JP6181426B2 - Masterbatch, production method, rubber composition and pneumatic tire - Google Patents

Masterbatch, production method, rubber composition and pneumatic tire Download PDF

Info

Publication number
JP6181426B2
JP6181426B2 JP2013108964A JP2013108964A JP6181426B2 JP 6181426 B2 JP6181426 B2 JP 6181426B2 JP 2013108964 A JP2013108964 A JP 2013108964A JP 2013108964 A JP2013108964 A JP 2013108964A JP 6181426 B2 JP6181426 B2 JP 6181426B2
Authority
JP
Japan
Prior art keywords
rubber
mass
isoprene
microfibrillated plant
masterbatch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013108964A
Other languages
Japanese (ja)
Other versions
JP2014227484A (en
Inventor
澄子 宮崎
澄子 宮崎
俊明 ▲榊▼
俊明 ▲榊▼
達也 宮崎
達也 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2013108964A priority Critical patent/JP6181426B2/en
Publication of JP2014227484A publication Critical patent/JP2014227484A/en
Application granted granted Critical
Publication of JP6181426B2 publication Critical patent/JP6181426B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、マスターバッチ、該マスターバッチの製造方法、該マスターバッチを含むゴム組成物、及び該ゴム組成物を用いて作製した空気入りタイヤに関する。 The present invention relates to a masterbatch, a method for producing the masterbatch, a rubber composition containing the masterbatch, and a pneumatic tire produced using the rubber composition.

ゴム組成物の低燃費化を目的として、ゴム成分として汎用されている天然ゴムについて、改質による低燃費化などが検討されており、特許文献1には、天然ゴムラテックスに界面活性剤を加えて洗浄処理する方法が開示されているが、蛋白質やゲル分の低減が充分ではなく、tanδの更なる低減が望まれている。 For the purpose of reducing the fuel consumption of rubber compositions, natural rubber, which is widely used as a rubber component, has been studied to reduce fuel consumption by modification. Patent Document 1 discloses that a surfactant is added to natural rubber latex. However, the reduction of protein and gel content is not sufficient, and further reduction of tan δ is desired.

一方、天然ゴムは、他の合成ゴムに比べて高ムーニー粘度で加工性が悪く、通常しゃっ解剤を添加して素練りを行い、ムーニー粘度を低下させた後に使用しているため、生産性が悪い。更に、素練りにより天然ゴムの分子鎖が切断されることで、天然ゴムが本来有する高分子量ポリマーの特性(良好な低燃費性など)が失われるという問題がある。 Natural rubber, on the other hand, has a high Mooney viscosity compared to other synthetic rubbers and poor processability, and is usually used after mastication with a masticant added to reduce Mooney viscosity. The nature is bad. Furthermore, the molecular chain of natural rubber is cleaved by mastication, which causes a problem that characteristics (such as good fuel efficiency) of the high molecular weight polymer inherent to natural rubber are lost.

加えて、通常の天然ゴムは、80℃で18時間程度の老化条件ではゴムが劣化しないのに対し、タンパク質等を高度に除去した改質天然ゴムでは、同条件でゴムの劣化が観察され、耐熱老化性に劣るという問題もある。 In addition, normal natural rubber does not deteriorate under aging conditions at 80 ° C. for about 18 hours, whereas in modified natural rubber from which proteins and the like have been highly removed, deterioration of the rubber is observed under the same conditions. There is also a problem that it is inferior in heat aging resistance.

ゴム組成物を補強し、モジュラス(複素弾性率)を向上させる目的で、セルロース繊維等のミクロフィブリル化植物繊維を充填剤としてゴム組成物に配合する方法がある。しかしながら、ミクロフィブリル化植物繊維は、自己凝集力が強く、ゴム成分との相溶性も悪いため、ゴム練り時における分散性が低い。そのため、配合しても低燃費性などの性能が悪化する場合があり、ミクロフィブリル化植物繊維の分散性を向上させる方法も求められている。 For the purpose of reinforcing the rubber composition and improving the modulus (complex elastic modulus), there is a method of blending the rubber composition with microfibrillated plant fibers such as cellulose fibers as a filler. However, since the microfibrillated plant fiber has a strong self-aggregating power and poor compatibility with the rubber component, the dispersibility during rubber kneading is low. Therefore, even if it mix | blends, performances, such as low fuel consumption, may deteriorate, and the method of improving the dispersibility of microfibrillated plant fiber is also calculated | required.

以上のとおり、天然ゴム及びセルロース繊維を配合するマスターバッチ等において、優れた加工性を得つつ、低燃費性及び耐熱老化性をバランス良く改善することは一般に困難であり、改良が求められている。 As described above, it is generally difficult to improve fuel economy and heat aging in a well-balanced manner while obtaining excellent processability in a masterbatch blended with natural rubber and cellulose fiber, and improvements are required. .

特許第3294901号公報Japanese Patent No. 3294901

本発明は、前記課題を解決し、優れた加工性を得つつ、低燃費性及び耐熱老化性をバランス良く改善したマスターバッチ、該マスターバッチの製造方法、該マスターバッチを含むゴム組成物、及び該ゴム組成物を用いて作製した空気入りタイヤを提供することを目的とする。 The present invention solves the above-mentioned problems and obtains excellent processability while improving fuel economy and heat aging in a well-balanced manner, a masterbatch production method, a rubber composition containing the masterbatch, and An object of the present invention is to provide a pneumatic tire produced using the rubber composition.

本発明は、イソプレン系ゴム及びミクロフィブリル化植物繊維を混合し、得られた混合物のpHを2〜6に調整して凝固させることにより作製されるマスターバッチに関する。 The present invention relates to a masterbatch produced by mixing isoprene-based rubber and microfibrillated plant fiber, adjusting the pH of the resulting mixture to 2-6 and solidifying.

前記イソプレン系ゴムがイソプレン系ゴムラテックスであることが好ましい。 The isoprene-based rubber is preferably an isoprene-based rubber latex.

前記イソプレン系ゴムが非ゴム成分を除去したものであることが好ましい。 It is preferable that the isoprene-based rubber is obtained by removing non-rubber components.

前記イソプレン系ゴム100質量部に対する前記ミクロフィブリル化植物繊維の含有量が0.1〜30質量部であることが好ましい。 The content of the microfibrillated plant fiber with respect to 100 parts by mass of the isoprene-based rubber is preferably 0.1 to 30 parts by mass.

前記イソプレン系ゴムのリン含有量が200ppm以下であることが好ましい。 The phosphorus content of the isoprene-based rubber is preferably 200 ppm or less.

本発明はまた、イソプレン系ゴムラテックス及びミクロフィブリル化植物繊維を混合し、得られた混合物のpHを2〜6に調整して凝固させる工程(I)を含む前記マスターバッチの製造方法に関する。 The present invention also relates to a method for producing the masterbatch comprising the step (I) of mixing isoprene-based rubber latex and microfibrillated plant fibers, and adjusting the pH of the resulting mixture to 2 to 6 for coagulation.

本発明はまた、前記マスターバッチを含み、ゴム成分100質量部に対する前記ミクロフィブリル化植物繊維の含有量が0.1〜30質量部であるタイヤ用ゴム組成物に関する。 The present invention also relates to a tire rubber composition comprising the masterbatch, wherein the content of the microfibrillated plant fiber relative to 100 parts by mass of the rubber component is 0.1 to 30 parts by mass.

本発明はまた、前記ゴム組成物を用いて作製した空気入りタイヤに関する。 The present invention also relates to a pneumatic tire produced using the rubber composition.

本発明によれば、イソプレン系ゴム及びミクロフィブリル化植物繊維を混合し、得られた混合物のpHを2〜6に調整して凝固させることにより作製されるマスターバッチであるので、優れた加工性を得つつ、低燃費性及び耐熱老化性の性能バランスが顕著に改善される。 According to the present invention, since it is a masterbatch prepared by mixing isoprene-based rubber and microfibrillated plant fibers and adjusting the pH of the resulting mixture to 2 to 6 and solidifying, excellent processability The performance balance of low fuel consumption and heat aging resistance is significantly improved.

〔マスターバッチ〕
本発明のマスターバッチは、イソプレン系ゴム及びミクロフィブリル化植物繊維を混合し、得られた混合物のpHを2〜6に調整して凝固させることにより作製されるものである。
〔Master Badge〕
The master batch of the present invention is produced by mixing isoprene-based rubber and microfibrillated plant fiber, and adjusting the pH of the resulting mixture to 2 to 6 to solidify.

従来、ミクロフィブリル化植物繊維は、マスターバッチ中での分散は可能でも該マスターバッチをゴム組成物に配合した場合に、ゴム組成物中に均一に分散させることは困難であり、また、天然ゴムでも、加工性及びゴム物性の面で課題があった。本発明のマスターバッチは、イソプレン系ゴム及びミクロフィブリル化植物繊維混合物のpHを2〜6に調整し、凝固させるという手法を採用することで、これらの課題を解決したものである。つまり、当該手法を採用することで、天然ゴムを用いた場合にゴム中の蛋白質やリン脂質などが除去されるとともに、ミクロフィブリル化植物繊維がゴム組成物中に均一に分散されるため、優れた加工性、低燃費性及び耐熱老化性が得ることが可能になる。 Conventionally, microfibrillated plant fibers can be dispersed in a masterbatch, but when the masterbatch is blended in a rubber composition, it is difficult to uniformly disperse in the rubber composition. However, there were problems in terms of processability and rubber properties. The master batch of the present invention solves these problems by adopting a method of adjusting the pH of the isoprene-based rubber and the microfibrillated plant fiber mixture to 2 to 6 and solidifying the mixture. That is, by adopting this method, when natural rubber is used, proteins and phospholipids in the rubber are removed, and microfibrillated plant fibers are uniformly dispersed in the rubber composition. It is possible to obtain high processability, low fuel consumption and heat aging resistance.

本発明のマスターバッチは、イソプレン系ゴム及びミクロフィブリル化植物繊維を混合し、得られた混合物のpHを2〜6に調整して凝固させること、すなわち、イソプレン系ゴム及びミクロフィブリル化植物繊維を混合し、得られた混合物のpHを2〜6に調整して凝固させる工程(I)を含む製造方法などにより、作製される。 The masterbatch of the present invention is prepared by mixing isoprene-based rubber and microfibrillated plant fiber and adjusting the pH of the resulting mixture to 2-6 to solidify, that is, isoprene-based rubber and microfibrillated plant fiber. It is produced by a production method including the step (I) of mixing and adjusting the pH of the obtained mixture to 2 to 6 to solidify.

イソプレン系ゴムとしては、天然ゴム(NR)、エポキシ化天然ゴム(ENR)、イソプレンゴム(IR)、高純度化天然ゴム(HPNR)等が挙げられる。 Examples of the isoprene-based rubber include natural rubber (NR), epoxidized natural rubber (ENR), isoprene rubber (IR), and highly purified natural rubber (HPNR).

本発明では、イソプレン系ゴムとして、リン含有量が200ppm以下の改質イソプレン系ゴムを好適に使用できる。前記改質イソプレン系ゴムは、非ゴム成分を除去して得られる。200ppm以下であると、貯蔵中のゲル量が増加しにくく、加硫ゴムのtanδが低下して低燃費性が良好になったり、未加硫ゴムのムーニー粘度が改善され加工性が良好となる。該リン含有量は、好ましくは200ppm以下、より好ましくは120ppm以下である。ここで、リン含有量は、例えばICP発光分析等、従来の方法で測定することができる。リンは、リン脂質(リン化合物)に由来するものである。 In the present invention, modified isoprene-based rubber having a phosphorus content of 200 ppm or less can be suitably used as the isoprene-based rubber. The modified isoprene-based rubber is obtained by removing non-rubber components. When it is 200 ppm or less, the amount of gel during storage is difficult to increase, tan δ of the vulcanized rubber is lowered and fuel economy is improved, and the Mooney viscosity of the unvulcanized rubber is improved and the processability is improved. . The phosphorus content is preferably 200 ppm or less, more preferably 120 ppm or less. Here, the phosphorus content can be measured by a conventional method such as ICP emission analysis. Phosphorus is derived from phospholipids (phosphorus compounds).

前記イソプレン系ゴムにおいて、窒素含有量は0.3質量%以下が好ましく、0.15質量%以下がより好ましい。窒素含有量が0.3質量%を超えると、貯蔵中にムーニー粘度が上昇して加工性が悪くなる傾向があり、また、低燃費性が悪化するおそれもある。窒素含有量は、例えばケルダール法等、従来の方法で測定することができる。窒素は、蛋白質に由来するものである。 In the isoprene-based rubber, the nitrogen content is preferably 0.3% by mass or less, and more preferably 0.15% by mass or less. When the nitrogen content exceeds 0.3% by mass, the Mooney viscosity increases during storage and the processability tends to deteriorate, and the fuel efficiency may also deteriorate. The nitrogen content can be measured by a conventional method such as Kjeldahl method. Nitrogen is derived from protein.

前記イソプレン系ゴムは、実質的にリン脂質が存在しないことが好ましい。「実質的にリン脂質が存在しない」とは、天然ゴム試料をクロロホルムで抽出し、抽出物の31P NMR測定において、−3ppm〜1ppmにリン脂質によるピークが存在しない状態を表す。−3ppm〜1ppmに存在するリンのピークとは、リン脂質におけるリンのリン酸エステル構造に由来するピークである。 It is preferable that the isoprene-based rubber is substantially free of phospholipid. “Substantially no phospholipid is present” represents a state in which a natural rubber sample is extracted with chloroform and a peak due to phospholipid does not exist at −3 ppm to 1 ppm in 31 P NMR measurement of the extract. The peak of phosphorus present at -3 ppm to 1 ppm is a peak derived from the phosphate structure of phosphorus in the phospholipid.

本発明では、イソプレン系ゴムとして、天然ゴムラテックス、ケン化天然ゴムラテックス等の改質天然ゴムラテックス、エポキシ化天然ゴムラテックス、イソプレンゴムラテックスなどのイソプレン系ゴムラテックスを好適に使用できる。 In the present invention, as the isoprene-based rubber, modified natural rubber latex such as natural rubber latex and saponified natural rubber latex, isoprene-based rubber latex such as epoxidized natural rubber latex and isoprene rubber latex can be suitably used.

つまり、本発明のマスターバッチは、イソプレン系ゴムラテックス及びミクロフィブリル化植物繊維を混合し、得られた混合物のpHを2〜6に調整して凝固させる工程(I)を含む製造方法などにより、好適に製造できる。具体的には、イソプレン系ゴムラテックスにミクロフィブリル化植物繊維を投入して撹拌することで配合ラテックス(混合液)を作製し、次いで、酸などを用いてpHを2〜6に調整して該配合ラテックスを凝固させることで製造できる。これにより、イソプレン系ゴム中にミクロフィブリル化植物繊維が均一に分散した複合体を製造できる。なお、ミクロフィブリル化植物繊維投入後は、短時間で次の作業、すなわち、撹拌、凝固に移ることが好ましい。 That is, the masterbatch of the present invention is prepared by mixing the isoprene-based rubber latex and the microfibrillated plant fiber, adjusting the pH of the resulting mixture to 2 to 6 and coagulating (I). It can manufacture suitably. Specifically, a blended latex (mixed solution) is prepared by adding microfibrillated plant fibers to isoprene-based rubber latex and stirring, and then adjusting the pH to 2 to 6 using an acid or the like. It can be produced by coagulating the compounded latex. Thereby, the composite_body | complex in which the microfibrillated plant fiber was disperse | distributed uniformly in isoprene-type rubber | gum can be manufactured. In addition, it is preferable to move to the next operation, that is, stirring and coagulation in a short time after adding the microfibrillated plant fiber.

イソプレン系ゴムラテックスのなかでも、天然ゴムラテックス、ケン化天然ゴムラテックスなどの改質天然ゴムラテックスを好適に使用できる。本発明では、リン、窒素などの非ゴム成分を含む天然ゴムラテックスを使用した場合でも、これとミクロフィブリル化植物繊維を併用し、所定のpHに調整して凝固しているため、特段ケン化天然ゴムラテックスなどの非ゴム成分を除去したゴムラテックスを使用しなくても、非ゴム成分が充分に除去される。従って、イソプレン系ゴムとして、通常の天然ゴムラテックスを用いた場合にも本発明の効果が充分に得られる。 Among the isoprene-based rubber latexes, modified natural rubber latexes such as natural rubber latex and saponified natural rubber latex can be preferably used. In the present invention, even when natural rubber latex containing non-rubber components such as phosphorus and nitrogen is used, this is combined with the microfibrillated plant fiber, and is coagulated by adjusting to a predetermined pH. Even without using a rubber latex from which non-rubber components such as natural rubber latex have been removed, the non-rubber components are sufficiently removed. Therefore, even when a normal natural rubber latex is used as the isoprene-based rubber, the effects of the present invention can be sufficiently obtained.

天然ゴムラテックスはヘベア樹等の天然ゴムの樹木の樹液として採取され、ゴム分のほか水、タンパク質、脂質、無機塩類等を含み、ゴム中のゲル分は種々の不純物の複合的な存在に基づくものと考えられている。本発明では、天然ゴムラテックスとして、ヘベア樹をタッピングして出てくる生ラテックス(フィールドラテックス)、遠心分離法やクリーミング法によって濃縮した濃縮ラテックス(精製ラテックス、常法によりアンモニアを添加したハイアンモニアラテックス、亜鉛華とTMTDとアンモニアによって安定化させたLATZラテックス等)等を使用できる。 Natural rubber latex is collected as the sap of natural rubber trees such as Hevea trees, and contains rubber, water, proteins, lipids, inorganic salts, etc., and the gel content in rubber is based on the complex presence of various impurities. It is considered a thing. In the present invention, as a natural rubber latex, raw latex (field latex) produced by tapping Hevea tree, concentrated latex (purified latex, high ammonia latex to which ammonia is added by a conventional method) concentrated by centrifugation or creaming method , Zinc oxide, TMTD and ammonia stabilized LATZ latex, etc.) can be used.

天然ゴムラテックスはそのままミクロフィブリル化植物繊維と混合してもよいが、あらかじめ、ケン化処理を行ったものを使用してもよい。ケン化処理は、天然ゴムラテックスに、NaOH等のアルカリと、必要に応じて界面活性剤を添加して所定温度で一定時間、静置することにより行うことができる。なお、必要に応じて撹拌等を行っても良い。ラテックス状態でケン化処理を行うことで、天然ゴムの各粒子が均一に処理され、効率的にケン化処理を行うことができる。ケン化処理を施すと、ケン化により分離したリン化合物が除去されるので、調製されるマスターバッチに含まれる天然ゴム中のリン含有量を抑えることができる。また、ケン化処理により、天然ゴム中の蛋白質が分解されるので、天然ゴムの窒素含有量を抑えることもできる。 The natural rubber latex may be mixed with the microfibrillated plant fiber as it is, but a saponified one may be used in advance. The saponification treatment can be performed by adding an alkali such as NaOH and a surfactant as necessary to natural rubber latex and allowing to stand at a predetermined temperature for a certain time. In addition, you may perform stirring etc. as needed. By performing the saponification treatment in the latex state, each particle of the natural rubber is uniformly treated, and the saponification treatment can be performed efficiently. When the saponification treatment is performed, the phosphorus compound separated by the saponification is removed, so that the phosphorus content in the natural rubber contained in the prepared master batch can be suppressed. Moreover, since the protein in the natural rubber is decomposed by the saponification treatment, the nitrogen content of the natural rubber can be suppressed.

ケン化処理に用いるアルカリとしては、水酸化ナトリウム、水酸化カリウム等が好ましい。界面活性剤としては特に限定されず、ポリオキシエチレンアルキルエーテル硫酸エステル塩等の公知のノニオン系界面活性剤、アニオン系界面活性剤、両性界面活性剤が挙げられるが、ゴムを凝固させず良好にケン化できるという点から、ポリオキシエチレンアルキルエーテル硫酸エステル塩が好適である。ケン化処理において、アルカリ及び界面活性剤の添加量、ケン化処理の温度及び時間は、適宜設定すればよい。 As the alkali used for the saponification treatment, sodium hydroxide, potassium hydroxide and the like are preferable. The surfactant is not particularly limited, and examples thereof include known nonionic surfactants such as polyoxyethylene alkyl ether sulfates, anionic surfactants, and amphoteric surfactants. A polyoxyethylene alkyl ether sulfate ester salt is preferable because it can be saponified. In the saponification treatment, the addition amount of alkali and surfactant, the temperature and time of the saponification treatment may be appropriately set.

ミクロフィブリル化植物繊維(セルロースナノファイバー)としては、例えば、木材、竹、麻、ジュート、ケナフ、農作物残廃物、布、再生パルプ、古紙、バクテリアセルロース、ホヤセルロース等の天然物に由来するものが挙げられる。ミクロフィブリル化植物繊維の製造方法としては特に限定されないが、例えば、上記天然物を水酸化ナトリウム等の薬品で化学処理した後、リファイナー、二軸混錬機(二軸押出機)、二軸混錬押出機、高圧ホモジナイザー、媒体撹拌ミル、石臼、グラインダー、振動ミル、サンドグラインダー等により機械的に磨砕ないし叩解する方法が挙げられる。 Examples of microfibrillated plant fibers (cellulose nanofibers) include those derived from natural products such as wood, bamboo, hemp, jute, kenaf, crop residue, cloth, recycled pulp, waste paper, bacterial cellulose, and squirt cellulose. Can be mentioned. Although it does not specifically limit as a manufacturing method of microfibrillated plant fiber, For example, after processing the said natural product with chemical | medical agents, such as sodium hydroxide, a refiner, a twin-screw kneading machine (double-screw extruder), a twin-screw mixing Examples of the method include mechanical pulverization or beating using a smelting extruder, a high-pressure homogenizer, a medium stirring mill, a stone mill, a grinder, a vibration mill, a sand grinder, and the like.

ミクロフィブリル化植物繊維は、水中に分散させた水溶液(ミクロフィブリル化植物繊維水溶液)の状態でイソプレン系ゴムラテックスに投入してもよいし、ミクロフィブリル化植物繊維をそのままイソプレン系ゴムラテックスに投入後、必要に応じて水で希釈してもよい。ミクロフィブリル化植物繊維を良好に分散できるという点から、ミクロフィブリル化植物繊維水溶液をイソプレン系ゴムラテックスに投入することが好ましい。ミクロフィブリル化植物繊維水溶液中、ミクロフィブリル化植物繊維の含有量(固形分)は、好ましくは0.2〜20質量%、より好ましくは0.5〜10質量%、更に好ましくは0.5〜3質量%である。 The microfibrillated plant fiber may be added to the isoprene-based rubber latex in an aqueous solution (microfibrillated plant fiber aqueous solution) dispersed in water, or after the microfibrillated plant fiber is directly input to the isoprene-based rubber latex. If necessary, it may be diluted with water. From the viewpoint that the microfibrillated plant fiber can be well dispersed, it is preferable to add the microfibrillated plant fiber aqueous solution to the isoprene-based rubber latex. In the microfibrillated plant fiber aqueous solution, the content (solid content) of the microfibrillated plant fiber is preferably 0.2 to 20% by mass, more preferably 0.5 to 10% by mass, and still more preferably 0.5 to 3% by mass.

ミクロフィブリル化植物繊維のほぐれ具合(切断具合)は、ミクロフィブリル化植物繊維水溶液の粘度で判断することができ、粘度が高いほど、繊維がほぐれている(繊維が切断されて短くなっている)ことを意味する。ミクロフィブリル化植物繊維水溶液の粘度は、好ましくは50mPa・s以上、より好ましくは80mPa・s以上である。50mPa・s未満であると、繊維が充分にほぐれておらず、充分な補強性が得られないおそれがある。また、繊維塊が破壊核となり、破断伸びが低下するおそれもある。ミクロフィブリル化植物繊維水溶液の粘度は、好ましくは200mPa・s以下、より好ましくは150mPa・s以下である。200mPa・sを超えると、水溶液が撹拌されにくくなり、撹拌ローター周辺の繊維が局部的に粉砕され、均一な繊維の粉砕が困難になるおそれがある。また、ケン化天然ゴムラテックスとの混練りが困難になるおそれもある。
なお、ミクロフィブリル化植物繊維水溶液の粘度は、ミクロフィブリル化植物繊維を0.5質量%、水を99.5質量%含むミクロフィブリル化植物繊維水溶液を、音叉型振動式粘度計によって常温(23℃)で測定した値である。
また、ミクロフィブリル化植物繊維のほぐれ具合は、ミクロフィブリル化植物繊維水溶液の撹拌速度、撹拌時間等によって調整することができる。撹拌速度が速く、撹拌時間が長いほど、繊維をほぐすことができる。また、撹拌に使用するホモジナイザーの機種、回転歯の形状、せん断能力を適切に選択することで、効率よく繊維をほぐすことが可能となる。
The loosening state (cutting state) of the microfibrillated plant fiber can be judged by the viscosity of the aqueous solution of the microfibrillated plant fiber. The higher the viscosity, the more the fiber is loosened (the fiber is cut and shortened). Means that. The viscosity of the microfibrillated plant fiber aqueous solution is preferably 50 mPa · s or more, more preferably 80 mPa · s or more. If it is less than 50 mPa · s, the fibers are not sufficiently loosened and sufficient reinforcing properties may not be obtained. In addition, the fiber mass becomes a fracture nucleus, and the elongation at break may be reduced. The viscosity of the microfibrillated plant fiber aqueous solution is preferably 200 mPa · s or less, more preferably 150 mPa · s or less. When it exceeds 200 mPa · s, the aqueous solution becomes difficult to be stirred, and the fibers around the stirring rotor are locally pulverized, which may make it difficult to pulverize uniform fibers. Further, kneading with the saponified natural rubber latex may be difficult.
The viscosity of the aqueous solution of microfibrillated plant fibers is such that the aqueous solution of microfibrillated plant fibers containing 0.5% by mass of microfibrillated plant fibers and 99.5% by mass of water is measured at room temperature (23 (° C.).
Moreover, the degree of loosening of the microfibrillated plant fiber can be adjusted by the stirring speed, stirring time, etc. of the microfibrillated plant fiber aqueous solution. The faster the stirring speed and the longer the stirring time, the more the fibers can be loosened. In addition, it is possible to loosen the fibers efficiently by appropriately selecting the type of homogenizer used for stirring, the shape of the rotating teeth, and the shearing ability.

イソプレン系ゴムラテックスとミクロフィブリル化植物繊維とを混合して、これらの混合物を作製する工程は、これらを順次滴下、注入等を行った後、公知の方法で混合することで調製できる。 The step of mixing the isoprene-based rubber latex and the microfibrillated plant fiber to produce these mixtures can be prepared by sequentially dropping them, injecting them, etc., and then mixing them by a known method.

得られた混合物のpHを2〜6に調整して凝固させる際、当該pHは、好ましくは3〜6、より好ましくは3.5〜6である。ここで、pH調整は、酸、塩基などを添加することで実施できる。凝固時のpHを2〜6に調整することで、天然ゴムを用いた場合にも凝固物中のゴム成分を高純度化できる。具体的には、天然ゴム中のタンパク質、リン脂質などの非ゴム成分が除去され、高純度化され、低燃費性や加工性が改善される。また、非ゴム成分の除去等で、ゴムの劣化が進行し易くなるが、凝固時のpHを所定範囲に調整することで、保存中のゴム分の分子量の低下が抑制されるので、良好な耐熱老化性が得られる。従って、低燃費性、耐熱老化性及び加工性の性能バランスを顕著に改善できる。 When adjusting the pH of the obtained mixture to 2-6 and solidifying, the said pH becomes like this. Preferably it is 3-6, More preferably, it is 3.5-6. Here, pH adjustment can be performed by adding an acid, a base, or the like. By adjusting the pH during coagulation to 2 to 6, even when natural rubber is used, the rubber component in the coagulated product can be highly purified. Specifically, non-rubber components such as proteins and phospholipids in natural rubber are removed and purified, and fuel efficiency and processability are improved. In addition, the deterioration of the rubber is likely to proceed by removing the non-rubber component, etc., but since the decrease in the molecular weight of the rubber during storage is suppressed by adjusting the pH during solidification to a predetermined range, it is favorable. Heat aging resistance is obtained. Therefore, the performance balance of low fuel consumption, heat aging resistance and processability can be remarkably improved.

ここで、天然ゴムの高純度化とは、天然ポリイソプレノイド成分以外のリン脂質、タンパク質等の不純物を取り除くことである。天然ゴムは、イソプレノイド成分が、前記不純物成分に被覆されているような構造となっており、前記成分を取り除くことにより、イソプレノイド成分の構造が変化して、配合剤との相互作用が変わってエネルギーロスが減ったり、耐久性が向上し、より良いマスターバッチを得ることができると推察される。 Here, the purification of natural rubber means removing impurities such as phospholipids and proteins other than natural polyisoprenoid components. Natural rubber has a structure in which the isoprenoid component is covered with the impurity component. By removing the component, the structure of the isoprenoid component changes, and the interaction with the compounding agent changes, resulting in energy. It is assumed that loss can be reduced, durability can be improved, and a better masterbatch can be obtained.

混合物を凝固する方法には、酸凝固、塩凝固、メタノール凝固等があるが、マスターバッチ中にミクロフィブリル化植物繊維を均一分散させた状態で凝固するためには、酸凝固、塩凝固又はこれらの併用が好ましく、酸凝固がより好ましい。凝固させるための酸としては、蟻酸、硫酸、塩酸、酢酸等が挙げられ、コスト面から、硫酸が好ましい。また、塩としては、例えば、1〜3価の金属塩(塩化ナトリウム、塩化マグネシウム、硝酸カルシウム、塩化カルシウム等のカルシウム塩等)が挙げられる。 Methods for coagulating the mixture include acid coagulation, salt coagulation, methanol coagulation, etc., but in order to coagulate the microfibrillated plant fiber uniformly dispersed in the masterbatch, acid coagulation, salt coagulation, or these Is preferred, and acid coagulation is more preferred. Examples of the acid for coagulation include formic acid, sulfuric acid, hydrochloric acid, acetic acid and the like, and sulfuric acid is preferable from the viewpoint of cost. Examples of the salt include 1 to 3 metal salts (calcium salts such as sodium chloride, magnesium chloride, calcium nitrate, and calcium chloride).

混合物の凝固を急激に行うと、ミクロフィブリル化植物繊維が毛玉状に固まってイソプレン系ゴムラテックスに取り込まれ、ミクロフィブリル化植物繊維が分散しにくくなる傾向がある。従って、混合物の凝固は、ミクロフィブリル化植物繊維がイソプレン系ゴムラテックスに緩やかに取り込まれるような条件で行うことが好ましい。このような観点から、混合物を凝固する際、混合物の温度は、40℃以下にすることが好ましく、35℃以下にすることがより好ましい。同様の観点から、上述した酸、塩、メタノール等の凝固剤は、段階的に投入する(全量を分割して投入する)ことが好ましい。 When the mixture is rapidly solidified, the microfibrillated plant fibers are hardened in a hairball shape and taken into isoprene-based rubber latex, and the microfibrillated plant fibers tend to be difficult to disperse. Therefore, the coagulation of the mixture is preferably performed under conditions such that the microfibrillated plant fiber is gently taken into the isoprene-based rubber latex. From such a viewpoint, when the mixture is solidified, the temperature of the mixture is preferably 40 ° C. or less, and more preferably 35 ° C. or less. From the same viewpoint, it is preferable to add the above-mentioned coagulants such as acid, salt, methanol and the like in stages (the whole amount is added in divided portions).

(工程(II))
工程(I)で得られた凝固物(凝集ゴム及びミクロフィブリル化植物繊維を含む凝集物)を、必要に応じて洗浄してもよい。つまり、得られた凝固物に対して、更に洗浄処理を施してリン量や窒素量をより所望の量に調整してもよい。
(Process (II))
You may wash | clean the coagulated material (aggregate containing aggregate rubber | gum and microfibrillated plant fiber) obtained by process (I) as needed. That is, the obtained solidified product may be further subjected to a washing treatment to adjust the amount of phosphorus or nitrogen to a desired amount.

洗浄方法としては、例えば、ゴム分を水で希釈した後に遠心分離する方法や、ゴム分を水で希釈した後に静置してゴムを浮遊又は沈殿させ水相のみを排出する方法が挙げられる。遠心分離する際は、まずイソプレン系ゴムラテックスのゴム分が5〜40質量%、好ましくは10〜30質量%となるように水で希釈し、次いで5000〜10000rpmで1〜60分間遠心分離すればよく、所望のリン含有量になるまで洗浄を繰り返せばよい。また、静置してゴムを浮遊又は沈殿させる場合も水の添加、撹拌を繰り返して、所望のリン含有量になるまで洗浄すればよい。
なお、洗浄方法はこれらに限定されず、pHが6〜7の範囲となるように炭酸ナトリウム等の弱アルカリ水で中和後、液相分を除去することで洗浄してもよい。
Examples of the washing method include a method of centrifuging after diluting the rubber component with water, and a method of allowing the rubber component to stand still after diluting with the water to float or precipitate the rubber and discharge only the aqueous phase. When centrifuging, first, it is diluted with water so that the rubber content of the isoprene-based rubber latex is 5 to 40% by mass, preferably 10 to 30% by mass, and then centrifuged at 5000 to 10000 rpm for 1 to 60 minutes. The washing may be repeated until the desired phosphorus content is obtained. In addition, even when the rubber is allowed to stand and float or precipitate, washing may be repeated until the desired phosphorus content is obtained by repeatedly adding water and stirring.
The washing method is not limited to these, and the solution may be washed by removing the liquid phase after neutralization with weak alkaline water such as sodium carbonate so that the pH is in the range of 6-7.

必要に応じて洗浄した後、通常、公知の方法(オーブン、減圧等)で乾燥する。乾燥後、2軸ロール、バンバリーミキサー等でゴム練りを行うと、イソプレン系ゴム及びミクロフィブリル化植物繊維を含むクラム状のマスターバッチが得られる。上記マスターバッチは、まとまり性、ハンドリング性を良くするため、圧延ロールで数cm厚みのシートに成型することが好ましい。なお、上記マスターバッチは、本発明の効果を阻害しない範囲で他の成分を含んでもよい。 After washing as necessary, it is usually dried by a known method (oven, reduced pressure, etc.). When the rubber is kneaded with a biaxial roll, a Banbury mixer or the like after drying, a crumb-like masterbatch containing isoprene-based rubber and microfibrillated plant fibers is obtained. The masterbatch is preferably formed into a sheet having a thickness of several centimeters by a rolling roll in order to improve unity and handling properties. In addition, the said masterbatch may contain another component in the range which does not inhibit the effect of this invention.

上記マスターバッチにおいて、上記イソプレン系ゴム100質量部に対するミクロフィブリル化植物繊維の含有量は、好ましくは0.1質量部以上、より好ましくは1質量部以上、更に好ましくは3質量部以上である。0.1質量部未満であると、マスターバッチを配合したゴム組成物において、必要なミクロフィブリル化植物繊維を確保しようとすると、上記改質天然ゴムの量が多くなり過ぎて、架橋密度が低くなり、低燃費性が悪化する場合がある。また、該含有量は、好ましくは30質量部以下、より好ましくは20質量部以下、更に好ましくは10質量部以下である。30質量部を超えると、ミクロフィブリル化植物繊維の分散性が低下し、低燃費性が悪化する場合がある。 In the master batch, the content of the microfibrillated plant fiber with respect to 100 parts by mass of the isoprene-based rubber is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more, and further preferably 3 parts by mass or more. If the amount is less than 0.1 parts by mass, the amount of the modified natural rubber will be too large and the crosslinking density will be low when trying to secure the necessary microfibrillated plant fiber in the rubber composition containing the masterbatch. Thus, the fuel efficiency may be deteriorated. Moreover, this content becomes like this. Preferably it is 30 mass parts or less, More preferably, it is 20 mass parts or less, More preferably, it is 10 mass parts or less. If it exceeds 30 parts by mass, the dispersibility of the microfibrillated plant fiber may be lowered, and the fuel efficiency may be deteriorated.

〔タイヤ用ゴム組成物〕
本発明のタイヤ用ゴム組成物は、上記マスターバッチを含む。前記マスターバッチを用いることで、高純度化されたイソプレン系ゴム中にミクロフィブリル化植物繊維が均一に分散したゴム組成物が得られる。その結果、混練工程でのゴム物性の低下防止、充填剤などの分散向上が実現し、優れた加工性を得つつ、低燃費性及び耐熱老化性の性能バランスを顕著に改善できる。
[Rubber composition for tire]
The rubber composition for tires of this invention contains the said masterbatch. By using the masterbatch, a rubber composition in which microfibrillated plant fibers are uniformly dispersed in a highly purified isoprene-based rubber can be obtained. As a result, it is possible to prevent the deterioration of physical properties of rubber in the kneading step and improve the dispersion of fillers and the like, and to remarkably improve the performance balance between low fuel consumption and heat aging resistance while obtaining excellent processability.

本発明のゴム組成物において、ゴム成分100質量%中のイソプレン系ゴムの含有量は、好ましくは5質量%以上、より好ましくは50質量%以上、更に好ましくは80質量%である。5質量%未満であると、優れた低燃費性が得られないおそれがある。 In the rubber composition of the present invention, the content of isoprene-based rubber in 100% by mass of the rubber component is preferably 5% by mass or more, more preferably 50% by mass or more, and further preferably 80% by mass. If it is less than 5% by mass, excellent fuel efficiency may not be obtained.

イソプレン系ゴム以外に使用できるゴム成分としては、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、エチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)などが挙げられる。 Examples of rubber components that can be used other than the isoprene-based rubber include butadiene rubber (BR), styrene butadiene rubber (SBR), ethylene propylene diene rubber (EPDM), chloroprene rubber (CR), acrylonitrile butadiene rubber (NBR), and the like.

本発明のゴム組成物において、ミクロフィブリル化植物繊維の含有量は、ゴム成分100質量部に対して、好ましくは0.1質量部以上、より好ましくは1質量部以上、更に好ましくは3質量部以上である。また、該含有量は、好ましくは30質量部以下、より好ましくは20質量部以下、更に好ましくは10質量部以下である。0.1質量部未満であると、ミクロフィブリル化植物繊維を配合することによる効果が得られないおそれがある。30質量部を超えると、ミクロフィブリル化植物繊維の分散性が低下し、低燃費性が悪化する場合がある。 In the rubber composition of the present invention, the content of the microfibrillated plant fiber is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more, further preferably 3 parts by mass with respect to 100 parts by mass of the rubber component. That's it. Moreover, this content becomes like this. Preferably it is 30 mass parts or less, More preferably, it is 20 mass parts or less, More preferably, it is 10 mass parts or less. There exists a possibility that the effect by mix | blending microfibrillated plant fiber may not be acquired as it is less than 0.1 mass part. If it exceeds 30 parts by mass, the dispersibility of the microfibrillated plant fiber may be lowered, and the fuel efficiency may be deteriorated.

本発明のゴム組成物は、カーボンブラック及び/又は白色充填剤を含むことが好ましい。これにより、補強効果が得られる。 The rubber composition of the present invention preferably contains carbon black and / or a white filler. Thereby, the reinforcement effect is acquired.

カーボンブラックのチッ素吸着比表面積(NSA)は70m/g以上が好ましく、100m/g以上がより好ましい。70m/g未満であると、充分な補強効果が得られない傾向がある。カーボンブラックのNSAは200m/g以下が好ましく、180m/g以下がより好ましい。200m/gを超えると、低燃費性が低下する傾向がある。なお、カーボンブラックのチッ素吸着比表面積は、JIS K6217のA法によって求められる。 The nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably 70 m 2 / g or more, and more preferably 100 m 2 / g or more. There exists a tendency for sufficient reinforcement effect not to be acquired as it is less than 70 m < 2 > / g. N 2 SA is preferably at most 200 meters 2 / g of carbon black, 180 m 2 / g or less is more preferable. If it exceeds 200 m 2 / g, the fuel efficiency tends to decrease. In addition, the nitrogen adsorption specific surface area of carbon black is calculated | required by A method of JISK6217.

白色充填剤としては、ゴム工業で一般的に使用されているもの、たとえば、シリカ、炭酸カルシウム、セリサイトなどの雲母、水酸化アルミニウム、酸化マグネシウム、水酸化マグネシウム、クレー、タルク、アルミナ、酸化チタンなどを使用できる。 As white filler, those commonly used in the rubber industry, for example, mica such as silica, calcium carbonate, sericite, aluminum hydroxide, magnesium oxide, magnesium hydroxide, clay, talc, alumina, titanium oxide Etc. can be used.

カーボンブラックの含有量は、ゴム成分100質量部に対して、好ましくは10質量部以上、より好ましくは30質量部以上である。該含有量は、好ましくは150質量部以下、より好ましくは100質量部以下である。上記範囲内であると、良好な低燃費性が得られる。 The content of carbon black is preferably 10 parts by mass or more, more preferably 30 parts by mass or more with respect to 100 parts by mass of the rubber component. The content is preferably 150 parts by mass or less, more preferably 100 parts by mass or less. Within the above range, good fuel efficiency can be obtained.

本発明のゴム組成物において、カーボンブラック及び白色充填剤の合計含有量は、ゴム成分100質量部に対して、好ましくは10質量部以上、より好ましくは30質量部以上である。該含有量は、好ましくは150質量部以下、より好ましくは100質量部以下である。上記範囲内であると、良好な低燃費性が得られる。 In the rubber composition of the present invention, the total content of carbon black and white filler is preferably 10 parts by mass or more, more preferably 30 parts by mass or more with respect to 100 parts by mass of the rubber component. The content is preferably 150 parts by mass or less, more preferably 100 parts by mass or less. Within the above range, good fuel efficiency can be obtained.

本発明のゴム組成物には、上記の材料以外にも、酸化亜鉛、ステアリン酸、各種老化防止剤、軟化剤(オイル、ワックスなど)、加硫剤(硫黄、有機過酸化物など)、加硫促進剤(スルフェンアミド系、グアニジン系加硫促進剤など)などのタイヤ工業において一般的に用いられている各種材料が適宜配合されていてもよい。 In addition to the above materials, the rubber composition of the present invention includes zinc oxide, stearic acid, various antioxidants, softeners (oil, wax, etc.), vulcanizing agents (sulfur, organic peroxides, etc.), additives Various materials generally used in the tire industry such as a sulfur accelerator (sulfenamide-based, guanidine-based vulcanization accelerator, etc.) may be appropriately blended.

本発明のゴム組成物の製造方法としては、公知の方法を用いることができ、例えば、上記各成分をオープンロール、バンバリーミキサーなどのゴム混練装置を用いて混練し、その後加硫する方法などにより製造できる。 As a method for producing the rubber composition of the present invention, known methods can be used. For example, the above components are kneaded using a rubber kneader such as an open roll or a Banbury mixer, and then vulcanized. Can be manufactured.

本発明のゴム組成物は、キャップトレッド、ベーストレッド、アンダートレッド、クリンチエイペックス、ビードエイペックス、サイドウォール、ブレーカー、エッジバンド、フルバンド、ブレーカークッションゴム、カーカスコード被覆用ゴム、ランフラット補強層、インスレーション、チェーファー、インナーライナー等のタイヤの各部材、ベルト、ロール等に好適に使用できる。 The rubber composition of the present invention includes a cap tread, a base tread, an under tread, a clinch apex, a bead apex, a sidewall, a breaker, an edge band, a full band, a breaker cushion rubber, a rubber for covering a carcass cord, and a run flat reinforcing layer. It can be suitably used for tire members such as insulation, chafer, and inner liner, belts, rolls, and the like.

本発明のタイヤは、上記ゴム組成物を用いて通常の方法によって製造される。すなわち、必要に応じて各種材料を配合したゴム組成物を、未加硫の段階でタイヤの各部材(トレッドなど)の形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形することにより未加硫タイヤを形成した後、加硫機中で加熱加圧して製造できる。 The tire of the present invention is produced by a usual method using the rubber composition. That is, a rubber composition containing various materials as necessary is extruded in accordance with the shape of each member (tread, etc.) of the tire at an unvulcanized stage, and is processed on a tire molding machine by a normal method. After forming an unvulcanized tire by molding, it can be manufactured by heating and pressing in a vulcanizer.

本発明のタイヤとしては、空気入りタイヤ、エアレス(ソリッド)タイヤなどが挙げられるが、なかでも、空気入りタイヤが好ましい。 Examples of the tire of the present invention include a pneumatic tire and an airless (solid) tire. Among them, a pneumatic tire is preferable.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
以下に、実施例で用いた各種薬品について説明する。
フィールドラテックス:ムヒバラテックス社から入手したフィールドラテックス
エマールE−27C(界面活性剤):花王(株)製のエマールE−27C(ポリオキシエチレンラウリルエーテル硫酸ナトリウム、有効成分27質量%)
NaOH:和光純薬工業(株)製のNaOH
Wingstay L(老化防止剤):ELIOKEM社製のWingstay L(ρ−クレゾールとジシクロペンタジエンとの縮合物をブチル化した化合物)
エマルビンW(界面活性剤):LANXESS社製のエマルビンW(芳香族ポリグリコールエーテル)
タモールNN9104(界面活性剤):BASF社製のタモールNN9104(ナフタレンスルホン酸/ホルムアルデヒドのナトリウム塩)
Van gel B(界面活性剤):Vanderbilt社製のVan gel B(マグネシウムアルミニウムシリケートの水和物)
ミクロフィブリル化植物繊維:王子製袋(株)製のネオファイバー
凝固剤:和光純薬工業(株)製の1%硫酸
NR:TSR20
カーボンブラック:キャボットジャパン(株)製のN220(NSA:111m/g)
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
ステアリン酸:日油(株)製のビーズステアリン酸つばき
老化防止剤:大内新興化学工業(株)製のノクラック6C(N−フェニル−N’−(1,3−ジメチルブチル)−p−フェニレンジアミン)(6PPD)
硫黄:日本乾溜工業(株)製のセイミ硫黄(オイル分:10%)
加硫促進剤:大内新興化学工業(株)製のノクセラーNS
The present invention will be specifically described based on examples, but the present invention is not limited to these examples.
The various chemicals used in the examples are described below.
Field Latex: Field Latex Emar E-27C (surfactant) obtained from Muhiba Latex Co., Ltd .: Emar E-27C (Polyoxyethylene lauryl ether sodium sulfate, 27% by mass of active ingredient) manufactured by Kao Corporation
NaOH: NaOH manufactured by Wako Pure Chemical Industries, Ltd.
Wingstay L (anti-aging agent): WINGSTAY L (compound obtained by butylating the condensate of ρ-cresol and dicyclopentadiene) manufactured by ELIOKEM
Emulvin W (surfactant): Emalvin W (aromatic polyglycol ether) manufactured by LANXESS
Tamol NN9104 (surfactant): Tamol NN9104 manufactured by BASF (Naphthalenesulfonic acid / formaldehyde sodium salt)
Van gel B (surfactant): Van gel B (magnesium aluminum silicate hydrate) manufactured by Vanderbilt
Microfibrillated plant fiber: Neofiber coagulant manufactured by Oji Bag Co., Ltd .: 1% sulfuric acid NR: TSR20 manufactured by Wako Pure Chemical Industries, Ltd.
Carbon black: N220 (N 2 SA: 111 m 2 / g) manufactured by Cabot Japan
Zinc oxide: 2 types of zinc oxide manufactured by Mitsui Mining & Smelting Co., Ltd. Stearic acid: Beads stearic acid anti-aging agent manufactured by NOF Corporation: NOCRACK 6C (N-phenyl-) manufactured by Ouchi Shinsei Chemical Co., Ltd. N ′-(1,3-dimethylbutyl) -p-phenylenediamine) (6PPD)
Sulfur: Seimi Sulfur (oil content: 10%) manufactured by Nippon Kiboshi Kogyo Co., Ltd.
Vulcanization accelerator: Noxeller NS manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.

<実施例、参考例、及び比較例>
(老化防止剤分散体の調製)
水 462.5gにエマルビンW 12.5g、タモールNN9104 12.5g、Van gel B 12.5g、Wingstay L 500g(合計1000g)をボールミルで16時間混合し、老化防止剤分散体を調製した。
<Examples , reference examples, and comparative examples>
(Preparation of anti-aging agent dispersion)
462.5 g of water was mixed with 12.5 g of Emulvin W, 12.5 g of Tamol NN9104, 12.5 g of Van gel B, and 500 g of Wingstay L (total of 1000 g) for 16 hours by a ball mill to prepare an antioxidant dispersion.

(ミクロフィブリル化植物繊維水溶液の調製)
ミクロフィブリル化植物繊維を200倍(質量比)の水で希釈後、IKAジャパン(株)製のmagic LAB(循環式/MKコロイドミル)を用いて2時間撹拌し、ミクロフィブリル化植物繊維を1質量%、水を99質量%含むミクロフィブリル化植物繊維水溶液を得た。ミクロフィブリル化植物繊維水溶液の粘度を音叉型振動式粘度計((株)エー・アンド・デイ社製のSV―10)を用いて常温(23℃)で測定し、表1に記載した。
(Preparation of microfibrillated plant fiber aqueous solution)
After diluting the microfibrillated plant fiber with 200 times (mass ratio) of water, the mixture was stirred for 2 hours using a magic LAB (circulation type / MK colloid mill) manufactured by IKA Japan, and the microfibrillated plant fiber was 1 A microfibrillated plant fiber aqueous solution containing 99% by mass of water and 99% by mass of water was obtained. The viscosity of the aqueous solution of microfibrillated plant fibers was measured at room temperature (23 ° C.) using a tuning fork type vibration viscometer (SV-10 manufactured by A & D Co., Ltd.), and is shown in Table 1.

(製造例1)
フィールドラテックスの固形分濃度(DRC)を30%(w/v)に調整した後、該ラテックス1000gに、10%エマールE−27C水溶液25gと25%NaOH水溶液60gを加え、室温で24時間ケン化反応を行い、ケン化天然ゴムラテックスを得た。得られたケン化天然ゴムラテックスと、ミクロフィブリル化植物繊維水溶液とを乾燥時に表1に記載の質量比率となるように計量、混合し、筒型ホモジナイザー(プライミクス(株)製のオートミクサー 20型)を用いて8000rpmの条件で1時間撹拌した。次いで、老化防止剤分散体6gを添加し、2時間撹拌した後、更に水を添加してゴム濃度15%(w/v)となるまで希釈した。次いで、ゆっくり撹拌しながら凝固剤を添加してpHを4.0に調整し、凝固物を得た後、水しぼりロールで水を絞ってシート状にした後、90℃で4時間乾燥してマスターバッチ1(MB1)を得た。
(Production Example 1)
After adjusting the solid content concentration (DRC) of the field latex to 30% (w / v), 25 g of 10% Emar E-27C aqueous solution and 60 g of 25% NaOH aqueous solution were added to 1000 g of the latex and saponified for 24 hours at room temperature. Reaction was performed to obtain a saponified natural rubber latex. The obtained saponified natural rubber latex and the microfibrillated plant fiber aqueous solution were weighed and mixed so as to have a mass ratio shown in Table 1 when dried, and a cylindrical homogenizer (Automixer Model 20 manufactured by Primix Co., Ltd.) ) For 1 hour at 8000 rpm. Next, 6 g of the anti-aging dispersion was added and stirred for 2 hours, and then further diluted with water to a rubber concentration of 15% (w / v). Next, a coagulant is added with slow stirring to adjust the pH to 4.0 to obtain a coagulated product, which is then squeezed with a water squeezing roll to form a sheet, and then dried at 90 ° C. for 4 hours. Master batch 1 (MB1) was obtained.

(製造例2)
製造例1においてpH5.2に調整したほかは、同様の手順でマスターバッチ2(MB2)を得た。
(Production Example 2)
Masterbatch 2 (MB2) was obtained in the same procedure except that the pH was adjusted to 5.2 in Production Example 1.

(製造例3)
製造例1においてpH5.7に調整したほかは、同様の手順でマスターバッチ3(MB3)を得た。
(Production Example 3)
Masterbatch 3 (MB3) was obtained in the same procedure except that the pH was adjusted to 5.7 in Production Example 1.

(製造例4)
製造例1においてpH3.5に調整したほかは、同様の手順でマスターバッチ4(MB4)を得た。
(Production Example 4)
A master batch 4 (MB4) was obtained in the same procedure except that the pH was adjusted to 3.5 in Production Example 1.

(製造例5)
フィールドラテックスの固形分濃度(DRC)を30%(w/v)に調整したラテックスと、ミクロフィブリル化植物繊維水溶液とを乾燥時に表1に記載の質量比率となるように計量、混合し、筒型ホモジナイザー(プライミクス(株)製のオートミクサー 20型)を用いて8000rpmの条件で1時間撹拌した。次いで、老化防止剤分散体6gを添加し、2時間撹拌した後、更に水を添加してゴム濃度15%(w/v)となるまで希釈した。次いで、ゆっくり撹拌しながら凝固剤を添加してpHを5.0に調整し、凝固物を得た後、水しぼりロールで水を絞ってシート状にした後、90℃で4時間乾燥してマスターバッチ5(MB5)を得た。
(Production Example 5)
A latex in which the solid content concentration (DRC) of the field latex is adjusted to 30% (w / v) and a microfibrillated plant fiber aqueous solution are weighed and mixed so that the mass ratio shown in Table 1 is obtained when dried. It stirred for 1 hour on condition of 8000 rpm using the type | mold homogenizer (Automixer 20 type | mold by PRIMIX Co., Ltd.). Next, 6 g of the anti-aging dispersion was added and stirred for 2 hours, and then further diluted with water to a rubber concentration of 15% (w / v). Next, a coagulant is added with slow stirring to adjust the pH to 5.0 to obtain a coagulated product, which is then squeezed with a water squeezing roll to form a sheet, and then dried at 90 ° C. for 4 hours. Master batch 5 (MB5) was obtained.

(比較製造例1)
製造例1においてpH8.0に調整したほかは、同様の手順でマスターバッチ6(MB6)を得た。
(Comparative Production Example 1)
Master batch 6 (MB6) was obtained in the same procedure except that the pH was adjusted to 8.0 in Production Example 1.

(比較製造例2)
製造例1においてpH8.8に調整したほかは、同様の手順でマスターバッチ7(MB7)を得た。
(Comparative Production Example 2)
Master batch 7 (MB7) was obtained in the same procedure except that the pH was adjusted to 8.8 in Production Example 1.

(比較製造例3)
製造例5においてpH8.1に調整したほかは、同様の手順でマスターバッチ8(MB8)を得た。
(Comparative Production Example 3)
Master batch 8 (MB8) was obtained in the same procedure except that the pH was adjusted to 8.1 in Production Example 5.

(比較製造例4)
製造例5においてpH8.5に調整したほかは、同様の手順でマスターバッチ9(MB9)を得た。
(Comparative Production Example 4)
A master batch 9 (MB9) was obtained in the same procedure except that the pH was adjusted to 8.5 in Production Example 5.

前記MB1〜9に含まれるゴム分の物性を下記により評価し、結果を表1に示した。 The physical properties of rubber contained in MB1 to MB9 were evaluated as follows, and the results are shown in Table 1.

<窒素含有量の測定>
窒素含有量は、熱分解後ガスクロマトグラフで定量した。
<Measurement of nitrogen content>
The nitrogen content was quantified with a gas chromatograph after pyrolysis.

<リン含有量の測定>
ICP発光分析装置(P−4010、(株)日立製作所製)を使用してリン含有量を求めた。
また、リンの31P−NMR測定は、NMR分析装置(400MHz、AV400M、日本ブルカー社製)を使用し、80%リン酸水溶液のP原子の測定ピークを基準点(0ppm)として、クロロホルムによりゴム分より抽出した成分を精製し、CDClに溶解して測定した。
<Measurement of phosphorus content>
The phosphorus content was determined using an ICP emission spectrometer (P-4010, manufactured by Hitachi, Ltd.).
In addition, 31 P-NMR measurement of phosphorus uses an NMR analyzer (400 MHz, AV400M, manufactured by Nippon Bruker Co., Ltd.), and the measurement peak of P atom in 80% phosphoric acid aqueous solution is used as a reference point (0 ppm) for rubber with chloroform. The component extracted from the sample was purified, dissolved in CDCl 3 and measured.

<耐熱老化性>
老化前後における各ゴム分の重量平均分子量を測定し、下記式により分子量保持率を算出することで耐熱老化性を評価した。なお、老化処理は、各ゴム分を80℃で72時間オーブン中に保管して実施し、重量平均分子量は、ゲルパーミエーションクロマトグラフを用いてイソプレンを標準物質として測定した。数値が大きいほど、耐熱老化性が優れている。
(耐熱老化性)=老化後の分子量/老化前の分子量×100(%)で表した。
<Heat aging resistance>
The weight average molecular weight of each rubber before and after aging was measured, and the heat aging resistance was evaluated by calculating the molecular weight retention rate according to the following formula. The aging treatment was carried out by storing each rubber component in an oven at 80 ° C. for 72 hours, and the weight average molecular weight was measured using isoprene as a standard substance using a gel permeation chromatograph. The larger the value, the better the heat aging resistance.
(Heat aging resistance) = Molecular weight after aging / Molecular weight before aging × 100 (%).

Figure 0006181426
Figure 0006181426

表1により、凝固時のpHを2〜6に調整した工程を含む方法により得られたマスターバッチは、範囲外のpHのマスターバッチに比べて、耐熱老化性が優れていた。また、窒素含有量及びリン含有量も低減された。 According to Table 1, the master batch obtained by the method including the step of adjusting the pH at the time of coagulation to 2 to 6 was excellent in heat aging resistance as compared with the master batch having a pH outside the range. Also, the nitrogen content and phosphorus content were reduced.

<加硫ゴム組成物の作製>
表2に示す配合処方にしたがい、(株)神戸製鋼製1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の薬品を混練りした。次に、オープンロールを用いて、得られた混練り物に硫黄及び加硫促進剤を添加して練り込み、未加硫ゴム組成物を得た。次に、得られた未加硫ゴム組成物を、150℃で30分間、2mm厚の金型でプレスし、加硫ゴム組成物を得た。得られた未加硫ゴム組成物及び加硫ゴム組成物を下記により評価した。結果を表2に示す。
<Preparation of vulcanized rubber composition>
In accordance with the formulation shown in Table 2, chemicals other than sulfur and a vulcanization accelerator were kneaded using a 1.7 L Banbury mixer manufactured by Kobe Steel. Next, using an open roll, sulfur and a vulcanization accelerator were added to the kneaded product and kneaded to obtain an unvulcanized rubber composition. Next, the obtained unvulcanized rubber composition was pressed with a 2 mm thick mold at 150 ° C. for 30 minutes to obtain a vulcanized rubber composition. The obtained unvulcanized rubber composition and vulcanized rubber composition were evaluated as follows. The results are shown in Table 2.

<ムーニー粘度(ML(1+4))>
JIS K6300:2001−1に従って、130℃にて、未加硫ゴム組成物のムーニー粘度を測定した。成形時において、ムーニー粘度(130℃)が30〜70の場合、加工性が良好であり、35〜60の場合、より良好であることを示す。
<Mooney viscosity (ML (1 + 4))>
The Mooney viscosity of the unvulcanized rubber composition was measured at 130 ° C. according to JIS K6300: 2001-1. At the time of molding, when the Mooney viscosity (130 ° C.) is 30 to 70, workability is good, and when it is 35 to 60, it is better.

<転がり抵抗>
粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度70℃、初期歪み10%、動歪み1%、周波数10Hzの条件下で、各配合(加硫物)の損失正接(tanδ)を測定し、比較例1の転がり抵抗指数を100として、下記計算式により算出した。転がり抵抗指数が小さいほど、転がり抵抗が低減され、好ましいことを示す。
(転がり抵抗指数)=(各配合のtanδ)/(比較例1のtanδ)×100
<Rolling resistance>
Using a viscoelastic spectrometer VES (manufactured by Iwamoto Seisakusho Co., Ltd.), loss tangent (tan δ) of each compound (vulcanized product) under the conditions of temperature 70 ° C., initial strain 10%, dynamic strain 1%, frequency 10 Hz. ) Was measured, and the rolling resistance index of Comparative Example 1 was set to 100, which was calculated by the following formula. The smaller the rolling resistance index, the lower the rolling resistance, which is preferable.
(Rolling resistance index) = (tan δ of each formulation) / (tan δ of Comparative Example 1) × 100

Figure 0006181426
Figure 0006181426

表2により、マスターバッチ1〜を用いた実施例では、優れた加工性を得つつ、低燃費性及び耐熱老化性の性能バランスを顕著に改善することが明らかとなった。 From Table 2, it was clarified that in Examples using Master Batches 1 to 4 , the performance balance of low fuel consumption and heat aging resistance was remarkably improved while obtaining excellent processability.

Claims (6)

リン含有量が200ppm以下であるイソプレン系ゴム及びミクロフィブリル化植物繊維を混合し、得られた混合物のpHを2〜6に調整して凝固させる工程を含むマスターバッチの製造方法 A method for producing a masterbatch comprising a step of mixing isoprene-based rubber having a phosphorus content of 200 ppm or less and microfibrillated plant fibers, and adjusting the pH of the resulting mixture to 2 to 6 for solidification. 前記イソプレン系ゴムがイソプレン系ゴムラテックスである請求項1記載のマスターバッチの製造方法The method for producing a masterbatch according to claim 1, wherein the isoprene-based rubber is an isoprene-based rubber latex. 前記イソプレン系ゴムが非ゴム成分を除去したものである請求項1又は2記載のマスターバッチの製造方法The method for producing a masterbatch according to claim 1 or 2, wherein the isoprene-based rubber has a non-rubber component removed. 前記イソプレン系ゴム100質量部に対する前記ミクロフィブリル化植物繊維の含有量が0.1〜30質量部である請求項1又は2記載のマスターバッチの製造方法The method for producing a masterbatch according to claim 1 or 2, wherein a content of the microfibrillated plant fiber is 0.1 to 30 parts by mass with respect to 100 parts by mass of the isoprene-based rubber. 請求項1〜のいずれかに記載のマスターバッチの製造方法により得られたマスターバッチと、他の成分とを混練する工程を含み、
ゴム成分100質量部に対する前記ミクロフィブリル化植物繊維の含有量が0.1〜30質量部であるタイヤ用ゴム組成物の製造方法
Including a step of kneading the masterbatch obtained by the method for producing a masterbatch according to any one of claims 1 to 4 with other components ,
The manufacturing method of the rubber composition for tires whose content of the said microfibrillated plant fiber with respect to 100 mass parts of rubber components is 0.1-30 mass parts.
請求項記載のゴム組成物の製造方法により得られたゴム組成物を用いて空気入りタイヤを製造する空気入りタイヤの製造方法 The pneumatic tire manufacturing method for manufacturing a pneumatic tire using the rubber compositions obtained by the process of claim 5 the rubber composition.
JP2013108964A 2013-05-23 2013-05-23 Masterbatch, production method, rubber composition and pneumatic tire Active JP6181426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013108964A JP6181426B2 (en) 2013-05-23 2013-05-23 Masterbatch, production method, rubber composition and pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013108964A JP6181426B2 (en) 2013-05-23 2013-05-23 Masterbatch, production method, rubber composition and pneumatic tire

Publications (2)

Publication Number Publication Date
JP2014227484A JP2014227484A (en) 2014-12-08
JP6181426B2 true JP6181426B2 (en) 2017-08-16

Family

ID=52127658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013108964A Active JP6181426B2 (en) 2013-05-23 2013-05-23 Masterbatch, production method, rubber composition and pneumatic tire

Country Status (1)

Country Link
JP (1) JP6181426B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6502695B2 (en) * 2015-02-13 2019-04-17 住友ゴム工業株式会社 Microfibrillated plant fiber-rubber composite, method for producing the same, rubber composition and pneumatic tire
EP3255082B1 (en) * 2015-02-26 2020-07-08 Sumitomo Rubber Industries, Ltd. Method for producing master batch, master batch obtained by said production method, rubber composition for tire, and pneumatic tire
JP7081222B2 (en) * 2018-03-07 2022-06-07 住友ゴム工業株式会社 Manufacturing method of microfibrillated plant fiber / rubber complex

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4598853B2 (en) * 2008-12-15 2010-12-15 住友ゴム工業株式会社 Natural rubber, method for producing the same, rubber composition, and pneumatic tire using the same
JP5717656B2 (en) * 2010-02-02 2015-05-13 国立大学法人京都大学 Rubber composition
JP5676909B2 (en) * 2010-04-27 2015-02-25 国立大学法人京都大学 Rubber composition and method for producing rubber composition
JP5595104B2 (en) * 2010-04-27 2014-09-24 国立大学法人京都大学 Rubber composition and tire using the same
JP5595103B2 (en) * 2010-04-27 2014-09-24 国立大学法人京都大学 Rubber composition and method for producing rubber composition
JP5456650B2 (en) * 2010-12-01 2014-04-02 住友ゴム工業株式会社 Modified natural rubber, rubber composition for tire and pneumatic tire

Also Published As

Publication number Publication date
JP2014227484A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
JP5706863B2 (en) Masterbatch, rubber composition and pneumatic tire
JP5770757B2 (en) Rubber composition and pneumatic tire
JP6473161B2 (en) Method for producing masterbatch, masterbatch obtained by the production method, rubber composition for tire and pneumatic tire
JP5086457B2 (en) Rubber composition for breaker and pneumatic tire
JP5216029B2 (en) Rubber composition for sidewall, insulation or breaker cushion, production method thereof and pneumatic tire
JP5687671B2 (en) Rubber composition and pneumatic tire
JP5216028B2 (en) Rubber composition for inner liner and pneumatic tire
JP5639121B2 (en) Rubber composition for tire and pneumatic tire
JP5411214B2 (en) Rubber composition for tread, method for producing the same, and tire for heavy load
JP5981359B2 (en) Rubber composition and pneumatic tire
JP5394993B2 (en) COMPOSITE MANUFACTURING METHOD, RUBBER COMPOSITION, AND PNEUMATIC TIRE
JP5616372B2 (en) Rubber composition for tire, method for producing the same, and pneumatic tire
JP2011190409A (en) Rubber composition for breaker topping and pneumatic tire using the same
EP2995638A1 (en) Pneumatic tire and rubber masterbatch
JP2005194503A (en) Method for producing rubber from rubber latex
KR20110131082A (en) Rubber composition for braker and pneumatic tire
JP6181426B2 (en) Masterbatch, production method, rubber composition and pneumatic tire
US10435522B2 (en) Method for producing masterbatch
JP6878836B2 (en) Masterbatch manufacturing method
US20190338084A1 (en) Master batch production method
JP5443453B2 (en) Manufacturing method of composite, composite, rubber composition, and pneumatic tire
JP2015129236A (en) Method for producing composite material
JP5503413B2 (en) Rubber composition for tire and pneumatic tire
JP5650794B2 (en) Sidewall rubber composition and pneumatic tire
JP2014145033A (en) Rubber composition for inner liner and pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170720

R150 Certificate of patent or registration of utility model

Ref document number: 6181426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250