JPWO2011074517A1 - Epoxy resin, production method thereof, epoxy resin composition and cured product using the same - Google Patents

Epoxy resin, production method thereof, epoxy resin composition and cured product using the same Download PDF

Info

Publication number
JPWO2011074517A1
JPWO2011074517A1 JP2011546102A JP2011546102A JPWO2011074517A1 JP WO2011074517 A1 JPWO2011074517 A1 JP WO2011074517A1 JP 2011546102 A JP2011546102 A JP 2011546102A JP 2011546102 A JP2011546102 A JP 2011546102A JP WO2011074517 A1 JPWO2011074517 A1 JP WO2011074517A1
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
general formula
epichlorohydrin
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011546102A
Other languages
Japanese (ja)
Other versions
JP5166610B2 (en
Inventor
梶 正史
正史 梶
大神 浩一郎
浩一郎 大神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2011546102A priority Critical patent/JP5166610B2/en
Application granted granted Critical
Publication of JP5166610B2 publication Critical patent/JP5166610B2/en
Publication of JPWO2011074517A1 publication Critical patent/JPWO2011074517A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/063Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with epihalohydrins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

低粘度性および固体としての取扱い性に優れるとともに、耐熱性、耐湿性、および熱伝導性にも優れた性能を有し、積層、成形、注型、接着等の用途に有用なエポキシ樹脂およびそれを用いたエポキシ樹脂組成物、硬化物を提供する。本発明のエポキシ樹脂は、下記一般式(1)で表され、示差走査熱量分析における融点に基づく吸熱ピーク温度が100〜150℃の範囲にある結晶性を有するエポキシ樹脂である。また、本発明のエポキシ樹脂組成物は、このエポキシ樹脂と硬化剤を必須成分として含有するエポキシ樹脂組成物である。一般式(1)において、nは平均値として0.2〜4.0を示し、Gはグリシジル基を示す。Epoxy resin that has low viscosity and excellent handleability as a solid, and has excellent heat resistance, moisture resistance, and thermal conductivity, and is useful for applications such as lamination, molding, casting, and adhesion An epoxy resin composition and a cured product are used. The epoxy resin of the present invention is an epoxy resin having crystallinity represented by the following general formula (1) and having an endothermic peak temperature based on the melting point in the differential scanning calorimetry in the range of 100 to 150 ° C. Moreover, the epoxy resin composition of this invention is an epoxy resin composition which contains this epoxy resin and a hardening | curing agent as an essential component. In General formula (1), n shows 0.2-4.0 as an average value, G shows a glycidyl group.

Description

本発明は、結晶性のエポキシ樹脂、その製造方法、それを用いたエポキシ樹脂組成物および硬化物に関する。   The present invention relates to a crystalline epoxy resin, a production method thereof, an epoxy resin composition using the same, and a cured product.

近年、特に先端材料分野の進歩にともない、より高性能なベース樹脂の開発が求められている。例えば、半導体封止の分野においては、車載用半導体の進展により、高耐熱性、熱分解安定性に優れたベース樹脂が求められている。その一方、高密度実装化も進展していることから、無機フィラーの高充填率化が指向され、ベース樹脂の低粘度化も強く求められている。また、過酷な使用環境に対応するための高温信頼性の向上が要求されており、放熱性向上の観点から熱伝導率の向上も要求されている。   In recent years, particularly with the advancement of the advanced material field, development of higher performance base resins has been demanded. For example, in the field of semiconductor encapsulation, a base resin excellent in high heat resistance and thermal decomposition stability is demanded due to the progress of on-vehicle semiconductors. On the other hand, since high-density mounting is also progressing, an increase in the filling rate of the inorganic filler is aimed at, and a reduction in the viscosity of the base resin is also strongly demanded. Moreover, the improvement of the high temperature reliability for corresponding to a severe use environment is requested | required, and the improvement of thermal conductivity is also requested | required from a viewpoint of heat dissipation improvement.

しかしながら、従来より知られているエポキシ樹脂にはこれらの要求を満足するものは未だ見出されていない。例えば、特許文献1には、耐熱性、耐湿性に優れたものとしてナフトールアラルキル型エポキシ樹脂が提案されているが、耐熱性の点で十分ではない上に、粘度が高く無機フィラーの高充填率化に適さない。また、耐熱性に優れたものとして、特許文献2には、4,4’−ジヒドロキシビフェニルをp−キシリレン基で連結したアラルキル型のエポキシ樹脂が開示されているが、耐湿性、難燃性に問題がある。特許文献3には、ビスフェノール化合物をビフェニレン基で連結した構造を持つビフェニルアラルキル型エポキシ樹脂が開示されているが、結晶性を持たない樹脂状物であり、粘度および軟化点が高くなり成形性に問題があった。   However, no epoxy resin known so far has yet been found to satisfy these requirements. For example, Patent Document 1 proposes a naphthol aralkyl type epoxy resin having excellent heat resistance and moisture resistance, but is not sufficient in terms of heat resistance, and has a high viscosity and a high filling rate of an inorganic filler. Not suitable for conversion. In addition, Patent Document 2 discloses an aralkyl-type epoxy resin in which 4,4′-dihydroxybiphenyl is linked by a p-xylylene group as having excellent heat resistance. However, it has high moisture resistance and flame resistance. There's a problem. Patent Document 3 discloses a biphenyl aralkyl type epoxy resin having a structure in which a bisphenol compound is linked by a biphenylene group. However, it is a resinous material having no crystallinity, and has a high viscosity and softening point, thereby improving moldability. There was a problem.

特開平1−252624号公報JP-A-1-252624 特開平4−255714号公報JP-A-4-255714 特開平8−239454号公報JP-A-8-239454

従って本発明の目的は、低粘度性および固体としての取扱い性に優れるとともに、耐熱性、耐湿性、および熱伝導性にも優れた性能を有し、積層、成形、注型、接着等の用途に有用なエポキシ樹脂およびそれを用いたエポキシ樹脂組成物並びにその硬化物を提供することにある。   Accordingly, the object of the present invention is to have low viscosity and excellent handleability as a solid, as well as excellent performance in heat resistance, moisture resistance, and thermal conductivity, such as lamination, molding, casting and adhesion. It is an object to provide an epoxy resin useful for the above, an epoxy resin composition using the same, and a cured product thereof.

すなわち、本発明は、下記一般式(1)で表され、示差走査熱量分析における融点に基づく吸熱ピーク温度が100〜150℃の範囲にある結晶性を有するエポキシ樹脂に関する。

Figure 2011074517
(但し、nは平均値として0.2〜4.0を示し、Gはグリシジル基を示す。)That is, the present invention relates to an epoxy resin having crystallinity represented by the following general formula (1) and having an endothermic peak temperature in the range of 100 to 150 ° C. based on the melting point in differential scanning calorimetry.
Figure 2011074517
(However, n represents an average value of 0.2 to 4.0, and G represents a glycidyl group.)

また本発明は、4,4’−ジヒドロキシビフェニル1モルに対して、下記一般式(2)で表されるビフェニル系縮合剤を0.1〜0.4モルを反応させて下記一般式(3)で表される多価ヒドロキシ樹脂とした後、これとエピクロロヒドリンを反応させて得られる示差走査熱量分析における融点に基づく吸熱ピーク温度が100〜150℃の範囲にある結晶性を有するエポキシ樹脂に関する。

Figure 2011074517
(但し、Xは水酸基、ハロゲン原子又は炭素数1〜6のアルコキシ基を示す。)
Figure 2011074517
(但し、nは平均値として0.2〜4.0を示す。)In addition, the present invention reacts 0.1 to 0.4 mol of a biphenyl condensing agent represented by the following general formula (2) with respect to 1 mol of 4,4′-dihydroxybiphenyl, to give the following general formula (3 Epoxy resin having a crystallinity in which the endothermic peak temperature based on the melting point in the differential scanning calorimetry obtained by reacting it with epichlorohydrin is in the range of 100 to 150 ° C. It relates to resin.
Figure 2011074517
(However, X shows a hydroxyl group, a halogen atom, or a C1-C6 alkoxy group.)
Figure 2011074517
(However, n represents an average value of 0.2 to 4.0.)

さらに本発明は、エポキシ樹脂及び硬化剤よりなるエポキシ樹脂組成物において、エポキシ樹脂成分として、上記のエポキシ樹脂を含有することを特徴とするエポキシ樹脂組成物、及びそれを硬化してなる硬化物に関する。   Furthermore, the present invention relates to an epoxy resin composition comprising an epoxy resin and a curing agent, the epoxy resin composition containing the above epoxy resin as an epoxy resin component, and a cured product obtained by curing the epoxy resin composition. .

参考例1で得られた樹脂のGPCチャートである。3 is a GPC chart of the resin obtained in Reference Example 1. 実施例1で得られた樹脂のGPCチャートである。2 is a GPC chart of the resin obtained in Example 1. 実施例1で得られた樹脂のDSCチャートである。2 is a DSC chart of the resin obtained in Example 1.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のエポキシ樹脂は、一般式(1)で表され、繰り返し単位nの値が異なる成分の混合物である。ここで、nは平均値として0.2〜4.0を示す。これより小さいと結晶性が強くなるとともに融点が高くなり、取扱い性が低下する。これより大きいと結晶性が低下するとともに、粘度が高くなり成形性が低下する。低粘度性、取扱い性および成形性の観点から、n=0体の含有率が、30〜60%の範囲にあるものが好ましい。本明細書でいうnの平均値は数平均値をいう。   The epoxy resin of the present invention is a mixture of components represented by the general formula (1) and having different values of the repeating unit n. Here, n shows 0.2-4.0 as an average value. If it is smaller than this, the crystallinity becomes stronger and the melting point becomes higher, so that the handleability is lowered. When larger than this, crystallinity will fall, a viscosity will become high and a moldability will fall. From the viewpoint of low viscosity, handleability, and moldability, the content of n = 0 bodies is preferably in the range of 30 to 60%. The average value of n as used herein refers to the number average value.

本発明のエポキシ樹脂は、結晶性を有しており、固体の状態では結晶化している。この結晶固体を、昇温速度10℃/分で測定した示差走査熱量分析における融点に基づく吸熱ピークの温度が100〜150℃、好ましくは120〜150℃の範囲にあるものである。これより高いとエポキシ樹脂組成物を調整する際の硬化剤との相溶性が低下し、これより低いとエポキシ樹脂組成物のブロッキング等の問題が発生し、取扱い性が低下する。エポキシ樹脂の結晶状態によっては、融点のピークが複数見られる場合があるが、ここで言う吸熱ピーク温度は、最も大きなピークに対応したものを指している。ピークの吸熱量は、結晶性の程度を示しているものと考えられるが、通常、樹脂成分換算で20〜80J/gの範囲である。これより小さいと結晶性の程度が低く取扱い性が低下する。   The epoxy resin of the present invention has crystallinity and is crystallized in a solid state. The crystalline solid has an endothermic peak temperature based on the melting point in differential scanning calorimetry measured at a heating rate of 10 ° C./min in the range of 100 to 150 ° C., preferably 120 to 150 ° C. When higher than this, compatibility with the hardening | curing agent at the time of adjusting an epoxy resin composition will fall, and when lower than this, problems, such as blocking of an epoxy resin composition, will generate | occur | produce and handleability will fall. Depending on the crystalline state of the epoxy resin, there may be a plurality of melting point peaks, but the endothermic peak temperature referred to here indicates the one corresponding to the largest peak. The peak endotherm is considered to indicate the degree of crystallinity, but is usually in the range of 20 to 80 J / g in terms of resin component. If it is smaller than this, the degree of crystallinity is low and the handleability is lowered.

本発明のエポキシ樹脂は、一般式(3)で表される多価ヒドロキシ樹脂とエピクロロヒドリンを反応させることにより得られるが、エポキシ樹脂の発明においては、製造方法はこれに限定されない。しかし、製造方法の発明を説明することによって、本発明のエポキシ樹脂の理解が容易となるので、エポキシ樹脂の原料となる多価ヒドロキシ樹脂およびエポキシ樹脂の製造方法から説明する。   The epoxy resin of the present invention can be obtained by reacting a polyvalent hydroxy resin represented by the general formula (3) with epichlorohydrin. However, in the invention of the epoxy resin, the production method is not limited thereto. However, by explaining the invention of the production method, it becomes easier to understand the epoxy resin of the present invention. Therefore, the production method of the polyvalent hydroxy resin and the epoxy resin which are raw materials of the epoxy resin will be explained.

一般式(3)で表される多価ヒドロキシ樹脂は、nの値が異なる成分の混合物であり、nは平均値として0.2〜4.0である。これより小さいと結晶性が強くなり、エポキシ樹脂を合成する際のエピクロロヒドリンへの溶解性が低下するとともに、得られたエポキシ樹脂の融点が高くなり、取扱い性が低下する。これより大きいと結晶性が低下するとともに、粘度が高くなり成形性が低下する。低粘度性、取扱い性および成形性の観点から、n=0体の含有率が、30〜60%の範囲にあるものが好ましい。   The polyvalent hydroxy resin represented by the general formula (3) is a mixture of components having different values of n, and n is an average value of 0.2 to 4.0. If it is smaller than this, the crystallinity becomes strong, the solubility in epichlorohydrin at the time of synthesizing the epoxy resin is lowered, the melting point of the obtained epoxy resin is increased, and the handleability is lowered. When larger than this, crystallinity will fall, a viscosity will become high and a moldability will fall. From the viewpoint of low viscosity, handleability, and moldability, the content of n = 0 bodies is preferably in the range of 30 to 60%.

このような多価ヒドロキシ樹脂は、4,4’−ジヒドロキシビフェニルに、一般式(2)で表されるビフェニル系縮合剤を反応させることにより得られる。   Such a polyvalent hydroxy resin can be obtained by reacting 4,4'-dihydroxybiphenyl with a biphenyl condensing agent represented by the general formula (2).

一般式(2)において、Xは水酸基、ハロゲン原子又は炭素数1〜6のアルコキシ基を示す。具体的には、4,4’−ビスヒドロキシメチルビフェニル、4,4’−ビスクロロメチルビフェニル、4,4’−ビスブロモメチルビフェニル、4,4’-ビスメトキシメチルビフェニル、4,4’-ビスエトキシメチルビフェニルが挙げられる。反応性の観点からは、4,4’−ビスヒドロキシメチルビフェニル、4,4’−ビスクロロメチルビフェニルが好ましく、イオン性不純分低減の観点からは、4,4’−ビスヒドロキシメチルビフェニル、4,4’-ビスメトキシメチルビフェニルが好ましい。   In General formula (2), X shows a hydroxyl group, a halogen atom, or a C1-C6 alkoxy group. Specifically, 4,4′-bishydroxymethylbiphenyl, 4,4′-bischloromethylbiphenyl, 4,4′-bisbromomethylbiphenyl, 4,4′-bismethoxymethylbiphenyl, 4,4′- Bisethoxymethylbiphenyl is mentioned. From the viewpoint of reactivity, 4,4′-bishydroxymethylbiphenyl and 4,4′-bischloromethylbiphenyl are preferable. From the viewpoint of reducing ionic impurities, 4,4′-bishydroxymethylbiphenyl, 4 4,4'-bismethoxymethylbiphenyl is preferred.

反応させる際のモル比は、4,4’−ジヒドロキシビフェニル1モルに対して、ビフェニル系縮合剤が1モル以下でなければならず、一般的には0.1〜0.5モルの範囲であり、より好ましくは0.2〜0.4モルの範囲である。これより少ないと結晶性が強くなり、エポキシ樹脂を合成する際のエピクロロヒドリンへの溶解性が低下するとともに、得られたエポキシ樹脂の融点が高くなり、取扱い性が低下する。また、これより多いと樹脂の結晶性が低下するとともに軟化点および溶融粘度が高くなり、取扱い作業性、成形性に支障をきたす。   The molar ratio at the time of reacting must be 1 mol or less of biphenyl condensing agent with respect to 1 mol of 4,4′-dihydroxybiphenyl, and generally ranges from 0.1 to 0.5 mol. More preferably, it is the range of 0.2-0.4 mol. If it is less than this, the crystallinity becomes strong, the solubility in epichlorohydrin when synthesizing the epoxy resin is lowered, the melting point of the obtained epoxy resin is increased, and the handleability is lowered. On the other hand, if the amount is larger than this, the crystallinity of the resin is lowered and the softening point and the melt viscosity are increased, which hinders handling workability and moldability.

また、縮合剤として4,4’−ビスクロロメチルビフェニルを用いる際には、無触媒下で反応させることもできるが、通常は、本縮合反応は酸性触媒の存在下に行う。この酸性触媒としては、周知の無機酸、有機酸より適宜選択することができ、例えば、塩酸、硫酸、燐酸等の鉱酸や、ギ酸、シュウ酸、トリフルオロ酢酸、p−トルエンスルホン酸、メタスルホン酸、トリフルオロメタスルホン酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、あるいは固体酸等が挙げられる。   When 4,4'-bischloromethylbiphenyl is used as the condensing agent, the reaction can be carried out in the absence of a catalyst, but usually the condensation reaction is carried out in the presence of an acidic catalyst. The acidic catalyst can be appropriately selected from known inorganic acids and organic acids. For example, mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, oxalic acid, trifluoroacetic acid, p-toluenesulfonic acid, metasulfone Examples thereof include organic acids such as acid and trifluorometasulfonic acid, Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride, and solid acids.

この反応は10〜250℃で1〜20時間行われる。また、反応の際にメタノール、エタノール、プロパノール、ブタノール、エチレングリコール、メチルセロソルブ、エチルセロソルブ等のアルコール類や、ベンゼン、トルエン、クロロベンゼン、ジクロロベンゼン等の芳香族化合物等を溶媒として使用することができる。反応終了後、必要に応じて溶媒、又は縮合反応により生成する水、アルコール類は除去される。   This reaction is carried out at 10 to 250 ° C. for 1 to 20 hours. In the reaction, alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol, methyl cellosolve and ethyl cellosolve, and aromatic compounds such as benzene, toluene, chlorobenzene and dichlorobenzene can be used as a solvent. . After completion of the reaction, the solvent or water and alcohol produced by the condensation reaction are removed as necessary.

このようにして得られた多価ヒドロキシ樹脂は、エポキシ樹脂の原料として用いられる以外に、エポキシ樹脂硬化剤としても使用することができる。また、さらにヘキサミン等の硬化剤と組み合わせることにより、フェノール樹脂成形材料としても応用できる。   The polyvalent hydroxy resin thus obtained can be used as an epoxy resin curing agent in addition to being used as a raw material for an epoxy resin. Furthermore, it can be applied as a phenol resin molding material by combining with a curing agent such as hexamine.

一般式(3)で表される多価ヒドロキシ樹脂とエピクロルヒドリンとの反応による本発明のエポキシ樹脂の製造方法について説明する。この反応は周知のエポキシ化反応と同様に行うことができる。   The method for producing the epoxy resin of the present invention by the reaction of the polyvalent hydroxy resin represented by the general formula (3) and epichlorohydrin will be described. This reaction can be performed in the same manner as a well-known epoxidation reaction.

例えば、一般式(3)で表される多価ヒドロキシ樹脂を過剰のエピクロルヒドリンに溶解した後、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物の存在下に50〜150℃、好ましくは60〜120℃の範囲で1〜10時間反応させる方法が挙げられる。この際のエピクロルヒドリンの使用量は、多価ヒドロキシ樹脂中の水酸基1モルに対して0.8〜2モル、好ましくは0.9〜1.2モルの範囲である。反応終了後過剰のエピクロルヒドリンを留去し、残留物をトルエン、メチルイソブチルケトン等の溶媒に溶解し、濾過し、水洗して無機塩を除去し、次いで溶媒を留去することにより前記一般式(1)で表される目的のエポキシ樹脂を得ることができる。エポキシ化反応を行う際に、四級アンモニウム塩等の触媒を用いてもよい。   For example, after the polyvalent hydroxy resin represented by the general formula (3) is dissolved in excess epichlorohydrin, it is 50 to 150 ° C., preferably 60 in the presence of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide. The method of making it react for 1 to 10 hours in the range of -120 degreeC is mentioned. In this case, the amount of epichlorohydrin used is in the range of 0.8 to 2 mol, preferably 0.9 to 1.2 mol, relative to 1 mol of the hydroxyl group in the polyvalent hydroxy resin. Excess epichlorohydrin was distilled off after completion of the reaction, the residue was dissolved in a solvent such as toluene and methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the solvent was distilled off to remove the general formula ( The target epoxy resin represented by 1) can be obtained. When performing the epoxidation reaction, a catalyst such as a quaternary ammonium salt may be used.

本発明のエポキシ樹脂の純度、特に加水分解性塩素量は、適用する電子部品の信頼性向上の観点より少ない方がよい。特に限定するものではないが、好ましくは1000ppm以下、さらに好ましくは500ppm以下である。なお、本発明でいう加水分解性塩素とは、以下の方法により測定された値をいう。すなわち、試料0.5gをジオキサン30mlに溶解後、1N−KOH、10mlを加え30分間煮沸還流した後、室温まで冷却し、さらに80%アセトン水100mlを加え、0.002N−AgNO3水溶液で電位差滴定を行い得られる値である。The purity of the epoxy resin of the present invention, in particular the amount of hydrolyzable chlorine, is better from the viewpoint of improving the reliability of the applied electronic component. Although it does not specifically limit, Preferably it is 1000 ppm or less, More preferably, it is 500 ppm or less. In addition, the hydrolyzable chlorine as used in the field of this invention means the value measured by the following method. That is, the potential difference the sample 0.5g were dissolved in dioxane 30 ml, 1N-KOH, after the added boiled under reflux for 30 minutes 10 ml, cooled to room temperature, 80% aqueous acetone 100ml was added, with 0.002 N-AgNO 3 aqueous solution This is a value obtained by titration.

本発明のエポキシ樹脂組成物には、エポキシ樹脂と硬化剤を含み、エポキシ樹脂成分として上記一般式(1)のエポキシ樹脂を含む。   The epoxy resin composition of the present invention contains an epoxy resin and a curing agent, and contains an epoxy resin of the above general formula (1) as an epoxy resin component.

本発明のエポキシ樹脂組成物には、必須成分として使用される一般式(1)のエポキシ樹脂以外に、分子中にエポキシ基を2個以上有する通常の他のエポキシ樹脂を併用してもよい。例を挙げれば、ビスフェノールA、ビスフェノールF、3,3',5,5'−テトラメチル−4,4'−ジヒドロキシジフェニルメタン、4,4'−ジヒドロキシジフェニルスルホン、4,4'−ジヒドロキシジフェニルスルフィド、4,4'−ジヒドロキシジフェニルケトン、フルオレンビスフェノール、4,4'−ビフェノール、3,3',5,5'−テトラメチル−4,4'−ジヒドロキシビフェニル、2,2'−ビフェノール、レゾルシン、カテコール、t−ブチルカテコール、t−ブチルハイドロキノン、1,2−ジヒドロキシナフタレン、1,3−ジヒドロキシナフタレン、1,4−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、1,7−ジヒドロキシナフタレン、1,8−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、2,4−ジヒドロキシナフタレン、2,5−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン、2,8−ジヒドロキシナフタレン、上記ジヒドロキシナフタレンのアリル化物又はポリアリル化物、アリル化ビスフェノールA、アリル化ビスフェノールF、アリル化フェノールノボラック等の2価のフェノール類、あるいは、フェノールノボラック、ビスフェノールAノボラック、o−クレゾールノボラック、m−クレゾールノボラック、p−クレゾールノボラック、キシレノールノボラック、ポリ−p−ヒドロキシスチレン、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フルオログリシノール、ピロガロール、t−ブチルピロガロール、アリル化ピロガロール、ポリアリル化ピロガロール、1,2,4−ベンゼントリオール、2,3,4−トリヒドロキシベンゾフェノン、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ジシクロペンタジエン系樹脂等の3価以上のフェノール類、または、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類から誘導されるグリシジルエーテル化物等がある。これらのエポキシ樹脂は、1種または2種以上を混合して用いることができる。   In addition to the epoxy resin of the general formula (1) used as an essential component, the epoxy resin composition of the present invention may be used in combination with other ordinary epoxy resins having two or more epoxy groups in the molecule. Examples include bisphenol A, bisphenol F, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenylsulfone, 4,4′-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl ketone, fluorene bisphenol, 4,4'-biphenol, 3,3 ', 5,5'-tetramethyl-4,4'-dihydroxybiphenyl, 2,2'-biphenol, resorcin, catechol , T-butylcatechol, t-butylhydroquinone, 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7- Dihydroxynaphthalene, 1,8-dihydroxynaphth 2,3-dihydroxynaphthalene, 2,4-dihydroxynaphthalene, 2,5-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2,8-dihydroxynaphthalene, allylated products of the above-mentioned dihydroxynaphthalene Or diallylic phenols such as polyallylated products, allylated bisphenol A, allylated bisphenol F, allylated phenol novolak, or the like, or phenol novolak, bisphenol A novolak, o-cresol novolak, m-cresol novolak, p-cresol novolak, Xylenol novolak, poly-p-hydroxystyrene, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, fluoroglyce Sinor, pyrogallol, t-butyl pyrogallol, allylated pyrogallol, polyallylated pyrogallol, 1,2,4-benzenetriol, 2,3,4-trihydroxybenzophenone, phenol aralkyl resin, naphthol aralkyl resin, dicyclopentadiene resin, etc. There are glycidyl etherified products derived from halogenated bisphenols such as tetrabromobisphenol A, and the like. These epoxy resins can be used alone or in combination of two or more.

本発明のエポキシ樹脂組成物は、エポキシ樹脂として上記一般式(1)のエポキシ樹脂をエポキシ樹脂成分の50wt%以上含むことが望ましい。さらに好ましくは、全エポキシ樹脂の70wt%以上、より好ましくは80wt%以上である。使用割合がこれより少ないとエポキシ樹脂組成物としての成形性が悪化するとともに、硬化物とした際の耐熱性、耐湿性、および熱伝導性および耐半田リフロー性等の向上効果が小さい。   The epoxy resin composition of the present invention desirably contains the epoxy resin of the above general formula (1) as an epoxy resin in an amount of 50 wt% or more of the epoxy resin component. More preferably, it is 70 wt% or more of the total epoxy resin, more preferably 80 wt% or more. If the use ratio is less than this, the moldability as an epoxy resin composition deteriorates, and the improvement effects such as heat resistance, moisture resistance, thermal conductivity and solder reflow resistance when cured are small.

本発明のエポキシ樹脂組成物における硬化剤としては、一般にエポキシ樹脂の硬化剤として知られているものはすべて使用できる。例えば、ジシアンジアミド、多価フェノール類、酸無水物類、芳香族及び脂肪族アミン類等がある。耐湿性、耐熱性が要求される電気・電子部品の封止分野には、多価フェノール類が好ましく用いられる。これらを具体的に例示すれば、次のようである。本発明の樹脂組成物には、これら硬化剤の1種又は2種以上を混合して用いることができる。   As the curing agent in the epoxy resin composition of the present invention, all those generally known as curing agents for epoxy resins can be used. Examples include dicyandiamide, polyhydric phenols, acid anhydrides, aromatic and aliphatic amines. Polyhydric phenols are preferably used in the field of sealing electrical and electronic parts that require moisture resistance and heat resistance. Specific examples of these are as follows. In the resin composition of the present invention, one or more of these curing agents can be mixed and used.

多価フェノール類としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4’−ビフェノール、2,2’−ビフェノール、ハイドロキノン、レゾルシン、ナフタレンジオール等の2価のフェノール類、あるいは、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノールノボラック、o−クレゾールノボラック、ナフトールノボラック、ポリビニルフェノール等に代表される3価以上のフェノール類、更にはフェノール類、ナフトール類又は、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4’−ビフェノール、2,2’−ビフェノール、ハイドロキノン、レゾルシン、ナフタレンジオール等の2価のフェノール類のホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、p−キシリレングリコール等の縮合剤により合成される多価フェノール性化合物等がある。また、一般式(3)で表される多価ヒドロキシ樹脂も使用できる。   Examples of the polyhydric phenols include divalent phenols such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4′-biphenol, 2,2′-biphenol, hydroquinone, resorcin, and naphthalenediol, or , Tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolak, o-cresol novolak, naphthol novolak, polyvinylphenol, Phenols, further phenols, naphthols, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4′-biphenol, 2,2′-biphenol, hydroquinone, resorcin, Dihydric phenols formaldehyde such lid diol is acetaldehyde, benzaldehyde, p- hydroxybenzaldehyde, polyhydric phenolic compounds synthesized by condensing agent such as p- xylylene glycol. Moreover, the polyvalent hydroxy resin represented by General formula (3) can also be used.

酸無水物としては、無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチル無水ハイミック酸、無水ナジック酸、無水トリメリット酸等がある。   Examples of the acid anhydride include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl hymic anhydride, nadic anhydride, and trimellitic anhydride.

アミン類としては、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルスルホン、m−フェニレンジアミン、p−キシリレンジアミン等の芳香族アミン類、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等の脂肪族アミン類がある。   Examples of amines include aromatic amines such as 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenylsulfone, m-phenylenediamine, and p-xylylenediamine, ethylenediamine, There are aliphatic amines such as hexamethylenediamine, diethylenetriamine, and triethylenetetramine.

本発明の樹脂組成物には、これら硬化剤の1種又は2種以上を混合して用いることができる。   In the resin composition of the present invention, one or more of these curing agents can be mixed and used.

また、本発明のエポキシ樹脂組成物中には、ポリエステル、ポリアミド、ポリイミド、ポリエーテル、ポリフェニレンエーテル、ポリウレタン、石油樹脂、インデンクマロン樹脂、フェノキシ樹脂、等のオリゴマー又は高分子化合物を適宜配合してもよいし、無機充填剤、顔料、難然剤、揺変性付与剤、カップリング剤、流動性向上剤等の各種添加剤を配合してもよい。   Further, in the epoxy resin composition of the present invention, an oligomer or a polymer compound such as polyester, polyamide, polyimide, polyether, polyphenylene ether, polyurethane, petroleum resin, indene coumarone resin, phenoxy resin, etc. is appropriately blended. Alternatively, various additives such as an inorganic filler, a pigment, a refractory agent, a thixotropic agent, a coupling agent, and a fluidity improver may be blended.

さらに本発明のエポキシ樹脂組成物中には、無機充填剤を配合することが可能であり、例えば、球状あるいは、破砕状の溶融シリカ、結晶シリカ等のシリカ粉末、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化珪素、窒化ホウ素、ベリリア、ジルコニア、フォステライト、ステアタイト、スピネル、ムライト、チタニア等の粉体、またはこれらを球形化したビーズ、チタン酸カリウム、炭化珪素、窒化珪素、アルミナ等の単結晶繊維、ガラス繊維等を単独または2種類以上併用して用いることができる。上記の無機充填剤の中で、線膨張係数低減の観点からは溶融シリカが、高熱伝導性の観点からはアルミナが好ましい。充填剤形状は成形時の流動性および金型摩耗性から50%以上を球形とすることが好ましく、特に球状溶融シリカ粉末を用いることが好ましい。   Furthermore, the epoxy resin composition of the present invention can contain an inorganic filler. For example, spherical or crushed fused silica, crystalline silica or other silica powder, alumina, zircon, calcium silicate, carbonic acid Powders of calcium, silicon carbide, boron nitride, beryllia, zirconia, fosterite, steatite, spinel, mullite, titania, etc., or beads made of these spheroids, potassium titanate, silicon carbide, silicon nitride, alumina, etc. Crystal fibers and glass fibers can be used alone or in combination of two or more. Among the inorganic fillers, fused silica is preferable from the viewpoint of reducing the linear expansion coefficient, and alumina is preferable from the viewpoint of high thermal conductivity. The filler shape is preferably 50% or more spherical from the viewpoint of fluidity during molding and mold wear, and it is particularly preferable to use spherical fused silica powder.

無機充填材の添加量は、通常、エポキシ樹脂組成物に対して50wt%以上であるが、好ましくは70wt%以上、より好ましくは80wt%以上である。これより少ないと低吸湿性、低熱膨張性、高耐熱性、高熱伝導性といった本発明が目的とする効果が十分に発揮されない。これらの効果は、無機充填材の添加量が多いほどよいが、その体積分率に応じて向上するものではなく、特定の添加量から飛躍的に向上する。一方、無機充填材の添加量がこれより多いと粘度が高くなり、成形性が悪化するため好ましくない。   The addition amount of the inorganic filler is usually 50 wt% or more with respect to the epoxy resin composition, but is preferably 70 wt% or more, more preferably 80 wt% or more. If it is less than this, the effects aimed by the present invention such as low hygroscopicity, low thermal expansion, high heat resistance, and high thermal conductivity will not be sufficiently exhibited. These effects are better as the added amount of the inorganic filler is larger. However, the effect is not improved according to the volume fraction, but dramatically improved from a specific added amount. On the other hand, when the added amount of the inorganic filler is larger than this, the viscosity becomes high and the moldability deteriorates, which is not preferable.

本発明のエポキシ樹脂組成物には、公知の硬化促進剤を配合することができる。例を挙げれば、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等があり、具体的には、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、1,5−ジアザ−ビシクロ(4,3,0)ノネン、5、6−ヂブチルアミノ−1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7等のシクロアミジン化合物及びこれらの化合物に無水マレイン酸、ベンゾキノン、ジアゾフェニルメタン等のπ結合をもつ化合物を付加してなる分子内分極を有する化合物、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノールなどの三級アミン類およびこれらの誘導体、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−へプタデシルイミダゾールなどのイミダゾール類およびこれらの誘導体、トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン類及びこれらのホスフィン類に無水マレイン酸、ベンゾキノン、ジアゾフェニルメタン等のπ結合をもつ化合物を付加してなる分子内分極を有するリン化合物、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート、テトラブチルホスホニウム・テトラブチルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート、2−エチル−4−メチルイミダゾール・テトラフェニルボレート、N−メチルモルホリン・テトラフェニルボレート等のテトラフェニルボロン塩及びこれらの誘導体などが挙げられる。添加量としては、通常、エポキシ樹脂100重量部に対して、0.2〜10重量部の範囲である。これらは単独で用いても良く、併用しても良い。   In the epoxy resin composition of the present invention, a known curing accelerator can be blended. Examples include amines, imidazoles, organic phosphines, Lewis acids and the like. Specifically, 1,8-diazabicyclo (5,4,0) undecene-7, 1,5-diaza-bicyclo ( Cycloamidine compounds such as 4,3,0) nonene, 5,6-dibutylamino-1,8-diaza-bicyclo (5,4,0) undecene-7, and maleic anhydride, benzoquinone, diazophenylmethane Compounds having intramolecular polarization formed by adding a compound having a π bond such as, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, and the like Derivatives, 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methyl Imidazoles such as midazole and 2-heptadecylimidazole and derivatives thereof, organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, and phenylphosphine, and maleic anhydride, benzoquinone, Phosphorus compounds with intramolecular polarization formed by adding a compound having a π bond such as diazophenylmethane, tetraphenylphosphonium / tetraphenylborate, tetraphenylphosphonium / ethyltriphenylborate, tetrabutylphosphonium / tetrabutylborate, etc. Substituted phosphonium, tetrasubstituted borate, 2-ethyl-4-methylimidazole, tetraphenylborate, N-methylmorpholine, tetraphenylborate, etc. Such as tetraphenyl boron salts and derivatives thereof. As addition amount, it is the range of 0.2-10 weight part normally with respect to 100 weight part of epoxy resins. These may be used alone or in combination.

本発明のエポキシ樹脂組成物には、必要に応じて、難燃剤が使用される。このような難燃剤としては、例えば、赤リン、リン酸化合物等のリン系難燃剤、トリアジン誘導体等の窒素系難燃剤、ホスファゼン誘導体等のリン窒素系難燃剤、金属酸化物、金属水和物、メタロセン誘導体等の有機金属錯体、ほう酸亜鉛、錫酸亜鉛、モリブデン酸亜鉛等の亜鉛化合物等が挙げられ、中でも金属水和物が好ましい。金属水和物としては、例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化ニッケル、水酸化コバルト、水酸化鉄、水酸化錫、水酸化亜鉛、水酸化銅、水酸化チタン等が挙げられ、また、これらの金属水和物と酸化ニッケル、酸化コバルト、酸化鉄、酸化錫、酸化亜鉛、酸化銅、酸化パラジウム等の金属酸化物との複合化金属水和物を用いることができる。安全性、難燃効果および成形材料の成形性に及ぼす影響の観点からは水酸化マグネシウムが好ましい。   A flame retardant is used for the epoxy resin composition of this invention as needed. Examples of such flame retardants include phosphorous flame retardants such as red phosphorus and phosphoric acid compounds, nitrogen flame retardants such as triazine derivatives, phosphorus nitrogen flame retardants such as phosphazene derivatives, metal oxides, and metal hydrates. And organometallic complexes such as metallocene derivatives, zinc compounds such as zinc borate, zinc stannate, and zinc molybdate. Among these, metal hydrates are preferred. Examples of metal hydrates include aluminum hydroxide, magnesium hydroxide, calcium hydroxide, nickel hydroxide, cobalt hydroxide, iron hydroxide, tin hydroxide, zinc hydroxide, copper hydroxide, and titanium hydroxide. In addition, composite metal hydrates of these metal hydrates and metal oxides such as nickel oxide, cobalt oxide, iron oxide, tin oxide, zinc oxide, copper oxide, and palladium oxide can be used. . Magnesium hydroxide is preferred from the viewpoints of safety, flame retardancy and influence on moldability of the molding material.

本発明のエポキシ樹脂組成物には、上記以外に、高級脂肪酸、高級脂肪酸金属塩、エステル系ワックス、ポリオレフィン系ワックス等の離型剤、カーボンブラック等の着色剤、シラン系、チタネート系、アルミネート系等のカップリング剤、シリコーンパウダー等の可撓剤、シリコーンオイルやシリコーンゴム粉末等の応力緩和剤、ハイドロタルサイト、アンチモン−ビスマス等のイオントラップ剤などを必要に応じて用いることができる。   In addition to the above, the epoxy resin composition of the present invention includes higher fatty acids, higher fatty acid metal salts, release agents such as ester waxes and polyolefin waxes, colorants such as carbon black, silanes, titanates, and aluminates. Coupling agents such as system, flexible agents such as silicone powder, stress relaxation agents such as silicone oil and silicone rubber powder, ion trapping agents such as hydrotalcite and antimony-bismuth, and the like can be used as necessary.

また本発明のエポキシ樹脂組成物には、成形時の流動性改良及びリードフレーム等の基材との密着性向上の観点より、熱可塑性のオリゴマー類を添加することができる。熱可塑性のオリゴマー類としては、C5系及びC9系の石油樹脂、スチレン樹脂、インデン樹脂、インデン・スチレン共重合樹脂、インデン・スチレン・フェノール共重合樹脂、インデン・クマロン共重合樹脂、インデン・ベンゾチオフェン共重合樹脂等が例示さえる。添加量としては、通常、エポキシ樹脂100重量部に対して、2〜30重量部の範囲である。   In addition, thermoplastic oligomers can be added to the epoxy resin composition of the present invention from the viewpoint of improving fluidity during molding and improving adhesion to a substrate such as a lead frame. Thermoplastic oligomers include C5 and C9 petroleum resins, styrene resins, indene resins, indene / styrene copolymer resins, indene / styrene / phenol copolymer resins, indene / coumarone copolymer resins, indene / benzothiophene. Examples thereof include copolymer resins. As addition amount, it is the range of 2-30 weight part normally with respect to 100 weight part of epoxy resins.

本発明のエポキシ樹脂組成物の調製方法は、各種原材料を均一に分散混合できるのであればいかなる手法を用いてもよいが、一般的な方法として、所定の配合量の原材料をミキサー等によって十分混合した後、ミキシングロール、押出し機等によって溶融混練し、冷却、粉砕する方法が挙げられる。   Any method may be used for preparing the epoxy resin composition of the present invention as long as various raw materials can be uniformly dispersed and mixed. As a general method, raw materials of a predetermined blending amount are sufficiently mixed by a mixer or the like. Then, a method of melt-kneading with a mixing roll, an extruder or the like, cooling, and pulverizing can be mentioned.

本発明のエポキシ樹脂組成物は、特に半導体装置に封止用として適する。   The epoxy resin composition of the present invention is particularly suitable for sealing a semiconductor device.

本発明の硬化物は、上記エポキシ樹脂組成物を熱硬化させることにより得られる。本発明のエポキシ樹脂組成物を用いて硬化物を得るためには、例えば、トランスファー成形、プレス成形、注型成形、射出成形、押出成形等の方法が適用されるが、量産性の観点からは、トランスファー成形が好ましい。   The cured product of the present invention can be obtained by thermally curing the epoxy resin composition. In order to obtain a cured product using the epoxy resin composition of the present invention, for example, methods such as transfer molding, press molding, cast molding, injection molding, and extrusion molding are applied, but from the viewpoint of mass productivity. Transfer molding is preferred.

以下、実施例により本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

合成例1
2000mlの4口フラスコに、4,4’−ジヒドロキシビフェニル186.0g(1.0モル)、ジエチレングリコールジメチルエーテル600gを仕込み、窒素気流下、攪拌しながら150℃まで昇温させ、ジエチレングリコールジメチルエーテル260gに4,4’−ビスクロロメチルビフェニル75.3g(0.3モル)を溶解させた溶液を滴下した後、170℃まで昇温して2時間反応させた。反応後、大量の純水に滴下して再沈殿により回収し、淡黄色で結晶性の樹脂220gを得た。得られた樹脂のOH当量は130.8であった。DSC測定におけるピーク温度は248.5℃であり、結晶の融解に伴う吸熱量は95.5J/gあった。得られた樹脂のGPCチャートを図1に示す。GPC測定より求められた一般式(3)における各成分比は、n=0が39.33%、n=1が22.25%、n=2が12.19%、n=3が8.14%、n=4が5.58%、n≧5が11.88%であった。ここでDSCピーク温度とは、示差走査熱量分析装置(セイコーインスツル製DSC220C型)を用い、昇温速度5℃/分で測定した値である。また、GPC測定は、装置;日本ウォーターズ(株)製、515A型、カラム;TSK−GEL2000×3本およびTSK−GEL4000×1本(いずれも東ソー(株)製)、溶媒;テトラヒドロフラン、流量;1ml/min、温度;38℃、検出器;RIの条件に従った。
Synthesis example 1
In a 2000 ml four-necked flask, 186.0 g (1.0 mol) of 4,4′-dihydroxybiphenyl and 600 g of diethylene glycol dimethyl ether were charged and heated to 150 ° C. with stirring under a nitrogen stream. A solution in which 75.3 g (0.3 mol) of 4′-bischloromethylbiphenyl was dissolved was dropped, and the mixture was heated to 170 ° C. and reacted for 2 hours. After the reaction, it was dropped into a large amount of pure water and recovered by reprecipitation to obtain 220 g of a pale yellow crystalline resin. The OH equivalent of the obtained resin was 130.8. The peak temperature in DSC measurement was 248.5 ° C., and the endothermic amount accompanying the melting of the crystals was 95.5 J / g. A GPC chart of the obtained resin is shown in FIG. As for each component ratio in the general formula (3) obtained by GPC measurement, n = 0 is 39.33%, n = 1 is 22.25%, n = 2 is 12.19%, and n = 3 is 8. 14%, n = 4 was 5.58%, and n ≧ 5 was 11.88%. Here, the DSC peak temperature is a value measured using a differential scanning calorimeter (DSC220C type manufactured by Seiko Instruments Inc.) at a heating rate of 5 ° C./min. In addition, GPC measurement was carried out using a device; Nippon Waters Co., Ltd., Model 515A, column: TSK-GEL2000 × 3 and TSK-GEL4000 × 1 (both manufactured by Tosoh Corp.), solvent: tetrahydrofuran, flow rate: 1 ml / Min, temperature: 38 ° C., detector: RI conditions were followed.

合成例2
4,4’−ジヒドロキシビフェニル167.4g(0.9モル)、ジエチレングリコールジメチルエーテル540g、4,4’−ビスクロロメチルビフェニル90.4g(0.36モル)をジエチレングリコールジメチルエーテル320gに溶解させた溶液を用いた以外は、実施例1と同様に反応を行い淡黄色で結晶性の樹脂205gを得た。得られた樹脂のOH当量は139.2であった。DSCピーク温度は242.4℃であり、GPC測定より求められた一般式(3)における各成分比は、n=0が31.21%、n=1が21.19%、n=2が13.38%、n=3が10.63%、n=4が7.55%、n≧5が15.35%であった。
Synthesis example 2
A solution prepared by dissolving 167.4 g (0.9 mol) of 4,4′-dihydroxybiphenyl, 540 g of diethylene glycol dimethyl ether, and 90.4 g (0.36 mol) of 4,4′-bischloromethylbiphenyl in 320 g of diethylene glycol dimethyl ether was used. The reaction was conducted in the same manner as in Example 1 except that 205 g of a pale yellow crystalline resin was obtained. The OH equivalent of the obtained resin was 139.2. The DSC peak temperature is 242.4 ° C., and the ratio of each component in the general formula (3) determined by GPC measurement is 31.21% for n = 0, 21.19% for n = 1, and n = 2. 13.38%, n = 3 was 10.63%, n = 4 was 7.55%, and n ≧ 5 was 15.35%.

合成例3
4,4’−ジヒドロキシビフェニル186.0g(1.0モル)、ジエチレングリコールジメチルエーテル540g、4,4’−ビスクロロメチルビフェニル50.2g(0.2モル)をジエチレングリコールジメチルエーテル320gに溶解させた溶液を用いた以外は、実施例1と同様に反応を行い淡黄色で結晶性の樹脂195gを得た。得られた樹脂のOH当量は125.6であった。DSCピーク温度は255.4℃であり、GPC測定より求められた一般式(3)における各成分比は、n=0が50.87%、n=1が20.67%、n=2が11.54%、n=3が7.11%、n=4が3.78%、n≧5が5.87%であった。
Synthesis example 3
A solution prepared by dissolving 186.0 g (1.0 mol) of 4,4′-dihydroxybiphenyl, 540 g of diethylene glycol dimethyl ether, and 50.2 g (0.2 mol) of 4,4′-bischloromethylbiphenyl in 320 g of diethylene glycol dimethyl ether was used. The reaction was conducted in the same manner as in Example 1 except that 195 g of a pale yellow crystalline resin was obtained. The OH equivalent of the obtained resin was 125.6. The DSC peak temperature is 255.4 ° C., and the ratio of each component in the general formula (3) determined by GPC measurement is 50.87% for n = 0, 20.67% for n = 1, and n = 2. 11.54%, n = 3 was 7.11%, n = 4 was 3.78%, and n ≧ 5 was 5.87%.

合成例4
4,4’−ジヒドロキシビフェニル152.5g(0.82モル)、ジエチレングリコールジメチルエーテル500g、4,4’−ビスクロロメチルビフェニル112.9g(0.45モル)をジエチレングリコールジメチルエーテル360gに溶解させた溶液を用いた以外は、実施例1と同様に反応を行い淡黄色樹脂201gを得た。得られた樹脂のOH当量は150.1であった。GPC測定より求められた一般式(3)における各成分比は、n=0が22.03%、n=1が14.65%、n=2が11.89%、n=3が9.46%、n=4が7.36%、n≧5が33.87%であった。
Synthesis example 4
A solution prepared by dissolving 152.5 g (0.82 mol) of 4,4′-dihydroxybiphenyl, 500 g of diethylene glycol dimethyl ether and 112.9 g (0.45 mol) of 4,4′-bischloromethylbiphenyl in 360 g of diethylene glycol dimethyl ether was used. The reaction was conducted in the same manner as in Example 1 except that 201 g of a pale yellow resin was obtained. The OH equivalent of the obtained resin was 150.1. As for each component ratio in the general formula (3) obtained by GPC measurement, n = 0 is 22.03%, n = 1 is 14.65%, n = 2 is 11.89%, and n = 3 is 9. 46%, n = 4 was 7.36%, and n ≧ 5 was 33.87%.

合成例5
4,4’−ジヒドロキシビフェニル186.0g(1.0モル)、ジエチレングリコールジメチルエーテル600g、1,4−ビスクロロメチルベンゼン52.5g(0.3モル)をジエチレングリコールジメチルエーテル260gに溶解させた溶液用いた以外は、実施例1と同様に反応を行い淡黄色で結晶性の樹脂202gを得た。得られた樹脂のOH当量は116.3であった。DSCピーク温度は241.7℃であり、GPC測定より求められた一般式(3)において、架橋部位のビフェニレン基をフェニレン基に置き換えた構造に対応する各成分比は、n=0が40.33%、n=1が23.31%、n=2が11.22%、n=3が7.09%、n=4が5.17%、n≧5が12.35%であった。
Synthesis example 5
Except for using 186.0 g (1.0 mol) of 4,4′-dihydroxybiphenyl, 600 g of diethylene glycol dimethyl ether, and 52.5 g (0.3 mol) of 1,4-bischloromethylbenzene in 260 g of diethylene glycol dimethyl ether. Reacted in the same manner as in Example 1 to obtain 202 g of a pale yellow crystalline resin. The OH equivalent of the obtained resin was 116.3. The DSC peak temperature is 241.7 ° C. In the general formula (3) determined by GPC measurement, each component ratio corresponding to the structure in which the biphenylene group at the cross-linked site is replaced with a phenylene group is such that n = 0 is 40. 33%, n = 1 was 23.31%, n = 2 was 11.22%, n = 3 was 7.09%, n = 4 was 5.17%, and n ≧ 5 was 12.35%. .

合成例6
4,4’−ジヒドロキシビフェニル(1.0モル)の代わりに4,4’−ジヒドロキシジフェニルメタン200.0g(1.0モル)を用いた他は、合成例1と同様に反応を行った後、減圧蒸留により溶媒を留去し、淡褐色樹脂245gを得た。得られた樹脂のOH当量は137.6であった。GPC測定より求められた一般式(3)において4,4’−ジヒドロキシビフェニル骨格が4,4’−ジヒドロキシジフェニルメタンに置き換わった構造における各成分比は、n=0が36.89%、n=1が20.36%、n=2が12.30%、n=3が9.68%、n=4が6.58%、n≧5が13.56%であった。
Synthesis Example 6
The reaction was conducted in the same manner as in Synthesis Example 1 except that 200.0 g (1.0 mol) of 4,4′-dihydroxydiphenylmethane was used instead of 4,4′-dihydroxybiphenyl (1.0 mol). The solvent was removed by distillation under reduced pressure to obtain 245 g of a light brown resin. The OH equivalent of the obtained resin was 137.6. In the general formula (3) determined by GPC measurement, each component ratio in the structure in which the 4,4′-dihydroxybiphenyl skeleton is replaced with 4,4′-dihydroxydiphenylmethane is n = 0 = 0.36.89%, n = 1 Was 20.36%, n = 2 was 12.30%, n = 3 was 9.68%, n = 4 was 6.58%, and n ≧ 5 was 13.56%.

実施例1
合成例1で得た樹脂120gをエピクロルヒドリン509g、ジエチレングリコールジメチルエーテル76.4gに溶解し、減圧下(約130Torr)62℃にて48%水酸化ナトリウム水溶液76.5gを4時間かけて滴下した。この間、生成する水はエピクロルヒドリンとの共沸により系外に除き、留出したエピクロルヒドリンは系内に戻した。滴下終了後、さらに1時間反応を継続した。その後、エピクロルヒドリンを留去し、メチルイソブチルケトン971gを加えた後、水洗により塩を除いた。その後、24%水酸化ナトリウム水溶液19.3g加え、85℃で2時間反応させた。反応後、濾過、水洗を行なった後、溶媒であるメチルイソブチルケトンを減圧留去し、エポキシ樹脂148gを得た(エポキシ樹脂A)。エポキシ当量は183.7、加水分解性塩素は1400ppmであった。得られた樹脂のGPCチャートを図2に示す。GPC測定より求められた一般式(1)における各成分比は、n=0が42.49%、n=1が19.41%、n=2が12.23%、n=3が8.50%、n=4が4.56%、n≧5が8.18%であった。DSC測定結果を図3に示す。DSC測定結果におけるピーク温度は140.0℃であり、結晶の融解に伴う吸熱量は36.9J/gであった。また、キャピラリー融点は111.5〜143.8℃であり、150℃における溶融粘度は51mPa・sであった。
Example 1
120 g of the resin obtained in Synthesis Example 1 was dissolved in 509 g of epichlorohydrin and 76.4 g of diethylene glycol dimethyl ether, and 76.5 g of 48% aqueous sodium hydroxide solution was added dropwise at 62 ° C. under reduced pressure (about 130 Torr) over 4 hours. During this time, the generated water was removed from the system by azeotropy with epichlorohydrin, and the distilled epichlorohydrin was returned to the system. After completion of the dropwise addition, the reaction was continued for another hour. Thereafter, epichlorohydrin was distilled off, 971 g of methyl isobutyl ketone was added, and then the salt was removed by washing with water. Thereafter, 19.3 g of a 24% aqueous sodium hydroxide solution was added and reacted at 85 ° C. for 2 hours. After the reaction, filtration and washing with water were performed, and then methyl isobutyl ketone as a solvent was distilled off under reduced pressure to obtain 148 g of epoxy resin (epoxy resin A). Epoxy equivalent was 183.7 and hydrolyzable chlorine was 1400 ppm. A GPC chart of the obtained resin is shown in FIG. Each component ratio in the general formula (1) obtained by GPC measurement is 42.49% for n = 0, 19.41% for n = 1, 12.23% for n = 2, and 8. for n = 3. 50%, n = 4 was 4.56%, and n ≧ 5 was 8.18%. The DSC measurement result is shown in FIG. The peak temperature in the DSC measurement result was 140.0 ° C., and the endotherm accompanying the melting of the crystal was 36.9 J / g. The capillary melting point was 111.5 to 143.8 ° C., and the melt viscosity at 150 ° C. was 51 mPa · s.

実施例2
合成例2で得た樹脂122gをエピクロルヒドリン486g、ジエチレングリコールジメチルエーテル72.9gに溶解し、減圧下(約130Torr)62℃にて48%水酸化ナトリウム水溶液73.0gを4時間かけて滴下した。この間、生成する水はエピクロルヒドリンとの共沸により系外に除き、留出したエピクロルヒドリンは系内に戻した。滴下終了後、さらに1時間反応を継続した。その後、エピクロルヒドリンを留去し、メチルイソブチルケトン970gを加えた後、水洗により塩を除いた。その後、24%水酸化ナトリウム水溶液19.3g加え、85℃で2時間反応させた。反応後、濾過、水洗を行なった後、溶媒であるメチルイソブチルケトンを減圧留去し、エポキシ樹脂146gを得た(エポキシ樹脂B)。エポキシ当量は195.1、加水分解性塩素は715ppmであった。DSC測定におけるピーク温度は135.1℃であり、結晶の融解に伴う吸熱量は29.8J/gであった。キャピラリー融点は107.8〜140.1℃であり、150℃における溶融粘度は95mPa・sであった。GPC測定より求められた一般式(1)における各成分比は、n=0が32.25%、n=1が18.42%、n=2が12.85%、n=3が9.42%、n=4が6.01%、n≧5が16.63%であった。
Example 2
122 g of the resin obtained in Synthesis Example 2 was dissolved in 486 g of epichlorohydrin and 72.9 g of diethylene glycol dimethyl ether, and 73.0 g of 48% aqueous sodium hydroxide solution was added dropwise at 62 ° C. under reduced pressure (about 130 Torr) over 4 hours. During this time, the generated water was removed from the system by azeotropy with epichlorohydrin, and the distilled epichlorohydrin was returned to the system. After completion of the dropwise addition, the reaction was continued for another hour. Thereafter, epichlorohydrin was distilled off, 970 g of methyl isobutyl ketone was added, and then the salt was removed by washing with water. Thereafter, 19.3 g of a 24% aqueous sodium hydroxide solution was added and reacted at 85 ° C. for 2 hours. After the reaction, filtration and washing with water were performed, and then methyl isobutyl ketone as a solvent was distilled off under reduced pressure to obtain 146 g of epoxy resin (epoxy resin B). Epoxy equivalent was 195.1 and hydrolyzable chlorine was 715 ppm. The peak temperature in DSC measurement was 135.1 ° C., and the endotherm accompanying the melting of the crystals was 29.8 J / g. The capillary melting point was 107.8 to 140.1 ° C., and the melt viscosity at 150 ° C. was 95 mPa · s. As for each component ratio in the general formula (1) determined by GPC measurement, n = 0 is 32.25%, n = 1 is 18.42%, n = 2 is 12.85%, and n = 3 is 9. 42%, n = 4 was 6.01%, and n ≧ 5 was 16.63%.

実施例3
合成例3で得た樹脂110gをエピクロルヒドリン486g、ジエチレングリコールジメチルエーテル71.5gに溶解し、減圧下(約130Torr)62℃にて48%水酸化ナトリウム水溶液70.8gを4時間かけて滴下した。この間、生成する水はエピクロルヒドリンとの共沸により系外に除き、留出したエピクロルヒドリンは系内に戻した。滴下終了後、さらに1時間反応を継続した。その後、エピクロルヒドリンを留去し、メチルイソブチルケトン972gを加えた後、水洗により塩を除いた。その後、24%水酸化ナトリウム水溶液15.5g加え、85℃で2時間反応させた。反応後、濾過、水洗を行なった後、溶媒であるメチルイソブチルケトンを減圧留去し、エポキシ樹脂149gを得た(エポキシ樹脂C)。エポキシ当量は182.4、加水分解性塩素は675ppmであった。DSC測定におけるピーク温度は146.1℃であり、結晶の融解に伴う吸熱量は46.1J/gであった。キャピラリー融点は118.2〜147.0℃であり、150℃における溶融粘度は36mPa・sであった。GPC測定より求められた一般式(1)における各成分比は、n=0が49.16%、n=1が20.11%、n=2が10.52%、n=3が6.51%、n=4が3.98%、n≧5が6.65%であった。
Example 3
110 g of the resin obtained in Synthesis Example 3 was dissolved in 486 g of epichlorohydrin and 71.5 g of diethylene glycol dimethyl ether, and 70.8 g of a 48% aqueous sodium hydroxide solution was added dropwise at 62 ° C. under reduced pressure (about 130 Torr) over 4 hours. During this time, the generated water was removed from the system by azeotropy with epichlorohydrin, and the distilled epichlorohydrin was returned to the system. After completion of the dropwise addition, the reaction was continued for another hour. Thereafter, epichlorohydrin was distilled off, 972 g of methyl isobutyl ketone was added, and then the salt was removed by washing with water. Thereafter, 15.5 g of a 24% aqueous sodium hydroxide solution was added and reacted at 85 ° C. for 2 hours. After the reaction, filtration and washing with water, methyl isobutyl ketone as a solvent was distilled off under reduced pressure to obtain 149 g of an epoxy resin (epoxy resin C). Epoxy equivalent was 182.4 and hydrolyzable chlorine was 675 ppm. The peak temperature in DSC measurement was 146.1 ° C., and the endothermic amount accompanying the melting of the crystals was 46.1 J / g. The capillary melting point was 118.2 to 147.0 ° C., and the melt viscosity at 150 ° C. was 36 mPa · s. As for each component ratio in the general formula (1) determined by GPC measurement, n = 0 is 49.16%, n = 1 is 20.11%, n = 2 is 10.52%, and n = 3 is 6. 51%, n = 4 was 3.98%, and n ≧ 5 was 6.65%.

比較例1
合成例4で得た樹脂125gをエピクロルヒドリン462g、ジエチレングリコールジメチルエーテル69.3gに溶解し、減圧下(約130Torr)62℃にて48%水酸化ナトリウム水溶液69.4gを4時間かけて滴下した。この間、生成する水はエピクロルヒドリンとの共沸により系外に除き、留出したエピクロルヒドリンは系内に戻した。滴下終了後、さらに1時間反応を継続した。その後、エピクロルヒドリンを留去し、メチルイソブチルケトン972gを加えた後、水洗により塩を除いた。その後、24%水酸化ナトリウム水溶液19.3g加え、85℃で2時間反応させた。反応後、濾過、水洗を行なった後、溶媒であるメチルイソブチルケトンを減圧留去し、エポキシ樹脂148gを得た(エポキシ樹脂D)。エポキシ当量は209.2、加水分解性塩素は621ppmであった。得られた樹脂の結晶性は低くDSCで明確な融点は認められなかった。150℃における溶融粘度は0.52Pa・sであった。GPC測定より求められた一般式(1)における各成分比は、n=0が20.75%、n=1が12.48%、n=2が10.59%、n=3が8.57%、n=4が5.99%、n≧5が37.11%であった。
Comparative Example 1
125 g of the resin obtained in Synthesis Example 4 was dissolved in 462 g of epichlorohydrin and 69.3 g of diethylene glycol dimethyl ether, and 69.4 g of 48% aqueous sodium hydroxide solution was added dropwise at 62 ° C. under reduced pressure (about 130 Torr) over 4 hours. During this time, the generated water was removed from the system by azeotropy with epichlorohydrin, and the distilled epichlorohydrin was returned to the system. After completion of the dropwise addition, the reaction was continued for another hour. Thereafter, epichlorohydrin was distilled off, 972 g of methyl isobutyl ketone was added, and then the salt was removed by washing with water. Thereafter, 19.3 g of a 24% aqueous sodium hydroxide solution was added and reacted at 85 ° C. for 2 hours. After the reaction, filtration and washing with water were performed, and then methyl isobutyl ketone as a solvent was distilled off under reduced pressure to obtain 148 g of an epoxy resin (epoxy resin D). Epoxy equivalent was 209.2 and hydrolyzable chlorine was 621 ppm. The crystallinity of the obtained resin was low, and no clear melting point was observed by DSC. The melt viscosity at 150 ° C. was 0.52 Pa · s. As for each component ratio in the general formula (1) determined by GPC measurement, n = 0 is 20.75%, n = 1 is 12.48%, n = 2 is 10.59%, and n = 3 is 8. 57%, n = 4 was 5.99%, and n ≧ 5 was 37.11%.

比較例2
合成例5で得た樹脂115gをエピクロルヒドリン549g、ジエチレングリコールジメチルエーテル82.4gに溶解し、減圧下(約130Torr)62℃にて48%水酸化ナトリウム水溶液82.4gを4時間かけて滴下した。この間、生成する水はエピクロルヒドリンとの共沸により系外に除き、留出したエピクロルヒドリンは系内に戻した。滴下終了後、さらに1時間反応を継続した。その後、エピクロルヒドリンを留去し、メチルイソブチルケトン966gを加えた後、水洗により塩を除いた。その後、24%水酸化ナトリウム水溶液19.2g加え、85℃で2時間反応させた。反応後、濾過、水洗を行なった後、溶媒であるメチルイソブチルケトンを減圧留去し、エポキシ樹脂145gを得た(エポキシ樹脂E)。エポキシ当量は173.0、加水分解性塩素は490ppmであった。DSC測定におけるピーク温度は133.6℃であり、結晶の融解に伴う吸熱量は47.6J/gであった。キャピラリー融点は110.0〜142.0℃であり、150℃における溶融粘度は42mPa・sであった。GPC測定より求められた一般式(1)における各成分比は、n=0が42.92%、n=1が19.64%、n=2が11.46%、n=3が7.67%、n=4が4.91%、n≧5が10.64%であった。
Comparative Example 2
115 g of the resin obtained in Synthesis Example 5 was dissolved in 549 g of epichlorohydrin and 82.4 g of diethylene glycol dimethyl ether, and 82.4 g of 48% sodium hydroxide aqueous solution was added dropwise at 62 ° C. under reduced pressure (about 130 Torr) over 4 hours. During this time, the generated water was removed from the system by azeotropy with epichlorohydrin, and the distilled epichlorohydrin was returned to the system. After completion of the dropwise addition, the reaction was continued for another hour. Thereafter, epichlorohydrin was distilled off, 966 g of methyl isobutyl ketone was added, and then the salt was removed by washing with water. Thereafter, 19.2 g of a 24% aqueous sodium hydroxide solution was added and reacted at 85 ° C. for 2 hours. After the reaction, filtration and washing with water were performed, and then methyl isobutyl ketone as a solvent was distilled off under reduced pressure to obtain 145 g of epoxy resin (epoxy resin E). Epoxy equivalent was 173.0 and hydrolyzable chlorine was 490 ppm. The peak temperature in DSC measurement was 133.6 ° C., and the endothermic amount accompanying the melting of the crystals was 47.6 J / g. The capillary melting point was 110.0 to 142.0 ° C., and the melt viscosity at 150 ° C. was 42 mPa · s. As for each component ratio in the general formula (1) obtained by GPC measurement, n = 0 is 42.92%, n = 1 is 19.64%, n = 2 is 11.46%, and n = 3 is 7. 67%, n = 4 was 4.91%, and n ≧ 5 was 10.64%.

比較例3
合成例6で得た樹脂120gをエピクロルヒドリン484g、ジエチレングリコールジメチルエーテル62.9gに溶解し、減圧下(約130Torr)62℃にて48%水酸化ナトリウム水溶液69.0gを4時間かけて滴下した。この間、生成する水はエピクロルヒドリンとの共沸により系外に除き、留出したエピクロルヒドリンは系内に戻した。滴下終了後、さらに1時間反応を継続した。その後、エピクロルヒドリンを留去し、メチルイソブチルケトン956gを加えた後、水洗により塩を除いた。その後、24%水酸化ナトリウム水溶液17.6g加え、85℃で2時間反応させた。反応後、濾過、水洗を行なった後、溶媒であるメチルイソブチルケトンを減圧留去し、淡褐色の非結晶性エポキシ樹脂152.5gを得た(エポキシ樹脂F)。エポキシ当量は193.5、加水分解性塩素は450ppmであった。軟化点は82℃であり、150℃における溶融粘度は68mPa・sであった。GPC測定より求められた一般式(1)において4,4’−ジヒドロキシビフェニル骨格が4,4’−ジヒドロキシジフェニルメタンに置き換わった構造における各成分比は、n=0が34.54%、n=1が18.65%、n=2が12.34%、n=3が10.69%、n=4が8.20%、n≧5が15.22%であった。
Comparative Example 3
120 g of the resin obtained in Synthesis Example 6 was dissolved in 484 g of epichlorohydrin and 62.9 g of diethylene glycol dimethyl ether, and 69.0 g of 48% aqueous sodium hydroxide solution was added dropwise at 62 ° C. under reduced pressure (about 130 Torr) over 4 hours. During this time, the generated water was removed from the system by azeotropy with epichlorohydrin, and the distilled epichlorohydrin was returned to the system. After completion of the dropwise addition, the reaction was continued for another hour. Thereafter, epichlorohydrin was distilled off, 956 g of methyl isobutyl ketone was added, and then the salt was removed by washing with water. Thereafter, 17.6 g of a 24% aqueous sodium hydroxide solution was added and reacted at 85 ° C. for 2 hours. After the reaction, filtration and washing with water were performed, and then methyl isobutyl ketone as a solvent was distilled off under reduced pressure to obtain 152.5 g of a light brown amorphous epoxy resin (epoxy resin F). Epoxy equivalent was 193.5 and hydrolyzable chlorine was 450 ppm. The softening point was 82 ° C., and the melt viscosity at 150 ° C. was 68 mPa · s. In the general formula (1) determined by GPC measurement, each component ratio in the structure in which the 4,4′-dihydroxybiphenyl skeleton is replaced with 4,4′-dihydroxydiphenylmethane is as follows: n = 0 is 34.54%, n = 1 Was 18.65%, n = 2 was 12.34%, n = 3 was 10.69%, n = 4 was 8.20%, and n ≧ 5 was 15.22%.

実施例4〜6、比較例4〜7
エポキシ樹脂成分として、実施例1〜3のエポキシ樹脂(エポキシ樹脂A〜C)、比較例1〜3のエポキシ樹脂(エポキシ樹脂D〜F)を使用し、硬化剤としてフェノールノボラック(群栄化学製、PSM−4261;OH当量103、軟化点 82℃)を使用した。また、硬化促進剤としてトリフェニルホスフィン、無機充填材として、球状アルミナ(平均粒径12.2μm)を使用した。表1に示す成分を配合し、ミキサーで十分混合した後、加熱ロールで約5分間混練したものを冷却し、粉砕してそれぞれ実施例4〜6、比較例4〜7のエポキシ樹脂組成物を得た。このエポキシ樹脂組成物を用いて175℃、5分の条件で成形後、180℃で12時間ポストキュアを行い硬化成形物を得てその物性を評価した。
Examples 4-6, Comparative Examples 4-7
As the epoxy resin component, the epoxy resins of Examples 1 to 3 (epoxy resins A to C) and the epoxy resins of Comparative Examples 1 to 3 (epoxy resins D to F) were used, and phenol novolac (manufactured by Gunei Chemical Co., Ltd.) as a curing agent. , PSM-4261; OH equivalent weight 103, softening point 82 ° C.). Further, triphenylphosphine was used as a curing accelerator, and spherical alumina (average particle size 12.2 μm) was used as an inorganic filler. After mixing the components shown in Table 1 and mixing thoroughly with a mixer, the kneaded mixture for about 5 minutes with a heating roll was cooled and ground to obtain the epoxy resin compositions of Examples 4 to 6 and Comparative Examples 4 to 7, respectively. Obtained. Using this epoxy resin composition, after molding at 175 ° C. for 5 minutes, post-curing was performed at 180 ° C. for 12 hours to obtain a cured molded product, and its physical properties were evaluated.

結果をまとめて表1に示す。なお、表1中の各配合物の数字は重量部を表す。また、評価は次により行った。また、比較例4は流動性が著しく低く成形が困難であったため、成形物の物性の評価はできなかった。   The results are summarized in Table 1. In addition, the number of each compound in Table 1 represents parts by weight. The evaluation was performed as follows. Moreover, since the fluidity of Comparative Example 4 was extremely low and molding was difficult, the physical properties of the molded product could not be evaluated.

(1)熱伝導率:NETZSCH製LFA447型熱伝導率計を用いて非定常熱線法により測定した。
(2)線膨張係数、ガラス転移温度:セイコーインスツル(株)製TMA120C型熱機械測定装置を用いて、昇温速度10℃/分にて測定した。
(3)吸水率:直径50mm、厚さ3mmの円盤を成形し、ポストキュア後、85℃、相対湿度85%の条件で100時間吸湿させた後の重量変化率とした。
(4)ゲルタイム:予め175℃に加熱しておいたゲル化試験機(日新科学(株)製)の凹部にエポキシ樹脂組成物を流し込み、PTFE製の攪拌棒を用いて一秒間に2回転の速度で攪拌し、エポキシ樹脂組成物が硬化するまでに要したゲル化時間を調べた。
(5)スパイラルフロー:規格(EMMI−1−66)に準拠したスパイラルフロー測定用金型でエポキシ樹脂組成物をスパイラルフローの注入圧力(150kgf/cm)、硬化温度175℃、硬化時間3分の条件で成形して流動長を調べた。
(1) Thermal conductivity: Measured by the unsteady hot wire method using an LFA447 type thermal conductivity meter manufactured by NETZSCH.
(2) Linear expansion coefficient, glass transition temperature: Measured using a TMA120C thermomechanical measuring device manufactured by Seiko Instruments Inc. at a rate of temperature increase of 10 ° C./min.
(3) Water absorption rate: A disk having a diameter of 50 mm and a thickness of 3 mm was formed, and after post-curing, the weight change rate after absorbing for 100 hours under the conditions of 85 ° C. and relative humidity of 85% was used.
(4) Gel time: The epoxy resin composition is poured into a concave portion of a gelation tester (Nisshin Kagaku Co., Ltd.) that has been heated to 175 ° C. in advance, and is rotated twice per second using a PTFE stirring rod. The gelation time required for the epoxy resin composition to cure was examined.
(5) Spiral flow: Spiral flow measurement mold conforming to the standard (EMMI-1-66), the epoxy resin composition is injected with spiral flow (150 kgf / cm 2 ), curing temperature 175 ° C., curing time 3 minutes The flow length was examined by molding under the following conditions.

Figure 2011074517
Figure 2011074517

産業上の利用の可能性Industrial applicability

本発明のエポキシ樹脂は結晶性で融点を持っていることから、固体としての取扱い性に優れ、かつ低粘度であるため成形性にも優れているとともに、エポキシ樹脂組成物に応用した場合、優れた高耐熱性、熱分解安定性、および高熱伝導性に優れた硬化物を与え、電気・電子部品類の封止、回路基板材料等の用途に好適に使用することが可能である。また、本発明により得られるエポキシ樹脂は、低粘度性および固体としての取扱い性に優れるとともに、耐熱性、耐湿性、および熱伝導性にも優れた硬化物を与え、プリント配線板、放熱基板、半導体封止等の電気電子分野の絶縁材料等に好適に使用される。   Since the epoxy resin of the present invention is crystalline and has a melting point, it is excellent in handleability as a solid and is excellent in moldability because of its low viscosity, and is excellent when applied to an epoxy resin composition. In addition, it provides a cured product excellent in high heat resistance, thermal decomposition stability, and high thermal conductivity, and can be suitably used for applications such as sealing of electric / electronic parts, circuit board materials, and the like. In addition, the epoxy resin obtained by the present invention has a low viscosity and excellent handleability as a solid, and gives a cured product excellent in heat resistance, moisture resistance, and thermal conductivity, printed wiring board, heat dissipation board, It is suitably used for insulating materials in the electric and electronic fields such as semiconductor encapsulation.

Claims (6)

下記一般式(1)
Figure 2011074517
(但し、nは平均値として0.2〜4.0を示し、Gはグリシジル基を示す。)
で表され、示差走査熱量分析における融点に基づく吸熱ピーク温度が100〜150℃の範囲にある結晶性を有するエポキシ樹脂。
The following general formula (1)
Figure 2011074517
(However, n represents an average value of 0.2 to 4.0, and G represents a glycidyl group.)
An epoxy resin having crystallinity represented by the above formula and having an endothermic peak temperature in the range of 100 to 150 ° C. based on the melting point in differential scanning calorimetry.
4,4’−ジヒドロキシビフェニル1モルに対して、下記一般式(2)で表されるビフェニル系縮合剤を0.1〜0.4モルを反応させて下記一般式(3)で表される多価ヒドロキシ樹脂とした後、これとエピクロロヒドリンを反応させて得られる示差走査熱量分析における融点に基づく吸熱ピーク温度が100〜150℃の範囲にある結晶性を有するエポキシ樹脂。
Figure 2011074517
(但し、Xは水酸基、ハロゲン原子又は炭素数1〜6のアルコキシ基を示す。)
Figure 2011074517
(但し、nは平均値として0.2〜4.0を示す。)
It is represented by the following general formula (3) by reacting 0.1 to 0.4 mol of a biphenyl condensing agent represented by the following general formula (2) with respect to 1 mol of 4,4′-dihydroxybiphenyl. An epoxy resin having crystallinity in which an endothermic peak temperature based on a melting point in a differential scanning calorimetry obtained by reacting this with a polyvalent hydroxy resin and epichlorohydrin is in the range of 100 to 150 ° C.
Figure 2011074517
(However, X shows a hydroxyl group, a halogen atom, or a C1-C6 alkoxy group.)
Figure 2011074517
(However, n represents an average value of 0.2 to 4.0.)
一般式(1)におけるn=0体の含有率が、30〜60%の範囲である請求項1に記載のエポキシ樹脂。   The epoxy resin according to claim 1, wherein the content of n = 0 isomer in the general formula (1) is in the range of 30 to 60%. 軟化点が100〜150℃であり、かつ150℃の溶融粘度が0.02〜0.2Pa・sの範囲である請求項1に記載のエポキシ樹脂。   The epoxy resin according to claim 1, wherein the softening point is 100 to 150 ° C and the melt viscosity at 150 ° C is in the range of 0.02 to 0.2 Pa · s. エポキシ樹脂及び硬化剤を含むエポキシ樹脂組成物において、エポキシ樹脂成分として、請求項1〜4のいずれかに記載のエポキシ樹脂を含有することを特徴とするエポキシ樹脂組成物。   The epoxy resin composition containing an epoxy resin and a hardening | curing agent contains the epoxy resin in any one of Claims 1-4 as an epoxy resin component, The epoxy resin composition characterized by the above-mentioned. 請求項5に記載のエポキシ樹脂組成物を硬化してなる硬化物。   Hardened | cured material formed by hardening | curing the epoxy resin composition of Claim 5.
JP2011546102A 2009-12-14 2010-12-13 Epoxy resin, production method thereof, epoxy resin composition and cured product using the same Active JP5166610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011546102A JP5166610B2 (en) 2009-12-14 2010-12-13 Epoxy resin, production method thereof, epoxy resin composition and cured product using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009282740 2009-12-14
JP2009282740 2009-12-14
JP2011546102A JP5166610B2 (en) 2009-12-14 2010-12-13 Epoxy resin, production method thereof, epoxy resin composition and cured product using the same
PCT/JP2010/072334 WO2011074517A1 (en) 2009-12-14 2010-12-13 Epoxy resin, process for production thereof, epoxy resin composition using same, and cured product

Publications (2)

Publication Number Publication Date
JP5166610B2 JP5166610B2 (en) 2013-03-21
JPWO2011074517A1 true JPWO2011074517A1 (en) 2013-04-25

Family

ID=44167269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011546102A Active JP5166610B2 (en) 2009-12-14 2010-12-13 Epoxy resin, production method thereof, epoxy resin composition and cured product using the same

Country Status (7)

Country Link
JP (1) JP5166610B2 (en)
KR (1) KR101752222B1 (en)
CN (1) CN102656204B (en)
MY (1) MY156527A (en)
SG (1) SG181697A1 (en)
TW (1) TWI494338B (en)
WO (1) WO2011074517A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101882556B1 (en) * 2012-03-16 2018-07-26 스미또모 베이크라이트 가부시키가이샤 Resin composition for encapsulation and electronic device using the same
JP2013209503A (en) * 2012-03-30 2013-10-10 Nippon Steel & Sumikin Chemical Co Ltd Epoxy resin composition and cured product thereof
KR101385005B1 (en) * 2012-04-25 2014-04-16 국도화학 주식회사 EMC and epoxy composition
WO2014065152A1 (en) * 2012-10-26 2014-05-01 新日鉄住金化学株式会社 Epoxy resin composition, method for producing epoxy resin cured product, and semiconductor device
JP2017095524A (en) * 2014-03-28 2017-06-01 新日鉄住金化学株式会社 Epoxy resin, epoxy resin composition and cured article
CN104269096B (en) * 2014-09-19 2018-08-10 黄海龙 The construction method of digital virtual fetus systemic arterial system
JP6426966B2 (en) * 2014-10-06 2018-11-21 日鉄ケミカル&マテリアル株式会社 Semiconductor sealing resin composition and semiconductor device
TWI728084B (en) * 2016-03-30 2021-05-21 日商日鐵化學材料股份有限公司 Polyvalent hydroxy resin, its manufacturing method, epoxy resin, epoxy resin composition and its hardened product
JP7212830B2 (en) * 2017-03-31 2023-01-26 株式会社レゾナック Epoxy resin composition for encapsulation and electronic component device
CN107457951B (en) * 2017-08-08 2019-04-09 哈尔滨工业大学 A kind of restructural thermosetting property multiple stimulation composite material of shape memory preparation method
JP2019104821A (en) 2017-12-12 2019-06-27 日鉄ケミカル&マテリアル株式会社 Epoxy resin composition and cured product of the same
JP7252196B2 (en) * 2018-03-09 2023-04-04 日鉄ケミカル&マテリアル株式会社 Epoxy resin composition and cured product thereof
JP7277136B2 (en) * 2018-12-28 2023-05-18 日鉄ケミカル&マテリアル株式会社 Epoxy resin, epoxy resin composition, and cured product thereof
JP7545889B2 (en) 2020-12-25 2024-09-05 日鉄ケミカル&マテリアル株式会社 Polyhydric hydroxy resin, epoxy resin, epoxy resin composition, and cured product thereof
CN117460756A (en) * 2021-06-30 2024-01-26 日铁化学材料株式会社 Epoxy resin, epoxy resin composition and cured product thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3205566B2 (en) * 1991-02-08 2001-09-04 新日鐵化学株式会社 Polyfunctional epoxy resin and method for producing the same
JP3227180B2 (en) * 1991-08-19 2001-11-12 新日鐵化学株式会社 Multifunctional epoxy resin, intermediate thereof, and method for producing the same
JP2952094B2 (en) * 1991-10-30 1999-09-20 新日鐵化学株式会社 Epoxy compound
JP3122834B2 (en) * 1994-09-20 2001-01-09 明和化成株式会社 New phenol novolak condensate
JPH08239454A (en) * 1995-03-03 1996-09-17 Nippon Kayaku Co Ltd Novolac resin, epoxy resin, epoxy resin composition and cured product thereof
JP2000344858A (en) * 1999-03-16 2000-12-12 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device sealed therewith
JP5127160B2 (en) * 2006-05-19 2013-01-23 日本化薬株式会社 Epoxy resin, curable resin composition, and cured product thereof
WO2009110424A1 (en) 2008-03-03 2009-09-11 新日鐵化学株式会社 Modified epoxy resin, epoxy resin compositions and cured articles
JP5433294B2 (en) * 2009-04-30 2014-03-05 エア・ウォーター株式会社 Dihydroxynaphthalene-based polymer, production method thereof and use thereof

Also Published As

Publication number Publication date
KR20120115301A (en) 2012-10-17
CN102656204A (en) 2012-09-05
JP5166610B2 (en) 2013-03-21
CN102656204B (en) 2014-08-27
SG181697A1 (en) 2012-07-30
KR101752222B1 (en) 2017-06-29
MY156527A (en) 2016-02-26
TW201144347A (en) 2011-12-16
WO2011074517A1 (en) 2011-06-23
TWI494338B (en) 2015-08-01

Similar Documents

Publication Publication Date Title
JP5166610B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product using the same
JP5330013B2 (en) Epoxy resin composition and cured product
JP5199804B2 (en) Epoxy resin composition and molded article
JP5548562B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
CN111378093B (en) Epoxy resin, method for producing same, epoxy resin composition, and epoxy resin cured product
JP5457304B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP5209556B2 (en) Epoxy resin composition and molded article
JP5079721B2 (en) Epoxy resin composition and molded article
JP5091052B2 (en) Epoxy resin composition and molded article
JP5443993B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product
JP5734603B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP2019214736A (en) Polyvalent hydroxy resins, epoxy resins, methods for producing them, epoxy resin compositions, and cured products thereof
JP4493748B2 (en) Epoxy resin, method for producing the same, epoxy resin composition and cured product thereof
JP2023000691A (en) Epoxy resin composition and cured article thereof
JP5199847B2 (en) Epoxy resin composition and molded article
JP2022007036A (en) Epoxy resin composition and cured product thereof
JP2012197366A (en) Epoxy resin composition and molding
JP4667753B2 (en) Epoxy resin production method, epoxy resin composition and cured product
KR101799365B1 (en) Epoxy resin, method for manufacturing the same, intermediate, epoxy resin composition and cured product
WO2022186292A1 (en) Epoxy resin, method for producing same, epoxy resin composition using same, and cured product
JP5390491B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product
JP2021091799A (en) Epoxy resin composition and molding
JP2022016887A (en) Epoxy resin composition and cured product
JP2021195459A (en) Epoxy resin composition and molding
JP2023023714A (en) Polyhydric hydroxy resin, epoxy resin, epoxy resin composition based thereon, and cured product

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20121214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5166610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250