JP6193577B2 - Rubber composition for tire and pneumatic tire - Google Patents

Rubber composition for tire and pneumatic tire Download PDF

Info

Publication number
JP6193577B2
JP6193577B2 JP2013018334A JP2013018334A JP6193577B2 JP 6193577 B2 JP6193577 B2 JP 6193577B2 JP 2013018334 A JP2013018334 A JP 2013018334A JP 2013018334 A JP2013018334 A JP 2013018334A JP 6193577 B2 JP6193577 B2 JP 6193577B2
Authority
JP
Japan
Prior art keywords
rubber
rubber composition
tire
mass
microfibrillated plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013018334A
Other languages
Japanese (ja)
Other versions
JP2014148612A (en
Inventor
慶太郎 藤倉
慶太郎 藤倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2013018334A priority Critical patent/JP6193577B2/en
Publication of JP2014148612A publication Critical patent/JP2014148612A/en
Application granted granted Critical
Publication of JP6193577B2 publication Critical patent/JP6193577B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、タイヤ用ゴム組成物、及び該ゴム組成物を用いた空気入りタイヤに関する。 The present invention relates to a rubber composition for tires and a pneumatic tire using the rubber composition.

ゴム組成物に充填剤としてセルロース繊維等のミクロフィブリル化植物繊維を配合することにより、ゴム組成物の物理的特性を向上できることが従来から知られている。しかしながら、ミクロフィブリル化植物繊維はゴム成分との相溶性が悪いため、ゴム組成物に配合しても、充分な向上効果が得られない場合がある。 It has been conventionally known that physical properties of a rubber composition can be improved by blending a microfibrillated plant fiber such as cellulose fiber as a filler with the rubber composition. However, since the microfibrillated plant fiber has poor compatibility with the rubber component, there may be a case where a sufficient improvement effect cannot be obtained even if it is blended with the rubber composition.

特許文献1では、セルロース繊維の表面を化学的に処理して疎水基を導入することにより、ゴム成分との相溶性を向上させる手法が提案されている。また、近年では、アミノ基を有するシランカップリング剤でパルプを化学処理することにより、ゴム成分との相溶性を向上させる手法が提案されている。しかしこれらの手法はいずれも化学反応プロセスを必要とすることから、より簡便な手法が求められている。 Patent Document 1 proposes a technique for improving the compatibility with a rubber component by chemically treating the surface of cellulose fibers to introduce a hydrophobic group. In recent years, a method has been proposed in which the pulp is chemically treated with a silane coupling agent having an amino group to improve the compatibility with the rubber component. However, since these methods all require a chemical reaction process, a simpler method is required.

特開2009−84564号公報JP 2009-84564 A

本発明は、前記課題を解決し、石油資源の使用を極力抑えながら、簡便な手法でミクロフィブリル化植物繊維とゴム成分との相溶性を向上させ、低燃費性、破壊特性及び操縦安定性をバランス良く改善できるタイヤ用ゴム組成物、及び該ゴム組成物を用いて作製した空気入りタイヤを提供することを目的とする。 The present invention solves the above-mentioned problems and improves the compatibility between the microfibrillated plant fiber and the rubber component by a simple method while suppressing the use of petroleum resources as much as possible, resulting in low fuel consumption, fracture characteristics and handling stability. An object is to provide a rubber composition for a tire that can be improved in a well-balanced manner, and a pneumatic tire produced using the rubber composition.

本発明は、ゴム成分、ミクロフィブリル化植物繊維及びテルペン系樹脂を含むタイヤ用ゴム組成物に関する。 The present invention relates to a rubber composition for a tire containing a rubber component, a microfibrillated plant fiber, and a terpene resin.

上記ゴム成分が、天然ゴム、改質天然ゴム、合成ゴム及び変性合成ゴムからなる群より選択される少なくとも1種を含むことが好ましい。 The rubber component preferably contains at least one selected from the group consisting of natural rubber, modified natural rubber, synthetic rubber and modified synthetic rubber.

上記ミクロフィブリル化植物繊維がセルロースミクロフィブリルであることが好ましい。 It is preferable that the microfibrillated plant fiber is cellulose microfibril.

上記ミクロフィブリル化植物繊維の平均繊維径が10μm以下であることが好ましい。 The average fiber diameter of the microfibrillated plant fiber is preferably 10 μm or less.

上記ミクロフィブリル化植物繊維の含有量が、上記ゴム成分100質量部に対して1〜100質量部であることが好ましい。 The content of the microfibrillated plant fiber is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the rubber component.

上記テルペン系樹脂の含有量が、上記ゴム成分100質量部に対して1〜50質量部であることが好ましい。 It is preferable that content of the said terpene-type resin is 1-50 mass parts with respect to 100 mass parts of said rubber components.

本発明はまた、上記ゴム組成物を用いて作製した空気入りタイヤに関する。 The present invention also relates to a pneumatic tire produced using the rubber composition.

本発明によれば、ゴム成分、ミクロフィブリル化植物繊維及びテルペン系樹脂を含むタイヤ用ゴム組成物であり、テルペン系樹脂を添加するという簡便な手法でミクロフィブリル化植物繊維とゴム成分との相溶性を向上させ、エネルギーロスを低下させながら、剛性と破断伸びとを両立できる。これにより、低燃費性、破壊特性及び操縦安定性がバランス良く改善された空気入りタイヤを提供できる。また、ミクロフィブリル化植物繊維は石油を原料としない材料であることから、石油資源の使用量を低減して、環境に配慮することができる。 According to the present invention, a tire rubber composition containing a rubber component, a microfibrillated plant fiber and a terpene resin, and a phase between the microfibrillated plant fiber and the rubber component by a simple method of adding a terpene resin. While improving solubility and reducing energy loss, both rigidity and elongation at break can be achieved. Thereby, it is possible to provide a pneumatic tire with improved fuel economy, fracture characteristics, and steering stability in a well-balanced manner. Further, since the microfibrillated plant fiber is a material that does not use petroleum as a raw material, the amount of petroleum resources used can be reduced and the environment can be considered.

本発明のゴム組成物は、ゴム成分、ミクロフィブリル化植物繊維及びテルペン系樹脂を含む。テルペン系樹脂を添加することで、ゴム成分とミクロフィブリル化植物繊維との界面での接着性が改善され、該界面でのエネルギーロスが低下する。また、ミクロフィブリル化植物繊維同士が絡み合った接点がテルペン系樹脂によって補強され、破断強度が向上する。これらの作用により、エネルギーロスを低下させながら、剛性及び破断伸びを両立できる。従って、上記ゴム組成物をタイヤに用いることで、低燃費性、破壊特性及び操縦安定性がバランス良く改善された空気入りタイヤを提供できる。 The rubber composition of the present invention includes a rubber component, microfibrillated plant fibers, and a terpene resin. By adding the terpene resin, the adhesiveness at the interface between the rubber component and the microfibrillated plant fiber is improved, and the energy loss at the interface is reduced. Moreover, the contact point in which the microfibrillated plant fibers are entangled with each other is reinforced by the terpene resin, and the breaking strength is improved. These effects can achieve both rigidity and elongation at break while reducing energy loss. Therefore, by using the rubber composition in a tire, it is possible to provide a pneumatic tire with improved fuel economy, fracture characteristics, and steering stability in a well-balanced manner.

また、ミクロフィブリル化植物繊維は、石油を原料としない材料(石油外資源)であるため、石油資源の使用量を低減することができる。 Moreover, since the microfibrillated plant fiber is a material that does not use petroleum as a raw material (resource other than petroleum), the amount of petroleum resource used can be reduced.

ゴム成分は、天然ゴム、改質天然ゴム、合成ゴム及び変性合成ゴムからなる群より選択される少なくとも1種を含むことが好ましい。天然ゴム(NR)としては、TSR20、RSS#3など、タイヤ工業において一般的なものが挙げられる。改質天然ゴムとしては、エポキシ化天然ゴム(ENR)、水素化天然ゴム、脱タンパク天然ゴムなどが挙げられる。合成ゴムとしては、ブタジエンゴム(BR)、スチレン−ブタジエン共重合体ゴム(SBR)、イソプレンゴム(IR)、ブチルゴム(IIR)、アクリロニトリル−ブタジエンゴム(NBR)、アクリロニトリル−スチレン−ブタジエン共重合体ゴム、クロロプレンゴムなどが挙げられる。変性合成ゴムとしては、合成ゴムの末端を極性官能基で変性したものなどが挙げられる。汎用性やコストの面で有利であり、また、ミクロフィブリル化植物繊維と混合する際の作業性が良好であるという観点から、ゴム成分としては、NR、BR、SBR、IR、IIR、ENRが好ましく、石油資源の使用量を低減し、環境に配慮することができるという観点から、石油外資源由来の材料であるNR、ENRがより好ましい。 The rubber component preferably contains at least one selected from the group consisting of natural rubber, modified natural rubber, synthetic rubber and modified synthetic rubber. Examples of natural rubber (NR) include those common in the tire industry, such as TSR20 and RSS # 3. Examples of the modified natural rubber include epoxidized natural rubber (ENR), hydrogenated natural rubber, and deproteinized natural rubber. Synthetic rubbers include butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), isoprene rubber (IR), butyl rubber (IIR), acrylonitrile-butadiene rubber (NBR), acrylonitrile-styrene-butadiene copolymer rubber. And chloroprene rubber. Examples of the modified synthetic rubber include those obtained by modifying the ends of the synthetic rubber with polar functional groups. From the viewpoint of versatility and cost, and from the viewpoint of good workability when mixed with microfibrillated plant fibers, rubber components include NR, BR, SBR, IR, IIR and ENR. Preferably, NR and ENR, which are materials derived from non-petroleum resources, are more preferable from the viewpoint of reducing the amount of petroleum resources used and considering the environment.

本発明のゴム組成物において、ゴム成分100質量%中のNR及びENRの含有量は、好ましくは50質量%以上、より好ましくは80質量%以上、更に好ましくは95質量%以上である。含有量の上限は特に限定されず、100質量%であってもよい。 In the rubber composition of the present invention, the content of NR and ENR in 100% by mass of the rubber component is preferably 50% by mass or more, more preferably 80% by mass or more, and further preferably 95% by mass or more. The upper limit of content is not specifically limited, 100 mass% may be sufficient.

ミクロフィブリル化植物繊維としては、良好な補強性が得られるという点から、セルロースミクロフィブリルが好ましい。セルロースミクロフィブリルとしては、例えば、木材、竹、麻、ジュート、ケナフ、農作物残廃物、布、再生パルプ、古紙、バクテリアセルロース、ホヤセルロース等の天然物に由来するものが挙げられる。 As the microfibrillated plant fiber, cellulose microfibril is preferable from the viewpoint that good reinforcing properties can be obtained. Examples of cellulose microfibrils include those derived from natural products such as wood, bamboo, hemp, jute, kenaf, crop residue, cloth, recycled pulp, waste paper, bacterial cellulose, and squirt cellulose.

ミクロフィブリル化植物繊維の製造方法としては特に限定されないが、例えば、上記セルロースミクロフィブリルの原料を水酸化ナトリウム等の薬品で化学処理した後、リファイナー、二軸混錬機(二軸押出機)、二軸混錬押出機、高圧ホモジナイザー、媒体撹拌ミル、石臼、グラインダー、振動ミル、サンドグラインダー等により機械的に磨砕ないし叩解する方法が挙げられる。この方法では、化学処理によって原料からリグニンが分離されるため、リグニンを実質的に含有しないミクロフィブリル化植物繊維が得られる。 Although it does not specifically limit as a manufacturing method of a microfibrillated plant fiber, For example, after chemically processing the raw material of the said cellulose microfibril with chemicals, such as sodium hydroxide, a refiner, a twin screw kneader (double screw extruder), Examples of the method include mechanical grinding or beating using a twin-screw kneading extruder, a high-pressure homogenizer, a medium stirring mill, a stone mill, a grinder, a vibration mill, a sand grinder, and the like. In this method, since lignin is separated from the raw material by chemical treatment, microfibrillated plant fibers substantially free of lignin are obtained.

ミクロフィブリル化植物繊維の平均繊維径は、ゴム補強効果が良好であるという観点から、好ましくは10μm以下、より好ましくは5μm以下、更に好ましくは1μm以下、特に好ましくは0.5μm以下である。ミクロフィブリル化植物繊維の平均繊維径の下限は特に限定されないが、ミクロフィブリル化植物繊維の水分散液とゴム成分とを混合する場合に、濾水性の悪化による作業性の悪化を抑制できる観点から、4nm以上であることが好ましい。 The average fiber diameter of the microfibrillated plant fiber is preferably 10 μm or less, more preferably 5 μm or less, still more preferably 1 μm or less, and particularly preferably 0.5 μm or less from the viewpoint of good rubber reinforcing effect. The lower limit of the average fiber diameter of the microfibrillated plant fiber is not particularly limited, but when mixing the aqueous dispersion of the microfibrillated plant fiber and the rubber component, from the viewpoint of suppressing workability deterioration due to deterioration of drainage. It is preferable that it is 4 nm or more.

ミクロフィブリル化植物繊維の平均繊維長は、好ましくは5mm以下、より好ましくは1mm以下であり、また、好ましくは1μm以上、より好ましくは50μm以上である。平均繊維長が下限未満の場合や上限を超える場合は、前述の平均繊維径と同様の傾向がある。 The average fiber length of the microfibrillated plant fiber is preferably 5 mm or less, more preferably 1 mm or less, and preferably 1 μm or more, more preferably 50 μm or more. When the average fiber length is less than the lower limit or exceeds the upper limit, there is a tendency similar to the average fiber diameter described above.

ミクロフィブリル化植物繊維の平均繊維径及び平均繊維長は、走査型電子顕微鏡写真の画像解析、透過型顕微鏡写真の画像解析、X線散乱データの解析、細孔電気抵抗法(コールター原理法)等によって測定できる。 The average fiber diameter and average fiber length of microfibrillated plant fibers are image analysis of scanning electron micrographs, image analysis of transmission micrographs, analysis of X-ray scattering data, pore electrical resistance method (Coulter principle method), etc. Can be measured by.

ミクロフィブリル化植物繊維の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上、更に好ましくは5質量部以上であり、また、好ましくは100質量部以下、より好ましくは20質量部以下である。上記範囲内であれば、ゴム補強効果が良好であり、また、ゴム成分と複合化する工程での各種材料の歩留まりや作業性も良好である。 The content of the microfibrillated plant fiber is preferably 1 part by mass or more, more preferably 3 parts by mass or more, still more preferably 5 parts by mass or more, and preferably 100 parts by mass with respect to 100 parts by mass of the rubber component. Part or less, more preferably 20 parts by weight or less. Within the above range, the rubber reinforcing effect is good, and the yield and workability of various materials in the process of compounding with the rubber component are also good.

テルペン系樹脂は、テルペン化合物を主モノマーとして重合された樹脂である。テルペン化合物は、一般に、イソプレン(C)の重合体で、モノテルペン(C1016)、セスキテルペン(C1524)、ジテルペン(C2032)などに分類されるテルペンを基本骨格とする化合物であり、例えば、α−ピネン、β−ピネン、ジペンテン、リモネン、ミルセン、アロオシメン、オシメン、α−フェランドレン、α−テルピネン、γ−テルピネン、テルピノレン、1,8−シネオール、1,4−シネオール、α−テルピネオール、β−テルピネオール、γ−テルピネオール、カンフェン、トリシクレン、サビネン、パラメンタジエン類、カレン類などが挙げられる。 The terpene resin is a resin polymerized using a terpene compound as a main monomer. Terpene compounds are generally polymers of isoprene (C 5 H 8 ), and terpenes classified as monoterpenes (C 10 H 16 ), sesquiterpenes (C 15 H 24 ), diterpenes (C 20 H 32 ), and the like. A compound having a basic skeleton, for example, α-pinene, β-pinene, dipentene, limonene, myrcene, alloocimene, ocimene, α-ferrandrene, α-terpinene, γ-terpinene, terpinolene, 1,8-cineole, 1 , 4-cineole, α-terpineol, β-terpineol, γ-terpineol, camphene, tricyclene, sabinene, paramentadienes, and carenes.

テルペン化合物を得る方法としては、植物の葉、樹、根等から得られる植物精油から直接得る他に、テルペン化合物の合成酵素をコードする遺伝子を組み込んだ遺伝子組み換え微生物によって製造する場合も含まれる。 As a method for obtaining a terpene compound, in addition to obtaining directly from plant essential oils obtained from leaves, trees, roots and the like of plants, a case where the terpene compound is produced by a genetically modified microorganism incorporating a gene encoding a terpene compound synthase is also included.

テルペン系樹脂としては、例えば、α−ピネン樹脂、β−ピネン樹脂、リモネン樹脂、ジペンテン樹脂、β−ピネン/リモネン樹脂などのテルペン樹脂の他、テルペン化合物と芳香族化合物とを原料とする芳香族変性テルペン樹脂、テルペン化合物とフェノール系化合物とを原料とするテルペンフェノール樹脂、テルペン樹脂に水素添加処理した水素添加テルペン樹脂などを使用できる。ここで、芳香族変性テルペン樹脂の原料となる芳香族化合物としては、例えば、スチレン、α−メチルスチレン、ビニルトルエン、ジビニルトルエンなどが挙げられ、また、テルペンフェノール樹脂の原料となるフェノール系化合物としては、例えば、フェノール、ビスフェノールA、クレゾール、キシレノールなどが挙げられる。 Examples of the terpene resin include terpene resins such as α-pinene resin, β-pinene resin, limonene resin, dipentene resin, β-pinene / limonene resin, and aromatics using terpene compounds and aromatic compounds as raw materials. Modified terpene resins, terpene phenol resins using terpene compounds and phenolic compounds as raw materials, hydrogenated terpene resins obtained by hydrogenating terpene resins, and the like can be used. Here, as an aromatic compound used as the raw material of the aromatic modified terpene resin, for example, styrene, α-methylstyrene, vinyl toluene, divinyl toluene and the like can be mentioned, and as a phenol compound used as a raw material of the terpene phenol resin, Examples include phenol, bisphenol A, cresol, xylenol and the like.

本発明の効果が良好に得られるという点から、テルペン系樹脂としては、テルペン樹脂が好ましく、α−ピネン樹脂、β−ピネン樹脂がより好ましい。 The terpene resin is preferably a terpene resin, more preferably an α-pinene resin and a β-pinene resin, from the viewpoint that the effects of the present invention can be obtained satisfactorily.

テルペン系樹脂の軟化点は、好ましくは80℃以下、より好ましくは60℃以下、更に好ましくは40℃以下である。80℃を超えると、混練の際に分散しにくくなる傾向がある。テルペン系樹脂の軟化点は、好ましくは10℃以上、更に好ましくは20℃以上である。10℃未満であると、作業効率が悪くなる傾向がある。
なお、本発明において、軟化点は、フローテスター(島津製作所社製、CFT−500D)を用い、試料として1gの樹脂を昇温速度6℃/分で加熱しながら、プランジャーにより1.96MPaの荷重を与え、直径1mm、長さ1mmのノズルから押出し、温度に対するフローテスターのプランジャー降下量をプロットし、試料の半量が流出した温度とした。
The softening point of the terpene resin is preferably 80 ° C. or lower, more preferably 60 ° C. or lower, and still more preferably 40 ° C. or lower. If it exceeds 80 ° C., it tends to be difficult to disperse during kneading. The softening point of the terpene resin is preferably 10 ° C or higher, more preferably 20 ° C or higher. If it is less than 10 ° C., the working efficiency tends to deteriorate.
In the present invention, the softening point is 1.96 MPa with a plunger while heating 1 g of resin as a sample at a heating rate of 6 ° C./min using a flow tester (manufactured by Shimadzu Corporation, CFT-500D). A load was applied, the nozzle was extruded from a nozzle having a diameter of 1 mm and a length of 1 mm, and the amount of plunger drop of the flow tester was plotted against the temperature.

テルペン系樹脂の含有量は、ゴム成分100質量部に対して、1質量部以上、好ましくは3質量部以上であり、また、好ましくは50質量部以下、より好ましくは30質量部以下である。上記範囲内であれば、ミクロフィブリル化植物繊維を良好に分散させ、低燃費性、破壊特性及び操縦安定性をバランス良く改善できる。 The content of the terpene resin is 1 part by mass or more, preferably 3 parts by mass or more, preferably 50 parts by mass or less, more preferably 30 parts by mass or less, with respect to 100 parts by mass of the rubber component. Within the above range, the microfibrillated plant fiber can be dispersed well, and the fuel economy, breaking characteristics and handling stability can be improved in a well-balanced manner.

本発明のゴム組成物は、上記成分以外にも、従来ゴム工業で使用される配合剤、例えば、充填剤(カーボンブラック、シリカ等)、シランカップリング剤、加硫剤、ステアリン酸、加硫促進剤、加硫促進助剤、オイル、ワックス、老化防止剤等を必要に応じて適宜配合することができる。 In addition to the above components, the rubber composition of the present invention is a compounding agent conventionally used in the rubber industry, such as a filler (carbon black, silica, etc.), a silane coupling agent, a vulcanizing agent, stearic acid, vulcanized. Accelerators, vulcanization accelerators, oils, waxes, anti-aging agents, and the like can be appropriately blended as necessary.

本発明のゴム組成物は、一般的な方法で製造される。すなわち、バンバリーミキサーやニーダー、オープンロールなどで上記成分を混練りし、その後加硫する方法等により製造できる。また、ミクロフィブリル化植物繊維をゴム成分中に容易に分散させることができるという点から、ミクロフィブリル化植物繊維の水分散液とゴムラテックスとを混合して得られるマスターバッチを用いて製造することが好ましい。 The rubber composition of the present invention is produced by a general method. That is, it can be produced by a method in which the above components are kneaded with a Banbury mixer, a kneader, an open roll or the like and then vulcanized. In addition, since the microfibrillated plant fiber can be easily dispersed in the rubber component, it is manufactured using a masterbatch obtained by mixing an aqueous dispersion of microfibrillated plant fiber and rubber latex. Is preferred.

本発明のゴム組成物は、タイヤ部材に使用することができ、なかでも、トレッド、サイドウォールに好適に使用できる。 The rubber composition of the present invention can be used for tire members, and in particular, can be suitably used for treads and sidewalls.

本発明の空気入りタイヤは、上記ゴム組成物を用いて公知の方法によって製造される。すなわち、必要に応じて各種添加剤を配合したゴム組成物を、未加硫の段階でタイヤの各部材の形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成型することにより未加硫タイヤを形成した後、加硫機中で加熱加圧してタイヤを製造できる。 The pneumatic tire of the present invention is produced by a known method using the rubber composition. That is, a rubber composition containing various additives as necessary is extruded in accordance with the shape of each member of the tire at an unvulcanized stage and molded by a normal method on a tire molding machine. After forming an unvulcanized tire by heating, the tire can be manufactured by heating and pressing in a vulcanizer.

本発明の空気入りタイヤは、乗用車、トラック・バス等に好適に使用できる。 The pneumatic tire of the present invention can be suitably used for passenger cars, trucks, buses and the like.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

以下、実施例、比較例及び参考例で使用した各種薬品について、まとめて説明する。
天然ゴムラテックス:HYTEX HA(Golden Hope Plantations(ゴールデン・ホープ・プランテーションズ)社製の天然ゴムラテックス、固形分:60質量%、平均粒径:1μm)
ミクロフィブリル化植物繊維:ダイセル化学工業(株)製のセリッシュKY−100G(平均繊維長:0.5mm、平均繊維径:0.02μm、固形分:10質量%)
マスターバッチ1〜3:下記製造例で調製
テルペン系樹脂:ヤスハラケミカル(株)製のYSレジン PX300N(軟化点30℃のテルペン樹脂)
老化防止剤:大内新興化学工業(株)製のノクラック6C
ステアリン酸:日油(株)製のビーズステアリン酸つばき
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤:大内新興化学工業(株)製のノクセラーDM
Hereinafter, various chemicals used in Examples, Comparative Examples and Reference Examples will be described together.
Natural rubber latex: HYTEX HA (natural rubber latex manufactured by Golden Hope Plantations, solid content: 60% by mass, average particle size: 1 μm)
Microfibrillated plant fiber: Selish KY-100G manufactured by Daicel Chemical Industries, Ltd. (average fiber length: 0.5 mm, average fiber diameter: 0.02 μm, solid content: 10% by mass)
Master batches 1-3: prepared in the following production examples Terpene resin: YS resin PX300N (terpene resin having a softening point of 30 ° C.) manufactured by Yasuhara Chemical Co., Ltd.
Anti-aging agent: NOCRACK 6C manufactured by Ouchi Shinsei Chemical Co., Ltd.
Stearic acid: Beads manufactured by NOF Corporation Zinc stearate zinc oxide: Zinc oxide manufactured by Mitsui Mining & Smelting Co., Ltd. Sulfur: Powdered sulfur vulcanization accelerator manufactured by Tsurumi Chemical Co., Ltd .: Ouchi Shinsei Chemical NOCELLER DM manufactured by Kogyo Co., Ltd.

<製造例1:マスターバッチ1の調製>
表1の配合に従い、高速ホモジナイザー(IKA社製のバッチ式ホモジナイザーT65Dウルトラタラックス(Ultraturrax T25))を用いて、24,000rpmの条件でミクロフィブリル化植物繊維を水中で1時間撹拌分散させ、ついで天然ゴムラテックスを添加し、更に30分撹拌分散させた。得られた混合液を5質量%ギ酸水溶液で凝固し、水洗後、40℃の加熱オーブン中で乾燥させることでマスターバッチ1を得た。
<Production Example 1: Preparation of Masterbatch 1>
In accordance with the composition shown in Table 1, the microfibrillated plant fiber was stirred and dispersed in water at 24,000 rpm for 1 hour using a high speed homogenizer (IKA's batch homogenizer T65D Ultra Turrax (Ultraturrax T25)). Natural rubber latex was added and the mixture was further stirred and dispersed for 30 minutes. The obtained mixed solution was coagulated with a 5 mass% formic acid aqueous solution, washed with water, and dried in a heating oven at 40 ° C to obtain a master batch 1.

<製造例2:マスターバッチ2の調製>
表1の配合に従い、マスターバッチ1と同様の方法でマスターバッチ2を得た。
<Production Example 2: Preparation of Masterbatch 2>
According to the composition of Table 1, a master batch 2 was obtained in the same manner as the master batch 1.

<製造例3:マスターバッチ3の調製>
天然ゴムラテックスをそのまま5質量%ギ酸水溶液で凝固し、水洗後、40℃の加熱オーブン中で乾燥させることでマスターバッチ3を得た。
<Production Example 3: Preparation of Masterbatch 3>
The natural rubber latex was coagulated as it was with a 5% by mass aqueous formic acid solution, washed with water, and then dried in a heating oven at 40 ° C. to obtain a master batch 3.

Figure 0006193577
Figure 0006193577

<加硫ゴム組成物の調製>
表2の配合に従い、135℃に加熟した250ccインターナルミキサーを用いて、88rpmの条件で加硫促進剤及び硫黄以外の薬品と各種マスターバッチとを3分間混練りした後、混練りしたゴムを排出して、60℃、24rpmの条件で6インチオープンロールにより加硫促進剤と硫黄を添加、5分間混練し、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を150℃でプレス加熱することで、実施例、比較例及び参考例に対応する加硫ゴム組成物を得た。
<Preparation of vulcanized rubber composition>
Using a 250 cc internal mixer ripened to 135 ° C. in accordance with the composition of Table 2, the vulcanization accelerator and chemicals other than sulfur and various master batches were kneaded for 3 minutes under the condition of 88 rpm, and then kneaded rubber. The vulcanization accelerator and sulfur were added with a 6-inch open roll under the conditions of 60 ° C. and 24 rpm, and kneaded for 5 minutes to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition was press-heated at 150 ° C. to obtain vulcanized rubber compositions corresponding to Examples, Comparative Examples and Reference Examples.

<実施例、比較例及び参考例>
上記の方法で作製した加硫ゴム組成物を用い、以下に示す評価を行った。なお、表2に示す特性データ中の各指数については、参考例1を基準配合とし、下記記載の計算式で算出した。
<Examples, comparative examples and reference examples>
The following evaluation was performed using the vulcanized rubber composition produced by the above method. Each index in the characteristic data shown in Table 2 was calculated by the following formula using Reference Example 1 as a reference composition.

(引張試験)
JIS K6251「加硫ゴム及び熟可塑性ゴム−引張特性の求め方」に従い、100%引張応力を測定し、下記の計算式により100%引張応力指数を算出した。100%引張応力指数が大きい程、加硫ゴム組成物が良好に補強されており、ゴムの剛性が高く、破壊特性に優れることを示す。
100%引張応力指数=(各配合の100%引張応力)/(基準配合の100%引張応力)×100
(Tensile test)
100% tensile stress was measured according to JIS K6251 “vulcanized rubber and mature plastic rubber—determining tensile properties”, and a 100% tensile stress index was calculated according to the following formula. The larger the 100% tensile stress index, the better the vulcanized rubber composition is reinforced, the higher the rigidity of the rubber, and the better the fracture characteristics.
100% tensile stress index = (100% tensile stress of each formulation) / (100% tensile stress of standard formulation) × 100

(操縦安定性指数及び転がり抵抗指数)
前述の方法で調製された加硫ゴム組成物の2mmゴムスラブシートから測定用試験片を切り出し、粘弾性スペクトロメータVES((株)岩本製作所製)を用いて、温度70℃、初期歪10%、動歪2%、周波数10Hzの条件下で、各測定用試験片のE(複素弾性率)及びtanδ(損失正接)を測定し、下記の計算式により操縦安定性指数、転がり抵抗指数を算出した。操縦安定性指数が大きい程、操縦安定性に優れることを示し、転がり抵抗指数が大きい程、転がり抵抗が低く、低燃費性に優れることを示す。
操縦安定性指数=(各配合のE)/(基準配合のE)×100
転がり抵抗指数=(基準配合のtanδ)/(各配合のtanδ)×100
(Maneuvering stability index and rolling resistance index)
A test specimen for measurement was cut out from a 2 mm rubber slab sheet of the vulcanized rubber composition prepared by the above-described method, and the temperature was 70 ° C. and the initial strain was 10% using a viscoelastic spectrometer VES (manufactured by Iwamoto Seisakusho). Measure the E * (complex modulus) and tan δ (loss tangent) of each test specimen under the conditions of 2% dynamic strain and 10 Hz frequency, and calculate the steering stability index and rolling resistance index using the following formulas: Calculated. The larger the steering stability index, the better the steering stability, and the larger the rolling resistance index, the lower the rolling resistance and the better the fuel efficiency.
Steering stability index = (E * of each formulation) / (E * of reference formulation) × 100
Rolling resistance index = (tan δ of reference formulation) / (tan δ of each formulation) × 100

Figure 0006193577
Figure 0006193577

表2より、ミクロフィブリル化植物繊維及びテルペン樹脂の併用により、低燃費性、破壊特性及び操縦安定性が相乗的に改善され、これらの性能が高次元でバランス良く得られることが確認できた。 From Table 2, it was confirmed that the combined use of the microfibrillated plant fiber and the terpene resin synergistically improved fuel economy, fracture characteristics, and handling stability, and these performances were obtained in a high level and in a well-balanced manner.

Claims (6)

ゴム成分、ミクロフィブリル化植物繊維及びテルペン系樹脂を含むタイヤ用ゴム組成物の製造方法であって、
前記ミクロフィブリル化植物繊維が、平均繊維径が10μm以下、平均繊維長が1μm〜5mmのセルロースミクロフィブリルであり、
前記ミクロフィブリル化植物繊維の分散液とゴムラテックスとを混合して得られるマスターバッチを用いるタイヤ用ゴム組成物の製造方法
A method for producing a rubber composition for a tire comprising a rubber component, a microfibrillated plant fiber and a terpene resin ,
The microfibrillated plant fiber is a cellulose microfibril having an average fiber diameter of 10 μm or less and an average fiber length of 1 μm to 5 mm,
The manufacturing method of the rubber composition for tires which uses the masterbatch obtained by mixing the dispersion liquid of the said microfibrillated plant fiber, and rubber latex .
前記ゴム成分が、天然ゴム、改質天然ゴム、合成ゴム及び変性合成ゴムからなる群より選択される少なくとも1種を含む請求項1記載のタイヤ用ゴム組成物の製造方法The method for producing a rubber composition for a tire according to claim 1, wherein the rubber component includes at least one selected from the group consisting of natural rubber, modified natural rubber, synthetic rubber, and modified synthetic rubber. 前記ミクロフィブリル化植物繊維の含有量が、前記ゴム成分100質量部に対して1〜100質量部である請求項1又は2記載のタイヤ用ゴム組成物の製造方法The method for producing a rubber composition for a tire according to claim 1 or 2 , wherein the content of the microfibrillated plant fiber is 1 to 100 parts by mass with respect to 100 parts by mass of the rubber component. 前記テルペン系樹脂の含有量が、前記ゴム成分100質量部に対して1〜50質量部である請求項1〜のいずれかに記載のタイヤ用ゴム組成物の製造方法The method for producing a tire rubber composition according to any one of claims 1 to 3 , wherein the content of the terpene resin is 1 to 50 parts by mass with respect to 100 parts by mass of the rubber component. 前記テルペン系樹脂の軟化点が10〜80℃である請求項1〜のいずれかに記載のタイヤ用ゴム組成物の製造方法The method for producing a rubber composition for a tire according to any one of claims 1 to 4 , wherein the terpene resin has a softening point of 10 to 80 ° C. 請求項1〜のいずれかに記載の製造方法で得られたゴム組成物を用いて空気入りタイヤを作製する空気入りタイヤの製造方法The manufacturing method of the pneumatic tire which produces a pneumatic tire using the rubber composition obtained by the manufacturing method in any one of Claims 1-5 .
JP2013018334A 2013-02-01 2013-02-01 Rubber composition for tire and pneumatic tire Active JP6193577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013018334A JP6193577B2 (en) 2013-02-01 2013-02-01 Rubber composition for tire and pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013018334A JP6193577B2 (en) 2013-02-01 2013-02-01 Rubber composition for tire and pneumatic tire

Publications (2)

Publication Number Publication Date
JP2014148612A JP2014148612A (en) 2014-08-21
JP6193577B2 true JP6193577B2 (en) 2017-09-06

Family

ID=51571855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013018334A Active JP6193577B2 (en) 2013-02-01 2013-02-01 Rubber composition for tire and pneumatic tire

Country Status (1)

Country Link
JP (1) JP6193577B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3998692B2 (en) * 2004-12-27 2007-10-31 横浜ゴム株式会社 Rubber / short fiber masterbatch, production method thereof, and pneumatic tire using the masterbatch
JP5167512B2 (en) * 2007-06-27 2013-03-21 住友ゴム工業株式会社 Tread rubber composition and pneumatic tire using the same
US7625970B2 (en) * 2007-09-20 2009-12-01 The Goodyear Tire & Rubber Company Tire with component containing cellulose
JP5629422B2 (en) * 2007-12-03 2014-11-19 株式会社ブリヂストン Rubber composition for tire and tire using the same
JP4294070B2 (en) * 2007-12-10 2009-07-08 横浜ゴム株式会社 Rubber composition for tire
JP5373510B2 (en) * 2009-09-03 2013-12-18 住友ゴム工業株式会社 Oil masterbatch, method for producing rubber composition for sidewall, and pneumatic tire
FR2957602B1 (en) * 2010-03-19 2012-04-13 Michelin Soc Tech RUBBER COMPOSITION FOR WINTER PNEUMATIC BEARING BAND
JP5676909B2 (en) * 2010-04-27 2015-02-25 国立大学法人京都大学 Rubber composition and method for producing rubber composition
JP5691463B2 (en) * 2010-12-09 2015-04-01 横浜ゴム株式会社 Rubber composition for tire

Also Published As

Publication number Publication date
JP2014148612A (en) 2014-08-21

Similar Documents

Publication Publication Date Title
JP5846919B2 (en) Rubber composition and method for producing the same
JP6193581B2 (en) Rubber composition for tire and pneumatic tire
JP7322543B2 (en) Nanocellulose/Surfactant Complex
JP5616372B2 (en) Rubber composition for tire, method for producing the same, and pneumatic tire
JP6543086B2 (en) Rubber composition, rubber composition for tire and pneumatic tire
JP5676909B2 (en) Rubber composition and method for producing rubber composition
JP5616369B2 (en) Rubber composition for tire and pneumatic tire
JP5933302B2 (en) Rubber composition for tire, method for producing the same, and pneumatic tire
JP4372171B2 (en) Rubber composition for tire tread
JP5321751B2 (en) Rubber composition for tire, pneumatic tire, and method for producing rubber composition for tire
JP2015209536A (en) Tire rubber composition and pneumatic tire
JP2008156419A (en) Method for producing rubber composition, rubber composition obtained thereby, and tire using the rubber composition
EP2620295B1 (en) Rubber composition for tire, method of producing the same, and pneumatic tire
JP2017002148A (en) Pneumatic tire
JP2018188601A (en) Rubber composition for studless tire
JP5373510B2 (en) Oil masterbatch, method for producing rubber composition for sidewall, and pneumatic tire
JP2015010136A (en) Rubber composition for tire, and pneumatic tire using the same
JP6084947B2 (en) Rubber composition for tire and pneumatic tire
WO2019111546A1 (en) Rubber composition and pneumatic tire
JP6193577B2 (en) Rubber composition for tire and pneumatic tire
JP2017002149A (en) Tire for two-wheeled automobile
JP4137966B2 (en) Rubber composition
JP2014205749A (en) Rubber composition for base tread and pneumatic tire
JP7255124B2 (en) Filler/rubber composite
JP7243061B2 (en) Dispersion, manufacturing method, rubber composition and pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170810

R150 Certificate of patent or registration of utility model

Ref document number: 6193577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250