JPWO2011064813A1 - アキュムレータ及び冷凍サイクル装置 - Google Patents

アキュムレータ及び冷凍サイクル装置 Download PDF

Info

Publication number
JPWO2011064813A1
JPWO2011064813A1 JP2011542984A JP2011542984A JPWO2011064813A1 JP WO2011064813 A1 JPWO2011064813 A1 JP WO2011064813A1 JP 2011542984 A JP2011542984 A JP 2011542984A JP 2011542984 A JP2011542984 A JP 2011542984A JP WO2011064813 A1 JPWO2011064813 A1 JP WO2011064813A1
Authority
JP
Japan
Prior art keywords
refrigerant
container
pipe
liquid
accumulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011542984A
Other languages
English (en)
Other versions
JP5425221B2 (ja
Inventor
傑 鳩村
傑 鳩村
山下 浩司
浩司 山下
裕之 森本
裕之 森本
若本 慎一
慎一 若本
下地 美保子
美保子 下地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2011064813A1 publication Critical patent/JPWO2011064813A1/ja
Application granted granted Critical
Publication of JP5425221B2 publication Critical patent/JP5425221B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2113Temperatures of a suction accumulator

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

回路構成を複雑化することなく、また、エネルギーを消費することなく返油を行うことができるアキュムレータ等を得る。冷凍サイクル装置の圧縮機1に気相の冷媒を供給するために気液分離を行い、液体を溜めるアキュムレータ6において、液体を溜めるための容器Aと、冷媒回路を循環する冷媒を容器A内に流入するための流入管Bと、流入管Bに流入した冷媒を複数に分配するための分配継手Gと、分配された冷媒を容器Aの下部に導いて、冷媒により容器A内に滞留する液体を攪拌させるための分岐配管Iと、容器A内に滞留する液体中の冷凍機油を、冷媒と共に流出させるための油戻し穴Dを有する流出管Cとを備えるものである。

Description

本発明は、冷凍サイクル装置に用いるアキュムレータ等に関するものである。特に冷媒と非相溶性を有する冷凍機油を使用した場合でも返油可能なアキュムレータに関するものである。
従来、ビル用マルチエアコンとして、フロン系冷媒を使用する空気調和装置が広く使用されているが、近年においては、例えば二酸化炭素(CO2 )冷媒のような超臨界流体を用いる超臨界冷凍サイクル装置をビル用マルチエアコンへ搭載することが考えられている。
ここで、現在、CO2 冷媒を用いる冷凍サイクル装置で使用されている冷凍機油は、CO2 冷媒とは非相溶性の冷凍機油である。そして、フロン系冷媒のように、冷凍サイクル装置で使用されている全ての運転温度範囲でCO2 冷媒と相溶性を有する冷凍機油は現存しない。なお、ここでいう非相溶性とは、冷媒と冷凍機油が完全には溶け合わないものを意味しており、全く溶け合わない完全非相溶性もの、および、少しは溶け合うが溶け合う量が少ない難溶性のものの両方を含んでいる。例えばビル用マルチエアコンのように冷房または暖房運転時に冷媒量を調整するためのアキュムレータを要し、システムの配管長が長くなる冷凍サイクル装置において、非相溶性の冷凍機油を使用すると、配管、熱交換器、アキュムレータ等に多くの冷凍機油が滞留する可能性がある。特に冷媒温度が低温領域(例えば冷媒温度−15℃以下)において、冷凍機油の密度が冷媒の密度よりも小さくなると、アキュムレータに滞留している冷凍機油の返油が困難となる。その結果、返油不足となり圧縮機内の冷凍機油が枯渇し、圧縮機が破損する可能性が高くなっていた。
ここで、圧縮機吐出側よりホットガスをバイパスし、アキュムレータ下部にホットガスを流入させ、アキュムレータ下部に分離した状態で滞留した冷媒と冷凍機油を撹拌させ、混合させることにより、アキュムレータからの返油を可能とする方式も提案されている(例えば、特許文献1参照)。
特開2004−263995号公報(請求項1、図1等)
特許文献1に記載されているようなシステムでは、アキュムレータへのバイパス配管とバイパス用開閉弁の設置が必要となり、システムの回路構成が複雑化し、製造コストが増加する等の問題があった。また、圧縮機の吐出冷媒を圧縮機の吸入側に設置されているアキュムレータ内に導入ことになるため、エネルギーを無駄に消費することとなり、省エネルギー化を図ることができないという問題点があった。
そこで、回路構成を複雑化することなく、また、エネルギーを消費することなく返油を行うことができるアキュムレータ等を得ることを目的とする。
この発明に係わるアキュムレータは、冷凍サイクル装置の圧縮機に気相の冷媒を供給するために気液分離を行い、液体を溜めるアキュムレータにおいて、液体を溜めるための容器と、冷媒回路を循環する冷凍機油を含む冷媒を容器内に流入させるための流入管と、流入管に流入した冷媒を複数に分配するための分配継手と、分配された冷媒を容器の下部に導き、冷媒により容器内に滞留する液体を攪拌させるための分岐配管と、容器内に滞留する液体中の冷凍機油を、冷媒と共に流出させるための油戻し穴を有する流出管とを備えるものである。
本発明によれば、流入管に分配継手、分岐配管を配管接続し、冷媒を容器の下部に導いて、滞留する液体を攪拌させるようにしたので、冷媒等の温度に関係なく、油戻し穴に冷凍機油を運んで流出管から冷媒と共に圧縮機へ返油することができる。このとき、複雑な回路を要することなく、弁類等を追加することなく確実な返油を行うことができるので、エネルギーを無駄に消費することなく、低コストのアキュムレータを得ることができる。
本発明の実施の形態に係る空気調和装置の構成を示す図である。 CO2 冷媒とPAG油の二層分離曲線を示す図である。 CO2 冷媒とPAG油の温度変化による密度比較を示す図である。 通常のアキュムレータ60の構成を表す図である。 実施の形態1に係るアキュムレータ6の構成を表す図である。 実施の形態2に係るアキュムレータ6の構成を表す図である。 実施の形態3に係るアキュムレータ6の構成を表す図である。 実施の形態4に係るアキュムレータ6の構成を表す図である。
以下、本発明の実施の形態による冷凍サイクル装置について説明する。
実施の形態1.
図1は、実施の形態1に係る冷凍サイクル装置となる空気調和装置の構成を表す図である。本実施の形態では、冷凍サイクル装置の代表として空気調和装置について説明する。図1において、本実施の形態に係る空気調和装置は、室外ユニット100と室内ユニット200a、200bとをガス配管51および液配管52で接続し、冷媒が循環する冷媒回路を構成する。そして、この冷媒回路の内部に、冷媒として例えば臨界温度(約31℃)以上で超臨界状態となる二酸化炭素と、冷凍機油として二酸化炭素と非相溶性を有するPAG(ポリアルキレングリコール)油を封入している。
室外ユニット100は基本的に室外に設置され、圧縮機1、流路切替弁2、熱源側熱交換器3、アキュムレータ6、送風機7および制御装置8を収容している。圧縮機1はガス冷媒を圧縮する。例えば四方弁等の流路切替弁2は、室内ユニット200a、200bの運転モードに応じて冷媒が流れる方向を切換える冷媒流路切替手段である。熱源側熱交換器3は、運転モードに応じて放熱器または蒸発器として機能し、室外の空気(以下、外気という)と冷媒との熱交換を行う。アキュムレータ6は、運転モードに応じて冷媒回路内を循環する冷媒量を調整するために余剰冷媒等を溜めておくことができる。送風機7は、外気を強制的に熱源側熱交換器3の外表面に送風して外気と冷媒との熱交換を促進させる。制御装置8は、圧縮機1、送風機7の駆動、流路切替弁2の切り替え等、例えば室内ユニット200a、200bの動作を制御する制御装置(図示せず)と連携して冷媒回路の制御等を行う。ここでは室外ユニット100に収容しているが、外部に設けるようにしてもよい。
室内ユニット200a、200bは、それぞれ電子膨張弁4a、4b、負荷側熱交換器5a、5bおよび送風機9a、9bを収容している。電子膨張弁4a、4bは減圧手段となり、それぞれ負荷側熱交換器5a、5bを流れる冷媒の量を開度変更により調節し、負荷側熱交換器5a、5bにおける冷媒の圧力、温度等を調整する。負荷側熱交換器5a、5bは、一端がガス配管51に接続され、他端は電子膨張弁4a、4bを介して液配管52に接続されている。負荷側熱交換器5a、5bについても、運転モードに応じて放熱器または蒸発器として機能し、空調対象空間の空気と冷媒との熱交換を行う。熱源側熱交換器3が放熱器として機能すれば、負荷側熱交換器5a、5bは蒸発器として機能し、熱源側熱交換器3が蒸発器として機能すれば、負荷側熱交換器5a、5bは放熱器として機能する。送風機9a、9bは、負荷側熱交換器5a、5bにおける空調対象空間の空気と冷媒との熱交換を促進し、また、冷媒との熱交換に係る空気を空調対象空間に送り込む。ここで、本実施の形態では、室内ユニット200a、200bを2台としているが、1台または3台以上の室内ユニット200を配管接続してもよい。
図2は二酸化炭素とPAG油の二層分離曲線を示す図である。図2から、油分率が約40%以下の場合には、全ての温度域において、二酸化炭素とPAG油とが二層分離することが分かる。本実施の形態のような冷媒回路における油分率は約10%〜20%程度であるため、冷媒回路における冷媒の温度となる全温度領域で二酸化炭素とPAG油は二層分離することとなる。
図3は温度と二酸化炭素液の密度、PAG油の密度との関係を表す図である。図3より、液状の二酸化炭素(以下、二酸化炭素液という)とPAG油の温度が約−15℃以下になると、二酸化炭素液の密度がPAG油の密度よりも大きくなる。このため、二酸化炭素液の方がPAG油よりも重くなり、PAG油が二酸化炭素液の上部に滞留することになる。逆に約−15℃より高い温度では、二酸化炭素液よりも下部にPAG油が滞留することになる。
図4は通常のアキュムレータ60の構造を表すための図である。ここでは、本実施の形態のアキュムレータ6との比較のために、通常のアキュムレータ60について説明する。矢印は冷媒と冷凍機油の流れを表している(以下、同様)。アキュムレータ60は、密閉される容器Aと、容器Aに冷媒(液冷媒およびガス冷媒)と冷凍機油との混合物を流入させる流入管Bと、容器A内から冷媒と冷凍機油の混合物を流出させる、U字状の流出管Cとで構成する。流出管Cは、冷凍機油を返油させるための油戻し穴(返油穴)Dを下部に有している。排出口Eは、流入した冷媒を排出するための配管の開口部分であり、ここでは流入管Bの一端の開口部分であるものとする。また、取込口Fは流出させる冷媒を取り込むための流出管Cの一端の開口部分である。ここで、位置の上下関係については、例えば鉛直方向に対して上側、下側として定めるものとする。
そして、容器Aに衝突して飛散する液冷媒が流出管Cを流れないようにするため、流入管Bの一端で開口する排出口Eは、流出管Cの一端で開口する取込口Fよりも下側に位置している。また、容器A下部まで液冷媒および冷凍機油を旋回させながら運ぶようにするため、流入管Bにある排出口Eは容器A内壁に対して垂直方向を向いて対向しているか、または下向きになっている。そして、衝突によるガス冷媒と液冷媒および冷凍機油の混合物との分離を促進させるため、流入管Bにある排出口Eと容器A内壁との間は、一定以上(例えば流入管Bの内径の2倍以上)の距離を有するようにする。油戻し穴Dと容器A底部との距離は、容器A底部に滞留する冷凍機油の量を少なくするために可能な限り短くなるようにする(例えば製造上管理可能な距離となるようにする)。
流入管Bより容器A内に流入した冷媒と冷凍機油の混合物は、容器A内壁に衝突することで大半は、ガス冷媒と液冷媒および冷凍機油の混合物とに分離(気液分離)される。分離出来なかったガス冷媒と液冷媒および冷凍機油の混合物についても容器Aの内壁を沿って旋回しながら容器A下部まで流れること(旋回流)によりほぼ気液分離される。そして、容器A下部には液冷媒と冷凍機油とがそれぞれ層を形成して分離して滞留し、それより上部にはガス冷媒が滞留する。容器A上部に滞留したガス冷媒は流出管Cより容器A外に流出する。容器A下部に滞留した液冷媒と冷凍機油とは、流出管Cの取込口Fと油戻し穴Dとの間で生じるガス冷媒の動圧と容器A内の液面の高さにより生じるヘッド差により、油戻し穴Dより吸込まれてガス冷媒と共に容器A外に流出する。
つぎにアキュムレータ60内の液量について説明する。例えば冷房運転において、量が適正化された冷媒が、圧縮機1により高温高圧に圧縮され流路切替弁2を通り、熱源側熱交換器3にて放熱され、液配管52を出る。そして、電子膨張弁4a、4bにて減圧され、負荷側熱交換器5a、5b出口にて設定過熱度(例えば1〜5℃)を得たガス冷媒が、ガス配管51を通り、アキュムレータ60に流入し、再び圧縮機1に吸い込まれる。
このとき、前述したように、アキュムレータ60内には液冷媒と濃度が高い冷凍機油とがそれぞれ層を形成して容器A内の下部に滞留する。温度が−15℃よりも高い場合は、冷凍機油の方が冷媒よりも重くなる。このため、容器A内において、冷凍機油は冷媒よりも下側に位置し、図4(a)に示すように、冷凍機油が、アキュムレータ60下部に設置された油戻し穴Dから吸い込まれて、圧縮機1に返油される。
一方、暖房運転においては、ガス冷媒が圧縮機1により高温高圧に圧縮され流路切替弁2を通り、ガス配管51を出た後、負荷側熱交換器5a、5bにて放熱される。そして、電子膨張弁4a、4bにて減圧された後、液配管52を通り、熱源側熱交換器出口にて蒸発したガスもしくは二相冷媒が、アキュムレータ60に流入する。このとき、容器A内には余剰冷媒(液冷媒)と冷凍機油とがそれぞれ層を形成して分離して滞留する。余剰冷媒の密度が冷凍機油よりも小さい場合(例えば冷媒温度−15℃以上)には、冷凍機油が冷媒よりも重くなるため、冷房運転と同様に、冷凍機油がアキュムレータ60(流出管C)下部に設けた油戻し穴Dから圧縮機1へ返油される。
しかし、余剰冷媒の密度が冷凍機油よりも大きい場合(例えば冷媒温度が−15℃以下)には、冷凍機油が液冷媒よりも軽くなるため、冷凍機油が液冷媒の上部に滞留する。このとき、図4(b)に示すように、アキュムレータ60(流出管C)下部に設けた油戻し穴Dの位置に液冷媒が存在すると、油戻し穴Dから圧縮機1へ冷凍機油を返油することは困難となる。
図5は実施の形態1のアキュムレータ6の構造を表す図である。本実施の形態のアキュムレータ6では、容器A内下部に滞留する液冷媒と、冷媒と非相溶性を有する冷凍機油とを攪拌して層が形成されないようにし、冷媒の密度が冷凍機油の密度よりも大きな環境下でも返油を可能とする。
容器A、流入管B、流出管C、油戻し穴D並びに排出口Eおよび取込口Fについては、前述した図4のアキュムレータと同様である。ただし、排出口Eは流入分岐管Hの一端の開口部分に位置する。例えばY字継手、T字継手等の分配継手Gは、流入管Bから流入した冷媒と冷凍機油の混合物を、流入分岐管Hと分岐配管Iとに分配するための継手である。流入分岐管Hは、ガス冷媒と液冷媒および冷凍機油の混合物とに気液分離する(図4における流入管Bと同様の役割を果たすことになる)。
また、分岐配管Iは、容器A内下部に滞留する液冷媒と冷凍機油とを撹拌させるために分配継手Gにより分配された冷媒と冷凍機油の混合物を、容器A下部に直接送り込むための配管である。攪拌用排出口Jは液冷媒と冷凍機油とを撹拌させるための冷媒と冷凍機油の混合物を排出するための配管の開口部分であり、ここでは分岐配管Iの一端の開口部分であるものとする。そして攪拌用排出口Jを容器A底部の内壁に対向するように向けている。
ここで、流入分岐管Hの内断面積を分岐配管Iの内断面積よりも大きくするようにする。例えば、本実施の形態では、流入管Bの入口内断面積Ainに対し、流入分岐管Hの内断面積>Ain/2、分岐配管Iの内断面積<Ain/2となるような管径にする。このため、冷媒と冷凍機油との混合物を、分岐配管I側に過剰に流さないようにし、流入分岐管H側に流れるようにして気液分離効率が低下してしまうことを抑制することができる。また、流入管Bの入口側と同等以上の内断面積を保持することにより、圧力損失の増加を抑制することが可能になる。
また、流入分岐管Hの排出口Eについては、アキュムレータ6の上部(垂直方向において上半分部分)に位置する方が、旋回に係る時間が長くなるため、気液分離効率が高くなる。ただし、気液分離効率が多少低くなるが、排出口Eがアキュムレータ6の下部にあってもよい。さらに、分岐配管Iは細い配管であり、振動等で折れてしまう危険がある。そこで、例えば、分岐配管Iを流出管Cの鉛直方向に向いている部分に近接させて設置し、固定具で流出管Cに固定させる。そして、分岐配管Iと流出管Cとが振動に対して一体になって揺れるようにすることで、分岐配管Iの強度を保つことができる。
以上のように、実施の形態1の空気調和装置におけるアキュムレータでは、アキュムレータ6内の流入管Bに分配継手G、流入分岐管Hおよび分岐配管Iを配管し、流入管Bから流入する冷媒と冷凍機油との混合物を送り込んで、容器A内下部に滞留する液冷媒と、冷媒と非相溶性を有する冷凍機油とを攪拌し、冷凍機油を容器A内上部に滞留させないようにしたので、冷媒等の温度に関係なく、油戻し穴Dに冷凍機油を運ぶことができ、圧縮機1へ返油することができる。さらに、攪拌用排出口Jから噴出する冷媒には、液冷媒にガス冷媒も混合しており、このガス冷媒を容器A内に送り込むことにより、容器A内の液冷媒と送り込んだガス冷媒とが混合し、液とガスの混合物である冷媒の密度を低下させるため、冷凍機油が容器A内下部に滞留し易くなり、冷凍機油を油戻し穴Dから戻し易くなる効果もある。冷媒等の温度に関係なく、油戻し穴Dに冷凍機油を運ぶことができ、圧縮機1へ返油することができる。このとき、流入管Bに分配継手G、流入分岐管Hおよび分岐配管Iを配管して圧縮機1への返油を実現しているので、例えば圧縮機1の吐出側との間の配管接続、外部と接続する配管を少なくすることができる。このため、回路構成を複雑化することなく、また弁類の追加等もなく、さらにエネルギーを無駄に消費することがない、低コストのアキュムレータ6を製造することができる。また、温度に関係なく確実に返油することができるので、圧縮機1における油枯渇を防ぎ、安全性、信頼性を向上させることができる冷凍サイクル装置を得ることができる。
実施の形態2.
図6は実施の形態2のアキュムレータ6の構造を表す図である。図6において、図5と同じ番号を付したものは、実施の形態1において説明したことと同様の機能を果たすものである。本実施の形態は、分岐配管Iに、さらに分配継手K、分岐管Lおよび分岐枝管Mを配管接続したものである。
分配継手Kは、分配継手Gと同様に、分岐配管Iから流入した冷媒と冷凍機油の混合物を、分岐管Lと分岐枝管Mとに分配するための継手である。分岐管Lは一端に排出口Nを有している。滞留する液冷媒と冷凍機油の量が多く、排出口Nが液面よりも下側に位置する場合には、液冷媒と冷凍機油とを撹拌させる冷媒と冷凍機油の混合物を送り込んで攪拌させるための配管となる。また、排出口Nが液面よりも下側に位置する場合には、流入分岐管Hと同様に、ガス冷媒と液冷媒および冷凍機油の混合物とに気液分離する。このため、排出口Nも排出口Eと同様に、容器A内壁に対して垂直方向を向いて対向しているか、または下向きになっている。分岐枝管Mは、冷媒と冷凍機油の混合物を送り込んで容器Aに滞留する液冷媒と冷凍機油とを撹拌させる配管である。本実施の形態では、分岐枝管M一端に攪拌用排出口Jを有しているものとする。
ここで、圧力損失の増加と気液分離効率低下を抑制するために、最下部の分岐管Lと分岐枝管Mの内断面積の合計と、分岐配管Iの内断面積とを同等にする。かつ、流入分岐管Hと分岐配管Iの内断面積の合計と、流入管Bの内断面積とは同等にする。さらに、分岐管Lの内断面積は分岐枝管Jの内断面積よりも大きく、流入分岐管Hの内断面積は分岐配管Iの内断面積よりも大きくする。具体例として、流入管Bの内断面積Ainに対し、流入分岐管Hの内断面積>Ain/2、分岐配管Iの内断面積<Ain/2とする。また、分岐管Lの内断面積>Ain/4、分岐配管Jの内断面積<Ain/4とする。
以上のように、実施の形態2の空気調和装置におけるアキュムレータ6では、分配継手Gにより分配して分岐配管Iを通過した冷媒を、さらに分配継手Kにより分岐管Lと分岐枝管Mとに分配して多段の分岐をさせるようにしたので、例えば、アキュムレータ6(容器A)内に滞留する液冷媒等の量が少ない場合には、分岐枝管Mを通過した冷媒と冷凍機油の混合物により撹拌させるようにし、液冷媒等の量が多い場合には、分岐管Lを通過した冷媒と冷凍機油の混合物により撹拌させるようにすることができ、冷凍機油の滞留位置が変化した場合もアキュムレータ下部に設置された油戻し穴Dに冷凍機油を運ぶことが可能となる。また、流入分岐管Hの排出口Eと分岐管Lの排出口Nとから冷媒と冷凍機油の混合物を排出し、衝突による気液分離と旋回流を発生させることによる気液分離ができるため、気液分離効率をほとんど低下させることなく、液冷媒および冷凍機油とをガス冷媒と分離することができる。ここで、本実施の形態では、分岐配管Iに分岐管Lと分岐枝管Mのみを接続した2段の分岐について説明したが、3段以上の分岐を行うようにしてもよい。
実施の形態3.
図7は実施の形態3のアキュムレータ6の構造を表す図である。図7において、図5と同じ番号を付したものは、実施の形態1において説明したことと同様の機能を果たすものである。液吸入穴Oは分岐配管Iの一端Jと他端の間に一定の間隔(例えば20mm間隔)を有して空けてある穴である。本実施の形態では3穴空けているが、さらに少数もしくは多数の液吸入穴Oを設置してもよい。
また、分岐配管Iの内断面積は流入管Bの内断面積よりも小さくなるようにし、縮管するようにしている(例えば流入管Bの内断面積Ainに対し、分岐配管Iの内断面積<Ain/4とする)。分岐配管Iを縮管することで、冷媒と冷凍機油との混合物が流入管Bから分岐配管Iに流入した時に減圧され、流速が上昇する。液吸入穴Oにおいて生じる動圧と縮管による減圧とにより、液吸入穴Oの外部(容器A内)と内部(分岐配管I内)との間で差圧(容器A内の圧力―分岐配管I内の圧力)が生じる。
このとき、容器Aに滞留した冷凍機油が液吸入穴O部を覆っていれば、液吸入穴Oより分岐配管I内に吸込まれ、分岐配管Iの攪拌排出口Jから排出される。このため、容器A下部に冷凍機油を運び、油戻し穴Dから圧縮機1へ冷凍機油を返油することができる。
ここで、流入分岐管Hの内断面積を分岐配管Iの内断面積よりも大きくする。例えば、本実施の形態では、流入管Bの入口内断面積Ainに対し、流入分岐管Hの内断面積≧Ain、分岐配管Iの内断面積<Ain/4となるような管径にする。このような管径とすることで、冷媒と冷凍機油との混合物を、分岐配管I側に過剰に流さないように、流入分岐管H側に流れるようにして気液分離効率が低下してしまうことを抑制する。また、流入管Bの入口と同等以上の断面積を保持可能となり、圧力損失の増加を抑制することが可能になる。
以上のように、実施の形態3の空気調和装置のアキュムレータ6では、容器A内に滞留する液冷媒と冷凍機油に、冷媒と冷凍機油との混合物を送り込むための分岐配管Iに液吸入穴Oを空けるようにしたので、例えば、冷凍機油が液冷媒より上側に多く位置するような場合でも、液吸入穴Oから冷凍機油を吸い込んで容器A内下部に送り込むことができるので、油戻し穴Dからの返油を促進することができる。
実施の形態4.
図8は実施の形態4のアキュムレータ6の構造を表す図である。図8において、図5と同じ番号を付したものは、実施の形態1において説明したことと同様の機能を果たすものである。ここで、構造的には、本実施の形態の分配継手Gは、容器A外で流入管B、流入分岐管Hおよび分岐配管Iと接続している点では上述の実施の形態とは異なる。
電磁弁Pは、分岐配管Iへ冷媒等の通過させるまたはさせないようにするための開閉動作を行う。温度検出器Qは流出管Cから流出する冷媒等の温度を検出する。そして、例えば上述した制御装置8が、温度検出器Qの検出に係る温度に基づいて、電磁弁Pに動作を行わせるようにする。なお、温度検出器Qは、アキュムレータに流入する冷媒の温度を検出できる位置、例えば流入管B、に設置されていてもよい。
上述したように、低温環境下である約−15℃を境に冷媒の密度と冷凍機油の密度との大小関係が変わる。そこで、制御装置8は、例えば温度検出器Qの検出に係る温度が約−15℃に到達する少し前の温度(例えば−14℃)より低いと判断すると、電磁弁Pを開放させて、冷媒および冷凍機油の混合物が分岐配管Iを通過させるようにし、滞留する液冷媒と冷凍機油とを攪拌させるようにする。
一方、温度検出器Qの検出に係る温度が−14℃以上であると判断すると、制御装置8は、電磁弁Pを閉止させて、冷媒および冷凍機油の混合物が分岐配管Iを通過させないようにする。これにより、冷媒および冷凍機油の混合物はすべて流入分岐管H側に流れるため、通常のアキュムレータと気液分離効率を同等にすることができる。
ここで、流入分岐管Hの内断面積を流入管Bの入口内断面積と同等とする。また、分岐配管Iの内断面積を流入分岐管Hよりも小さくする。例えば、本実施の形態では、流入管Bの入口内断面積Ainに対し、流入分岐管Hの内断面積をAin、分岐配管Iの内断面積<Ainとなるような管径にする。このような管径とすることで、冷媒と冷凍機油との混合物を、分岐配管I側に過剰に流さないようにし、圧力損失の増加を抑制することが可能になる。
以上のように、実施の形態4の空気調和装置によれば、冷媒等の温度を検出するための温度検出器Qと、温度検出器Qの検出に係る温度に基づいて、分岐配管Iへ冷媒等の通過させるまたはさせないようにするための電磁弁Pを設けるようにしたので、例えば、容器A内下部において、冷凍機油が液冷媒よりも下側に位置し、攪拌しなくても油戻し穴Dから圧縮機1へ冷凍機油を返油することができる場合には、電磁弁Pを閉じるようにすることができる。このため、液冷媒を含まない返油を行うことができ、返油の効率を高めることができる。また、電磁弁Pをアキュムレータ6本体に設置することで、回路構成を複雑にすることがない。
実施の形態5.
上述した実施の形態では、冷媒回路内の冷媒が二酸化炭素、冷凍機油がPAG油である場合を例に説明したが、その他の冷媒と冷凍機油との組合せにするようにしてもよい。例えば、冷媒については、二酸化炭素とジメチルエーテル、ハイドロフルオロエーテル等のエーテルから構成される混合冷媒等の冷媒としてもよい。また、超臨界状態になる冷媒に限らず、通常の二相状態で熱交換を行う冷媒であるHFC410A、HFC407C等の代替冷媒等の塩素を含まない冷媒、R22、R134a等の従来のフロン系の冷媒、炭化水素等の自然冷媒系の冷媒としてもよい。冷凍機油については、これらの各冷媒と非相溶性を有する冷凍機油とすればよい。
上述した実施の形態では、空気調和装置への適用について説明した。本発明は、これらの装置に限定することなく、他にアキュムレータを有して冷媒回路を構成している他の冷凍サイクル装置にも適用することができる。
1 圧縮機、2 流路切替弁、3 熱源側熱交換器、4a,4b 電子膨張弁、5a,5b 負荷側熱交換器、6,60 アキュムレータ、7 送風機、8 制御装置、9a,9b 送風機、51 ガス配管、52 液配管、100 室外ユニット、200a,200b 室内ユニット、A 容器、B 流入管、C 流出管、D 油戻し穴、E 排出口、F 取込口、G 分配継手、H 流入分岐管、I 分岐配管、J 攪拌用排出口、K 分配継手、L 分岐管、M 分岐枝管、N 排出口、O 液吸入穴、P 電磁弁、Q 温度検出器。
この発明に係るアキュムレータは、冷凍サイクル装置の圧縮機に気相の冷媒を供給するために気液分離を行い、液体を溜めるアキュムレータにおいて、前記液体を溜めるための容器と、冷媒回路を循環する冷凍機油を含む冷媒を前記容器内に流入させるための流入管と、該流入管に流入した冷媒を複数に分配するための分配継手と、分配された冷媒を前記容器の下部に導き、前記冷媒により前記容器内に滞留する液体を攪拌させるための分岐配管と、前記容器内に滞留する液体中の冷凍機油を、冷媒と共に流出させるための油戻し穴を有する流出管とを備え、前記分岐配管に分配継手と配管とを多段に接続して多段構成としたものである。

Claims (10)

  1. 冷凍サイクル装置の圧縮機に気相の冷媒を供給するために気液分離を行い、液体を溜めるアキュムレータにおいて、
    前記液体を溜めるための容器と、
    冷媒回路を循環する冷凍機油を含む冷媒を前記容器内に流入させるための流入管と、
    該流入管に流入した冷媒を複数に分配するための分配継手と、
    分配された冷媒を前記容器の下部に導き、前記冷媒により前記容器内に滞留する液体を攪拌させるための分岐配管と、
    前記容器内に滞留する液体中の冷凍機油を、冷媒と共に流出させるための油戻し穴を有する流出管と
    を備えることを特徴とするアキュムレータ。
  2. 前記分岐配管を流れる冷媒とは別の分配された冷媒を前記容器内に排出するための配管を有し、該配管の一端にある冷媒の排出口を、前記容器内の空間の上半分側に位置させることを特徴とする請求項1に記載のアキュムレータ。
  3. 前記分岐配管を流れる冷媒をさらに分配するための1又は複数の分配継手と配管とを多段に接続していることを特徴とする請求項1または請求項2に記載のアキュムレータ。
  4. 前記冷媒の流れに対して前記分岐配管より下流側にある配管に、管壁を貫通させた複数の貫通穴を設けたことを特徴とする請求項1〜請求項3のいずれかに記載のアキュムレータ。
  5. 前記分配継手と前記分岐配管とを前記容器内で接続していることを特徴とする請求項1〜請求項4のいずれかに記載のアキュムレータ。
  6. 前記分岐配管の冷媒通過を制御するための開閉装置をさらに備え、
    前記容器外部で接続した前記分配継手と前記分岐配管との間に前記開閉装置を設置することを特徴とする請求項1〜請求項4のいずれかに記載のアキュムレータ。
  7. 前記容器内に滞留する液体の温度、前記容器に流入する液体の温度または前記容器から流出する液体の温度の少なくとも1の温度を検出するための温度検出器をさらに備え、
    前記温度検出器の検出に係る温度に基づいて、前記容器下部の液冷媒の密度が前記冷凍機油の密度よりも小さくなる温度では前記開閉装置を閉じ、前記容器下部の液冷媒の密度が前記冷凍機油の密度よりも大きくなる温度では前記開閉装置を開くように制御することを特徴とする請求項6に記載のアキュムレータ。
  8. 前記分岐配管を、前記流出管に固定することを特徴とする請求項1〜請求項7のいずれかに記載のアキュムレータ。
  9. 吸入した冷媒を圧縮する圧縮機と、熱交換により前記冷媒を凝縮させる凝縮器と、凝縮された冷媒を減圧させるための膨張手段と、減圧された前記冷媒を熱交換により蒸発させる蒸発器と、
    該蒸発器と前記圧縮機の冷媒吸入側との間に設置される請求項1〜請求項8のいずれかに記載のアキュムレータと
    を配管接続して前記冷媒を循環させる冷媒回路を構成する冷凍サイクル装置。
  10. 前記冷媒は二酸化炭素であり、前記冷凍機油は前記冷媒と非相溶性または難溶性を有する油であることを特徴とする請求項9に記載の冷凍サイクル装置。
JP2011542984A 2009-11-25 2009-11-25 アキュムレータ及び冷凍サイクル装置 Expired - Fee Related JP5425221B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/006331 WO2011064813A1 (ja) 2009-11-25 2009-11-25 アキュムレータ及び冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JPWO2011064813A1 true JPWO2011064813A1 (ja) 2013-04-11
JP5425221B2 JP5425221B2 (ja) 2014-02-26

Family

ID=44065938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011542984A Expired - Fee Related JP5425221B2 (ja) 2009-11-25 2009-11-25 アキュムレータ及び冷凍サイクル装置

Country Status (2)

Country Link
JP (1) JP5425221B2 (ja)
WO (1) WO2011064813A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5842733B2 (ja) * 2012-05-23 2016-01-13 ダイキン工業株式会社 冷凍装置
JP5888114B2 (ja) * 2012-05-23 2016-03-16 ダイキン工業株式会社 冷凍装置
JP5940489B2 (ja) * 2013-05-21 2016-06-29 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和装置
JP2017015366A (ja) * 2015-07-06 2017-01-19 株式会社不二工機 アキュームレータ
JP2018077015A (ja) * 2016-11-10 2018-05-17 サンデン・オートモーティブクライメイトシステム株式会社 アキュムレータ
JP6844293B2 (ja) * 2017-02-09 2021-03-17 株式会社デンソー 貯液器
CN107062715A (zh) * 2017-04-12 2017-08-18 青岛海信日立空调系统有限公司 一种气液分离器、空调系统以及冲刷过滤件的方法
WO2019073564A1 (ja) * 2017-10-12 2019-04-18 三菱電機株式会社 気液分離器および冷媒回路
JP6980945B2 (ja) * 2019-02-25 2021-12-15 Atsジャパン株式会社 冷媒制御システム、及び冷却システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503162U (ja) * 1973-05-07 1975-01-14
JPH01106866U (ja) * 1987-12-29 1989-07-19
JPH01112375U (ja) * 1988-01-21 1989-07-28
JPH0569570U (ja) * 1992-02-25 1993-09-21 カルソニック株式会社 リキッドタンク
JPH07189908A (ja) * 1993-12-28 1995-07-28 Mitsubishi Electric Corp アキュムレータ及び冷凍サイクル装置
JPH10141813A (ja) * 1996-11-06 1998-05-29 Mitsubishi Electric Corp アキュムレータ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3743861B2 (ja) * 2002-03-06 2006-02-08 三菱電機株式会社 冷凍空調装置
JP4810988B2 (ja) * 2005-11-16 2011-11-09 パナソニック株式会社 冷凍サイクル装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503162U (ja) * 1973-05-07 1975-01-14
JPH01106866U (ja) * 1987-12-29 1989-07-19
JPH01112375U (ja) * 1988-01-21 1989-07-28
JPH0569570U (ja) * 1992-02-25 1993-09-21 カルソニック株式会社 リキッドタンク
JPH07189908A (ja) * 1993-12-28 1995-07-28 Mitsubishi Electric Corp アキュムレータ及び冷凍サイクル装置
JPH10141813A (ja) * 1996-11-06 1998-05-29 Mitsubishi Electric Corp アキュムレータ

Also Published As

Publication number Publication date
JP5425221B2 (ja) 2014-02-26
WO2011064813A1 (ja) 2011-06-03

Similar Documents

Publication Publication Date Title
JP5425221B2 (ja) アキュムレータ及び冷凍サイクル装置
US9797610B2 (en) Air-conditioning apparatus with regulation of injection flow rate
JP5871959B2 (ja) 空気調和装置
JP5730335B2 (ja) 空気調和装置
EP2835602B1 (en) Air conditioning device
JP5855312B2 (ja) 空気調和装置
WO2012104893A1 (ja) 空気調和装置
JP5992089B2 (ja) 空気調和装置
EP2672202B1 (en) Air-conditioning device
JP5992088B2 (ja) 空気調和装置
WO2014141374A1 (ja) 空気調和装置
CN105180497A (zh) 空气调节装置
JP2006153349A (ja) 冷凍空調装置、冷凍空調装置の運転制御方法、冷凍空調装置の冷媒量制御方法
JPWO2015029160A1 (ja) 空気調和装置
WO2006003925A1 (ja) 冷凍装置及び空気調和装置
WO2013069043A1 (ja) 空気調和装置
WO2014141373A1 (ja) 空気調和装置
JP2006250479A (ja) 空気調和機
JP2008196762A (ja) 分流器、熱交換器ユニット、及び冷凍装置
US20220205671A1 (en) Air conditioner
WO2016207993A1 (ja) 空気調和装置
CN118043610A (zh) 制冷剂容器和冷冻循环装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131126

R150 Certificate of patent or registration of utility model

Ref document number: 5425221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees