JP2015010136A - Rubber composition for tire, and pneumatic tire using the same - Google Patents
Rubber composition for tire, and pneumatic tire using the same Download PDFInfo
- Publication number
- JP2015010136A JP2015010136A JP2013135349A JP2013135349A JP2015010136A JP 2015010136 A JP2015010136 A JP 2015010136A JP 2013135349 A JP2013135349 A JP 2013135349A JP 2013135349 A JP2013135349 A JP 2013135349A JP 2015010136 A JP2015010136 A JP 2015010136A
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- rubber composition
- tire
- mass
- microfibrillated plant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y02T10/862—
Landscapes
- Tires In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、環境への配慮がなされたタイヤ用ゴム組成物及びそれを用いた空気入りタイヤに関する。 The present invention relates to a rubber composition for tires that is environmentally friendly and a pneumatic tire using the same.
従来、アラミド、セルロース等の短繊維でゴムを補強して硬度およびモジュラスを向上させ、操縦安定性を改善する技術が知られている。しかし、ゴム成分と短繊維との相溶性が充分ではなく、期待した操縦安定性を発揮できないという問題がある。 Conventionally, a technique is known in which rubber is reinforced with short fibers such as aramid and cellulose to improve hardness and modulus and improve steering stability. However, there is a problem that the compatibility between the rubber component and the short fiber is not sufficient, and the expected handling stability cannot be exhibited.
そこで、特許文献1では、セルロース繊維の表面を化学的に処理して疎水基を導入することにより、ゴム成分との相溶性を向上させる手法が提案されている。また、特許文献2では、アミノ基を有するシランカップリング剤でパルプを化学処理することにより相溶性を向上させる手法が提案されている。しかしながら、これらの手法はいずれも化学反応プロセスを必要とすることから、より簡便な手法が求められている。 Therefore, Patent Document 1 proposes a method for improving the compatibility with the rubber component by chemically treating the surface of the cellulose fiber to introduce a hydrophobic group. Patent Document 2 proposes a technique for improving compatibility by chemically treating pulp with a silane coupling agent having an amino group. However, since these methods all require a chemical reaction process, a simpler method is required.
本発明は、化石資源からなる原材料の使用を極力抑えることで環境に配慮し、表面処理を簡便に行うことができ、破壊特性、操縦安定性及び低燃費性をバランス良く改善できるタイヤ用ゴム組成物、その製造方法、及び該ゴム組成物を用いて作製した空気入りタイヤを提供する。 The present invention provides a rubber composition for tires that can reduce the use of raw materials made of fossil resources as much as possible, consider the environment, perform surface treatment easily, and improve the fracture characteristics, handling stability and fuel efficiency in a balanced manner. And a pneumatic tire produced using the rubber composition.
すなわち、本発明は、ゴム成分、ミクロフィブリル化植物繊維及びテレピン油を含むタイヤ用ゴム組成物に関する。 That is, this invention relates to the rubber composition for tires containing a rubber component, microfibrillated vegetable fiber, and turpentine oil.
ゴム成分が天然ゴムまたは改質天然ゴムを含むことが好ましい。 The rubber component preferably contains natural rubber or modified natural rubber.
ミクロフィブリル化植物繊維がセルロースミクロフィブリルであることが好ましい。 It is preferred that the microfibrillated plant fiber is cellulose microfibril.
ミクロフィブリル化植物繊維の平均繊維径が10μm以下であることが好ましい。 The average fiber diameter of the microfibrillated plant fiber is preferably 10 μm or less.
ミクロフィブリル化植物繊維の含有量がゴム成分100質量部に対して1〜100質量部であることが好ましい。 The content of the microfibrillated plant fiber is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the rubber component.
テレピン油の含有量がゴム成分100質量部に対して0.01〜50質量部であることが好ましい。 It is preferable that the content of turpentine oil is 0.01 to 50 parts by mass with respect to 100 parts by mass of the rubber component.
また、本発明は、ミクロフィブリル化植物繊維及び前記テレピン油を混合する工程(I)、及び、工程(I)で得られた混合物にゴム成分を添加して混合する工程(II)を含む前記タイヤ用ゴム組成物の製造方法に関する。 Further, the present invention includes the step (I) of mixing the microfibrillated plant fiber and the turpentine oil, and the step (II) of adding and mixing the rubber component to the mixture obtained in the step (I). The present invention relates to a method for producing a rubber composition for tires.
さらに、本発明は、前記ゴム組成物を用いて作製した空気入りタイヤに関する。 Furthermore, this invention relates to the pneumatic tire produced using the said rubber composition.
本発明によれば、ゴム成分、ミクロフィブリル化植物繊維及びテレピン油を含むタイヤ用ゴム組成物であるので、良好な低燃費性を維持しながら、剛性と破断伸びとを両立できる。これにより、破壊特性、操縦安定性及び低燃費性をバランス良く改善された空気入りタイヤを提供することができる。 According to the present invention, since it is a rubber composition for tires containing a rubber component, microfibrillated plant fiber and turpentine oil, both rigidity and elongation at break can be achieved while maintaining good fuel economy. Thereby, it is possible to provide a pneumatic tire with improved fracture characteristics, steering stability and low fuel consumption in a well-balanced manner.
本発明のゴム組成物は、ゴム成分、ミクロフィブリル化植物繊維及びテレピン油を含む。テレピン油を添加することで、ゴム成分とミクロフィブリル化植物繊維との界面での接着性が改善され、界面でのエネルギーロスが低下する。また、ミクロフィブリル化植物繊維同士が絡み合った接点がテレピン油の酸化によって補強され、破断強度が向上する。これらの作用により、エネルギーロスの増大を抑制しながら、剛性及び破断伸びとを両立できる。したがって、上記ゴム組成物をタイヤに用いることで、破壊特性、操縦安定性及び低燃費性がバランス良く改善された空気入りタイヤを提供できる。また、ミクロフィブリル化植物繊維及びテレピン油は、いずれも天然由来の材料(石油外資源)であるため、石油資源の使用量を低減することができる。 The rubber composition of the present invention includes a rubber component, microfibrillated vegetable fiber, and turpentine oil. By adding turpentine oil, the adhesiveness at the interface between the rubber component and the microfibrillated plant fiber is improved, and the energy loss at the interface is reduced. Further, the contact point where the microfibrillated plant fibers are entangled with each other is reinforced by the oxidation of turpentine oil, and the breaking strength is improved. With these actions, both rigidity and elongation at break can be achieved while suppressing an increase in energy loss. Therefore, by using the rubber composition in a tire, it is possible to provide a pneumatic tire in which fracture characteristics, steering stability and fuel efficiency are improved in a well-balanced manner. Moreover, since both microfibrillated plant fiber and turpentine oil are naturally derived materials (resources other than petroleum), the amount of petroleum resources used can be reduced.
ミクロフィブリル化植物繊維としては、とくに限定されないが、良好な補強性が得られるという点から、セルロースミクロフィブリルが好ましい。セルロースミクロフィブリルとしては、例えば、木材、竹、麻、ジュート、ケナフ、農作物残廃物、布、再生パルプ、古紙、バクテリアセルロース、ホヤセルロース等の天然物に由来するものが好ましい。 Although it does not specifically limit as a microfibrillated plant fiber, A cellulose microfibril is preferable from the point that favorable reinforcement property is acquired. As cellulose microfibrils, for example, those derived from natural products such as wood, bamboo, hemp, jute, kenaf, crop residue, cloth, recycled pulp, waste paper, bacterial cellulose, squirt cellulose and the like are preferable.
ミクロフィブリル化植物繊維の製造方法としては特に限定されないが、例えば、上記セルロースミクロフィブリルの原料を水酸化ナトリウム等の薬品で化学処理した後、リファイナー、二軸混錬機(二軸押出機)、二軸混錬押出機、高圧ホモジナイザー、媒体撹拌ミル、石臼、グラインダー、振動ミル、サンドグラインダー等により機械的に磨砕ないし叩解する方法が挙げられる。この方法では、化学処理によって原料からリグニンが分離されるため、リグニンを実質的に含有しないミクロフィブリル化植物繊維が得られる。 Although it does not specifically limit as a manufacturing method of a microfibrillated plant fiber, For example, after chemically processing the raw material of the said cellulose microfibril with chemicals, such as sodium hydroxide, a refiner, a twin screw kneader (double screw extruder), Examples of the method include mechanical grinding or beating using a twin-screw kneading extruder, a high-pressure homogenizer, a medium stirring mill, a stone mill, a grinder, a vibration mill, a sand grinder, and the like. In this method, since lignin is separated from the raw material by chemical treatment, microfibrillated plant fibers substantially free of lignin are obtained.
ミクロフィブリル化植物繊維の平均繊維径は、ゴム補強効果が良好である観点から、好ましくは10μm以下、より好ましくは5μm以下、更に好ましくは1μm以下、特に好ましくは0.5μm以下である。ミクロフィブリル化植物繊維の平均繊維径の下限は特に限定されないが、ミクロフィブリル化植物繊維の水分散液とゴム成分とを混合する場合に、濾水性の悪化による作業性の悪化を抑制できる観点から、4nm以上であることが好ましい。 The average fiber diameter of the microfibrillated plant fiber is preferably 10 μm or less, more preferably 5 μm or less, still more preferably 1 μm or less, and particularly preferably 0.5 μm or less from the viewpoint of good rubber reinforcing effect. The lower limit of the average fiber diameter of the microfibrillated plant fiber is not particularly limited, but when mixing the aqueous dispersion of the microfibrillated plant fiber and the rubber component, from the viewpoint of suppressing workability deterioration due to deterioration of drainage. It is preferable that it is 4 nm or more.
ミクロフィブリル化植物繊維の平均繊維長は、好ましくは5mm以下、より好ましくは1mm以下であり、また、好ましくは1μm以上、より好ましくは50μm以上である。平均繊維長が下限未満の場合や上限を超える場合は、前述の平均繊維径と同様の傾向がある。なお、平均繊維長ミクロフィブリル化植物繊維の平均繊維径は、走査型電子顕微鏡写真の画像解析、透過型顕微鏡写真の画像解析、X線散乱データの解析、細孔電気抵抗法(コールター原理法)等によって測定できる。 The average fiber length of the microfibrillated plant fiber is preferably 5 mm or less, more preferably 1 mm or less, and preferably 1 μm or more, more preferably 50 μm or more. When the average fiber length is less than the lower limit or exceeds the upper limit, there is a tendency similar to the average fiber diameter described above. In addition, average fiber length The average fiber diameter of microfibrillated plant fibers is the image analysis of scanning electron micrographs, image analysis of transmission micrographs, analysis of X-ray scattering data, pore electrical resistance method (Coulter principle method) It can be measured by etc.
ミクロフィブリル化植物繊維の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上、更に好ましくは5質量部以上であり、また、好ましくは100質量部以下、より好ましくは20質量部以下である。上記範囲内であれば、ゴム補強効果とエネルギーロスのバランスが良好であり、また、ゴム成分と複合化する工程での各種材料の歩留まりや作業性も良好である。 The content of the microfibrillated plant fiber is preferably 1 part by mass or more, more preferably 3 parts by mass or more, still more preferably 5 parts by mass or more, and preferably 100 parts by mass with respect to 100 parts by mass of the rubber component. Part or less, more preferably 20 parts by weight or less. If it is in the said range, the balance of a rubber reinforcement effect and energy loss will be favorable, and the yield and workability | operativity of various materials in the process combined with a rubber component will also be favorable.
テレピン油とは、松精油、テレビン油、ターペンタインとも呼ばれ、マツ科の樹木のチップや松脂を水蒸気蒸留することによって得られ、α−ピネン、β−ピネン、p−シメンを主成分とする。製法によって、ガム・テレピン油、ウッド・テレピン油、サルフェート・テレピン油に大別される。ガム・テレピン油は、松ヤニを水蒸気蒸留することによって得られる。ウッド・テレピン油は、針葉樹の樹皮や切り株を水蒸気蒸留や乾留することによって得られる。サルフェート・テレピン油は、製紙用のパルプ製造時の加熱処理で発生する蒸気を濃縮することによって得られる。テレピン油は、製法はいずれでも良く、原料となる樹木の種類も特に問わない。 The turpentine oil is also called pine essential oil, turpentine oil, or turpentine, and is obtained by steam-distilling pine tree chips and pine oil, and mainly contains α-pinene, β-pinene, and p-cymene. Depending on the production method, it is roughly classified into gum turpentine oil, wood turpentine oil, and sulfate turpentine oil. Gum turpentine oil is obtained by steam distillation of pine sprout. Wood turpentine oil is obtained by steam distillation or carbonization of conifer bark and stumps. Sulfate turpentine oil is obtained by concentrating steam generated by heat treatment during the manufacture of pulp for papermaking. The turpentine oil can be produced by any method, and the type of tree used as a raw material is not particularly limited.
テレピン油の含有量は、ゴム100重量部に対して、好ましくは0.01質量部以上、より好ましくは0.1質量部以上であり、また、好ましくは50質量部以下、より好ましくは10質量部以下、さらに好ましくは3質量部以下、最も好ましくは1質量部以下である。上記範囲内であれば、ミクロフィブリル化植物繊維を良好に分散させ、破壊特性、操縦安定性及び低燃費性をバランス良く改善できる。 The content of turpentine oil is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, and preferably 50 parts by mass or less, more preferably 10 parts by mass with respect to 100 parts by mass of rubber. Part or less, more preferably 3 parts by weight or less, and most preferably 1 part by weight or less. If it is in the said range, a microfibrillated plant fiber can be disperse | distributed favorably and a destructive characteristic, steering stability, and low fuel consumption can be improved with good balance.
ゴム成分はとくに限定されないが、天然ゴム、改質天然ゴム、合成ゴム及び変性合成ゴムが挙げられるが、天然ゴムまたは改質天然ゴムを含むことが好ましい。 The rubber component is not particularly limited, and examples thereof include natural rubber, modified natural rubber, synthetic rubber, and modified synthetic rubber, but it is preferable to include natural rubber or modified natural rubber.
天然ゴム(NR)としては、TSR20,RRS#3などの一般的に用いられているものが挙げられ、改質天然ゴムとしては、エポキシ化天然ゴム(ENR)や脱タンパク質天然ゴムなどが挙げられる。NRや改質天然ゴムを含有する場合、含有率は10質量%以上であることが好ましく、15質量%以上であることがより好ましい。含有率が10質量%未満であると、耐摩耗性の悪化、低温脆化温度が高くなる傾向がある。 Examples of natural rubber (NR) include those commonly used such as TSR20 and RRS # 3, and examples of modified natural rubber include epoxidized natural rubber (ENR) and deproteinized natural rubber. . When NR or modified natural rubber is contained, the content is preferably 10% by mass or more, and more preferably 15% by mass or more. When the content is less than 10% by mass, the wear resistance deteriorates and the low temperature embrittlement temperature tends to increase.
ENRのエポキシ化率は5モル%以上であることが好ましく、10モル%以上であることがより好ましい。ENRのエポキシ化率、5モル%未満であると、ゴム組成物に対する改質効果が小さい傾向がある。また、ENRのエポキシ化率は、80モル%以下であることが好ましく、60モル%以下であることがより好ましい。ENRのエポキシ化率が、80モル%をこえると、ポリマー成分がゲル化する傾向がある。 The epoxidation rate of ENR is preferably 5 mol% or more, and more preferably 10 mol% or more. When the epoxidation ratio of ENR is less than 5 mol%, the modification effect on the rubber composition tends to be small. The epoxidation rate of ENR is preferably 80 mol% or less, and more preferably 60 mol% or less. When the epoxidation rate of ENR exceeds 80 mol%, the polymer component tends to gel.
ENRを含有する場合、ENRの含有率は10質量%以上であることが好ましく、15質量%以上であることがより好ましい。ENRの含有率が10質量%未満であると、耐摩耗性能が低下する傾向がある。また、ENRの含有率は70質量%以下であることが好ましく、60質量%以下であることがより好ましい。ENRの含有率が70質量%をこえると、グリップ性能が低下する傾向がある。 When ENR is contained, the content of ENR is preferably 10% by mass or more, and more preferably 15% by mass or more. When the content of ENR is less than 10% by mass, the wear resistance tends to decrease. The ENR content is preferably 70% by mass or less, and more preferably 60% by mass or less. When the content of ENR exceeds 70% by mass, grip performance tends to decrease.
また、所望に応じて、ジエン系ゴムなどの合成ゴムを使用することもできる。たとえば、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、ブチルゴム(IIR)、アクリロニトリルブタジエンゴム(NBR)、エチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム(CR)などが挙げられ、グリップ性能、転がり抵抗および耐摩耗性をバランスよく向上させることができるという理由から、BR、SBRからなる群から選ばれる少なくとも1種のゴムが好ましい。将来の石油枯渇を想定した場合、より好ましくは、これらのジエン系ポリマーを使用しない、もしくはモノマーに再生可能な生物由来原料を使用していることが望ましい。 Further, a synthetic rubber such as a diene rubber can be used as desired. Examples include styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IR), butyl rubber (IIR), acrylonitrile butadiene rubber (NBR), ethylene propylene diene rubber (EPDM), and chloroprene rubber (CR). At least one rubber selected from the group consisting of BR and SBR is preferable because the grip performance, rolling resistance and wear resistance can be improved in a balanced manner. In the case of future oil depletion, it is more preferable that these diene polymers are not used, or a bio-derived raw material that can be regenerated as a monomer is used.
本発明のゴム組成物には、前記ジエン系ゴム以外にも、従来よりタイヤ工業で使用される配合剤、たとえば、シリカやカーボンブラックのような充填剤、可塑剤、老化防止剤、硫黄、加硫促進剤、酸化亜鉛、ステアリン酸などを、必要に応じて適宜配合することができる。 In addition to the diene rubbers, the rubber composition of the present invention includes compounding agents conventionally used in the tire industry, for example, fillers such as silica and carbon black, plasticizers, anti-aging agents, sulfur, additives. A sulfur accelerator, zinc oxide, stearic acid, and the like can be appropriately blended as necessary.
また、本発明は、ミクロフィブリル化植物繊維及び前記テレピン油を混合する工程(I)、及び、工程(I)で得られた混合物にゴム成分を添加して混合する工程(II)を含む前記タイヤ用ゴム組成物の製造方法に関する。 Further, the present invention includes the step (I) of mixing the microfibrillated plant fiber and the turpentine oil, and the step (II) of adding and mixing the rubber component to the mixture obtained in the step (I). The present invention relates to a method for producing a rubber composition for tires.
ミクロフィブリル化植物繊維とテレピン油を予め混合するマスターバッチ工程を行うことが好ましい。該工程を行うことによって、全ての成分を同時に混合する場合と比較して、分散性が向上し、良好な破壊特性が得られるという効果を奏する。 It is preferable to perform a masterbatch process in which microfibrillated plant fibers and turpentine oil are mixed in advance. By performing this step, there is an effect that dispersibility is improved and good fracture characteristics are obtained as compared with the case where all the components are mixed simultaneously.
工程(I)では、たとえば高速ホモジナイザーなどでミクロフィブリル化植物繊維の原料を水中で撹拌分散させたところに、天然ゴムラテックスを添加し、さらに撹拌分散させる。その後、得られた混合液を凝固し、水洗後、乾燥してマスターバッチ(ミクロフィブリル化植物繊維がゴム中に良好に分散)を得ることができる。 In step (I), for example, a natural rubber latex is added to a microfibrillated plant fiber raw material stirred and dispersed in water with a high-speed homogenizer, and then stirred and dispersed. Thereafter, the obtained mixed solution is solidified, washed with water, and dried to obtain a master batch (microfibrillated plant fibers are well dispersed in rubber).
工程(II)では、工程(I)で得たマスターバッチと他のゴム成分や添加剤を、公知の方法、例えば、各成分をロールやバンバリーのような公知の混合機で混練する方法を用いることができる。次いで、加硫剤や加硫促進剤を配合し、ゴム組成物を得ることができる。 In step (II), the master batch obtained in step (I) and other rubber components and additives are used in a known method, for example, a method in which each component is kneaded with a known mixer such as a roll or a banbury. be able to. Subsequently, a rubber composition can be obtained by blending a vulcanizing agent or a vulcanization accelerator.
また、本発明は、前記ゴム組成物を用いて作製した空気入りタイヤに関する。前記ゴム組成物は、タイヤ部材に使用することができ、なかでも、トレッドやサイドウォールに好適に使用できる。本発明の空気入りタイヤは、上記ゴム組成物を用いて公知の方法によって製造される。すなわち、必要に応じて各種添加剤を配合したゴム組成物を、未加硫の段階でタイヤの各部材の形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形することにより未加硫タイヤを形成した後、加硫機中で加熱加圧してタイヤを製造できる。 Moreover, this invention relates to the pneumatic tire produced using the said rubber composition. The said rubber composition can be used for a tire member and can be used conveniently for a tread and a sidewall among them. The pneumatic tire of the present invention is produced by a known method using the rubber composition. That is, a rubber composition containing various additives as necessary is extruded in accordance with the shape of each member of the tire at an unvulcanized stage and molded by a normal method on a tire molding machine. After forming an unvulcanized tire by heating, the tire can be manufactured by heating and pressing in a vulcanizer.
本発明の空気入りタイヤは、乗用車、トラック・バス等に好適に使用できる。 The pneumatic tire of the present invention can be suitably used for passenger cars, trucks, buses and the like.
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.
以下、実施例、比較例及び参考例で使用した各種薬品について、まとめて説明する。
天然ゴムラテックス:HYTEX HA(Golden Hope Plantations(ゴールデン・ホープ・プランテーションズ)社製の天然ゴムラテックス、固形分:60質量%、平均粒径:1μm)
ミクロフィブリル化植物繊維:ダイセル化学工業(株)製のセリッシュKY−100G(平均繊維長:0.5mm、平均繊維径:0.02μm、固形分:10質量%)
テレピン油:日本テルペン化学(株)製テレピン油
マスターバッチ1〜3:下記製造例で調製
老化防止剤:大内新興化学工業(株)製のノクラック6C
ステアリン酸:日油(株)製のビーズステアリン酸つばき
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤:大内新興化学工業(株)製のノクセラーDM
Hereinafter, various chemicals used in Examples, Comparative Examples and Reference Examples will be described together.
Natural rubber latex: HYTEX HA (natural rubber latex manufactured by Golden Hope Plantations, solid content: 60% by mass, average particle size: 1 μm)
Microfibrillated plant fiber: Selish KY-100G manufactured by Daicel Chemical Industries, Ltd. (average fiber length: 0.5 mm, average fiber diameter: 0.02 μm, solid content: 10% by mass)
Turpin oil: Nippon Terpene Chemical Co., Ltd. turpentine oil master batches 1-3: prepared in the following production examples Anti-aging agent: Nocrack 6C manufactured by Ouchi Shinsei Chemical Co., Ltd.
Stearic acid: Beads manufactured by NOF Corporation Zinc stearate Zinc oxide: Zinc oxide manufactured by Mitsui Mining & Smelting Co., Ltd. Sulfur: Powder sulfur vulcanization accelerator manufactured by Tsurumi Chemical Co., Ltd .: Ouchi Shinsei Chemical NOCELLER DM manufactured by Kogyo Co., Ltd.
<製造例1:マスターバッチ1の調製>
表1の配合に従い、高速ホモジナイザー(IKA社製のバッチ式ホモジナイザーT65Dウルトラタラックス(Ultraturrax T25))を用いて、24,000rpmの条件でミクロフィブリル化植物繊維を水中で1時間撹拌分散させ、ついで天然ゴムラテックスを添加し、さらに30分撹拌分散させた。得られた混合液を5質量%ギ酸水溶液で凝固し、水洗後、40℃の加熱オーブン中で乾燥させることでマスターバッチ1を得た。
<Production Example 1: Preparation of Masterbatch 1>
In accordance with the composition shown in Table 1, the microfibrillated plant fiber was stirred and dispersed in water at 24,000 rpm for 1 hour using a high-speed homogenizer (batch homogenizer T65D Ultra Turrax (Ultraturrax T25) manufactured by IKA). Natural rubber latex was added, and the mixture was further stirred and dispersed for 30 minutes. The obtained mixed solution was coagulated with a 5 mass% formic acid aqueous solution, washed with water, and dried in a heating oven at 40 ° C to obtain a master batch 1.
<製造例2:マスターバッチ2の調製>
マスターバッチ1と同様の方法でマスターバッチ2を得た。
<Production Example 2: Preparation of Masterbatch 2>
Masterbatch 2 was obtained in the same manner as masterbatch 1.
<製造例3:マスターバッチ3の調製>
天然ゴムラテックスをそのまま5%ギ酸水溶液で凝固し、水洗後、40℃の加熱オーブン中で乾燥させることでマスターバッチ3を得た。
<Production Example 3: Preparation of Masterbatch 3>
The natural rubber latex was coagulated as it was with a 5% formic acid aqueous solution, washed with water, and then dried in a heating oven at 40 ° C. to obtain a master batch 3.
<実施例1および比較例1〜2>
表2の配合に従い、135℃に加熟した250ccインターナルミキサーを用いて、88rpmの条件で加硫促進剤及び硫黄以外の薬品と各種マスターバッチとを3分間混練りした。混練りしたゴムを排出して、60℃、24rpmの条件で6インチオープンロールにより加硫促進剤と硫黄を添加、5分間混練し、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を150℃でプレス加熱することで、実施例1、比較例1〜2に対応する加硫ゴム組成物を得た。
<Example 1 and Comparative Examples 1-2>
In accordance with the formulation shown in Table 2, a vulcanization accelerator and chemicals other than sulfur and various master batches were kneaded for 3 minutes under the condition of 88 rpm using a 250 cc internal mixer ripened to 135 ° C. The kneaded rubber was discharged, and a vulcanization accelerator and sulfur were added with a 6-inch open roll at 60 ° C. and 24 rpm, and kneaded for 5 minutes to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition was press-heated at 150 ° C. to obtain vulcanized rubber compositions corresponding to Example 1 and Comparative Examples 1 and 2.
作製した加硫ゴム組成物を用い、以下に示す評価を行った。なお、表2に示す特性データ中の各指数については、比較例2を基準配合とし、下記計算式で算出した。 The following evaluations were performed using the prepared vulcanized rubber composition. Each index in the characteristic data shown in Table 2 was calculated by the following formula using Comparative Example 2 as a reference composition.
(引張試験)
JIS K6251「加硫ゴム及び熱可塑性ゴム−引張特性の求め方」に従い、100%引張応力、300%引張応力、破断応力、破断伸び、破壊エネルギーを測定した。
100%引張応力指数=(各配合の100%引張応力)÷(基準配合の100%引張応力)×100
300%引張応力指数=(各配合の300%引張応力)÷(基準配合の300%引張応力)×100
引張強度指数=(各配合の破断応力)÷(基準配合の破断応力)×100
破断伸び指数=(各配合の破断伸び)÷(基準配合の破断伸び)×100
破壊エネルギー指数=(各配合の破壊エネルギー)÷(基準配合の破壊エネルギー)×100
指数が大きい程、加硫ゴム組成物が良好に補強されており、ゴムの機械強度が大きく、破壊特性に優れることを示す。
(Tensile test)
100% tensile stress, 300% tensile stress, breaking stress, breaking elongation and breaking energy were measured according to JIS K6251 “Vulcanized rubber and thermoplastic rubber—How to obtain tensile properties”.
100% tensile stress index = (100% tensile stress of each compound) ÷ (100% tensile stress of standard compound) × 100
300% tensile stress index = (300% tensile stress of each formulation) ÷ (300% tensile stress of standard formulation) × 100
Tensile strength index = (breaking stress of each compound) ÷ (breaking stress of standard compound) × 100
Breaking elongation index = (breaking elongation of each compound) ÷ (breaking elongation of the standard compound) × 100
Breaking energy index = (breaking energy of each formulation) ÷ (breaking energy of the standard formulation) x 100
The larger the index, the better the vulcanized rubber composition is reinforced, and the higher the mechanical strength of the rubber, the better the fracture characteristics.
(操縦安定性指数及び転がり抵抗指数)
前述の方法で調製された加硫ゴム組成物の2mmゴムスラブシートから測定用試験片を切り出し、粘弾性スペクトロメータVES((株)岩本製作所製)を用いて、温度70℃、初期歪10%、動歪2%、周波数10Hzの条件下で、各測定用試験片のE*(複素弾性率)及びtanδ(損失正接)を測定した。
操縦安定性指数=(各配合のE*)÷(基準配合のE*)×100
転がり抵抗指数=(各配合のtanδ)÷(基準配合のtanδ)×100
操縦安定性指数が大きい程、空気入りタイヤとして用いた場合に良好な操縦安定性を与え、転がり抵抗指数が小さい程、空気入りタイヤとして用いた場合に良好な転がり抵抗特性(低燃費性)を与えることを示す。
(Maneuvering stability index and rolling resistance index)
A test specimen for measurement was cut out from a 2 mm rubber slab sheet of the vulcanized rubber composition prepared by the above-described method, and the temperature was 70 ° C. and the initial strain was 10% using a viscoelastic spectrometer VES (manufactured by Iwamoto Seisakusho). The E * (complex elastic modulus) and tan δ (loss tangent) of each test specimen were measured under the conditions of dynamic strain 2% and frequency 10 Hz.
Steering stability index = (E * for each formulation) ÷ (E * for standard formulation) x 100
Rolling resistance index = (tan δ of each formulation) ÷ (tan δ of standard formulation) × 100
The larger the steering stability index, the better the steering stability when used as a pneumatic tire, and the smaller the rolling resistance index, the better the rolling resistance characteristic (low fuel consumption) when used as a pneumatic tire. Indicates to give.
表2より、ミクロフィブリル化植物繊維を含有し、テレピン油を含有しない比較例1は、比較例2と比較して引張応力等は改善したが、破断伸び、低燃費性が悪化した。一方、ミクロフィブリル化植物繊維及びテレピン油を含有する実施例1は、比較例1と比較して、低燃費性を維持しながら、破断伸びが改善した。また、その他の性能も比較例1よりも優れていた。
From Table 2, Comparative Example 1 containing microfibrillated plant fibers and containing no turpentine oil improved the tensile stress and the like as compared with Comparative Example 2, but deteriorated elongation at break and fuel efficiency. On the other hand, Example 1 containing microfibrillated plant fibers and turpentine oil improved the elongation at break while maintaining low fuel consumption as compared with Comparative Example 1. Other performances were also superior to Comparative Example 1.
Claims (8)
工程(I)で得られた混合物にゴム成分を添加して混合する工程(II)
を含む請求項1〜6のいずれかに記載のタイヤ用ゴム組成物の製造方法。 Step (I) of mixing the microfibrillated plant fiber and the turpentine oil, and step (II) of adding and mixing the rubber component to the mixture obtained in the step (I)
The manufacturing method of the rubber composition for tires in any one of Claims 1-6 containing these.
The pneumatic tire produced using the rubber composition in any one of Claims 1-6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013135349A JP2015010136A (en) | 2013-06-27 | 2013-06-27 | Rubber composition for tire, and pneumatic tire using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013135349A JP2015010136A (en) | 2013-06-27 | 2013-06-27 | Rubber composition for tire, and pneumatic tire using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015010136A true JP2015010136A (en) | 2015-01-19 |
Family
ID=52303593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013135349A Pending JP2015010136A (en) | 2013-06-27 | 2013-06-27 | Rubber composition for tire, and pneumatic tire using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015010136A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016143852A1 (en) * | 2015-03-12 | 2016-09-15 | 横浜ゴム株式会社 | Thermally expandable microcapsule complex, method for manufacturing same, rubber composition in which complex is blended, and pneumatic tire using composition |
WO2018101266A1 (en) * | 2016-11-30 | 2018-06-07 | 住友ゴム工業株式会社 | Rubber composition for tire and tire |
JP2018184515A (en) * | 2017-04-25 | 2018-11-22 | 住友ゴム工業株式会社 | Rubber composition for tire, method for producing rubber composition for tire, and tire |
WO2021100394A1 (en) * | 2019-11-20 | 2021-05-27 | 住友ゴム工業株式会社 | Polymer composition |
-
2013
- 2013-06-27 JP JP2013135349A patent/JP2015010136A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016169278A (en) * | 2015-03-12 | 2016-09-23 | 横浜ゴム株式会社 | Thermal expansive microcapsule composite, manufacturing method therefor, rubber composition by blending the composite and pneumatic tire using the composition |
WO2016143852A1 (en) * | 2015-03-12 | 2016-09-15 | 横浜ゴム株式会社 | Thermally expandable microcapsule complex, method for manufacturing same, rubber composition in which complex is blended, and pneumatic tire using composition |
US10557009B2 (en) | 2015-03-12 | 2020-02-11 | The Yokohama Rubber Co., Ltd. | Thermally expandable microcapsule complex, method for manufacturing same, rubber composition in which complex is blended, and pneumatic tire using composition |
US11242448B2 (en) | 2016-11-30 | 2022-02-08 | Sumitomo Rubber Industries, Ltd. | Rubber composition for tire and tire |
WO2018101266A1 (en) * | 2016-11-30 | 2018-06-07 | 住友ゴム工業株式会社 | Rubber composition for tire and tire |
JPWO2018101266A1 (en) * | 2016-11-30 | 2019-10-24 | 住友ゴム工業株式会社 | Rubber composition for tire and tire |
JP7070399B2 (en) | 2016-11-30 | 2022-05-18 | 住友ゴム工業株式会社 | Rubber composition for tires and tires |
JP2018184515A (en) * | 2017-04-25 | 2018-11-22 | 住友ゴム工業株式会社 | Rubber composition for tire, method for producing rubber composition for tire, and tire |
US11225532B2 (en) | 2017-04-25 | 2022-01-18 | Sumitomo Rubber Industries, Ltd. | Rubber composition for tires, method for preparing rubber composition for tires, and tire |
JP7069564B2 (en) | 2017-04-25 | 2022-05-18 | 住友ゴム工業株式会社 | Rubber composition for tires, manufacturing method of rubber composition for tires and tires |
JP2021080389A (en) * | 2019-11-20 | 2021-05-27 | 住友ゴム工業株式会社 | Polymer composition |
WO2021100394A1 (en) * | 2019-11-20 | 2021-05-27 | 住友ゴム工業株式会社 | Polymer composition |
CN114641539A (en) * | 2019-11-20 | 2022-06-17 | 住友橡胶工业株式会社 | Polymer composition |
EP4063446A4 (en) * | 2019-11-20 | 2022-12-28 | Sumitomo Rubber Industries, Ltd. | Polymer composition |
JP7532764B2 (en) | 2019-11-20 | 2024-08-14 | 住友ゴム工業株式会社 | Polymer Composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5616372B2 (en) | Rubber composition for tire, method for producing the same, and pneumatic tire | |
JP5846919B2 (en) | Rubber composition and method for producing the same | |
JP6082591B2 (en) | Rubber composition | |
JP5676909B2 (en) | Rubber composition and method for producing rubber composition | |
US8022136B2 (en) | Vulcanized rubber composition, pneumatic tire and the process of producing the same | |
JP5639121B2 (en) | Rubber composition for tire and pneumatic tire | |
JP5717656B2 (en) | Rubber composition | |
JP6543086B2 (en) | Rubber composition, rubber composition for tire and pneumatic tire | |
JP6193581B2 (en) | Rubber composition for tire and pneumatic tire | |
JP5616369B2 (en) | Rubber composition for tire and pneumatic tire | |
JP5933302B2 (en) | Rubber composition for tire, method for producing the same, and pneumatic tire | |
JP2011231204A (en) | Rubber composition and method for manufacturing rubber composition | |
JP2015209536A (en) | Tire rubber composition and pneumatic tire | |
JP6950169B2 (en) | Rubber composition for tires and tires | |
EP2620295B1 (en) | Rubber composition for tire, method of producing the same, and pneumatic tire | |
JP2015010136A (en) | Rubber composition for tire, and pneumatic tire using the same | |
JP6353169B2 (en) | Rubber composition and pneumatic tire | |
JP5595104B2 (en) | Rubber composition and tire using the same | |
JP2020066699A (en) | Tire rubber composition | |
JP4137966B2 (en) | Rubber composition | |
JP6193577B2 (en) | Rubber composition for tire and pneumatic tire | |
JP6021877B2 (en) | Rubber composition and method for producing rubber composition |