JP5676909B2 - Rubber composition and method for producing rubber composition - Google Patents

Rubber composition and method for producing rubber composition Download PDF

Info

Publication number
JP5676909B2
JP5676909B2 JP2010102156A JP2010102156A JP5676909B2 JP 5676909 B2 JP5676909 B2 JP 5676909B2 JP 2010102156 A JP2010102156 A JP 2010102156A JP 2010102156 A JP2010102156 A JP 2010102156A JP 5676909 B2 JP5676909 B2 JP 5676909B2
Authority
JP
Japan
Prior art keywords
rubber
acid
rubber composition
pulp
microfibrillated plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010102156A
Other languages
Japanese (ja)
Other versions
JP2011231208A (en
Inventor
矢野 浩之
浩之 矢野
丈史 中谷
丈史 中谷
行夫 磯部
行夫 磯部
市川 直哉
直哉 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
DIC Corp
Nippon Paper Industries Co Ltd
Mitsubishi Chemical Corp
Kyoto University
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Sumitomo Rubber Industries Ltd
DIC Corp
Nippon Paper Industries Co Ltd
Mitsubishi Chemical Corp
Kyoto University
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd, DIC Corp, Nippon Paper Industries Co Ltd, Mitsubishi Chemical Corp, Kyoto University, Oji Holdings Corp, Oji Paper Co Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2010102156A priority Critical patent/JP5676909B2/en
Publication of JP2011231208A publication Critical patent/JP2011231208A/en
Application granted granted Critical
Publication of JP5676909B2 publication Critical patent/JP5676909B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、ゴム成分及び特定のミクロフィブリル化植物繊維を含有するゴム組成物、及びそれを用いたタイヤ、並びにゴム組成物の製造方法に関する。   The present invention relates to a rubber composition containing a rubber component and specific microfibrillated plant fibers, a tire using the rubber composition, and a method for producing the rubber composition.

ゴム組成物において、ゴム成分中に配合される充填剤としてセルロース繊維を含有することにより、ゴムの物理的特性の向上させることは、従来から知られている(例えば、特許文献1)。特許文献1では、セルロース短繊維の水分散液とゴムラテックスとを撹拌混合し、その混合液から水を除去して得られるマスターバッチについて開示されている。しかしながら、セルロース繊維はゴムとの相溶性が悪く、ゴム組成物として配合した場合に、破断特性や界面におけるエネルギーロス等の面で十分な効果が得られず、これらの特性を改善しなければ、各種用途への実用化は難しい。そのため、セルロース繊維とゴム成分との相溶性を改善させるために、セルロースをミクロフィブリル化したミクロフィブリル化植物繊維を用いることが提案されている(例えば、特許文献2)。   In rubber compositions, it has been conventionally known that physical properties of rubber are improved by containing cellulose fibers as a filler to be blended in a rubber component (for example, Patent Document 1). Patent Document 1 discloses a master batch obtained by stirring and mixing an aqueous dispersion of cellulose short fibers and rubber latex, and removing water from the mixed solution. However, cellulose fibers are poorly compatible with rubber, and when blended as a rubber composition, sufficient effects cannot be obtained in terms of breaking characteristics and energy loss at the interface, etc. It is difficult to put it into practical use for various purposes. Therefore, in order to improve the compatibility between cellulose fibers and rubber components, it has been proposed to use microfibrillated plant fibers obtained by microfibrillating cellulose (for example, Patent Document 2).

しかしながらミクロフィブリル化植物繊維は、繊維長が長く、また枝分かれ構造によるネットワークが存在するため、ミクロフィブリル化植物繊維をそのままゴムに配合して繊維強化ゴムを製造しようとすると、ゴム成分中での分散性の悪いミクロフィブリル化植物繊維の凝集塊の発生のために、得られるゴム組成物の破壊特性が悪化するという問題があった。   However, microfibrillated plant fibers have a long fiber length and have a network with a branched structure. Therefore, when fiber reinforced rubber is produced by directly blending microfibrillated plant fibers with rubber, dispersion in the rubber component Due to the occurrence of agglomerates of microfibrillated plant fibers having poor properties, there was a problem that the fracture characteristics of the resulting rubber composition deteriorated.

特開2006−206864号公報JP 2006-206864 A

本発明は、ミクロフィブリル化植物繊維がゴム成分中に良好に分散性され、破断特性が向上したゴム組成物を提供することを目的とする。また、ゴム成分中にミクロフィブリル化植物繊維を良好に分散性させるゴム組成物の製造方法を提供することも目的とする。さらに、燃費を悪化させずに破壊特性を高めることのできる前記ゴム組成物を用いたタイヤを提供することも目的とする。   An object of the present invention is to provide a rubber composition in which microfibrillated plant fibers are well dispersible in a rubber component and have improved breaking characteristics. Another object of the present invention is to provide a method for producing a rubber composition in which microfibrillated plant fibers are well dispersible in a rubber component. It is another object of the present invention to provide a tire using the rubber composition capable of enhancing the fracture characteristics without deteriorating fuel consumption.

本発明者らは、上記課題を解決すべく、鋭意研究を重ねた結果、ゴム成分中に分散させるミクロフィブリル化植物繊維として、特定の平均繊維長、平均繊維径、及びアスペクト比を有し、特に平均繊維長の短いものを適用することによって、ゴム成分中に良好に分散させることができ、その結果、ゴム組成物中において、破壊の起点となる凝集塊を少なくでき、ゴム組成物の破壊特性を向上させることができることを見出した。   As a result of intensive studies to solve the above problems, the present inventors have a specific average fiber length, average fiber diameter, and aspect ratio as microfibrillated plant fibers dispersed in a rubber component, In particular, by applying a material having a short average fiber length, it can be dispersed well in the rubber component. As a result, in the rubber composition, agglomerates that are the starting point of destruction can be reduced, and the rubber composition is destroyed. It has been found that the characteristics can be improved.

本発明は、斯かる知見に基づき完成されたものである。   The present invention has been completed based on such findings.

項1.(A)ゴム成分、並びに
(B)繊維長の平均値が1〜20μm、繊維径の平均値が10μm以下、及びアスペクト比が2〜1000であるミクロフィブリル化植物繊維を含む
ゴム組成物。
Item 1. A rubber composition comprising (A) a rubber component, and (B) a microfibrillated plant fiber having an average fiber length of 1 to 20 μm, an average fiber diameter of 10 μm or less, and an aspect ratio of 2 to 1000.

項2.ミクロフィブリル化植物繊維(B)が、パルプを酸で処理したのちに、機械的に解繊処理することにより得られる項1に記載のゴム組成物。   Item 2. Item 2. The rubber composition according to Item 1, wherein the microfibrillated plant fiber (B) is obtained by mechanically defibrating after treating the pulp with acid.

項3.ミクロフィブリル化植物繊維(B)の含有量が、ゴム成分(A)100質量部に対して、1〜100質量部である項1又は2に記載のゴム組成物。   Item 3. Item 3. The rubber composition according to Item 1 or 2, wherein the content of the microfibrillated plant fiber (B) is 1 to 100 parts by mass with respect to 100 parts by mass of the rubber component (A).

項4.機械的な解繊処理が、磨砕処理である項2又は3に記載のゴム組成物。   Item 4. Item 4. The rubber composition according to Item 2 or 3, wherein the mechanical defibrating treatment is a grinding treatment.

項5.(a)パルプと酸で処理する工程、
(b)酸処理したパルプを、機械的に解繊処理することにより、ミクロフィブリル化植物繊維を調製する工程、
(c)工程(b)により得られたミクロフィブリル化植物繊維とゴムラテックスを混合し、ゴムラテックス中にミクロフィブリル化植物繊維を分散させる工程、及び
(d)工程(c)により得られた分散液を乾燥させる工程
を含む
ゴム組成物の製造方法。
Item 5. (A) a step of treating with pulp and acid,
(B) a step of preparing microfibrillated plant fibers by mechanically defibrating the acid-treated pulp;
(C) The step of mixing the microfibrillated plant fiber obtained in step (b) and the rubber latex to disperse the microfibrillated plant fiber in the rubber latex, and (d) the dispersion obtained in step (c). A method for producing a rubber composition comprising a step of drying a liquid.

項6.工程(a)における酸が、塩酸、硫酸、酢酸、及びギ酸よりなる群から選ばれる少なくとも1種である項5に記載のゴム組成物の製造方法。   Item 6. Item 6. The method for producing a rubber composition according to Item 5, wherein the acid in the step (a) is at least one selected from the group consisting of hydrochloric acid, sulfuric acid, acetic acid, and formic acid.

項7.工程(a)における酸の添加量が、パルプ100質量部に対して、5〜100質量部である項5又は6に記載のゴム組成物の製造方法。   Item 7. Item 7. The method for producing a rubber composition according to Item 5 or 6, wherein the amount of acid added in the step (a) is 5 to 100 parts by mass with respect to 100 parts by mass of the pulp.

項10.工程(a)における酸処理後、さらに水洗する工程を含む項5〜9のいずれかに記載のゴム組成物の製造方法。   Item 10. Item 10. The method for producing a rubber composition according to any one of Items 5 to 9, further comprising a step of washing with water after the acid treatment in the step (a).

項11.工程(b)における機械的な解繊処理が、磨砕処理である項5〜10のいずれかに記載のゴム組成物の製造方法。   Item 11. Item 11. The method for producing a rubber composition according to any one of Items 5 to 10, wherein the mechanical defibrating treatment in the step (b) is a grinding treatment.

項12.タイヤ用に用いられる項1〜4のいずれかに記載のゴム組成物。   Item 12. Item 5. The rubber composition according to any one of Items 1 to 4, which is used for tires.

項13.項1〜4、及び12のいずれかに記載のゴム組成物を用いた空気入りタイヤ。   Item 13. Item 15. A pneumatic tire using the rubber composition according to any one of Items 1 to 4 and 12.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のゴム組成物は、(A)ゴム成分、及び(B)特定のミクロフィブリル化植物繊維を含有する。   The rubber composition of the present invention contains (A) a rubber component, and (B) a specific microfibrillated plant fiber.

ゴム成分(A)としては、ジエン系ゴム成分のものが挙げられ、具体的には、天然ゴム(NR)、ブタジエンゴム(BR)、スチレン−ブタジエン共重合体ゴム(SBR)、イソプレンゴム(IR)、ブチルゴム(IIR)、アクリロニトリル−ブタジエンゴム(NBR)、アクリロニトリル−スチレン−ブタジエン共重合体ゴム、クロロプレンゴム、スチレン−イソプレン共重合体ゴム、スチレン−イソプレン−ブタジエン共重合体ゴム、イソプレン−ブタジエン共重合体ゴム、クロロスルホン化ポリエチレン、エポキシ化天然ゴム(ENR)等の改質天然ゴム、水素化天然ゴム、脱タンパク天然ゴム等が挙げられる。また、ジエン系ゴム成分以外のゴム成分としては、エチレン−プロピレン共重合体ゴム、アクリルゴム、エピクロルヒドリンゴム、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム等が挙げられる。これらのゴム成分は、単独で使用してもよく、2種類以上をブレンドして用いてもよい。ブレンドする場合のブレンド比においても、各種用途に応じて適宜配合すればよい。   Examples of the rubber component (A) include diene rubber components. Specifically, natural rubber (NR), butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), isoprene rubber (IR) ), Butyl rubber (IIR), acrylonitrile-butadiene rubber (NBR), acrylonitrile-styrene-butadiene copolymer rubber, chloroprene rubber, styrene-isoprene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, isoprene-butadiene copolymer Examples thereof include polymer rubber, chlorosulfonated polyethylene, modified natural rubber such as epoxidized natural rubber (ENR), hydrogenated natural rubber, deproteinized natural rubber, and the like. Examples of the rubber component other than the diene rubber component include ethylene-propylene copolymer rubber, acrylic rubber, epichlorohydrin rubber, polysulfide rubber, silicone rubber, fluorine rubber, and urethane rubber. These rubber components may be used alone or in combination of two or more. What is necessary is just to mix | blend suitably also in the blend ratio in the case of blending according to various uses.

本発明で用いられるミクロフィブリル化植物繊維(B)は、従来のミクロフィブリル化植物繊維よりも、特に繊維長の平均値(以下、平均繊維長ともいう)が短いため、繊維のネットワークや絡み合いが生じ難く、ゴム成分中に分散させたときに、凝集が抑制され、良好に分散することができる。このようなミクロフィブリル化植物繊維(B)の平均繊維長としては、1μm以上であり、2μm以上が好ましく、5μm以上がより好ましい。平均繊維長が1μm未満であると、ゴム補強効果が顕著に発現しない傾向がある。また、ミクロフィブリル化植物繊維(B)の平均繊維長は、20μm以下であり、15μm以下が好ましく、10μm以下がより好ましい。平均繊維長が20μmを超えると、繊維のネットワークや絡み合いが生じてしまい、ゴム成分中での分散性が悪化する、また、ゴムを拘束する効果が強く働くため、結果としてゴムの破壊特性が悪化する傾向がある。   The microfibrillated plant fiber (B) used in the present invention has an average fiber length (hereinafter also referred to as an average fiber length) shorter than that of conventional microfibrillated plant fibers, and therefore has a fiber network and entanglement. It is difficult to occur, and when dispersed in the rubber component, aggregation is suppressed and it can be favorably dispersed. The average fiber length of such microfibrillated plant fibers (B) is 1 μm or more, preferably 2 μm or more, and more preferably 5 μm or more. When the average fiber length is less than 1 μm, the rubber reinforcing effect tends not to be remarkably exhibited. The average fiber length of the microfibrillated plant fiber (B) is 20 μm or less, preferably 15 μm or less, and more preferably 10 μm or less. If the average fiber length exceeds 20 μm, the fiber network and entanglement will occur, the dispersibility in the rubber component will deteriorate, and the effect of restraining the rubber will work strongly, resulting in a deterioration in the fracture characteristics of the rubber. Tend to.

ミクロフィブリル化植物繊維(B)の繊維径の平均値(以下、平均繊維径ともいう)は、10μm以下であり、1μm以下が好ましく、0.2μm以下がより好ましい。平均繊維径が10μmを超えると、ゴム成分中に分散させたときに、凝集しやすくなり、ゴムの破壊特性を悪化させる、また、繊維自体が大きいため、ゴムが変形した際に破壊の起点となりやすく、結果としてゴムの破壊特性が悪化する傾向がある。なお、平均繊維径の上限については、特に限定されるものではないが、水系でゴムとマスターバッチ化する際の操作性において良好であるという点から、4nm以上が好ましい。   The average fiber diameter (hereinafter also referred to as average fiber diameter) of the microfibrillated plant fiber (B) is 10 μm or less, preferably 1 μm or less, and more preferably 0.2 μm or less. When the average fiber diameter exceeds 10 μm, it tends to agglomerate when dispersed in the rubber component, deteriorating the fracture characteristics of the rubber, and because the fiber itself is large, it becomes the starting point of fracture when the rubber is deformed. As a result, there is a tendency for the fracture characteristics of the rubber to deteriorate. The upper limit of the average fiber diameter is not particularly limited, but is preferably 4 nm or more from the viewpoint of good operability when forming a master batch with rubber in an aqueous system.

ミクロフィブリル化植物繊維(B)のアスペクト比は、前記平均繊維長に対する平均繊維径との比(前記平均繊維長/平均繊維径)により算出される。アスペクト比は、2以上であり、10以上が好ましく、50以上がより好ましい。アスペクト比が2未満であると、ゴム補強効果が顕著に発現しにくい傾向がある。また、アスペクト比は、1000以下であり、500以下が好ましく、300以下がより好ましい。アスペクト比が1000を超えると、ゴムを拘束する効果が強く働くため、結果としてゴムの破壊特性が悪化する傾向がある。   The aspect ratio of the microfibrillated plant fiber (B) is calculated by the ratio of the average fiber diameter to the average fiber length (the average fiber length / average fiber diameter). The aspect ratio is 2 or more, preferably 10 or more, and more preferably 50 or more. When the aspect ratio is less than 2, the rubber reinforcing effect tends to be hardly exhibited. Further, the aspect ratio is 1000 or less, preferably 500 or less, and more preferably 300 or less. When the aspect ratio exceeds 1000, the effect of restraining rubber works strongly, and as a result, the fracture characteristics of rubber tend to deteriorate.

前記特定の平均繊維長、平均繊維径、及びアスペクト比を有するミクロフィブリル化植物繊維(B)の製法は特に限定されないが、例えば、後述するゴム組成物の製造方法において記載されるように、パルプを酸処理したのちに、機械的に解繊処理することにより得られる。   The method for producing the microfibrillated plant fiber (B) having the specific average fiber length, average fiber diameter, and aspect ratio is not particularly limited. For example, as described in the method for producing a rubber composition described later, pulp After acid treatment, it is obtained by mechanically defibrating.

ゴム組成物中におけるミクロフィブリル化植物繊維(B)の含有量は、ゴム中でのミクロフィブリル化植物繊維の分散性を悪化させずにゴム補強効果を発現できるという観点から、ゴム成分(A)100質量部に対して、1〜50質量部の範囲内が好ましく、2〜35質量部の範囲内がより好ましく、3〜20質量部の範囲内がさらに好ましい。   From the viewpoint that the content of the microfibrillated plant fiber (B) in the rubber composition can exhibit a rubber reinforcing effect without deteriorating the dispersibility of the microfibrillated plant fiber in the rubber, the rubber component (A) Within the range of 1 to 50 parts by mass with respect to 100 parts by mass, more preferably within the range of 2 to 35 parts by mass, and even more preferably within the range of 3 to 20 parts by mass.

本発明は、(a)パルプを酸で処理する工程、(b)酸処理したパルプを、機械的に解繊処理することにより、ミクロフィブリル化植物繊維を調製する工程、(c)工程(b)により得られたミクロフィブリル化植物繊維とゴムラテックスを混合し、ゴムラテックス中にミクロフィブリル化植物繊維を分散させる工程、及び(d)工程(c)により得られた分散液を乾燥させる工程を含むゴム組成物の製造方法にも関する。   The present invention includes (a) a step of treating pulp with an acid, (b) a step of preparing microfibrillated plant fibers by mechanically defibrating the acid-treated pulp, (c) step (b) A step of mixing the microfibrillated plant fiber obtained in step 1) and rubber latex, dispersing the microfibrillated plant fiber in the rubber latex, and (d) drying the dispersion obtained in step (c). The present invention also relates to a method for producing the rubber composition.

工程(a)において酸処理されるパルプは、従来のミクロフィブリル化セルロースの製造に使用されていたパルプであればよく、リグニンが除去されていないもの、一部除去されているもの、又は完全に除去されたもののいずれであってもよい。   The pulp to be acid-treated in the step (a) may be any pulp that has been used in the production of conventional microfibrillated cellulose, and the lignin has not been removed, has been partially removed, or is completely removed. Any of those removed may be used.

ミクロフィブリル化植物繊維(B)を製造する際に用いられるパルプを供給するための植物原料としては、従来のミクロフィブリル化セルロースの製造に使用されていたパルプを供給するための植物原料を広く使用でき、例えば木材、竹、麻、ジュート、ケナフ、農作物残廃物、布、再生パルプ、古紙が挙げられる。好ましくは、木材、竹、麻、ジュート、ケナフ、農作物残廃物である。   As a plant raw material for supplying pulp used in producing the microfibrillated plant fiber (B), a wide variety of plant raw materials for supplying pulp used in the production of conventional microfibrillated cellulose are used. For example, wood, bamboo, hemp, jute, kenaf, crop waste, cloth, recycled pulp, and waste paper. Preferred are wood, bamboo, hemp, jute, kenaf, and crop residue.

植物原料をパルプ化する方法は、特に限定されるものではなく、従来の方法によって行われる。例えば、植物原料を機械的にパルプ化するメカニカルパルプ化法等が適用できる。メカニカルパルプ化法により得られるメカニカルパルプ(MP)としては砕木パルプ(GP)、リファイナーメカニカルパルプ(RMP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)等を挙げることができる。   The method for pulping the plant material is not particularly limited, and is performed by a conventional method. For example, a mechanical pulping method for mechanically pulping plant materials can be applied. Examples of the mechanical pulp (MP) obtained by the mechanical pulping method include groundwood pulp (GP), refiner mechanical pulp (RMP), thermomechanical pulp (TMP), and chemithermomechanical pulp (CTMP).

また、植物原料を塩素処理、アルカリ処理、酸素酸化処理、次亜塩素酸ナトリウム処理、亜硫酸塩処理等により化学的に或いは化学的及び機械的にパルプ化することにより得られるケミカルパルプ(CP)(クラフトパルプ(KP)、亜硫酸パルプ(SP)等)、セミケミカルパルプ(SCP)、ケミグランドパルプ(CGP)、ケミメカニカルパルプ(CMP)を用いることも可能である。また、パルプは、必要に応じてパルプ分野で慣用されている化学変性処理されていても良く、例えば、エーテル化処理、リグニンの芳香環が処理されたパルプ等を施されたパルプが例示される。エーテル化処理は、主として、セルロース、ヘミセルロース、リグニンに存在する水酸基をエーテル化処理することを包含する。また、リグニンの芳香環の処理は、リグニンの芳香環に所望の置換基を導入することを包含する。   Also, chemical pulp (CP) obtained by chemically or mechanically and mechanically pulping plant raw materials by chlorination, alkali treatment, oxygen oxidation treatment, sodium hypochlorite treatment, sulfite treatment, etc. Kraft pulp (KP), sulfite pulp (SP), etc.), semi-chemical pulp (SCP), chemiground pulp (CGP), and chemimechanical pulp (CMP) can also be used. Further, the pulp may be subjected to chemical modification treatment that is commonly used in the pulp field as necessary, and examples thereof include pulp subjected to etherification treatment, pulp treated with an aromatic ring of lignin, and the like. . The etherification treatment mainly includes etherification treatment of hydroxyl groups present in cellulose, hemicellulose, and lignin. Further, the treatment of the lignin aromatic ring includes introducing a desired substituent into the lignin aromatic ring.

なお、前記の変性処理は、パルプを形成するセルロースのグルコース単位におけるヒドロキシル基を化学的に変性するものであって、後述する酸によるパルプの処理とは異なるものである。   The modification treatment described above chemically modifies the hydroxyl group in the glucose unit of cellulose forming the pulp, and is different from the pulp treatment with acid described later.

工程(a)において、パルプを酸で処理する。ここで、「パルプを酸で処理する」とは、パルプを形成するセルロース繊維中の結晶性の低いセルロース部分のグリコシド結合を、酸により部分的に加水分解させることを意味し、その結果、パルプを部分的に切断することが可能となる。そのため、酸による処理後のパルプに対して、後述する解繊処理を行うことによって、平均繊維長の短いミクロフィブリル化植物繊維を得ることが可能となる。   In step (a), the pulp is treated with an acid. Here, “treating the pulp with an acid” means that the glycoside bond of the cellulose portion having low crystallinity in the cellulose fiber forming the pulp is partially hydrolyzed by the acid, and as a result, the pulp Can be partially cut. Therefore, it is possible to obtain microfibrillated plant fibers having a short average fiber length by subjecting the pulp after the treatment with acid to a defibrating treatment described later.

工程(a)で用いられる酸としては、塩酸、硫酸、酢酸、ギ酸等が挙げられるが、これらの中で、加水分解の効率とコスト、反応後の洗浄の効率において優れるという観点から、塩酸が好ましい。   Examples of the acid used in the step (a) include hydrochloric acid, sulfuric acid, acetic acid, formic acid and the like. Among these, hydrochloric acid is used from the viewpoint that it is excellent in the efficiency and cost of hydrolysis and the efficiency of washing after the reaction. preferable.

酸の添加量は、加水分解の効率とコストのバランスにおいて良好であるという点から、パルプ100質量部に対して、5〜100質量部の範囲内が好ましく、10〜50質量部の範囲内がより好ましく、20〜40質量部の範囲内がさらに好ましい。   The addition amount of the acid is preferably in the range of 5 to 100 parts by mass, and in the range of 10 to 50 parts by mass, with respect to 100 parts by mass of the pulp, from the viewpoint of good balance between the efficiency of hydrolysis and the cost. More preferably, it is more preferably within the range of 20 to 40 parts by mass.

ここで、前記の「酸の添加量」は、酸を含む溶液である場合には、溶液を除いた酸成分の添加量を意味する。   Here, in the case of a solution containing an acid, the “addition amount of acid” means the addition amount of the acid component excluding the solution.

パルプと酸との反応温度は、加水分解の制御が容易で効率が良好であるという点から、50〜100℃の範囲内が好ましく、70〜97℃の範囲内がより好ましく、80〜95℃の範囲内がさらに好ましい。   The reaction temperature between the pulp and the acid is preferably in the range of 50 to 100 ° C., more preferably in the range of 70 to 97 ° C., and 80 to 95 ° C. from the viewpoint that the hydrolysis is easily controlled and the efficiency is good. It is further preferable to be within the range.

パルプと酸との反応時間は、加水分解のできていないフラクションを抑制できる点から、0.1〜10時間の範囲内が好ましく、0.5〜5時間の範囲内がより好ましく、1〜3時間の範囲内がさらに好ましい。   The reaction time between the pulp and the acid is preferably in the range of 0.1 to 10 hours, more preferably in the range of 0.5 to 5 hours, from the viewpoint that the fraction that has not been hydrolyzed can be suppressed. More preferably within the time range.

酸処理されたパルプは、さらに水洗することによって、未反応の酸を除去させることが、以降の工程での汚染及びパルプ自体の劣化を抑制できる点で好ましい。   It is preferable that the acid-treated pulp is further washed with water to remove unreacted acid from the viewpoint of suppressing contamination in subsequent steps and deterioration of the pulp itself.

工程(a)において、酸によって処理されたパルプは、工程(b)において、機械的に解繊処理することにより、前記の平均繊維長、平均繊維径、及びアスペクト比を有するミクロフィブリル化植物繊維が得られる。解繊処理は、水の存在下で行われる。解繊処理の方法としては、リファイナー、二軸混錬機(二軸押出機)、二軸混錬押出機、高圧ホモジナイザー、媒体撹拌ミル、石臼、グラインダー、振動ミル、サンドグラインダー等により機械的に磨砕ないし叩解する方法が挙げられる。これらの方法により、パルプが解繊又は微細化され、ミクロフィブリル化植物繊維とされる。解繊処理における好ましい温度は0〜99℃、より好ましくは0〜90℃である。解繊処理の原料となるパルプは、このような解繊処理に適した形状(例えば粉末状等)であることが望ましい。また、解繊処理に先立って、パルプを蒸気で蒸す(例えば、圧力釜中、水分存在下で加熱する)と解繊エネルギーの低減の点で有利である。   In the step (a), the pulp treated with an acid is mechanically defibrated in the step (b), whereby the microfibrillated plant fiber having the above average fiber length, average fiber diameter, and aspect ratio is obtained. Is obtained. The defibrating process is performed in the presence of water. As a method of defibrating treatment, mechanically using a refiner, twin screw kneader (double screw extruder), twin screw kneader, high pressure homogenizer, medium stirring mill, stone mill, grinder, vibration mill, sand grinder, etc. The method of grinding or beating is mentioned. By these methods, the pulp is defibrated or refined into microfibrillated plant fibers. A preferable temperature in the defibrating treatment is 0 to 99 ° C, more preferably 0 to 90 ° C. It is desirable that the pulp that is the raw material for the defibrating process has a shape (for example, a powder form) suitable for such a defibrating process. In addition, it is advantageous in terms of reducing the defibrating energy when the pulp is steamed with steam (for example, heated in a pressure cooker in the presence of moisture) prior to the defibrating treatment.

好ましい解繊方法は磨砕処理であり、石臼式磨砕機、二軸混練押出機を用いることが好ましい。磨砕は繊維径が所望の大きさになるまで行えばよい。   A preferable defibrating method is grinding treatment, and it is preferable to use a stone mill type grinding machine or a twin screw kneading extruder. The grinding may be performed until the fiber diameter reaches a desired size.

なお、酸処理を施さずに、原料パルプを機械的に解繊処理し、その後に、得られる植物繊維を酸処理することによって、前記の平均繊維長、平均繊維径、及びアスペクト比を有するミクロフィブリル化植物繊維を得ることも可能であるが、該方法では、酸処理後、粘度の向上が生じてしまうため、粘度をコントロールしなければならない、反応処理後のミクロフィブリル化植物繊維の洗浄処理を行う場合に、濾水性が悪く作業性が大幅に悪化する等の観点から、工程が煩雑化する傾向がある。   The raw pulp is mechanically defibrated without acid treatment, and then the resulting plant fiber is acid-treated to obtain the above-mentioned average fiber length, average fiber diameter, and aspect ratio. Although it is possible to obtain fibrillated plant fibers, in this method, since the viscosity is improved after the acid treatment, the viscosity must be controlled. The washing treatment of the microfibrillated plant fibers after the reaction treatment In the case of carrying out the process, the process tends to be complicated from the viewpoint of poor drainage and greatly deteriorated workability.

また、ミクロフィブリル化植物繊維(B)に含有するリグニンについては、さらに化学的に除去したものであっても、除去していなくともよい。   In addition, the lignin contained in the microfibrillated plant fiber (B) may be further chemically removed or not removed.

化学的にリグニンを完全には除去しない場合、ミクロフィブリル化セルロースの間を埋めているリグニン及びヘミセルロースからなるマトリックス部分が壊れて微小繊維化(ミクロフィブリル化)していると推測される。したがって、機械的な解繊処理により得られるミクロフィブリル化植物繊維(B)は、植物原料が本来有しているセルロース、ヘミセルロース及びプロトリグニン(植物組織中に存在する状態でのリグニン)から構成される構造を保持していると推測される。セルロースミクロフィブリル及び/又はセルロースミクロフィブリル束の周囲の一部又は全部をヘミセルロース及び/又はリグニンが被覆した構造、特に、セルロースミクロフィブリル及び/又はセルロースミクロフィブリル束の周囲をヘミセルロースが覆い、さらにこれをリグニンが覆った構造を有していると推測される。ただし、ヘミセルロース及び/又はリグニンが取れてヘミセルロース又はセルロース繊縦が表面に露出する部分も存在するであろうと推測される。   If the lignin is not completely removed chemically, it is presumed that the matrix portion composed of lignin and hemicellulose filling the space between the microfibrillated cellulose is broken and microfibrillated (microfibrillated). Therefore, the microfibrillated plant fiber (B) obtained by mechanical fibrillation treatment is composed of cellulose, hemicellulose and protolignin (lignin in a state existing in the plant tissue) inherent in the plant material. It is presumed that this structure is retained. A structure in which hemicellulose and / or lignin is coated partly or entirely around cellulose microfibrils and / or cellulose microfibril bundles, in particular, hemicellulose covers cellulose microfibrils and / or cellulose microfibril bundles, It is presumed to have a structure covered with lignin. However, it is presumed that there will also be a portion where hemicellulose and / or lignin is removed and the hemicellulose or cellulose fiber length is exposed on the surface.

なお、特開2001−342353号公報には、木粉を脱脂処理(エタノール:ベンゼン=1:2溶液)した脱脂木粉に、フェノール誘導体のアセトン溶液を加えてフェノール誘導体を収着させ、リン酸処理して得られる組成物が記載されているが、この組成物は、ミクロフィブリル化されていない点で、本発明で用いられるミクロフィブリル化植物繊維(B)とは相違する。   In JP 2001-342353 A, an acetone solution of a phenol derivative is added to a defatted wood powder obtained by degreasing wood powder (ethanol: benzene = 1: 2 solution) to sorb the phenol derivative, and phosphoric acid is added. Although a composition obtained by treatment is described, this composition is different from the microfibrillated plant fiber (B) used in the present invention in that it is not microfibrillated.

工程(c)において、工程(b)により得られたミクロフィブリル化植物繊維とゴムラテックスを混合し、ゴムラテックス中にミクロフィブリル化植物繊維を分散させる。   In the step (c), the microfibrillated plant fiber obtained in the step (b) and the rubber latex are mixed, and the microfibrillated plant fiber is dispersed in the rubber latex.

工程(c)において分散されるミクロフィブリル化植物繊維の固形分濃度は、凝固時の各材料の歩留まりが良好であるという観点から、分散液中、0.1質量%以上が好ましく、0.3質量%以上がより好ましく、0.5質量%以上がさらに好ましい。ミクロフィブリル化植物繊維の固形分濃度は、ゴム成分(A)との混合効率が良好であるという点から、分散液中、10質量%以下が好ましく、5質量%以下がより好ましく、2質量%以下がさらに好ましい。   The solid content concentration of the microfibrillated plant fiber dispersed in the step (c) is preferably 0.1% by mass or more in the dispersion from the viewpoint that the yield of each material during solidification is good. More preferably, it is more preferably 0.5% by mass or more. The solid content concentration of the microfibrillated plant fiber is preferably 10% by mass or less, more preferably 5% by mass or less, and 2% by mass in the dispersion from the viewpoint of good mixing efficiency with the rubber component (A). The following is more preferable.

工程(c)において分散されるゴム成分の固形分濃度は、凝固時の各材料の歩留まりが良好であるという点から、分散液中、0.5質量%以上が好ましく、1.0質量%以上がより好ましく、1.5質量%以上がさらに好ましい。ゴム成分の固形分濃度は、ミクロフィブリル化植物繊維との混合効率が良好であるという点から、分散液中、30質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下がさらに好ましい。   The solid content concentration of the rubber component dispersed in the step (c) is preferably 0.5% by mass or more, preferably 1.0% by mass or more in the dispersion, from the viewpoint that the yield of each material during solidification is good. Is more preferable, and 1.5 mass% or more is still more preferable. The solid content concentration of the rubber component is preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 10% by mass or less in the dispersion from the viewpoint of good mixing efficiency with the microfibrillated plant fiber. preferable.

ミクロフィブリル化植物繊維の添加量は、凝固時のゴム中でのミクロフィブリル化植物繊維の分散性を悪化させず、最終的にゴム補強効果を発現できるという観点から、分散液中に含まれるゴム成分100質量部に対して、1〜50質量部の範囲内が好ましく、2〜35質量部の範囲内がより好ましく、3〜20質量部の範囲内がさらに好ましい。   The amount of the microfibrillated plant fiber added does not deteriorate the dispersibility of the microfibrillated plant fiber in the rubber at the time of coagulation, and from the viewpoint that the rubber reinforcing effect can finally be exhibited, the rubber contained in the dispersion liquid The range of 1-50 mass parts is preferable with respect to 100 parts by mass of the component, more preferably within the range of 2-35 mass parts, and even more preferably within the range of 3-20 mass parts.

工程(c)において得られる分散液は、酸により凝固させ、その後、乾燥させる。   The dispersion obtained in step (c) is coagulated with an acid and then dried.

分散液中の固形分を凝固させる際の酸は、ギ酸、酢酸、塩酸、硫酸等が挙げられる。   Examples of the acid for solidifying the solid content in the dispersion include formic acid, acetic acid, hydrochloric acid, and sulfuric acid.

前記の方法により得られるゴム組成物(マスターバッチ)は、さらに、カーボンブラック、シリカ等の補強用充填剤;シランカップリング剤等のシラン化合物;プロセスオイル;ワックス;老化防止剤;硫黄及び加硫促進剤等の加硫剤;酸化亜鉛、ステアリン酸等の加硫助剤等を適宜配合することができる。   The rubber composition (masterbatch) obtained by the above method further comprises reinforcing fillers such as carbon black and silica; silane compounds such as silane coupling agents; process oils; waxes; anti-aging agents; sulfur and vulcanization. Vulcanizing agents such as accelerators; vulcanizing aids such as zinc oxide and stearic acid can be appropriately blended.

本発明のゴム組成物は、酸処理されたミクロフィブリル化植物繊維(B)が、特に平均繊維長の短いものとなっているため、従来のミクロフィブリル化植物繊維のように、ネットワークが生じたり、絡み合いが生じることが少なく、良好にゴム成分(A)中に分散される。そのため、破壊の起点となる凝集塊を少なくすることができ、破壊特性を向上させることができる。よって、タイヤ用として好適に用いられ、タイヤ用として用いた場合、低燃費特性を低下させずに、かつ耐久性を向上させ操縦安定性を改善することができる。   In the rubber composition of the present invention, since the acid-treated microfibrillated plant fiber (B) has a particularly short average fiber length, a network is formed like conventional microfibrillated plant fibers. The entanglement is less likely to occur and is well dispersed in the rubber component (A). Therefore, aggregates that are the starting point of destruction can be reduced, and the fracture characteristics can be improved. Therefore, it is suitably used for tires, and when used for tires, it is possible to improve durability and improve steering stability without deteriorating low fuel consumption characteristics.

本発明のゴム組成物をタイヤ用として用いる場合、バンバリーミキサーやニーダー、オープンロール等で前記のゴム成分(A)、並びに特定の平均繊維長、平均繊維径、及びアスペクト比を有するミクロフィブリル化植物繊維(B)を含有するゴム組成物に、さらに、所望の添加剤を混練することによりタイヤ用ゴム組成物として適用することができる。   When the rubber composition of the present invention is used for tires, it is a microfibrillated plant having a specific average fiber length, average fiber diameter, and aspect ratio as described above using a Banbury mixer, a kneader, an open roll or the like. The rubber composition containing the fiber (B) can be further applied as a tire rubber composition by kneading a desired additive.

また、本発明は、前記ゴム組成物を用いた空気入りタイヤにも関する。空気入りタイヤは、本発明のゴム組成物を用いて通常の方法で製造される。すなわち、本発明のゴム組成物にさらに、所望の配合剤を配合して混練し、得られる混練物を、未加硫の段階でタイヤの各種部材の形状にあわせて押出し加工し、タイヤ成形機上にて通常の方法で成形することにより、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧することによりタイヤを得ることができる。   The present invention also relates to a pneumatic tire using the rubber composition. A pneumatic tire is manufactured by a normal method using the rubber composition of the present invention. That is, the rubber composition of the present invention is further mixed with a desired compounding agent and kneaded, and the resulting kneaded product is extruded in accordance with the shape of various members of the tire at an unvulcanized stage. An unvulcanized tire is formed by molding in the usual manner. A tire can be obtained by heating and pressurizing this unvulcanized tire in a vulcanizer.

本発明のゴム組成物は、酸によって処理されたミクロフィブリル化植物繊維(B)が、特に平均繊維長の短いものとなっているため、良好にゴム成分(A)中に分散される。そのため、破壊の起点となる凝集塊を少なくすることができ、破壊特性を向上させることができる。よって、タイヤ用として用いた場合、燃費を悪化させずに、かつ耐久性を改善することができる。   In the rubber composition of the present invention, since the microfibrillated plant fiber (B) treated with an acid has a particularly short average fiber length, it is well dispersed in the rubber component (A). Therefore, aggregates that are the starting point of destruction can be reduced, and the fracture characteristics can be improved. Therefore, when used for tires, the durability can be improved without deteriorating fuel consumption.

さらに、本発明のゴム組成物の製造方法によって、平均繊維長の短いミクロフィブリル化植物繊維(B)を製造することができるとともに、良好にゴム成分(A)中に分散させることができる。   Furthermore, by the method for producing a rubber composition of the present invention, a microfibrillated plant fiber (B) having a short average fiber length can be produced and can be well dispersed in the rubber component (A).

以下に実施例及び比較例を示して、本発明をさらに具体的に説明する。なお、本発明は、以下の実施形態に限定されるものではない。   The present invention will be described more specifically with reference to the following examples and comparative examples. In addition, this invention is not limited to the following embodiment.

・実施例1、比較例1、及び参考例1
<ミクロフィブリル化植物繊維1の調製>
針葉樹由漂白クラフトパルプを水で希釈して、固形分濃度2.0質量%に調製した。その後、バッチ内の塩酸濃度が0.6%になるように塩酸を添加し、90℃で2時間撹拌した。得られた混合物を水でpHがおよそ7.0になるまで水で洗浄を繰返した後、固形分濃度が30質量%になるように脱水処理した。ついで得られた含水パルプを400rpm、0℃の操業条件の二軸混練押出機で処理することで、ミクロフィブリル化植物繊維1を調製した。
-Example 1, Comparative example 1, and Reference example 1
<Preparation of microfibrillated plant fiber 1>
Bleached kraft pulp from softwood was diluted with water to a solid content concentration of 2.0% by mass. Thereafter, hydrochloric acid was added so that the hydrochloric acid concentration in the batch was 0.6%, and the mixture was stirred at 90 ° C. for 2 hours. The obtained mixture was repeatedly washed with water until the pH reached about 7.0, and then dehydrated so that the solid concentration was 30% by mass. Next, microfibrillated plant fiber 1 was prepared by treating the obtained hydrous pulp with a twin-screw kneader / extruder having an operating condition of 400 rpm and 0 ° C.

得られたミクロフィブリル化植物繊維1の平均繊維長は、電子顕微鏡による観察結果からおよそ8μm、平均繊維径はおよそ40nm、アスペクト比はおよそ200であった。   The average fiber length of the obtained microfibrillated plant fiber 1 was about 8 μm, the average fiber diameter was about 40 nm, and the aspect ratio was about 200, as a result of observation by an electron microscope.

<ミクロフィブリル化植物繊維2の調製>
前記<ミクロフィブリル化植物繊維1の調製>と同様の針葉樹由来漂白クラフトパルプを酸処理せずに固形分濃度30質量%の状態で400rpm、0℃の操業条件の二軸混練押出機で処理することでミクロフィブリル化植物繊維2を調製した。
<Preparation of microfibrillated plant fiber 2>
The same softwood-derived bleached kraft pulp as in <Preparation of microfibrillated plant fiber 1> is treated with a twin-screw kneading extruder under an operating condition of 400 rpm and 0 ° C. at a solid content concentration of 30% by mass without acid treatment. Thus, microfibrillated plant fiber 2 was prepared.

得られたミクロフィブリル化植物繊維1の平均繊維長は、電子顕微鏡による観察結果からおよそ200μm、平均繊維径はおよそ100nm、アスペクト比はおよそ2000であった。   The average fiber length of the obtained microfibrillated plant fiber 1 was about 200 μm, the average fiber diameter was about 100 nm, and the aspect ratio was about 2000, as a result of observation by an electron microscope.

<マスターバッチの調製>
マスターバッチ1の調製
表1に記載量のミクロフィブリル化植物繊維1(固形分濃度:30質量%)を、表1に記載量の水中に高速ホモジナイザー(IKA製バッチ式ホモジナイザーT25ウルトラタラックス(Ultraturrax T25))を用いて、24,000rpm、1時間撹拌分散させ、ついで表1記載量の天然ゴムラテックス(ゴールデン・ホープ・プランテーションズ社製、HYTEX-HA、固形分濃度60質量%)を添加し、さらに30分撹拌分散させた。得られた混合液にさらに5%ギ酸水溶液で凝固し、水洗後、40℃の加熱オーブン中で乾燥させることでマスターバッチ1を得た。
<Preparation of master batch>
Preparation of Masterbatch 1 Microfibrillated plant fiber 1 (solid content concentration: 30% by mass) described in Table 1 was added to a high speed homogenizer (IKA batch homogenizer T25 Ultra Turrax (Ultraturrax) in the amount of water described in Table 1. Using T25)), the mixture is stirred and dispersed at 24,000 rpm for 1 hour, and then the amount of natural rubber latex described in Table 1 (Golden Hope Plantations, HYTEX-HA, solid content concentration 60 mass%) is added. The mixture was further stirred and dispersed for 30 minutes. The obtained mixed solution was further coagulated with a 5% aqueous formic acid solution, washed with water, and dried in a heating oven at 40 ° C. to obtain a master batch 1.

マスターバッチ2の調製
ミクロフィブリル化植物繊維2を用いた以外は、マスターバッチ1の調製と同様の方法で調製した。
Preparation of masterbatch 2 A masterbatch 2 was prepared in the same manner as the preparation of masterbatch 1 except that microfibrillated plant fiber 2 was used.

マスターバッチ3の調製
ミクロフィブリル化植物繊維を使用せず、マスターバッチ1の調製で使用した固形分濃度60質量%の天然ゴムラテックス250gを5%ギ酸水溶液で凝固し、水洗後、40℃の加熱オーブン中で乾燥させることでマスターバッチ3を得た。
Preparation of masterbatch 3 Without using microfibrillated plant fibers, 250 g of a natural rubber latex having a solid content of 60% by mass used in the preparation of masterbatch 1 was coagulated with a 5% aqueous formic acid solution, washed with water, and heated at 40 ° C. Masterbatch 3 was obtained by drying in an oven.

前記マスターバッチ1〜3におけるミクロフィブリル化植物繊維、水、及び天然ゴムラテックスの配合量を示す。   The compounding quantity of the microfibrillated plant fiber in the said masterbatch 1-3, water, and natural rubber latex is shown.

Figure 0005676909
Figure 0005676909

<加硫ゴム組成物の調製>
表2の配合に従い、各種マスターバッチと配合剤を60℃、24rpmの条件で6インチオープンロールにより5分間混練した後、150℃でプレス加熱することで実施例1、比較例1、及び参考例1に対応する加硫ゴム組成物を得た。
<Preparation of vulcanized rubber composition>
According to the composition of Table 2, various master batches and compounding agents were kneaded for 5 minutes with a 6-inch open roll at 60 ° C. and 24 rpm, and then press-heated at 150 ° C., Example 1, Comparative Example 1, and Reference Example A vulcanized rubber composition corresponding to 1 was obtained.

加硫ゴム組成物を調製する際に用いた各配合成分の詳細を以下に示す。   The detail of each compounding component used when preparing a vulcanized rubber composition is shown below.

老化防止剤:ノクラック6C(大内新興化学工業(株)製)
ステアリン酸:ビーズステアリン酸つばき(日本油脂(株)製)
酸化亜鉛:酸化亜鉛2種(三井金属鉱業(株)製)
硫黄:粉末硫黄(鶴見化学工業(株)製)
加硫促進剤:ノクセラーDM(大内新興化学工業(株)製)
Anti-aging agent: NOCRACK 6C (Ouchi Shinsei Chemical Co., Ltd.)
Stearic acid: Bead stearic acid Tsubaki (manufactured by NOF Corporation)
Zinc oxide: 2 types of zinc oxide (Mitsui Metal Mining Co., Ltd.)
Sulfur: Powdered sulfur (manufactured by Tsurumi Chemical Co., Ltd.)
Vulcanization accelerator: Noxeller DM (Ouchi Shinsei Chemical Co., Ltd.)

Figure 0005676909
Figure 0005676909

<物性評価>
上記の方法で作製した加硫ゴム組成物を用い、以下に示す評価を行った。なお、表3に示す特性データ中の引張強度指数、破断伸び指数、破壊エネルギー指数、転がり抵抗指数については、参考例1を基準配合とし、下記記載の計算式で算出した。
<Physical property evaluation>
The following evaluation was performed using the vulcanized rubber composition produced by the above method. Note that the tensile strength index, breaking elongation index, breaking energy index, and rolling resistance index in the characteristic data shown in Table 3 were calculated by the following formula using Reference Example 1 as a reference composition.

(引張試験)
JIS K6251「加硫ゴム及び熱可塑性ゴム−引張特性の求め方」に従い、破断応力及び破断伸びを測定した。下記の計算式、
引張強度指数=(各配合の破断応力)÷(基準配合の破断応力)×100
破断伸び指数=(各配合の破断伸び)÷(基準配合の破断伸び)×100
破壊エネルギー指数=(各配合の破断応力×破断伸び÷2)÷(基準配合の破断応力×破断伸び÷2)×100
により引張強度指数、破断伸び指数、破壊エネルギー指数を算出した。指数が大きい程、加硫ゴム組成物が良好に補強されており、ゴムの機械強度が大きく、破壊特性に優れることを示す。
(Tensile test)
The breaking stress and breaking elongation were measured according to JIS K6251 “Vulcanized rubber and thermoplastic rubber—How to obtain tensile properties”. The following formula:
Tensile strength index = (breaking stress of each compound) ÷ (breaking stress of standard compound) × 100
Breaking elongation index = (breaking elongation of each compound) ÷ (breaking elongation of the standard compound) × 100
Fracture energy index = (breaking stress of each formulation x breaking elongation ÷ 2) ÷ (breaking stress of standard formulation x breaking elongation ÷ 2) x 100
Was used to calculate the tensile strength index, the breaking elongation index, and the breaking energy index. The larger the index, the better the vulcanized rubber composition is reinforced, and the higher the mechanical strength of the rubber, the better the fracture characteristics.

(転がり抵抗指数)
前述の方法で調製された加硫ゴム組成物の2mmゴムスラブシートから測定用試験片を切り出し、粘弾性スペクトロメータVES((株)岩本製作所製)を用いて、温度70℃、初期歪10%、動歪2%、周波数10Hzの条件下で、各測定用試験片のE*(複素弾性率)及びtanδ(損失正接)を測定した。下記の計算式、
転がり抵抗指数=(各配合のtanδ)÷(基準配合のtanδ)×100
により操縦安定性指数、転がり抵抗指数を算出した。
(Rolling resistance index)
A test specimen for measurement was cut out from a 2 mm rubber slab sheet of the vulcanized rubber composition prepared by the above-described method, and the temperature was 70 ° C. and the initial strain was 10% using a viscoelastic spectrometer VES (manufactured by Iwamoto Seisakusho). E * (complex elastic modulus) and tan δ (loss tangent) of each test specimen were measured under the conditions of dynamic strain 2% and frequency 10 Hz. The following formula:
Rolling resistance index = (tan δ of each formulation) ÷ (tan δ of standard formulation) × 100
The steering stability index and rolling resistance index were calculated.

転がり抵抗指数が小さい程、空気入りタイヤとして用いる場合に良好な転がり抵抗特性を与えることを示す。   A smaller rolling resistance index indicates better rolling resistance characteristics when used as a pneumatic tire.

Figure 0005676909
Figure 0005676909

Claims (5)

(a)パルプを酸で処理する工程、
(b)酸処理したパルプを、機械的に解繊処理することにより、繊維長の平均値が1〜20μm、繊維径の平均値が10μm以下、及びアスペクト比が2〜1000であるミクロフィブリル化植物繊維を調製する工程、
(c)工程(b)により得られたミクロフィブリル化植物繊維とゴムラテックスを混合し、ゴムラテックス中にミクロフィブリル化植物繊維を分散させる工程、及び
(d)工程(c)により得られた分散液を乾燥させる工程
を含む
ゴム組成物の製造方法。
(A) a step of treating the pulp with an acid;
(B) By mechanically defibrating the acid-treated pulp, microfibrillation having an average fiber length of 1 to 20 μm, an average fiber diameter of 10 μm or less, and an aspect ratio of 2 to 1000 Preparing plant fibers,
(C) The step of mixing the microfibrillated plant fiber obtained in step (b) and the rubber latex to disperse the microfibrillated plant fiber in the rubber latex, and (d) the dispersion obtained in step (c). A method for producing a rubber composition comprising a step of drying a liquid.
工程(a)における酸が、塩酸、硫酸、酢酸、及びギ酸よりなる群から選ばれる少なくとも1種である請求項1に記載のゴム組成物の製造方法。 The method for producing a rubber composition according to claim 1, wherein the acid in the step (a) is at least one selected from the group consisting of hydrochloric acid, sulfuric acid, acetic acid, and formic acid. 工程(a)における酸の添加量が、パルプ100質量部に対して、5〜100質量部である請求項1又は2に記載のゴム組成物の製造方法。 The method for producing a rubber composition according to claim 1 or 2, wherein an addition amount of the acid in the step (a) is 5 to 100 parts by mass with respect to 100 parts by mass of the pulp. 工程(a)における酸処理後、さらに水洗する工程を含む請求項1〜3のいずれかに記載のゴム組成物の製造方法。 The manufacturing method of the rubber composition in any one of Claims 1-3 including the process of washing with water after the acid treatment in a process (a). 工程(b)における機械的な解繊処理が、磨砕処理である請求項1〜4のいずれかに記載のゴム組成物の製造方法。 The method for producing a rubber composition according to any one of claims 1 to 4, wherein the mechanical defibrating treatment in the step (b) is a grinding treatment.
JP2010102156A 2010-04-27 2010-04-27 Rubber composition and method for producing rubber composition Active JP5676909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010102156A JP5676909B2 (en) 2010-04-27 2010-04-27 Rubber composition and method for producing rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010102156A JP5676909B2 (en) 2010-04-27 2010-04-27 Rubber composition and method for producing rubber composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014215645A Division JP6021877B2 (en) 2014-10-22 2014-10-22 Rubber composition and method for producing rubber composition

Publications (2)

Publication Number Publication Date
JP2011231208A JP2011231208A (en) 2011-11-17
JP5676909B2 true JP5676909B2 (en) 2015-02-25

Family

ID=45320857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010102156A Active JP5676909B2 (en) 2010-04-27 2010-04-27 Rubber composition and method for producing rubber composition

Country Status (1)

Country Link
JP (1) JP5676909B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3384512B2 (en) * 1994-08-03 2003-03-10 新日本石油株式会社 Refrigerator oil composition and refrigeration fluid composition
JP5865063B2 (en) * 2011-12-22 2016-02-17 三菱化学株式会社 Method for producing rubber composition
JP5706863B2 (en) * 2012-01-16 2015-04-22 住友ゴム工業株式会社 Masterbatch, rubber composition and pneumatic tire
JP6000598B2 (en) * 2012-03-29 2016-09-28 東洋ゴム工業株式会社 Rubber / cellulose masterbatch and rubber composition
JP2014001360A (en) * 2012-05-25 2014-01-09 Olympus Corp Elastomer composition and molded product
JP6048365B2 (en) 2012-10-23 2016-12-21 三菱化学株式会社 Rubber modifier, rubber modifier dispersion, and rubber composition
JP6425260B2 (en) * 2012-11-29 2018-11-21 西川ゴム工業株式会社 Method of producing elastomer composition
JP6143187B2 (en) * 2012-12-25 2017-06-07 三菱ケミカル株式会社 Cellulose nanofiber-containing rubber masterbatch
JP5981359B2 (en) * 2013-01-25 2016-08-31 住友ゴム工業株式会社 Rubber composition and pneumatic tire
JP6193577B2 (en) * 2013-02-01 2017-09-06 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire
JP6193581B2 (en) * 2013-02-12 2017-09-06 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire
WO2014142319A1 (en) * 2013-03-14 2014-09-18 株式会社ブリヂストン Rubber composition, method for manufacturing same, vulcanized rubber, and tire
JP6181426B2 (en) * 2013-05-23 2017-08-16 住友ゴム工業株式会社 Masterbatch, production method, rubber composition and pneumatic tire
JP6615444B2 (en) 2013-10-17 2019-12-04 日信工業株式会社 Method for producing rubber composition and rubber composition
JP6143186B2 (en) * 2013-11-08 2017-06-07 三菱ケミカル株式会社 Manufacturing method of composite material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3841179B2 (en) * 1996-04-16 2006-11-01 旭化成ケミカルズ株式会社 Fine cellulose suspension
JP3998692B2 (en) * 2004-12-27 2007-10-31 横浜ゴム株式会社 Rubber / short fiber masterbatch, production method thereof, and pneumatic tire using the masterbatch
JP2009143981A (en) * 2007-12-11 2009-07-02 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire using it
JP5465389B2 (en) * 2008-02-15 2014-04-09 株式会社ブリヂストン Rubber composition and method for producing the same
JP5178228B2 (en) * 2008-02-15 2013-04-10 株式会社ブリヂストン Rubber composition and method for producing the same
JP5586833B2 (en) * 2008-02-21 2014-09-10 花王株式会社 Resin composition
US8377563B2 (en) * 2008-03-31 2013-02-19 Nippon Paper Industruies Co., Ltd. Papermaking additive and paper containing the same
JP4981735B2 (en) * 2008-03-31 2012-07-25 日本製紙株式会社 Method for producing cellulose nanofiber

Also Published As

Publication number Publication date
JP2011231208A (en) 2011-11-17

Similar Documents

Publication Publication Date Title
JP5676909B2 (en) Rubber composition and method for producing rubber composition
JP5717656B2 (en) Rubber composition
JP5595103B2 (en) Rubber composition and method for producing rubber composition
JP5846919B2 (en) Rubber composition and method for producing the same
JP6416749B2 (en) Manufacturing method of rubber composition, rubber composition, vulcanized rubber and tire
JP5865063B2 (en) Method for producing rubber composition
WO2014142319A1 (en) Rubber composition, method for manufacturing same, vulcanized rubber, and tire
JP5616372B2 (en) Rubber composition for tire, method for producing the same, and pneumatic tire
JP5933302B2 (en) Rubber composition for tire, method for producing the same, and pneumatic tire
JP6193581B2 (en) Rubber composition for tire and pneumatic tire
JP2021014512A (en) Composite material
JP7044300B2 (en) Rubber composition and method for producing rubber composition
JP2013177540A (en) Rubber modifying material, rubber latex-dispersed solution and rubber composition
JP5595104B2 (en) Rubber composition and tire using the same
JP2020063327A (en) Production method of composite material and composite material
JP2014101498A (en) Modifying material for rubber, dispersing liquid of modifying material for rubber, and rubber composition
EP2620295B1 (en) Rubber composition for tire, method of producing the same, and pneumatic tire
JP5966859B2 (en) Method for producing fine cellulose fiber dispersion
JP6353169B2 (en) Rubber composition and pneumatic tire
JP2015010136A (en) Rubber composition for tire, and pneumatic tire using the same
JP6021877B2 (en) Rubber composition and method for producing rubber composition
JP2015129360A (en) Bacterial cellulose fibrillating method
JP6484583B2 (en) Boot member and pin slide type vehicle disc brake using the boot member
JP6193577B2 (en) Rubber composition for tire and pneumatic tire
JP2024044892A (en) Rubber composition and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140305

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141022

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141226

R150 Certificate of patent or registration of utility model

Ref document number: 5676909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250