、25℃で1時間熟成することでレゾール樹脂-ゴム分散体2を得た。
<Preparation of resole resin-rubber dispersion 2>
Dissolve 1.0g of sodium hydroxide in 368.5g of water, add 26.5g of formalin (formaldehyde aqueous solution with a concentration of 37% by weight) and 17.0g of resorcin, homogenize it, and age for 8 hours at 25 ° C Got. Next, the total amount of solution A, 259.7 g of modified styrene butadiene rubber latex (manufactured by Nippon A & L Co., Ltd., PYRATEX, solid content 41 wt%), 114.1 g of styrene butadiene rubber latex (JSR Corp., JSR 2108, solid content 40 wt%) and water 213.2 g was stirred and mixed, and aged at 25 ° C. for 1 hour to obtain a resole resin-rubber dispersion 2.

<ミクロフィブリル化植物繊維の調製>
パルプ(針葉樹由来非漂白クラフトパルプ(リグニン5〜7重量%))、若しくは当該パルプとレゾール樹脂−ゴム分散体1、又は当該パルプとレゾール樹脂−ゴム分散体2の混合物を固形分が30重量%になるように調整し、400rpm、0℃の操業条件の二軸混練押出機で処理することでミクロフィブリル化植物繊維1、2及び3を調製した。ミクロフィブリル化植物繊維1及び2の配合量を表1に示す。なお、ミクロフィブリル化植物繊維2におけるレゾール樹脂−ゴム分散体中のレゾール樹脂の含有割合は1.0重量%であり、天然ゴムの含有割合は8.1重量%、ミクロフィブリル化植物繊維3におけるレゾール樹脂−ゴム分散体中のレゾール樹脂の含有割合は1.6重量%であり、合成ゴムの含有割合は8.9重量%であった。
<Preparation of microfibrillated plant fiber>
Pulp (unbleached kraft pulp derived from conifers (lignin 5-7 wt%)), or a mixture of the pulp and resole resin-rubber dispersion 1, or a mixture of the pulp and resole resin-rubber dispersion 2 with a solid content of 30 wt% Then, microfibrillated plant fibers 1, 2 and 3 were prepared by processing with a twin-screw kneading extruder under the operating conditions of 400 rpm and 0 ° C. Table 1 shows the blending amounts of microfibrillated plant fibers 1 and 2. In addition, the content ratio of the resole resin in the resole resin-rubber dispersion in the microfibrillated plant fiber 2 is 1.0% by weight, the content ratio of the natural rubber is 8.1% by weight, and in the microfibrillated plant fiber 3 The content of resole resin in the resole resin-rubber dispersion was 1.6% by weight, and the content of synthetic rubber was 8.9% by weight.

Figure 2011096393
Figure 2011096393

<マスターバッチの調製>
マスターバッチ1の調製
50gのミクロフィブリル化植物繊維1(固形分濃度:30重量%)を1450gの水中に高速ホモジナイザー(IKA製バッチ式ホモジナイザーT65Dウルトラタラックス(Ultraturrax T25))を用いて24,000rpm、1時間撹拌分散させ、ついで250gの天然ゴムラテックス(ゴールデン・ホープ・プランテーションズ社製、HYTEX-HA、固形分濃度:60重量%)を添加し、さらに24,000rpm、30分撹拌分散させ分散液を調製した。得られた分散液を5重量%ギ酸水溶液で凝固、水洗後、40℃の加熱オーブン中で乾燥させることでマスターバッチ1を得た。
<Preparation of master batch>
Preparation of masterbatch 1
50 g of microfibrillated plant fiber 1 (solid content: 30% by weight) was stirred and dispersed in 1450 g of water using a high-speed homogenizer (IKA batch homogenizer T65D Ultra Turrax (Ultraturrax T25)) for 1 hour. Then, 250 g of natural rubber latex (Golden Hope Plantations, HYTEX-HA, solid content concentration: 60% by weight) was added, and the mixture was further stirred and dispersed at 24,000 rpm for 30 minutes to prepare a dispersion. The obtained dispersion was coagulated with a 5 wt% formic acid aqueous solution, washed with water, and then dried in a heating oven at 40 ° C. to obtain a master batch 1.

マスターバッチ2の調製
レゾール樹脂−ゴム分散体1を含有するミクロフィブリル化植物繊維2を用いて、分散液を調製し、得られた分散液を5重量%ギ酸水溶液で凝固、水洗後、40℃の加熱オーブン中で乾燥させた以外はマスターバッチ1と同様の方法で調製した。
Preparation of masterbatch 2 A dispersion is prepared using microfibrillated plant fiber 2 containing resole resin-rubber dispersion 1. The resulting dispersion is coagulated with 5% by weight aqueous formic acid, washed with water, It was prepared in the same manner as Masterbatch 1 except that it was dried in a heating oven at 0 ° C.

マスターバッチ3の調製
レゾール樹脂−ゴム分散体2を含有するミクロフィブリル化植物繊維3を用いて、分散液を調製し、得られた分散液を5重量%ギ酸水溶液で凝固、水洗後、40℃の加熱オーブン中で乾燥させた以外はマスターバッチ1と同様の方法で調製した。
-Preparation of masterbatch 3 A dispersion was prepared using microfibrillated plant fiber 3 containing resole resin-rubber dispersion 2, and the resulting dispersion was coagulated with a 5 wt% aqueous formic acid solution, washed with water, It was prepared in the same manner as Masterbatch 1 except that it was dried in a heating oven at 0 ° C.

マスターバッチ4の調製
ミクロフィブリル化植物繊維を使用せず、固形分濃度:60重量%の天然ゴムラテックス(ゴールデン・ホープ・プランテーションズ社製、HYTEX-HA)250gを5重量%ギ酸水溶液で凝固、水洗後、40℃の加熱オーブン中で乾燥させることでマスターバッチ4を得た。
Preparation of masterbatch 4 Without using microfibrillated plant fibers, solid rubber concentration: 60% natural rubber latex (HYTEX-HA, manufactured by Golden Hope Plantations, Inc.) was coagulated with 5% by weight aqueous formic acid solution. After washing with water, drying in a heating oven at 40 ° C. gave a master batch 4.

マスターバッチ5の調製
25gのミクロフィブリル化植物繊維1(固形分濃度:30重量%)を725gの水中に高速ホモジナイザー(IKA製バッチ式ホモジナイザーT65Dウルトラタラックス(Ultraturrax T25))を用いて24,000rpm、1時間撹拌分散させ、ついで250gの天然ゴムラテックス(ゴールデン・ホープ・プランテーションズ社製、HYTEX-HA、固形分濃度:60重量%)を添加し、さらに24,000rpm、30分撹拌分散させ分散液を調製した。得られた分散液を5重量%ギ酸水溶液で凝固、水洗後、40℃の加熱オーブン中で乾燥させることでマスターバッチ5を得た。
Preparation of masterbatch 5
25 g of microfibrillated plant fiber 1 (solid content: 30% by weight) was stirred and dispersed in 725 g of water using a high-speed homogenizer (IKA batch homogenizer T65D Ultra Turrax (Ultraturrax T25)) for 1 hour. Then, 250 g of natural rubber latex (Golden Hope Plantations, HYTEX-HA, solid content concentration: 60% by weight) was added, and the mixture was further stirred and dispersed at 24,000 rpm for 30 minutes to prepare a dispersion. The obtained dispersion was coagulated with a 5 wt% aqueous formic acid solution, washed with water, and then dried in a heating oven at 40 ° C. to obtain a master batch 5.

マスターバッチ6の調製
レゾール樹脂−ゴム分散体1を含有するミクロフィブリル化植物繊維2を用いて、分散液を調製し、得られた分散液を5重量%ギ酸水溶液で凝固、水洗後、40℃の加熱オーブン中で乾燥させた以外はマスターバッチ5と同様の方法で調製した。
-Preparation of masterbatch 6 A dispersion was prepared using microfibrillated plant fiber 2 containing resole resin-rubber dispersion 1, and the resulting dispersion was coagulated with a 5 wt% aqueous formic acid solution, washed with water, It was prepared in the same manner as Masterbatch 5 except that it was dried in a heating oven at 0 ° C.

マスターバッチ7の調製
レゾール樹脂−ゴム分散体2を含有するミクロフィブリル化植物繊維3を用いて、分散液を調製し、得られた分散液を5重量%ギ酸水溶液で凝固、水洗後、40℃の加熱オーブン中で乾燥させた以外はマスターバッチ5と同様の方法で調製した。
Preparation of Masterbatch 7 A dispersion was prepared using microfibrillated plant fiber 3 containing resole resin-rubber dispersion 2, and the resulting dispersion was coagulated with a 5 wt% aqueous formic acid solution, washed with water, It was prepared in the same manner as Masterbatch 5 except that it was dried in a heating oven at 0 ° C.

マスターバッチ8の調製
50gのミクロフィブリル化植物繊維1(固形分濃度:30重量%)と7.1gのレゾール樹脂−ゴム分散体1を1450gの水中に高速ホモジナイザー(IKA製バッチ式ホモジナイザーT65Dウルトラタラックス(Ultraturrax T25))を用いて24,000rpm、1時間撹拌分散させ、ついで250gの天然ゴムラテックス(ゴールデン・ホープ・プランテーションズ社製、HYTEX-HA、固形分濃度:60重量%)を添加し、さらに24,000rpm、30分撹拌分散させ分散液を調製した。得られた分散液を5重量%ギ酸水溶液で凝固、水洗後、40℃の加熱オーブン中で乾燥させることでマスターバッチ1を得た。
Preparation of masterbatch 8
50 g of microfibrillated plant fiber 1 (solid content: 30% by weight) and 7.1 g of resole resin-rubber dispersion 1 in 1450 g of water in a high speed homogenizer (IKA batch homogenizer T65D Ultra Turrax (Ultraturrax T25)) 24,000 rpm for 1 hour with stirring, and then 250 g of natural rubber latex (Golden Hope Plantations, HYTEX-HA, solid content: 60% by weight) is added, and further 24,000 rpm, 30 minutes A dispersion was prepared by stirring and dispersing. The obtained dispersion was coagulated with a 5 wt% formic acid aqueous solution, washed with water, and then dried in a heating oven at 40 ° C. to obtain a master batch 1.

マスターバッチ9の調製
8.3gのレゾール樹脂−ゴム分散体2を使用する以外はマスターバッチ8と同様の方法で調製した。
Preparation of masterbatch 9
It was prepared in the same manner as Masterbatch 8 except that 8.3 g of resole resin-rubber dispersion 2 was used.

マスターバッチ10の調製
25gのミクロフィブリル化植物繊維1(固形分濃度:30重量%)と3.6gのレゾール樹脂−ゴム分散体1を725gの水中に高速ホモジナイザー(IKA製バッチ式ホモジナイザーT65Dウルトラタラックス(Ultraturrax T25))を用いて24,000rpm、1時間撹拌分散させ、ついで250gの天然ゴムラテックス(ゴールデン・ホープ・プランテーションズ社製、HYTEX-HA、固形分濃度:60重量%)を添加し、さらに24,000rpm、30分撹拌分散させ分散液を調製した。得られた分散液を5重量%ギ酸水溶液で凝固、水洗後、40℃の加熱オーブン中で乾燥させることでマスターバッチ5を得た。
-Preparation of masterbatch 10
High-speed homogenizer (IKA batch homogenizer T65D Ultra Turrax (Ultraturrax T25)) in 25 g of water with 25 g of microfibrillated plant fiber 1 (solid content: 30% by weight) and 3.6 g of resole resin-rubber dispersion 1 24,000 rpm for 1 hour with stirring, and then 250 g of natural rubber latex (Golden Hope Plantations, HYTEX-HA, solid content: 60% by weight) is added, and further 24,000 rpm, 30 minutes A dispersion was prepared by stirring and dispersing. The obtained dispersion was coagulated with a 5 wt% aqueous formic acid solution, washed with water, and then dried in a heating oven at 40 ° C. to obtain a master batch 5.

マスターバッチ11の調製
4.2gのレゾール樹脂−ゴム分散体2を使用する以外はマスターバッチ8と同様の方法で調製した。
-Preparation of masterbatch 11
It was prepared in the same manner as Masterbatch 8 except that 4.2 g of resole resin-rubber dispersion 2 was used.

<加硫ゴム組成物の調製>
各種マスターバッチと配合剤を60℃、24rpmの条件で6インチオープンロールにより5分間混練した後、150℃でプレス加熱することで比較例1及び2、実施例1〜8及び参考例1に対応する加硫ゴム組成物を得た。表2及び3に各種マスターバッチと配合剤の配合割合を示す。なお、実施例1、3、5、及び7における天然ゴムの配合量は、ゴムラテックス中の天然ゴム及びミクロフィブリル化植物繊維2中の天然ゴムの合計量を表し、ミクロフィブリル化植物繊維2中の天然ゴムは、天然ゴムの合計量中、0.9重量%(実施例1及び5)、0.4重量%(実施例3及び7)含有する。同様に実施例2、4、6、及び8における合成ゴムの配合量は、ゴムラテックス中の合成ゴム及びミクロフィブリル化植物繊維3中の合成ゴムの合計量を表し、ミクロフィブリル化植物繊維3中の合成ゴムは、天然ゴムと合成ゴムの合計量中、1.0重量%(実施例2及び6)、0.5重量%(実施例4及び8)含有する。
<Preparation of vulcanized rubber composition>
Various master batches and compounding agents were kneaded for 5 minutes with a 6-inch open roll at 60 ° C. and 24 rpm, and then press heated at 150 ° C. to correspond to Comparative Examples 1 and 2, Examples 1 to 8 and Reference Example 1. A vulcanized rubber composition was obtained. Tables 2 and 3 show the mixing ratios of various master batches and compounding agents. In addition, the compounding amount of natural rubber in Examples 1, 3, 5, and 7 represents the total amount of natural rubber in rubber latex and natural rubber in microfibrillated plant fiber 2, and in microfibrillated plant fiber 2 These natural rubbers contain 0.9% by weight (Examples 1 and 5) and 0.4% by weight (Examples 3 and 7) in the total amount of natural rubber. Similarly, the compounding amount of the synthetic rubber in Examples 2, 4, 6, and 8 represents the total amount of the synthetic rubber in the rubber latex and the synthetic rubber in the microfibrillated plant fiber 3, and the microfibrillated plant fiber 3 This synthetic rubber contains 1.0% by weight (Examples 2 and 6) and 0.5% by weight (Examples 4 and 8) in the total amount of natural rubber and synthetic rubber.

Figure 2011096393
Figure 2011096393

Figure 2011096393
Figure 2011096393

表2及び表3中の各配合成分の詳細を以下に示す。 The detail of each compounding component in Table 2 and Table 3 is shown below.

老化防止剤:ノクラック6C(大内新興化学工業(株)製)
ステアリン酸:ビーズステアリン酸つばき(日本油脂(株)製)
酸化亜鉛:酸化亜鉛2種(三井金属鉱業(株)製)
硫黄:粉末硫黄(鶴見化学工業(株)製)
加硫促進剤:ノクセラーDM(大内新興化学工業(株)製)
Anti-aging agent: NOCRACK 6C (Ouchi Shinsei Chemical Co., Ltd.)
Stearic acid: Bead stearic acid Tsubaki (manufactured by NOF Corporation)
Zinc oxide: 2 types of zinc oxide (Mitsui Metal Mining Co., Ltd.)
Sulfur: Powdered sulfur (manufactured by Tsurumi Chemical Co., Ltd.)
Vulcanization accelerator: Noxeller DM (Ouchi Shinsei Chemical Co., Ltd.)

<実施例1〜8、比較例1〜2及び参考例1>
上記の方法で作製した加硫ゴム組成物を用い、以下に示す評価を行った。なお、表4及び表5に示す特性データ中の引張強度指数、破断伸び指数、破壊エネルギー指数、操縦安定性指数、転がり抵抗指数については、参考例1を基準配合とし、下記記載の計算式で算出した。
<Examples 1-8, Comparative Examples 1-2, and Reference Example 1>
The following evaluation was performed using the vulcanized rubber composition produced by the above method. The tensile strength index, breaking elongation index, fracture energy index, steering stability index, and rolling resistance index in the characteristic data shown in Table 4 and Table 5 are based on Reference Example 1 and the following formula: Calculated.

(引張試験)
JIS K6251「加硫ゴム及び熱可塑性ゴム−引張特性の求め方」に従い、引張強度及び破断伸びを測定した。下記の計算式、
引張強度指数=(各配合の破断応力)÷(基準配合の破断応力)×100
破断伸び指数=(各配合の破断伸び)÷(基準配合の破断伸び)×100
破壊エネルギー指数=(各配合の破断応力×破断伸び÷2)÷(基準配合の破断応力×破断伸び÷2)×100により引張強度指数、破断伸び指数、破壊エネルギー指数を算出した。指数が大きい程、加硫ゴム組成物が良好に補強されており、ゴムの機械強度が大きく、破壊特性に優れることを示す。
(Tensile test)
Tensile strength and elongation at break were measured according to JIS K6251 “Vulcanized rubber and thermoplastic rubber-Determination of tensile properties”. The following formula:
Tensile strength index = (breaking stress of each compound) ÷ (breaking stress of standard compound) × 100
Breaking elongation index = (breaking elongation of each compound) ÷ (breaking elongation of the standard compound) × 100
Tensile strength index, breaking elongation index, and breaking energy index were calculated according to the following formula: Fracture energy index = (Breaking stress of each formulation × Breaking elongation ÷ 2) ÷ (Breaking stress of reference blend × Breaking elongation ÷ 2) × 100. The larger the index, the better the vulcanized rubber composition is reinforced, and the higher the mechanical strength of the rubber, the better the fracture characteristics.

(操縦安定性指数,転がり抵抗指数)
前述の方法で調製された加硫ゴム組成物の2mmゴムスラブシートから測定用試験片を切り出し、粘弾性スペクトロメータVES((株)岩本製作所製)を用いて、温度70℃、初期歪10%、動歪2%、周波数10Hzの条件下で、各測定用試験片のE*(複素弾性率)及びtanδ(損失正接)を測定した。下記の計算式、
操縦安定性指数=(各配合のE*)÷(基準配合のE*)×100
転がり抵抗指数=(各配合のtanδ)÷(基準配合のtanδ)×100
により操縦安定性指数、転がり抵抗指数を算出した。
(Maneuvering stability index, rolling resistance index)
A test specimen for measurement was cut out from a 2 mm rubber slab sheet of the vulcanized rubber composition prepared by the above-described method, and the temperature was 70 ° C. and the initial strain was 10% using a viscoelastic spectrometer VES (manufactured by Iwamoto Seisakusho). E * (complex elastic modulus) and tan δ (loss tangent) of each test specimen were measured under the conditions of dynamic strain 2% and frequency 10 Hz. The following formula:
Steering stability index = (E * for each formulation) ÷ (E * for standard formulation) x 100
Rolling resistance index = (tan δ of each formulation) ÷ (tan δ of standard formulation) × 100
The steering stability index and rolling resistance index were calculated.

操縦安定性指数が大きい程、空気入りタイヤとして用いる場合に良好な操縦安定性を与え、転がり抵抗指数が小さい程、空気入りタイヤとして用いる場合に良好な転がり抵抗特性を与えることを示す。   The larger the steering stability index, the better the steering stability when used as a pneumatic tire, and the smaller the rolling resistance index, the better the rolling resistance characteristic when used as a pneumatic tire.

Figure 2011096393
Figure 2011096393

Figure 2011096393
Figure 2011096393

Claims (13)

(A)ゴム成分、
(B)パルプを機械的に解繊処理することにより得られるミクロフィブリル化植物繊維、及び
(C)レゾール樹脂を含有するゴム組成物。
(A) rubber component,
(B) A rubber composition containing microfibrillated plant fibers obtained by mechanically defibrating pulp, and (C) a resole resin.
レゾール樹脂(C)が、ヒドロキシル基を少なくとも1個有するベンゼンとホルムアルデヒドの重合により得られる請求項1に記載のゴム組成物。 The rubber composition according to claim 1, wherein the resol resin (C) is obtained by polymerization of benzene having at least one hydroxyl group and formaldehyde. ヒドロキシル基を少なくとも1個有するベンゼンがレゾルシンである請求項2に記載のゴム組成物。 The rubber composition according to claim 2, wherein the benzene having at least one hydroxyl group is resorcin. ミクロフィブリル化植物繊維(B)の含有量が、ゴム成分(A)100重量部に対して、1〜50重量部である請求項1〜3のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 3, wherein the content of the microfibrillated plant fiber (B) is 1 to 50 parts by weight with respect to 100 parts by weight of the rubber component (A). レゾール樹脂(C)の含有量が、ゴム成分(A)100重量部に対して、0.01〜5重量部である請求項1〜4のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 4, wherein the content of the resol resin (C) is 0.01 to 5 parts by weight with respect to 100 parts by weight of the rubber component (A). ミクロフィブリル化植物繊維(B)における機械的な解繊処理が磨砕処理である請求項1〜5のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 5, wherein the mechanical fibrillation treatment in the microfibrillated plant fiber (B) is a grinding treatment. ミクロフィブリル化植物繊維(B)の平均繊維径が、10μm以下である請求項1〜6のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 6, wherein the average fiber diameter of the microfibrillated plant fiber (B) is 10 µm or less. タイヤ用に用いられる請求項1〜7のいずれかに記載のゴム組成物。 The rubber composition according to any one of claims 1 to 7, which is used for tires. ゴムラテックス成分全体に対して1〜60重量%のゴム成分を含有するゴムラテックスと、ヒドロキシル基を少なくとも1個有するベンゼン及びホルムアルデヒドを含有する溶液を配合し、レゾール樹脂−ゴム分散体を得る工程(a1)、
工程(a1)によって得られるレゾール樹脂−ゴム分散体とパルプを混合した後、機械的に解繊処理し、レゾール樹脂−ゴム分散体含有ミクロフィブリル化植物繊維を得る工程(b1)、
工程(b1)によって得られるレゾール樹脂−ゴム分散体含有ミクロフィブリル化植物繊維と、ゴムラテックス成分全体に対して1〜60重量%のゴム成分を含有するゴムラテックスを混合し、分散液を得る工程(c1)、及び
工程(c1)により得られる分散液を凝固した後、乾燥させ、マスターバッチを得る工程(d1)を含む
請求項1〜8のいずれかに記載のゴム組成物の製造方法。
A step of blending a rubber latex containing 1 to 60% by weight of a rubber component with respect to the whole rubber latex component and a solution containing benzene and formaldehyde having at least one hydroxyl group to obtain a resole resin-rubber dispersion ( a1),
Step (b1) of obtaining resole resin-rubber dispersion-containing microfibrillated plant fiber by mechanically defibrating after mixing the resole resin-rubber dispersion obtained in step (a1) and pulp.
A step of mixing a resol resin-rubber dispersion-containing microfibrillated plant fiber obtained by the step (b1) and a rubber latex containing 1 to 60% by weight of a rubber component with respect to the entire rubber latex component to obtain a dispersion. The manufacturing method of the rubber composition in any one of Claims 1-8 including the process (d1) which solidifies the dispersion liquid obtained by (c1) and a process (c1), and is made to dry and obtains a masterbatch.
ゴムラテックス成分全体に対して1〜60重量%のゴム成分を含有するゴムラテックスと、ヒドロキシル基を少なくとも1個有するベンゼン及びホルムアルデヒドを含有する溶液を配合し、レゾール樹脂−ゴム分散体を得る工程(a1)、
パルプを機械的に解繊処理しミクロフィブリル化植物繊維を得た後、ミクロフィブリル化植物繊維と工程(a1)によって得られたレゾール樹脂−ゴム分散体を混合し、レゾール樹脂−ゴム分散体含有ミクロフィブリル化植物繊維を得る工程(b2)、
工程(b2)によって得られたレゾール樹脂−ゴム分散体含有ミクロフィブリル化植物繊維と、ゴムラテックス成分全体に対して1〜60重量%のゴム成分を含有するゴムラテックスを混合し、分散液を得る工程(c1)、並びに
工程(c1)により得られる分散液を凝固した後、乾燥させ、マスターバッチを得る工程(d1)を含む
請求項1〜8のいずれかに記載のゴム組成物の製造方法。
A step of blending a rubber latex containing 1 to 60% by weight of a rubber component with respect to the whole rubber latex component and a solution containing benzene and formaldehyde having at least one hydroxyl group to obtain a resole resin-rubber dispersion ( a1),
After the pulp is mechanically defibrated to obtain microfibrillated plant fibers, the microfibrillated plant fibers and the resole resin-rubber dispersion obtained in the step (a1) are mixed, and the resole resin-rubber dispersion is contained. Obtaining a microfibrillated plant fiber (b2),
The resole resin-rubber dispersion-containing microfibrillated plant fiber obtained in the step (b2) and the rubber latex containing 1 to 60% by weight of the rubber component with respect to the entire rubber latex component are mixed to obtain a dispersion. The method for producing a rubber composition according to any one of claims 1 to 8, comprising a step (d1) of solidifying the dispersion obtained by the step (c1) and the step (c1) and then drying to obtain a master batch. .
工程(b1)における機械的な解繊処理が磨砕処理である請求項9に記載のゴム組成物の製造方法。 The method for producing a rubber composition according to claim 9, wherein the mechanical defibrating process in the step (b1) is a grinding process. 工程(b2)における機械的な解繊処理が磨砕処理である請求項10に記載のゴム組成物の製造方法。 The method for producing a rubber composition according to claim 10, wherein the mechanical defibrating process in the step (b2) is a grinding process. 請求項1〜8のいずれかに記載のゴム組成物を用いた空気入りタイヤ。 A pneumatic tire using the rubber composition according to claim 1.
JP2011552783A 2010-02-02 2011-02-01 Rubber composition and method for producing the same Active JP5846919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011552783A JP5846919B2 (en) 2010-02-02 2011-02-01 Rubber composition and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010020915 2010-02-02
JP2010020915 2010-02-02
JP2011552783A JP5846919B2 (en) 2010-02-02 2011-02-01 Rubber composition and method for producing the same
PCT/JP2011/052026 WO2011096393A1 (en) 2010-02-02 2011-02-01 Rubber composition and manufacturing method for same

Publications (2)

Publication Number Publication Date
JPWO2011096393A1 true JPWO2011096393A1 (en) 2013-06-10
JP5846919B2 JP5846919B2 (en) 2016-01-20

Family

ID=44355391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011552783A Active JP5846919B2 (en) 2010-02-02 2011-02-01 Rubber composition and method for producing the same

Country Status (2)

Country Link
JP (1) JP5846919B2 (en)
WO (1) WO2011096393A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5865063B2 (en) * 2011-12-22 2016-02-17 三菱化学株式会社 Method for producing rubber composition
JP5616369B2 (en) * 2012-01-24 2014-10-29 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire
JP5933302B2 (en) * 2012-03-16 2016-06-08 住友ゴム工業株式会社 Rubber composition for tire, method for producing the same, and pneumatic tire
JP5966859B2 (en) * 2012-10-30 2016-08-10 王子ホールディングス株式会社 Method for producing fine cellulose fiber dispersion
JP6425260B2 (en) * 2012-11-29 2018-11-21 西川ゴム工業株式会社 Method of producing elastomer composition
JP5814410B2 (en) 2014-03-17 2015-11-17 住友ゴム工業株式会社 Rubber composition for studless tire and studless tire
JP6590456B2 (en) * 2015-04-28 2019-10-16 バンドー化学株式会社 Manufacturing method of rubber composition and manufacturing method of power transmission belt
JP6832110B2 (en) * 2016-09-30 2021-02-24 日本製紙株式会社 Masterbatch manufacturing method
JP2020041076A (en) 2018-09-12 2020-03-19 住友ゴム工業株式会社 Tire rubber composition and tire
JP7470938B2 (en) 2019-10-09 2024-04-19 横浜ゴム株式会社 Surface Treatment Nano Cellulose Masterbatch
JP7283667B2 (en) * 2021-04-07 2023-05-30 横浜ゴム株式会社 Nano cellulose masterbatch
JP7255625B2 (en) * 2021-04-07 2023-04-11 横浜ゴム株式会社 Nanocellulose masterbatch and manufacturing method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026827A (en) * 1998-07-13 2000-01-25 Bridgestone Corp Adhesive composition and preparation thereof
JP2000319451A (en) * 1999-05-12 2000-11-21 Sumitomo Rubber Ind Ltd Tread rubber composition and studless tire
JP2002348411A (en) * 2001-05-24 2002-12-04 Toyo Tire & Rubber Co Ltd Rubber composition and pneumatic tire
JP2005075856A (en) * 2003-08-28 2005-03-24 Sumitomo Rubber Ind Ltd Rubber composition for tire
JP2005344087A (en) * 2004-06-07 2005-12-15 Toyo Tire & Rubber Co Ltd High-damping rubber composition and earthquake-proof structure using the same
JP2006306955A (en) * 2005-04-27 2006-11-09 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire given by using the same
JP2007112834A (en) * 2005-10-18 2007-05-10 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire by using the same
WO2008010531A1 (en) * 2006-07-19 2008-01-24 Bridgestone Corporation Pneumatic tire
JP2008179732A (en) * 2007-01-25 2008-08-07 Bridgestone Corp Rubber cement composition
JP2009019200A (en) * 2007-06-11 2009-01-29 Kyoto Univ Vegetable fiber turned into lignin-including microfibril and its manufacturing method
JP2009091388A (en) * 2007-10-04 2009-04-30 Oji Paper Co Ltd Filler composition
JP2009143981A (en) * 2007-12-11 2009-07-02 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire using it

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3998692B2 (en) * 2004-12-27 2007-10-31 横浜ゴム株式会社 Rubber / short fiber masterbatch, production method thereof, and pneumatic tire using the masterbatch

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026827A (en) * 1998-07-13 2000-01-25 Bridgestone Corp Adhesive composition and preparation thereof
JP2000319451A (en) * 1999-05-12 2000-11-21 Sumitomo Rubber Ind Ltd Tread rubber composition and studless tire
JP2002348411A (en) * 2001-05-24 2002-12-04 Toyo Tire & Rubber Co Ltd Rubber composition and pneumatic tire
JP2005075856A (en) * 2003-08-28 2005-03-24 Sumitomo Rubber Ind Ltd Rubber composition for tire
JP2005344087A (en) * 2004-06-07 2005-12-15 Toyo Tire & Rubber Co Ltd High-damping rubber composition and earthquake-proof structure using the same
JP2006306955A (en) * 2005-04-27 2006-11-09 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire given by using the same
JP2007112834A (en) * 2005-10-18 2007-05-10 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire by using the same
WO2008010531A1 (en) * 2006-07-19 2008-01-24 Bridgestone Corporation Pneumatic tire
JP2008179732A (en) * 2007-01-25 2008-08-07 Bridgestone Corp Rubber cement composition
JP2009019200A (en) * 2007-06-11 2009-01-29 Kyoto Univ Vegetable fiber turned into lignin-including microfibril and its manufacturing method
JP2009091388A (en) * 2007-10-04 2009-04-30 Oji Paper Co Ltd Filler composition
JP2009143981A (en) * 2007-12-11 2009-07-02 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire using it

Also Published As

Publication number Publication date
WO2011096393A1 (en) 2011-08-11
JP5846919B2 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
JP5846919B2 (en) Rubber composition and method for producing the same
JP5717656B2 (en) Rubber composition
JP5676909B2 (en) Rubber composition and method for producing rubber composition
JP5595103B2 (en) Rubber composition and method for producing rubber composition
JP6543086B2 (en) Rubber composition, rubber composition for tire and pneumatic tire
US9896553B2 (en) Method for manufacturing rubber composition, rubber composition, vulcanized rubber, and tire
JP5616372B2 (en) Rubber composition for tire, method for producing the same, and pneumatic tire
JP5865063B2 (en) Method for producing rubber composition
JP5933302B2 (en) Rubber composition for tire, method for producing the same, and pneumatic tire
EP3483186B1 (en) Modified cellulose nanofiber and rubber composition including the same
JP6193581B2 (en) Rubber composition for tire and pneumatic tire
JP5616369B2 (en) Rubber composition for tire and pneumatic tire
JP7029125B2 (en) Method for manufacturing composite materials
JP2015209536A (en) Tire rubber composition and pneumatic tire
EP2620295B1 (en) Rubber composition for tire, method of producing the same, and pneumatic tire
JP5595104B2 (en) Rubber composition and tire using the same
JP6353169B2 (en) Rubber composition and pneumatic tire
JP2015010136A (en) Rubber composition for tire, and pneumatic tire using the same
JP6021877B2 (en) Rubber composition and method for producing rubber composition
JP6193577B2 (en) Rubber composition for tire and pneumatic tire
JP6484583B2 (en) Boot member and pin slide type vehicle disc brake using the boot member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140131

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151124

R150 Certificate of patent or registration of utility model

Ref document number: 5846919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250