JPWO2011010590A1 - Acid dye-dyeable hygroscopic fiber and method for producing the same - Google Patents

Acid dye-dyeable hygroscopic fiber and method for producing the same Download PDF

Info

Publication number
JPWO2011010590A1
JPWO2011010590A1 JP2011523618A JP2011523618A JPWO2011010590A1 JP WO2011010590 A1 JPWO2011010590 A1 JP WO2011010590A1 JP 2011523618 A JP2011523618 A JP 2011523618A JP 2011523618 A JP2011523618 A JP 2011523618A JP WO2011010590 A1 JPWO2011010590 A1 JP WO2011010590A1
Authority
JP
Japan
Prior art keywords
fiber
polymer
acid dye
acrylonitrile
dyeing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011523618A
Other languages
Japanese (ja)
Other versions
JP5590341B2 (en
Inventor
孝郎 山内
孝郎 山内
孝二 田中
孝二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP2011523618A priority Critical patent/JP5590341B2/en
Publication of JPWO2011010590A1 publication Critical patent/JPWO2011010590A1/en
Application granted granted Critical
Publication of JP5590341B2 publication Critical patent/JP5590341B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/54Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of unsaturated nitriles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/58Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
    • D06M11/63Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides with hydroxylamine or hydrazine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/52General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing synthetic macromolecular substances
    • D06P1/5207Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • D06P1/5214Polymers of unsaturated compounds containing no COOH groups or functional derivatives thereof
    • D06P1/5242Polymers of unsaturated N-containing compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/64General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds without sulfate or sulfonate groups
    • D06P1/642Compounds containing nitrogen
    • D06P1/645Aliphatic, araliphatic or cycloaliphatic compounds containing amino groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/673Inorganic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/673Inorganic compounds
    • D06P1/67333Salts or hydroxides
    • D06P1/6735Salts or hydroxides of alkaline or alkaline-earth metals with anions different from those provided for in D06P1/67341
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/02Material containing basic nitrogen
    • D06P3/04Material containing basic nitrogen containing amide groups
    • D06P3/06Material containing basic nitrogen containing amide groups using acid dyes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/002Locally enhancing dye affinity of a textile material by chemical means
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/22Effecting variation of dye affinity on textile material by chemical means that react with the fibre
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/70Material containing nitrile groups
    • D06P3/74Material containing nitrile groups using acid dyes

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Coloring (AREA)
  • Artificial Filaments (AREA)

Abstract

従来の架橋アクリル酸系繊維は、pH緩衝性、制電性、保水性等の調和機能や高吸湿率、高吸湿速度、高吸湿率差あるいはそれに由来する調温・調湿機能などの特徴を有するものであったが、染色性について課題を残すものであった。本発明は、上記のような特徴を有し、かつ、酸性染料による実用的な染色性を両立できる繊維であって、具体的には、酸性染料染着座席となる官能基を有する重合体の領域と、架橋構造とカルボキシル基を有する重合体の領域とからなり、かつ、繊維重量に対する酸性染料の飽和染着量が3.5〜10重量%であり、カルボキシル基量が1.0〜10mmol/gである酸性染料可染性吸湿性繊維である。Conventional cross-linked acrylic fiber has features such as pH buffering, antistatic properties, water retention, etc. However, there was still a problem with dyeability. The present invention is a fiber having the above-described characteristics and having both practical dyeability with an acid dye, and specifically, a polymer having a functional group serving as an acid dye dyeing seat. And a region of a polymer having a crosslinked structure and a carboxyl group, and the saturated dyeing amount of the acidic dye with respect to the fiber weight is 3.5 to 10% by weight, and the carboxyl group amount is 1.0 to 10 mmol. / G is an acid dye dyeable hygroscopic fiber.

Description

本発明は酸性染料で染色可能であり、かつ、吸湿性を有する繊維およびその製造方法に関する。 The present invention relates to a fiber that can be dyed with an acid dye and has a hygroscopic property, and a method for producing the same.

架橋アクリル酸系繊維は、pH緩衝性、制電性、保水性等の調和機能や高吸湿率、高吸湿速度、高吸湿率差あるいはそれに由来する調温・調湿機能を有することが知られており、衣料分野や産業資材分野で利用されている。しかしながら、架橋アクリル酸系繊維はその染色性に課題があり、用途展開を阻む要因となっている。 Crosslinked acrylic acid fibers are known to have harmonious functions such as pH buffering, antistatic properties, water retention, high moisture absorption rate, high moisture absorption rate, high moisture absorption difference or temperature control / humidity control functions derived therefrom. It is used in the clothing and industrial materials fields. However, the cross-linked acrylic fiber has a problem in its dyeability, and is a factor that hinders application development.

架橋アクリル酸系繊維はカチオン性染料の染着座席として機能するカルボキシル基を有しているため、原理的にはカチオン性染料を用いて色を付けることができる。しかし、カチオン性染料とカルボキシル基との間に形成されるイオン結合は弱いため、pHの変化などによりカチオン性染料が遊離しやすく、加えて該繊維の水膨潤性は高いため、遊離したカチオン性染料は容易に溶出してしまう。このため、通常の処方で染色しただけでは、実用に耐えうる水準の染色堅牢度は得られない。 Since the crosslinked acrylic fiber has a carboxyl group that functions as a dyeing seat for the cationic dye, in principle, it can be colored using a cationic dye. However, since the ionic bond formed between the cationic dye and the carboxyl group is weak, the cationic dye is likely to be liberated due to changes in pH, etc. In addition, the water swellability of the fiber is high, so that the free cationic The dye is easily eluted. For this reason, the dyeing fastness of the level which can be practically used cannot be obtained only by dyeing with a normal prescription.

このような染色性に関する問題を解消するため、特許文献1、2には架橋アクリル酸系繊維の反応性染料による染色方法が提案されている。これらの方法では、反応性染料を用いることによって染色堅牢度は改善されるものの、染色時pHを強酸性条件にする必要があり、混用繊維の制限や腐食対策等の設備対応が必要となる問題がある。また、セルロース系繊維と混用した繊維構造体を染色する場合において、セルロース系繊維との色相に違いが生じるケースがあり実用上の色合わせに難がある。 In order to solve such problems relating to dyeability, Patent Documents 1 and 2 propose a method for dyeing crosslinked acrylic acid fibers with a reactive dye. In these methods, although the fastness to dyeing is improved by using reactive dyes, it is necessary to make the pH during dyeing strong acidic conditions, and it is necessary to deal with facilities such as restrictions on mixed fibers and countermeasures against corrosion. There is. In addition, when dyeing a fiber structure mixed with cellulosic fibers, there are cases in which the hue of the cellulosic fibers differs, and there is difficulty in practical color matching.

また、特許文献3にはカルボキシル基を有する原料繊維にスルホン酸基を有するモノマーを含浸、重合させることでスルホン酸基を導入させた繊維が提案されている。この繊維はカチオン性染料の染着座席として機能するスルホン酸基を多量に有するため、カチオン性染料で色を付けることができるが、十分な発色性あるいは染色堅牢度や色相安定性を得ることは困難であった。また、原料繊維にスルホン酸基を有するモノマーを含浸、重合させることでスルホン酸基を導入するという手段を採用するため、複雑な操作が必要となりコスト高になるという問題を有している。 Patent Document 3 proposes a fiber in which a sulfonic acid group is introduced by impregnating and polymerizing a monomer having a sulfonic acid group into a raw material fiber having a carboxyl group. Since this fiber has a large amount of sulfonic acid groups that function as a dyeing seat for cationic dyes, it can be colored with cationic dyes, but it is not possible to obtain sufficient color development or dyeing fastness or hue stability. It was difficult. In addition, since a method of introducing a sulfonic acid group by impregnating and polymerizing a monomer having a sulfonic acid group into a raw fiber is employed, there is a problem that a complicated operation is required and the cost is increased.

特開2003−278079号公報JP 2003-278079 A 特開2006−70421号公報JP 2006-70421 A 特開2008-174849号公報JP 2008-174849 A

以上のように、従来の架橋アクリル酸系繊維は、pH緩衝性、制電性、保水性等の調和機能や高吸湿率、高吸湿速度、高吸湿率差あるいはそれに由来する調温・調湿機能などの特徴を有するものであったが、染色性について課題を残すものであった。本発明は、かかる現状に基づきなされたものであり、高吸湿性、高吸湿率差等の架橋アクリル酸系繊維の特徴を保持しつつ、酸性染料による実用的な染色が可能な繊維を提供することを目的とする。 As described above, the conventional cross-linked acrylic fiber has a harmonious function such as pH buffering property, antistatic property, water retention, high moisture absorption rate, high moisture absorption rate, high moisture absorption rate difference or temperature control / humidity control derived therefrom. Although it had features such as functions, it left a problem regarding dyeability. The present invention has been made based on the current situation, and provides a fiber capable of practical dyeing with an acid dye while maintaining the characteristics of the crosslinked acrylic acid fiber such as high hygroscopicity and high moisture absorption difference. For the purpose.

本発明者らは、上述の目的を達成するために鋭意検討を進めた結果、以下に示す本発明に到達した。 As a result of diligent studies to achieve the above-mentioned object, the present inventors have reached the present invention shown below.

(1)酸性染料染着座席となる官能基を有する重合体の領域と架橋構造とカルボキシル基を有する重合体の領域とからなる繊維であり、
かつ、繊維重量に対する酸性染料の飽和染着量が3.5〜10重量%であり、カルボキシル基量が1.0〜10mmol/gである酸性染料可染性吸湿性繊維。
(2)酸性染料染着座席となる官能基を有する重合体が、アクリロニトリルを主成分とし、少なくともカチオン性基を有するビニル系単量体を共重合成分とする重合体であることを特徴とする(1)に記載の酸性染料可染性吸湿性繊維。
(3)酸性染料染着座席となる官能基を有する重合体が、アクリロニトリルを主成分とする重合体に、1分子中に2個以上の窒素原子を有する窒素含有化合物による処理を施して得られるものであることを特徴とする(1)に記載の酸性染料可染性吸湿性繊維。
(4)架橋構造とカルボキシル基を有する重合体が、アクリロニトリルを主成分とする重合体に1分子中に2個以上の窒素原子を有する窒素含有化合物による処理、および、加水分解処理を施して得られるものであることを特徴とする(1)に記載の酸性染料可染性吸湿性繊維。
(5)アクリロニトリルを主成分とし、少なくともカチオン性基を有するビニル系単量体を共重合成分とする重合体からなる繊維の表層部に対して1分子中に2個以上の窒素原子を有する窒素含有化合物による架橋処理および加水分解処理を施すことを特徴とする(1)に記載の酸性染料可染性吸湿性繊維の製造方法。
(6)アクリロニトリルを主成分とする重合体からなる繊維に対して1分子中に2個以上の窒素原子を有する窒素含有化合物による架橋処理を施した後に加水分解処理を施す方法であって、前記架橋処理を施す範囲よりも前記加水分解処理を施す範囲を小さくすることを特徴とする(1)に記載の酸性染料可染性吸湿性繊維の製造方法。
(1) A fiber composed of a polymer region having a functional group serving as an acid dye dyeing seat, a cross-linked structure, and a polymer region having a carboxyl group,
And the acid dye dyeable hygroscopic fiber whose saturation dyeing amount of the acid dye with respect to fiber weight is 3.5 to 10 weight% and whose carboxyl group amount is 1.0 to 10 mmol / g.
(2) The polymer having a functional group serving as an acid dye dyeing seat is a polymer having acrylonitrile as a main component and at least a vinyl monomer having a cationic group as a copolymerization component. The acid dye-dyeable hygroscopic fiber according to (1).
(3) A polymer having a functional group serving as an acid dye dyeing seat is obtained by treating a polymer mainly composed of acrylonitrile with a nitrogen-containing compound having two or more nitrogen atoms in one molecule. The acid dye-dyeable hygroscopic fiber as described in (1), which is a thing.
(4) A polymer having a crosslinked structure and a carboxyl group is obtained by subjecting a polymer mainly composed of acrylonitrile to a treatment with a nitrogen-containing compound having two or more nitrogen atoms in one molecule, and a hydrolysis treatment. The acid dye-dyeable hygroscopic fiber according to (1), which is characterized in that
(5) Nitrogen having two or more nitrogen atoms in one molecule with respect to the surface layer of the fiber composed of a polymer comprising acrylonitrile as a main component and at least a vinyl monomer having a cationic group as a copolymerization component The method for producing an acid dye-dyeable hygroscopic fiber according to (1), wherein a crosslinking treatment and a hydrolysis treatment are carried out with a contained compound.
(6) A method of performing a hydrolysis treatment after performing a crosslinking treatment with a nitrogen-containing compound having two or more nitrogen atoms in one molecule on a fiber composed of a polymer mainly composed of acrylonitrile, The method for producing an acid dye-dyeable hygroscopic fiber according to (1), wherein the hydrolysis treatment range is smaller than the crosslinking treatment range.

本発明の酸性染料可染性吸湿性繊維は、酸性染料染着座席となる官能基を有する重合体の領域と架橋構造とカルボキシル基を有する重合体の領域とからなるものである。そして、このことにより酸性染料による実用的な染色が可能となり、吸湿性能も高いものとなる。このため、本発明の酸性染料可染性吸湿性繊維は色に関する制約が小さく、色を重視する用途など従来の架橋アクリル酸系繊維では展開が難しかった用途にも展開することができる。 The acid dye-dyeable and hygroscopic fiber of the present invention is composed of a polymer region having a functional group serving as an acid dye dyeing seat, and a polymer region having a crosslinked structure and a carboxyl group. This enables practical dyeing with acid dyes and high moisture absorption performance. For this reason, the acid dye-dyeable hygroscopic fiber of the present invention has little restrictions on color, and can be developed for applications that are difficult to develop with conventional crosslinked acrylic fibers, such as applications that place importance on color.

以下に本発明を詳細に説明する。本発明の酸性染料可染性吸湿性繊維は、酸性染料染着座席となる官能基を有する重合体の領域と架橋構造とカルボキシル基を有する重合体の領域とからなる繊維である。 The present invention is described in detail below. The acid dye-dyeable hygroscopic fiber of the present invention is a fiber composed of a polymer region having a functional group serving as an acid dye dyeing seat, and a polymer region having a crosslinked structure and a carboxyl group.

本発明の酸性染料可染性吸湿性繊維における架橋構造とカルボキシル基を有する重合体の領域は、該繊維の大きな特徴の一つである吸湿性能を主に担う部分である。上述したように、かかる領域に存在するカルボキシル基はカチオン染料とイオン結合しうるが、容易にイオン交換するために染色堅牢度が悪く実用的なレべルの染色はできない。本発明の繊維においては、上記領域とともに、かかる領域とは別の、酸性染料染着座席となる官能基を有する重合体の領域を設けることで、酸性染料で実用レベルの染色を可能なものとしている。 The area | region of the polymer which has a crosslinked structure and a carboxyl group in the acid dye dyeable hygroscopic fiber of this invention is a part mainly responsible for the hygroscopic performance which is one of the big characteristics of this fiber. As described above, the carboxyl group present in such a region can be ion-bonded with the cationic dye, but since it is easily ion-exchanged, the dyeing fastness is poor and practical level dyeing cannot be performed. In the fiber of the present invention, in addition to the above region, by providing a region of a polymer having a functional group that serves as an acid dye dyeing seat, it is possible to dye a practical level with an acid dye. Yes.

酸性染料染着座席となる官能基を有する重合体としては、アクリロニトリルを主成分とし、少なくともカチオン性基を有するビニル系単量体を共重合成分とする重合体や、アクリロニトリルを主成分とする重合体に1分子中に2個以上の窒素原子を有する窒素含有化合物による処理を施して得られるものなどを挙げることができる。なお、本願発明においては、アクリロニトリルを主成分とし、少なくともカチオン性基を有するビニル系単量体を共重合成分とする重合体をカチオン性基を有するアクリロニトリル系重合体、アクリロニトリルを主成分とする重合体をアクリロニトリル系重合体とも表記する。 Examples of the polymer having a functional group serving as an acid dye dyeing seat include a polymer containing acrylonitrile as a main component and a vinyl monomer having at least a cationic group as a copolymerization component, and a polymer containing acrylonitrile as a main component. Examples thereof include those obtained by subjecting the coalescence to a treatment with a nitrogen-containing compound having two or more nitrogen atoms in one molecule. In the present invention, a polymer having acrylonitrile as a main component and at least a vinyl monomer having a cationic group as a copolymerization component is a polymer having a cationic group as an acrylonitrile-based polymer and acrylonitrile as a main component. The polymer is also referred to as an acrylonitrile polymer.

ここで、酸性染料染着座席となる官能基としては、特に限定はないが、1級アミノ基、2級アミノ基、3級アミノ基、4級アンモニウム基などのカチオン性基が挙げられる。 Here, the functional group serving as the acid dye dyeing seat is not particularly limited, and examples thereof include cationic groups such as a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group.

また、アクリロニトリルを主成分とするとは、上記のいずれの場合においても重合体中にアクリロニトリルを40〜100重量%結合含有することを言う。アクリロニトリル以外の単量体の成分としては、特に制限はなく、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸エステル化合物、メタリルスルホン酸、p−スチレンスルホン酸等のスルホン酸基含有単量体及びその塩;スチレン、酢酸ビニル等の単量体等を挙げることができる。ここで、カチオン性基を有するビニル系単量体を共重合成分とした場合、該単量体のカチオン性基は酸性染料の染着座席として機能する。 In addition, acrylonitrile as a main component means that the polymer contains 40 to 100% by weight of acrylonitrile in any of the above cases. There is no restriction | limiting in particular as a component of monomers other than acrylonitrile, (meth) acrylic acid ester compounds, such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, methallylsulfonic acid And sulfonic acid group-containing monomers such as p-styrene sulfonic acid and salts thereof; monomers such as styrene and vinyl acetate. Here, when a vinyl monomer having a cationic group is used as a copolymerization component, the cationic group of the monomer functions as a dyeing seat for acidic dyes.

かかるカチオン性基を有するビニル系単量体としては、例えば化1、化2および化3で示される単量体を挙げることができる。ここで、化1、化2および化3において、R1は水素またはC4以下のアルキル基を、R2、R3及びR4はそれぞれC4以下のアルキル基を、R5はC4以下のアルキレン基またはヒドロキシアルキレン基、R6はC4以下のアルキレン基、XはCl、Br、I、CHCOO、CHSOまたははSCNを示し、mは2〜4の整数を、nは0又は1の整数を示す。Examples of the vinyl monomer having a cationic group include monomers represented by Chemical formula 1, Chemical formula 2 and Chemical formula 3. Here, in Chemical Formula 1, Chemical Formula 2 and Chemical Formula 3, R1 is hydrogen or a C4 or lower alkyl group, R2, R3 and R4 are each a C4 or lower alkyl group, R5 is a C4 or lower alkylene group or hydroxyalkylene group, R6 represents an alkylene group of C4 or less, X represents Cl, Br, I, CH 3 COO, CH 3 SO 4 or SCN, m represents an integer of 2 to 4, and n represents an integer of 0 or 1.

Figure 2011010590
Figure 2011010590

Figure 2011010590
Figure 2011010590

Figure 2011010590
Figure 2011010590

これらカチオン性基を有するビニル系単量体の具体例としては、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチルなどを挙げることができる。 Specific examples of these vinyl monomers having a cationic group include dimethylaminoethyl (meth) acrylate and diethylaminoethyl (meth) acrylate.

また、アクリロニトリル系重合体に1分子中に2個以上の窒素原子を有する窒素含有化合物による処理を施した場合には、かかる窒素含有化合物とアクリロニトリル由来のニトリル基が反応して重合体中に架橋構造が形成されるが、このときニトリル基と反応しなかった官能基やニトリル基とは反応したが架橋構造を形成するに至らずに副生した官能基などが酸性染料染着座席となる官能基として機能すると考えられる。 In addition, when the acrylonitrile polymer is treated with a nitrogen-containing compound having two or more nitrogen atoms in one molecule, the nitrogen-containing compound and the nitrile group derived from acrylonitrile react to crosslink in the polymer. At this time, the functional group that did not react with the nitrile group or the functional group that had reacted with the nitrile group but did not form a cross-linked structure, became the acid dye dyeing seat. It is considered to function as a base.

1分子中に2個以上の窒素原子を有する窒素含有化合物としては、2個以上の1級アミノ基を有するアミノ化合物やヒドラジン系化合物が好ましい。1分子中の窒素原子の数の上限は特に制限されないが、12個以下であることが好ましく、さらに好ましくは6個以下であり、特に好ましくは4個以下である。1分子中の窒素原子の数が上記上限を超えると架橋剤分子が大きくなり、重合体中に架橋を導入しにくくなる場合がある。 The nitrogen-containing compound having two or more nitrogen atoms in one molecule is preferably an amino compound or a hydrazine compound having two or more primary amino groups. The upper limit of the number of nitrogen atoms in one molecule is not particularly limited, but is preferably 12 or less, more preferably 6 or less, and particularly preferably 4 or less. When the number of nitrogen atoms in one molecule exceeds the above upper limit, the cross-linking agent molecule becomes large and it may be difficult to introduce cross-linking into the polymer.

2個以上の1級アミノ基を有するアミノ化合物としては、エチレンジアミン、へキサメチレンジアミンなどのジアミン化合物、ジエチレントリアミン、3,3’−イミノビス(プロピルアミン)、N−メチル−3,3’−イミノビス(プロピルアミン)などのトリアミン系化合物、トリエチレンテトラミン、N,N’−ビス(3−アミノプロピル)−1,3−プロピレンジアミン、N,N’−ビス(3−アミノプロピル)−1,4−ブチレンジアミンなどのテトラミン系化合物、ポリビニルアミン、ポリアリルアミンなどで2個以上の1級アミノ基を有するポリアミン系化合物が例示される。 Examples of amino compounds having two or more primary amino groups include diamine compounds such as ethylenediamine and hexamethylenediamine, diethylenetriamine, 3,3′-iminobis (propylamine), N-methyl-3,3′-iminobis ( Triamine compounds such as propylamine), triethylenetetramine, N, N′-bis (3-aminopropyl) -1,3-propylenediamine, N, N′-bis (3-aminopropyl) -1,4- Examples include tetramine compounds such as butylenediamine, polyamine compounds having two or more primary amino groups such as polyvinylamine and polyallylamine.

また、ヒドラジン系化合物としては、水加ヒドラジン、硫酸ヒドラジン、塩酸ヒドラジン、臭化水素酸ヒドラジン、ヒドラジンカーボネートなどが例示される。 Examples of the hydrazine compound include hydrazine hydrate, hydrazine sulfate, hydrazine hydrochloride, hydrazine hydrobromide, hydrazine carbonate, and the like.

一方、架橋構造とカルボキシル基を有する重合体としては、アクリロニトリル系重合体に1分子中に2個以上の窒素原子を有する窒素含有化合物による処理、および、加水分解処理を施して得られるものを挙げることができる。前者の処理においては、窒素含有化合物とアクリロニトリル由来のニトリル基を反応させて、重合体中に架橋構造を形成し、後者の処理においては、ニトリル基を加水分解してカルボキシル基を形成させる。これにより、架橋構造とカルボキシル基を有する重合体が得られる。 On the other hand, examples of the polymer having a crosslinked structure and a carboxyl group include those obtained by subjecting an acrylonitrile-based polymer to treatment with a nitrogen-containing compound having two or more nitrogen atoms in one molecule and hydrolysis treatment. be able to. In the former treatment, a nitrogen-containing compound and a nitrile group derived from acrylonitrile are reacted to form a crosslinked structure in the polymer, and in the latter treatment, the nitrile group is hydrolyzed to form a carboxyl group. Thereby, the polymer which has a crosslinked structure and a carboxyl group is obtained.

かかるアクリロニトリル系重合体および1分子中に2個以上の窒素原子を有する窒素含有化合物としては、上述したものと同様のものを例示することができる。また、加水分解処理については、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属炭酸塩などのアルカリ性金属塩化合物を使用することができる。 Examples of the acrylonitrile-based polymer and the nitrogen-containing compound having two or more nitrogen atoms in one molecule include the same ones as described above. Moreover, about a hydrolysis process, alkaline metal salt compounds, such as an alkali metal hydroxide, an alkaline-earth metal hydroxide, and an alkali metal carbonate, can be used.

なお、ここに例示した架橋構造とカルボキシル基を有する重合体については、酸性染料染着座席となる官能基を有する重合体として例示した重合体と同様に、アクリロニトリル系重合体に1分子中に2個以上の窒素原子を有する窒素含有化合物による処理を施しているが、酸性染料で実用的な染色をすることはできない。これは架橋処理で一旦酸性染料染着座席となる官能基が形成されるものの、その後の加水分解処理によりかかる官能基が変化して、酸性染料染着座席として機能しなくなるためであると考えられる。 In addition, about the polymer which has a crosslinked structure illustrated here and a carboxyl group, it is 2 in 1 molecule in an acrylonitrile-type polymer similarly to the polymer illustrated as a polymer which has a functional group used as an acidic dye dyeing | staining seat. Although treatment with a nitrogen-containing compound having at least one nitrogen atom is performed, practical dyeing with an acid dye is not possible. This is thought to be because the functional group that once becomes the acid dye dyeing seat is formed by the cross-linking treatment, but the functional group is changed by the subsequent hydrolysis treatment, so that it does not function as the acid dye dyeing seat. .

また、本発明の酸性染料可染性吸湿性繊維は上述した酸性染料染着座席となる官能基を有する重合体の領域と架橋構造とカルボキシル基を有する重合体の領域のみから構成されていてもよいし、これらの領域の他にこれらの領域を構成する重合体が混在する領域やこれらの領域を構成する重合体とは異なる重合体で構成される領域が存在してもよい。これらの領域の配置の代表的な例としては、酸性染料染着座席となる官能基を有する重合体の領域を中心部、架橋構造とカルボキシル基を有する重合体の領域を表層部とする芯鞘構造、酸性染料染着座席となる官能基を有する重合体の領域と架橋構造とカルボキシル基を有する重合体の領域を交互に積層した多層構造、あるいは、酸性染料染着座席となる官能基を有する重合体の領域と架橋構造とカルボキシル基を有する重合体の領域の一方を海部、他方を島部とする海島構造などを挙げることができる。 Further, the acid dye-dyeable hygroscopic fiber of the present invention may be composed only of the above-described polymer region having a functional group that becomes an acid dye-dyed seat and a polymer region having a crosslinked structure and a carboxyl group. In addition to these regions, there may be a region in which the polymers constituting these regions are mixed, or a region composed of a polymer different from the polymer constituting these regions. As a typical example of the arrangement of these regions, a core sheath having a polymer region having a functional group serving as an acid dye dyeing seat as a central portion and a polymer region having a crosslinked structure and a carboxyl group as a surface layer portion. Structure, multi-layer structure in which a polymer region having a functional group serving as an acid dye dyeing seat and a cross-linking structure and a polymer region having a carboxyl group are alternately laminated, or a functional group serving as an acid dye dyeing seat Examples thereof include a sea-island structure in which one of a polymer region, a crosslinked structure, and a polymer region having a carboxyl group is a sea portion and the other is an island portion.

酸性染料染着座席となる官能基を有する重合体の領域と架橋構造とカルボキシル基を有する重合体の領域の比率については、架橋構造とカルボキシル基を有する重合体の領域の割合が高いほど吸湿率の高い繊維が得られるが、一方で酸性染料染着座席となる官能基を有する重合体の領域の割合が低くなり、発色性は低下傾向となる。吸湿性及び発色性の両方のバランスのとれた繊維を得るには、乾燥状態において繊維断面積の20〜80%、より好ましくは30〜70%の面積を酸性染料染着座席となる官能基を有する重合体の領域が占めるようにすることが望ましい。 Regarding the ratio of the polymer region having a functional group that becomes an acid dye dyeing seat and the ratio of the crosslinked region and the polymer region having a carboxyl group, the higher the proportion of the crosslinked region and the polymer region having a carboxyl group, the higher the moisture absorption rate. In the meantime, the ratio of the polymer region having a functional group that becomes an acid dye dyeing seat is lowered, and the color developability tends to be lowered. In order to obtain a fiber in which both hygroscopicity and color developability are balanced, a functional group serving as an acid dye dyeing seat is formed in an area of 20 to 80%, more preferably 30 to 70% of the fiber cross-sectional area in a dry state. It is desirable to occupy the area of the polymer that it has.

ここで、上述の面積比率は、酸性染料による染色処理後、乾燥した繊維を切断し繊維断面を光学顕微鏡で観察することにより算出することができる。すなわち、染色されている領域が酸性染料染着座席となる官能基を有する重合体の領域で、染色されていないあるいは染色が確認できない領域が架橋構造とカルボキシル基を有する重合体の領域とする。 Here, the above-mentioned area ratio can be calculated by cutting the dried fiber and observing the fiber cross section with an optical microscope after dyeing with an acid dye. That is, the dyed region is a region of a polymer having a functional group that becomes an acid dye dyeing seat, and the region that is not dyed or cannot be confirmed is a region of a polymer having a crosslinked structure and a carboxyl group.

また、本発明におけるカルボキシル基量としては、繊維重量に対して好ましくは1.0〜10mmol/g、より好ましくは2.0〜6.0mmol/gであることが望ましい。カルボキシル基量が1.0mmol/gを下回る場合は十分な吸湿性能が得られない場合があり、また10mmol/gを上回る場合は、架橋構造とカルボキシル基を有する重合体の領域が吸湿あるいは吸水時に脆弱となり、重合体の脱落を引き起こし、繊維形状や吸湿性能を維持できない場合がある。 In addition, the carboxyl group amount in the present invention is preferably 1.0 to 10 mmol / g, more preferably 2.0 to 6.0 mmol / g, based on the fiber weight. When the carboxyl group amount is less than 1.0 mmol / g, sufficient moisture absorption performance may not be obtained. When the carboxyl group amount exceeds 10 mmol / g, the crosslinked region and the polymer region having a carboxyl group may absorb moisture or absorb water. It may become fragile, causing the polymer to fall off, and failing to maintain the fiber shape and moisture absorption performance.

また、カルボキシル基はH型カルボキシル基であっても塩型カルボキシル基であってもよく、それらが混在していても構わないが、繊維製造後の段階においては、紡績等の加工を容易にするためH型カルボキシル基とし、染色後あるいは最終製品の段階においては、高い吸湿率を得るためカルボキシル基量の50%以上を塩型カルボキシル基とすることが望ましい。 Further, the carboxyl group may be an H-type carboxyl group or a salt-type carboxyl group, and they may be mixed, but at the stage after fiber production, processing such as spinning is facilitated. Therefore, it is desirable to use H-type carboxyl groups, and after dyeing or at the final product stage, in order to obtain a high moisture absorption rate, it is desirable that 50% or more of the carboxyl group amount be salt-type carboxyl groups.

かかる塩型カルボキシル基を構成する陽イオンの例としては、Li、Na、K等のアルカリ金属、Be、Mg、Ca、Ba等のアルカリ土類金属、Cu、Zn、Al、Mn、Ag、Fe、Co、Ni等の金属、NH、アミン等の陽イオンなどが挙げられ、複数種類の陽イオンが混在していてもよい。Examples of the cation constituting such a salt-type carboxyl group include alkali metals such as Li, Na and K, alkaline earth metals such as Be, Mg, Ca and Ba, Cu, Zn, Al, Mn, Ag and Fe. , Metals such as Co and Ni, cations such as NH 4 and amines, and a plurality of types of cations may be mixed.

本発明における酸性染料の飽和染着量としては、繊維重量に対して好ましくは3.5〜10重量%、より好ましくは4〜9重量%であることが望ましい。かかる飽和染着量が3.5%未満の場合には、濃色に染色することができず、実用に適さない場合があり、10%を超える場合には、染色速度が速くなり、染色ムラを起こしやすくなる。なお、かかる飽和染着量は後述する方法により求められるものである。 The saturated dyeing amount of the acid dye in the present invention is preferably 3.5 to 10% by weight, more preferably 4 to 9% by weight, based on the fiber weight. When the saturated dyeing amount is less than 3.5%, it cannot be dyed darkly and may not be suitable for practical use. When it exceeds 10%, the dyeing speed increases and uneven dyeing occurs. It becomes easy to cause. The saturated dyeing amount is determined by the method described later.

また、本発明の酸性染料可染性吸湿性繊維は、従来の架橋アクリル酸系繊維に対して染色堅牢度が改善されたものであり、以下に記載する評価方法で評価された汗染色堅牢度が3級以上のものであることが望ましい。
(評価方法)試料を、該試料の重量に対して5重量%の酸性染料Supranol Black VLG(DyStar社製)が入った浴に投入し、酢酸でpH4に調整した後、100℃で30分間浸漬した後、ソーピング、水洗、乾燥を行う。得られた繊維について、JIS−L−0848による汗染色堅牢度を評価する。
In addition, the acid dye-dyeable hygroscopic fiber of the present invention has improved fastness to dyeing compared to conventional cross-linked acrylic fiber, and fastness to sweat dyeing evaluated by the evaluation method described below. It is desirable that is a grade 3 or higher.
(Evaluation method) The sample was put into a bath containing 5% by weight of the acid dye, Suplanol Black VLG (manufactured by DyStar), adjusted to pH 4 with acetic acid, and then immersed at 100 ° C. for 30 minutes. After that, soaping, washing with water and drying are performed. About the obtained fiber, the fastness to sweat dyeing according to JIS-L-0848 is evaluated.

本発明の酸性染料可染性吸湿性繊維の温度20℃、相対湿度65%雰囲気下での飽和吸湿率は、用途によって必要とされる吸湿率が異なるため一概には決められないが、15重量%以上が好ましく、より好ましくは20重量%以上である。 The saturated moisture absorption rate of the acid dye-dyeable hygroscopic fiber of the present invention at a temperature of 20 ° C. and a relative humidity of 65% is not generally determined because the required moisture absorption rate varies depending on the application, but is 15% by weight. % Or more is preferable, and more preferably 20% by weight or more.

また、本発明の酸性染料可染性吸湿性繊維は膨潤度が好ましくは2g/g以下、より好ましくは1.8g/g以下であることが望ましい。膨潤度が2g/gを上回る場合には、繊維物性が低下したり、操業性が悪くなることがある。 Further, the acid dye-dyeable hygroscopic fiber of the present invention preferably has a degree of swelling of 2 g / g or less, more preferably 1.8 g / g or less. When the degree of swelling exceeds 2 g / g, the fiber physical properties may deteriorate or the operability may deteriorate.

上述してきた本発明の酸性染料可染性吸湿性繊維の製造方法としては、いくつかの方法を挙げることができる。例えば、カチオン性基を有するアクリロニトリル系重合体からなるアクリロニトリル系繊維を原料繊維として、該繊維に対して部分的に架橋処理および加水分解処理を施す方法を挙げることができる。かかる方法においては、カチオン性基を有するアクリロニトリル系重合体の一部が架橋処理および加水分解処理により架橋構造とカルボキシル基を有する重合体の領域に変換され、変換されなかった部分が酸性染料染着座席となる官能基を有する重合体の領域となる。 Several methods can be mentioned as a manufacturing method of the acid dye dyeable hygroscopic fiber of this invention which has been mentioned above. For example, there can be mentioned a method in which an acrylonitrile fiber comprising an acrylonitrile polymer having a cationic group is used as a raw fiber, and the fiber is partially subjected to a crosslinking treatment and a hydrolysis treatment. In this method, a part of the acrylonitrile-based polymer having a cationic group is converted into a polymer region having a crosslinked structure and a carboxyl group by a crosslinking treatment and a hydrolysis treatment, and an unconverted portion is dyed with an acid dye. It becomes the area | region of the polymer which has a functional group used as a seat.

ここで、カチオン性基を有するアクリロニトリル系重合体からなるアクリロニトリル系繊維においては、繊維重量に対して0.15mmol/g以上、好ましくは0.17mmol/g以上のカチオン性基を有するものであることが望ましい。カチオン性基が0.15mmol/gに満たない場合は、十分な発色性を得るため、架橋構造とカルボキシル基を有する重合体の領域を小さくすることが必要となる場合がある。なお、上限については、特に制限はないが、染色の均一性の観点から見た場合、0.40mmol/g以下であることが望ましい。 Here, the acrylonitrile fiber composed of an acrylonitrile polymer having a cationic group has a cationic group of 0.15 mmol / g or more, preferably 0.17 mmol / g or more based on the fiber weight. Is desirable. When the cationic group is less than 0.15 mmol / g, it may be necessary to reduce the area of the polymer having a crosslinked structure and a carboxyl group in order to obtain sufficient color developability. In addition, although there is no restriction | limiting in particular about an upper limit, From a viewpoint of the uniformity of dyeing | staining, it is desirable that it is 0.40 mmol / g or less.

また、アクリロニトリル系重合体からなるアクリロニトリル系繊維を原料繊維として、該繊維に対して、1分子中に2個以上の窒素原子を有する窒素含有化合物による架橋処理を施した後、加水分解処理を施す方法であって、前記架橋処理を施す範囲よりも前記加水分解処理を施す範囲を小さくする方法も採用できる。かかる方法においては、まず、架橋処理により、架橋構造とともに酸性染料染着座席となる官能基を有する重合体からなる領域が形成され、その後の加水分解処理により該領域の一部が架橋構造とカルボキシル基を有する重合体の領域に変換される。なお、かかる方法において、アクリロニトリル系重合体として、カチオン性基を有するアクリロニトリル系重合体を用いてもいいことは言うまでもない。 Also, using acrylonitrile fiber made of acrylonitrile polymer as a raw fiber, the fiber is subjected to a crosslinking treatment with a nitrogen-containing compound having two or more nitrogen atoms in one molecule, followed by a hydrolysis treatment. It is a method, Comprising: The method of making the range which performs the said hydrolysis process smaller than the range which performs the said crosslinking process is also employable. In such a method, first, a region comprising a polymer having a functional group that becomes an acid dye dyeing seat together with a crosslinked structure is formed by a crosslinking treatment, and a portion of the region is then converted into a carboxylated structure and a carboxyl by hydrolysis treatment thereafter. It is converted into a polymer region having groups. In this method, it goes without saying that an acrylonitrile polymer having a cationic group may be used as the acrylonitrile polymer.

さらに、酸性染料染着座席となる官能基を有さないアクリロニトリル系重合体からなるアクリロニトリル系繊維を原料繊維とし、これに酸性染料染着座席となる官能基を導入した後に部分的に架橋処理および加水分解処理を施す方法や、アクリロニトリル系重合体以外の酸性染料染着座席となる官能基を有する重合体を含有するアクリロニトリル系繊維を原料繊維とし、これに部分的に架橋処理および加水分解処理を施す方法なども採用することができる。 Further, acrylonitrile fiber made of acrylonitrile-based polymer having no functional group serving as an acid dye dyeing seat is used as a raw material fiber, and after partially introducing a functional group serving as an acid dye dyeing seat into this, a crosslinking treatment and A method of performing a hydrolysis treatment, or an acrylonitrile fiber containing a polymer having a functional group serving as an acid dye dyeing seat other than an acrylonitrile polymer is used as a raw fiber, and this is partially subjected to a crosslinking treatment and a hydrolysis treatment. An application method can also be employed.

なお、上記に列挙した製造方法において、原料繊維となるアクリロニトリル系繊維中のアクリロニトリル系重合体の割合については、酸性染料染着座席となる官能基の有無に関わりなく、80〜100重量%であることが望ましい。 In the above-described production methods, the ratio of the acrylonitrile polymer in the acrylonitrile fiber used as the raw fiber is 80 to 100% by weight regardless of the presence or absence of the functional group serving as the acid dye dyeing seat. It is desirable.

また、原料繊維となるアクリロニトリル系繊維が、少なくとも、アクリロニトリルの含有率の異なる2種のアクリロニトリル系重合体からなり、かかる含有率の差が2重量%以上であることも好ましい。これにより、架橋、加水分解のされやすさに差が生まれ、酸性染料染着座席となる官能基を有する重合体の領域と架橋構造とカルボキシル基を有する重合体の領域が形成されやすくなる。 Moreover, it is also preferable that the acrylonitrile fiber used as the raw fiber is composed of at least two acrylonitrile polymers having different acrylonitrile contents, and the difference in the contents is 2% by weight or more. As a result, a difference in ease of crosslinking and hydrolysis is generated, and a polymer region having a functional group that becomes an acid dye dyeing seat and a polymer region having a crosslinked structure and a carboxyl group are easily formed.

かかるアクリロニトリル系繊維は、2種のアクリロニトリル系重合体がサイドバイサイドに接合されてなるものでも、ランダムに混合されてなるものでも構わないが、A−B−A層からなる3層構造でなるもの、あるいは芯鞘構造のものがより好ましく、B層もしくは芯の部分がアクリロニトリルの含有率が高く、かつ多くのカチオン性基を有するものであることが好ましい。具体的には、B層もしくは芯の部分のアクリロニトリル含有率が82重量%以上、好ましくは85重量%以上、より好ましくは90重量%以上であることが望ましく、カチオン性基の含有量が0.15mmol/g以上、好ましくは0.17mmol/g以上であることが望ましい。 Such an acrylonitrile fiber may be one obtained by bonding two kinds of acrylonitrile polymers side-by-side or randomly mixed, but one having a three-layer structure composed of ABA layers, Alternatively, a core-sheath structure is more preferable, and the B layer or the core part preferably has a high acrylonitrile content and has many cationic groups. Specifically, it is desirable that the acrylonitrile content in the B layer or the core portion is 82% by weight or more, preferably 85% by weight or more, more preferably 90% by weight or more, and the content of the cationic group is 0.00. It is desirable that it is 15 mmol / g or more, preferably 0.17 mmol / g or more.

なお、A−B−A層からなる3層構造のアクリロニトリル系繊維を得る方法としては、特開2000−45126号公報に記載の方法などが採用でき、この際、A成分の原液粘度がB成分の原液粘度より低くなるようにし、B成分の繊維表面への露出を少なくすることが好ましい。 In addition, as a method for obtaining an acrylonitrile fiber having a three-layer structure composed of an A-B-A layer, a method described in JP-A No. 2000-45126 can be employed. It is preferable to reduce the exposure of the B component to the fiber surface by lowering the viscosity of the stock solution.

以上に説明した本発明の酸性染料可染性吸湿性繊維の製造方法としては、カチオン性基を有するアクリロトリル系重合体からなるアクリロニトリル系繊維を1分子中に2個以上の窒素原子を有する窒素含有化合物により架橋処理した後、アルカリ性金属塩水溶液により加水分解処理すること、あるいはこれらの処理を同時に行なうことにより、繊維の表層部に架橋構造とカルボキシル基を有する重合体の領域を形成し、芯部にカチオン性基を有するアクリロニトリル系重合体の領域を残す方法が製造設備やコストの面から望ましい。かかる方法について以下に詳述する。 As the method for producing the acid dye-dyeable hygroscopic fiber of the present invention described above, the acrylonitrile-based fiber composed of an acrylotolyl-based polymer having a cationic group contains nitrogen having two or more nitrogen atoms in one molecule. After crosslinking with a compound, hydrolysis treatment with an alkaline metal salt aqueous solution, or by performing these treatments simultaneously, a polymer region having a crosslinked structure and a carboxyl group is formed on the surface layer of the fiber, and the core portion A method of leaving an area of an acrylonitrile-based polymer having a cationic group is desirable from the viewpoint of manufacturing equipment and cost. This method will be described in detail below.

かかる方法においては、上述したカチオン性基を有するアクリロニトリル系重合体からなるアクリロニトリル系繊維に、上述した1分子中に2個以上の窒素原子を有する窒素含有化合物を含有する水溶液による架橋導入処理およびアルカリ性金属塩化合物を含有する水溶液による加水分解処理を施す。これらの処理は架橋処理後に加水分解処理を施すという個別処理で行なうこともできるし、1分子中に2個以上の窒素原子を有する窒素含有化合物とアルカリ性金属塩化合物を共存させた水溶液を用いる同時処理で行うこともできる。いずれの場合も1分子中に2個以上の窒素原子を有する窒素含有化合物とアクリロニトリル系繊維の表層部のアクリロニトリル系重合体が有するニトリル基が反応することで架橋構造が形成され、またアルカリ性金属塩化合物水溶液とニトリル基が反応することでカルボキシル基が形成され、架橋構造とカルボキシル基を有する重合体に変換される。 In such a method, the above-described crosslinking introduction treatment with an aqueous solution containing a nitrogen-containing compound having two or more nitrogen atoms in one molecule is added to the acrylonitrile-based fiber composed of the above-described acrylonitrile-based polymer having a cationic group and alkaline. A hydrolysis treatment with an aqueous solution containing a metal salt compound is performed. These treatments can be carried out by individual treatments in which a hydrolysis treatment is performed after the crosslinking treatment, or simultaneously using an aqueous solution in which a nitrogen-containing compound having two or more nitrogen atoms in one molecule and an alkaline metal salt compound coexist. It can also be done by processing. In any case, a crosslinked structure is formed by the reaction of the nitrogen-containing compound having two or more nitrogen atoms in one molecule with the nitrile group of the acrylonitrile polymer in the surface layer portion of the acrylonitrile fiber, and an alkaline metal salt. A carboxyl group is formed by the reaction between the compound aqueous solution and the nitrile group, which is converted into a polymer having a crosslinked structure and a carboxyl group.

上記架橋処理および加水分解処理の具体的な方法としては、処理に用いる水溶液に繊維を浸漬した状態で反応させる方法を採用することができる。また、個別処理、同時処理のいずれの場合においても、1分子中に2個以上の窒素原子を有する窒素含有化合物の濃度としては、好ましくは0.1〜5重量%、より好ましくは0.1〜3重量%である。この濃度が低すぎると架橋構造とカルボキシル基を有する重合体の溶出抑制の効果が得られないことがある。一方、架橋構造の導入を繊維の表層部に止めるには、この濃度を5重量%以下とすることが望ましい。また、アルカリ性金属塩化合物の濃度については、好ましくは0.5〜5重量%、より好ましくは0.5〜4重量%である。アルカリ性金属塩化合物の濃度が低すぎると生成されるカルボキシル基量が不十分となることがある。一方、この濃度を5重量%以下に抑制することでカルボキシル基の導入を繊維の表層部に止め、芯部にカチオン性基を有するアクリロニトリル系重合体の領域を残すようにできる。 As a specific method for the crosslinking treatment and the hydrolysis treatment, a method of reacting fibers in an aqueous solution used for the treatment can be employed. In either case of individual treatment or simultaneous treatment, the concentration of the nitrogen-containing compound having two or more nitrogen atoms in one molecule is preferably 0.1 to 5% by weight, more preferably 0.1%. ~ 3 wt%. If this concentration is too low, the effect of suppressing elution of the polymer having a crosslinked structure and a carboxyl group may not be obtained. On the other hand, in order to stop the introduction of the crosslinked structure at the surface layer portion of the fiber, it is desirable that the concentration be 5% by weight or less. Moreover, about the density | concentration of an alkaline metal salt compound, Preferably it is 0.5 to 5 weight%, More preferably, it is 0.5 to 4 weight%. If the concentration of the alkaline metal salt compound is too low, the amount of carboxyl groups produced may be insufficient. On the other hand, by suppressing this concentration to 5% by weight or less, introduction of carboxyl groups can be stopped at the surface layer portion of the fiber, leaving an area of the acrylonitrile polymer having a cationic group at the core portion.

また反応温度および時間については、1分子中に2個以上の窒素原子を有する窒素含有化合物および/またはアルカリ性金属塩化合物の濃度に応じて適切な範囲が異なる。同時処理の場合で、1分子中に2個以上の窒素原子を有する窒素含有化合物の濃度が0.5〜2重量%程度、アルカリ性金属塩化合物の濃度が1〜2重量%程度であれば、90〜100℃で2時間程度の条件が推奨される。 Moreover, about reaction temperature and time, the suitable range changes according to the density | concentration of the nitrogen-containing compound and / or alkaline metal salt compound which have a 2 or more nitrogen atom in 1 molecule. In the case of simultaneous treatment, if the concentration of the nitrogen-containing compound having two or more nitrogen atoms in one molecule is about 0.5 to 2% by weight and the concentration of the alkaline metal salt compound is about 1 to 2% by weight, Conditions of 90 to 100 ° C. for about 2 hours are recommended.

上記の個別処理の場合、架橋処理を経た繊維は、加水分解処理の前に酸処理を施してもよい。かかる酸処理により、繊維の着色を淡色化することができる。ここで使用する酸としては、硝酸、硫酸、塩酸等の鉱酸の水溶液、有機酸等が挙げられるが、特に限定されない。また、処理条件としては、酸濃度5〜20重量%、好ましくは7〜15重量%の水溶液に、温度50〜120℃で0.5〜10時間被処理繊維を浸漬するといった例が挙げられる。ただし、かかる酸処理は加水分解を進め、最終的に得られる繊維に残すべきアクリロニトリル系重合体、すなわち、酸性染料染着座席となる官能基を有する重合体の領域を減少させる効果があるため、このことを勘案して条件を設定することが肝要である。 In the case of the above individual treatment, the fiber subjected to the crosslinking treatment may be subjected to an acid treatment before the hydrolysis treatment. By this acid treatment, the coloring of the fiber can be lightened. Examples of the acid used here include aqueous solutions of mineral acids such as nitric acid, sulfuric acid, and hydrochloric acid, and organic acids, but are not particularly limited. Examples of the treatment conditions include soaking the treated fiber in an aqueous solution having an acid concentration of 5 to 20% by weight, preferably 7 to 15% by weight, at a temperature of 50 to 120 ° C. for 0.5 to 10 hours. However, this acid treatment has an effect of proceeding hydrolysis and reducing the area of the acrylonitrile-based polymer to be left in the finally obtained fiber, that is, the polymer having a functional group that becomes an acid dye dyeing seat, It is important to set conditions in consideration of this.

以上のようにして得られた加水分解あるいは架橋・加水分解同時処理後の繊維は、そのままでも本発明の酸性染料可染性吸湿性繊維として利用できるが、さらに酸性水溶液によって洗浄してもよい。これにより、より高白度の繊維を得ることができる。かかる酸性水溶液としては、硝酸、硫酸、塩酸等の鉱酸の水溶液、有機酸等が挙げられるが、特に限定されない。 The fiber after hydrolysis or simultaneous crosslinking and hydrolysis treatment obtained as described above can be used as it is as the dye-dyeable hygroscopic fiber of the present invention, but may be further washed with an acidic aqueous solution. Thereby, a fiber with higher whiteness can be obtained. Examples of the acidic aqueous solution include, but are not particularly limited to, an aqueous solution of a mineral acid such as nitric acid, sulfuric acid, and hydrochloric acid, and an organic acid.

また、上述したように繊維製造後の段階においては、紡績等の加工を容易にするためH型カルボキシル基とし、染色後あるいは最終製品の段階において、所望の塩型カルボキシル基あるいはH型カルボキシル基に変換したり、異種の塩型を混在させたりすることが望ましい。かかるカルボキシル基の型の調整は、硝酸塩、硫酸塩、塩酸塩などの金属塩によるイオン交換処理、緩衝液などによるpH調整処理などを施すことにより実施することができる。なお、高い吸湿率を得る場合にはカルボキシル基量の50%以上を塩型カルボキシル基とすることが望ましい。 Further, as described above, at the stage after fiber production, an H-type carboxyl group is used for easy processing such as spinning, and after dyeing or at the final product stage, the desired salt-type carboxyl group or H-type carboxyl group is obtained. It is desirable to convert or to mix different salt types. Such adjustment of the carboxyl group type can be carried out by performing ion exchange treatment with a metal salt such as nitrate, sulfate or hydrochloride, pH adjustment treatment with a buffer solution or the like. In order to obtain a high moisture absorption rate, it is desirable that 50% or more of the carboxyl group amount is a salt-type carboxyl group.

また、上述したアクリロニトリル系重合体からなるアクリロニトリル系繊維を原料繊維として、該繊維に対して、1分子中に2個以上の窒素原子を有する窒素含有化合物による架橋処理を施した後、加水分解処理を施す方法であって、前記架橋処理を施す範囲よりも前記加水分解処理を施す範囲を小さくする方法も好ましい方法である。かかる方法においては、架橋処理を施す範囲を加水分解を施す範囲よりも広くするため、まず、1分子中に2個以上の窒素原子を有する窒素含有化合物の濃度を高く設定した溶液で架橋処理を施し、その後加水分解処理を行う。例えば、芯鞘構造とする場合であれば、繊維全体に架橋処理を施すため、窒素含有化合物の濃度を好ましくは7〜20重量%、より好ましくは10〜20重量%とする。かかる処理後の繊維表層部の加水分解処理の条件については、上述した条件を採用すればよく、必要に応じ酸処理やカルボキシル基の型の調整も同様に行えばよい。 Moreover, after using the acrylonitrile-based fiber made of the acrylonitrile-based polymer described above as a raw fiber, the fiber is subjected to a crosslinking treatment with a nitrogen-containing compound having two or more nitrogen atoms in one molecule, followed by a hydrolysis treatment It is also a preferred method to make the range for the hydrolysis treatment smaller than the range for the crosslinking treatment. In such a method, in order to make the range for the crosslinking treatment wider than the range for the hydrolysis, the crosslinking treatment is first performed with a solution in which the concentration of the nitrogen-containing compound having two or more nitrogen atoms in one molecule is set high. And then hydrolyzed. For example, in the case of a core-sheath structure, the concentration of the nitrogen-containing compound is preferably 7 to 20% by weight, more preferably 10 to 20% by weight, because the entire fiber is subjected to a crosslinking treatment. About the conditions of the hydrolysis process of the fiber surface layer part after this process, what is necessary is just to employ | adopt the conditions mentioned above, and what is necessary is just to perform the acid treatment and the adjustment of the type of a carboxyl group as needed.

以下実施例により本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例中の部及び百分率は、断りのない限り重量基準で示す。実施例中の特性の評価方法は以下のとおりである。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples. In addition, unless otherwise indicated, the part and percentage in an Example are shown on a weight basis. The evaluation methods of the characteristics in the examples are as follows.

(1)カルボキシル基量
十分乾燥した試料約1gを精秤し(A[g])、これに200mlの水を加えた後、50℃に加温しながら1mol/L塩酸水溶液を添加してpH2にし、次いで0.1mol/L水酸化ナトリウム水溶液で常法に従って滴定曲線を求める。該滴定曲線からカルボキシル基に消費された水酸化ナトリウム水溶液消費量(B[ml])を求め、次式によってカルボキシル基量を算出する。
カルボキシル基量[mmol/g]=0.1×B/A
(1) About 1 g of a sufficiently dried sample of carboxyl groups (A [g]) was added, 200 ml of water was added thereto, and then a 1 mol / L hydrochloric acid aqueous solution was added while heating to 50 ° C. Then, a titration curve is obtained with a 0.1 mol / L aqueous sodium hydroxide solution according to a conventional method. The consumption amount (B [ml]) of an aqueous sodium hydroxide solution consumed by carboxyl groups is determined from the titration curve, and the carboxyl group amount is calculated by the following formula.
Amount of carboxyl group [mmol / g] = 0.1 × B / A

(2)原料繊維のカチオン性基量
十分乾燥した試料約0.5gを精秤し(C[g])、イオン交換が十分行われる量の0.1mol/L塩酸水溶液(D[ml])が入ったビーカーに浸漬する。試料をろ過し、ろ液にフェノールフタレイン溶液を指示薬として添加する。このろ液を0.1mmol/L水酸化ナトリウム水溶液で滴定し、残留塩酸を定量した。その時の水酸化ナトリウム水溶液の滴定量をE[ml]として、次式により、カチオン性基量を算出した。
カチオン性基量[mmol/g]=(0.1×D−0.1×E)/C
(2) About 0.5 g of a sufficiently dried sample of the basic fiber of the raw fiber (C [g]) is precisely weighed (C [g]), and a 0.1 mol / L hydrochloric acid aqueous solution (D [ml]) in an amount sufficient for ion exchange. Immerse in a beaker containing. The sample is filtered and a phenolphthalein solution is added to the filtrate as an indicator. The filtrate was titrated with a 0.1 mmol / L aqueous sodium hydroxide solution to quantify residual hydrochloric acid. The amount of the cationic group was calculated according to the following equation with the titration amount of the aqueous sodium hydroxide solution at that time as E [ml].
Cationic group amount [mmol / g] = (0.1 × D−0.1 × E) / C

(3)飽和吸湿率
試料約5.0gを水に浸漬し、カルボキシル基に対し、中和度70%となるように水酸化ナトリウム水溶液を添加して、70℃で1時間浸漬処理した後に、水洗、脱水し、24時間風乾させる。中和処理された該試料を、熱風乾燥機で105℃、16時間乾燥して重量を測定する(F[g])。次に該試料を20℃、相対湿度65%の条件に調節した恒温恒湿器に24時間入れておく。このようにして吸湿させた試料の重量を測定する。(G[g])。以上の測定結果から、次式によって算出する。
飽和吸湿率[%]=(G−F)/F×100
(3) About 5.0 g of saturated moisture absorption sample was immersed in water, an aqueous sodium hydroxide solution was added so that the neutralization degree was 70% with respect to the carboxyl group, and after immersion treatment at 70 ° C. for 1 hour, Wash with water, dehydrate, and air dry for 24 hours. The neutralized sample is dried with a hot air dryer at 105 ° C. for 16 hours, and the weight is measured (F [g]). Next, the sample is placed in a thermo-hygrostat adjusted to 20 ° C. and a relative humidity of 65% for 24 hours. The weight of the sample thus absorbed is measured. (G [g]). From the above measurement results, calculation is performed according to the following equation.
Saturated moisture absorption [%] = (G−F) / F × 100

(4)膨潤度
試料約3gを熱風乾燥機で70℃×3時間乾燥して重量を測定する(H[g])。次に該試料を水が300ml入ったビーカーに30分間浸漬した後、膨潤した試料を卓上遠心脱水機(160G×5分)で脱水し、試料の重量を測定する(J[g])。以上の測定結果から、次式によって算出する。
膨潤度[g/g]=(J−H)/H
(4) Swelling degree About 3 g of the sample is dried with a hot air dryer at 70 ° C. for 3 hours and the weight is measured (H [g]). Next, after immersing the sample in a beaker containing 300 ml of water for 30 minutes, the swollen sample is dehydrated with a desktop centrifugal dehydrator (160 G × 5 minutes), and the weight of the sample is measured (J [g]). From the above measurement results, calculation is performed according to the following equation.
Swelling degree [g / g] = (J−H) / H

(5)染色性
試料を、該試料の重量に対して5%の酸性染料Supranol Black VLG(DyStar社製)が入った浴に投入し、酢酸でpH3.5に調整した後、100℃で30分間浸漬した後、ソーピング、水洗、乾燥を行う。得られた繊維について、染色性を以下の判断基準に基づき、目視によって評価する。
○:十分に染色可能
△:淡色に染色可能
×:ほとんど染まらない、または色相が異常
(5) The dyeable sample was put into a bath containing 5% of the acid dye Supranol Black VLG (manufactured by DyStar) with respect to the weight of the sample, adjusted to pH 3.5 with acetic acid, and then adjusted to 30 at 100 ° C. After soaking for a minute, soaping, washing and drying are performed. The obtained fiber is visually evaluated for dyeability based on the following criteria.
○: Fully dyeable △: Lightly dyeable ×: Almost not dyed or abnormal hue

(6)汗染色堅牢度
「(5)染色性」と同様の方法で染色された繊維について、JIS−L−0848による汗染色堅牢度を評価する。
(6) Fastness of sweat dyeing The fastness of sweat dyeing according to JIS-L-0848 is evaluated for fibers dyed by the same method as “(5) Dyeability”.

(7)アクリロニトリル系重合体の領域の断面積比率
「(5)染色性」と同様の方法で染色された繊維を切断し、繊維断面を光学顕微鏡で観察することにより算出する。
(7) The cross-sectional area ratio of the region of the acrylonitrile-based polymer is calculated by cutting the fiber dyed by the same method as “(5) Dyeability” and observing the fiber cross section with an optical microscope.

(8)飽和染着量
投入する試料の重量に対して20%の酸性染料Sandolan Fast Blue P−L 125%(Sandoz社製)を含有し、酢酸でpH3に調整した染色母液を浴比1:200として作成し、かかる染色母液の波長590nmの光に対する吸光度を測定する。次いで、該染色母液に試料を投入し、100℃で30分間処理する。徐冷後、炭酸ナトリウムで染色浴をpH7に調整し、70℃で30分間処理する。次いで、処理中に蒸発した水分を染色浴に補って、再度浴比を1:200に調整し、染色残液の波長590nmの光に対する吸光度を測定する。以上の測定結果より、下記の式を用いて、繊維重量に対する飽和染着量を算出する。
飽和染着量(%)=(染色母液の吸光度−染色残液の吸光度)/染色母液の吸光度×20
なお、染色母液および染色残液の吸光度はそれぞれ20倍希釈後、U−1100 Spectrophotometer(日立製作所製)を用いて測定した。
(8) Saturated dyeing amount A dye mother liquor containing 20% acidic dye Sandolan Fast Blue P-L 125% (manufactured by Sandoz) and adjusted to pH 3 with acetic acid with respect to the weight of the sample to be charged is bath ratio 1: 200, and the absorbance of the stained mother liquor with respect to light having a wavelength of 590 nm is measured. Next, the sample is put into the stained mother liquor and treated at 100 ° C. for 30 minutes. After slow cooling, the dyeing bath is adjusted to pH 7 with sodium carbonate and treated at 70 ° C. for 30 minutes. Next, the water evaporated during the treatment is supplemented to the dyeing bath, the bath ratio is adjusted again to 1: 200, and the absorbance of the dyeing residual solution with respect to light having a wavelength of 590 nm is measured. From the above measurement results, the saturated dyeing amount relative to the fiber weight is calculated using the following formula.
Saturated dyeing amount (%) = (absorbance of stained mother liquor−absorbance of dyeing residual solution) / absorbance of stained mother liquor × 20
In addition, the light absorbency of dyeing | staining mother liquor and the dyeing | staining residual liquid was measured using U-1100 Spectrophotometer (made by Hitachi, Ltd.) after each 20 times dilution.

[実施例1]
アクリロニトリル86%、アクリル酸メチル11%および(メタ)アクリル酸ジメチルアミノエチル3%からなるアクリロニトリル系重合体(30℃ジメチルホルムアミド中での極限粘度[η]=1.2)10部を48%ロダンソーダ水溶液90部に溶解した紡糸原液を、常法に従って紡糸、延伸(全延伸倍率:10倍)した後、乾球/湿球=120℃/60℃の雰囲気下で乾燥後、湿熱処理して単繊維繊度2.2dtexの原料繊維(繊維長51mm)を得た。該原料繊維に、水加ヒドラジン0.4%および水酸化ナトリウム2%を含有する水溶液中で、90℃×2時間処理を行い、pH2以下の硝酸水溶液で洗浄し、水洗、乾燥することにより、実施例1の繊維を得た。得られた繊維の評価結果を表1に示す。
[Example 1]
10 parts of an acrylonitrile polymer (intrinsic viscosity [η] = 1.2 in dimethylformamide at 30 ° C.) consisting of 86% acrylonitrile, 11% methyl acrylate and 3% dimethylaminoethyl (meth) acrylate is 48% rhodasoda The spinning solution dissolved in 90 parts of the aqueous solution was spun and stretched according to a conventional method (total stretching ratio: 10 times), dried in an atmosphere of dry bulb / wet bulb = 120 ° C./60° C., and then subjected to wet heat treatment. A raw fiber (fiber length 51 mm) having a fiber fineness of 2.2 dtex was obtained. The raw fiber is treated at 90 ° C. for 2 hours in an aqueous solution containing 0.4% hydrazine hydrate and 2% sodium hydroxide, washed with an aqueous nitric acid solution having a pH of 2 or less, washed with water, and dried. The fiber of Example 1 was obtained. The evaluation results of the obtained fiber are shown in Table 1.

[実施例2]
実施例1の原料繊維に、水加ヒドラジン0.4%および水酸化ナトリウム2%を含有する水溶液中で、90℃×1.5時間処理を行い、pH2以下の硝酸水溶液で洗浄し、水洗、乾燥することにより、実施例2の繊維を得た。得られた繊維の評価結果を表1に示す。
[Example 2]
The raw material fiber of Example 1 was treated at 90 ° C. for 1.5 hours in an aqueous solution containing 0.4% hydrazine hydrate and 2% sodium hydroxide, washed with an aqueous nitric acid solution having a pH of 2 or less, washed with water, The fiber of Example 2 was obtained by drying. The evaluation results of the obtained fiber are shown in Table 1.

[実施例3]
アクリロニトリル90%、アクリル酸メチル9.7%およびメタアリルスルホン酸ナトリウム0.3%からなるアクリロニトリル系重合体(30℃ジメチルホルムアミド中での極限粘度[η]=1.2)10部を48%ロダンソーダ水溶液90部に溶解した紡糸原液を、常法に従って紡糸、延伸(全延伸倍率:10倍)した後、乾球/湿球=120℃/60℃の雰囲気下で乾燥後、湿熱処理した単繊維繊度2.2dtexの原料繊維(繊維長51mm)を得た。該原料繊維に、水加ヒドラジン10%を含有する水溶液中で110℃×1時間処理し、その後、水酸化ナトリウムを1.6%含有する水溶液で100℃×1時間処理を行い、pH2以下の硝酸水溶液で洗浄し、水洗、乾燥することにより、実施例3の繊維を得た。得られた繊維の評価結果を表1に示す。
[Example 3]
48% of 10 parts of acrylonitrile polymer (intrinsic viscosity [η] = 1.2 in 30 ° C. dimethylformamide) consisting of 90% acrylonitrile, 9.7% methyl acrylate and 0.3% sodium methallylsulfonate A spinning stock solution dissolved in 90 parts of an aqueous rhodium soda solution is spun and drawn according to a conventional method (total draw ratio: 10 times), then dried in an atmosphere of dry bulb / wet bulb = 120 ° C./60° C., and then wet-heat treated. A raw fiber (fiber length 51 mm) having a fiber fineness of 2.2 dtex was obtained. The raw fiber was treated at 110 ° C. for 1 hour in an aqueous solution containing 10% hydrazine hydrate, then treated at 100 ° C. for 1 hour with an aqueous solution containing 1.6% sodium hydroxide, and the pH was 2 or less. The fiber of Example 3 was obtained by washing with an aqueous nitric acid solution, washing with water and drying. The evaluation results of the obtained fiber are shown in Table 1.

[実施例4]
実施例1の原料繊維を、水加ヒドラジン15%を含有する水溶液中で110℃×1.5時間処理し、その後、水酸化ナトリウムを2%含有する水溶液で100℃×1時間処理を行い、pH2以下の硝酸水溶液で洗浄し、水洗、乾燥することにより、実施例4の繊維を得た。得られた繊維の評価結果を表1に示す。
[Example 4]
The raw material fiber of Example 1 was treated in an aqueous solution containing 15% hydrazine hydrate at 110 ° C. for 1.5 hours, and then treated with an aqueous solution containing 2% sodium hydroxide at 100 ° C. for 1 hour. The fiber of Example 4 was obtained by washing with an aqueous nitric acid solution having a pH of 2 or less, washing with water and drying. The evaluation results of the obtained fiber are shown in Table 1.

[比較例1]
実施例1の原料繊維に、水加ヒドラジンの15%水溶液中で110℃×3時間処理を行い、洗浄した。得られた繊維を、8%硝酸水溶液中に浸漬し、100℃×1時間処理を行った。続いて5%水酸化ナトリウム水溶液中で100℃×1時間処理を行い、pH2以下の硝酸水溶液で洗浄し、水洗、乾燥することにより、比較例1の吸湿性繊維を得た。得られた繊維の評価結果を表1に示す。
[Comparative Example 1]
The raw material fiber of Example 1 was treated at 110 ° C. for 3 hours in a 15% aqueous solution of hydrazine hydrate and washed. The obtained fiber was immersed in an 8% aqueous nitric acid solution and treated at 100 ° C. for 1 hour. Subsequently, a hygroscopic fiber of Comparative Example 1 was obtained by performing treatment in a 5% aqueous sodium hydroxide solution at 100 ° C. for 1 hour, washing with a nitric acid aqueous solution having a pH of 2 or less, washing with water, and drying. The evaluation results of the obtained fiber are shown in Table 1.

[比較例2]
実施例1において、原料繊維として実施例3の原料繊維を用いること以外は同様にして、比較例2の吸湿性繊維を得た。得られた繊維の評価結果を表1に示す。
[Comparative Example 2]
In Example 1, the hygroscopic fiber of Comparative Example 2 was obtained in the same manner except that the raw material fiber of Example 3 was used as the raw material fiber. The evaluation results of the obtained fiber are shown in Table 1.

Figure 2011010590
Figure 2011010590

実施例1では、酸性染料による染色に対して良好な染色性と染色堅牢度を有し、かつ良好な吸湿性能を有する繊維が得られた。実施例2の吸湿性繊維は、実施例1の吸湿性繊維に比べアクリロニトリル系重合体の領域が広いが、吸湿性繊維として十分な吸湿性能を有しており、良好な染色性と染色堅牢度を有するものであった。実施例3では、酸性染料染着座席となる官能基を有さないアクリロニトリル系重合体からなるアクリロニトリル系繊維を出発原料としているが、良好な染色性と染色堅牢度を有する吸湿性繊維が得られた。これは架橋処理条件を強くすることで繊維内層に架橋剤に由来する酸性染料染着座席となる官能基が導入されたことによるものと考えられる。実施例4では、カチオン性基を有するアクリロニトリル系重合体からなるアクリロニトリル系繊維を原料繊維とし、さらに架橋処理条件も強くしたことにより、染色に有効な酸性染料染着座席となる官能基が多くなり、飽和染着量が高い吸湿性繊維が得られたと考えられる。 In Example 1, a fiber having good dyeability and fastness to dyeing with an acid dye and good moisture absorption performance was obtained. The hygroscopic fiber of Example 2 has a wider area of acrylonitrile polymer than the hygroscopic fiber of Example 1, but has sufficient hygroscopic performance as a hygroscopic fiber, and has good dyeability and fastness to dyeing. It was what had. In Example 3, the starting material is an acrylonitrile fiber made of an acrylonitrile polymer that does not have a functional group serving as an acid dye dyeing seat, but a hygroscopic fiber having good dyeability and dyeing fastness can be obtained. It was. This is considered to be due to the introduction of a functional group serving as an acid dye-dyed seat derived from the crosslinking agent in the fiber inner layer by strengthening the crosslinking treatment conditions. In Example 4, acrylonitrile fiber made of acrylonitrile-based polymer having a cationic group was used as a raw fiber, and the crosslinking treatment conditions were strengthened, so that there were many functional groups serving as an acid dye dyeing seat effective for dyeing. It is considered that a hygroscopic fiber having a high saturation dyeing amount was obtained.

一方、比較例1の繊維は、飽和染着量が低く、意図した色相に染色することができず、染色堅牢度も低いものとなった。これは、加水分解処理条件を強くしたため、繊維全体で加水分解が起こり、原料繊維の有していたカチオン性基の多くが失われたためと考えられる。加えて、架橋剤に由来する酸性染料染着座席となる官能基についても、加水分解により別の官能基に変化したり、あるいは、該官能基の周辺に加水分解によりカルボキシル基が多く形成され、水を吸収し膨潤しやすい構造になって、染料が染着しても水に接触して流出しやすくなったりして酸性染料染着座席として十分に機能しなくなったものと考えられる。また、比較例2の繊維は、酸性染料染着座席となる官能基を有さない原料繊維に対して、架橋処理および加水分解処理を繊維表層部のみに止めたため、芯部に酸性染料染着座席となる官能基が存在せず、表層部は比較例1の繊維と同様の構造となり、染色性に劣るものになったと考えられる。なお、これらの比較例の繊維については、適切な染色ができないため、アクリロニトリル系重合体の領域の断面積比率を求めることができなかった。 On the other hand, the fiber of Comparative Example 1 has a low saturated dyeing amount, cannot be dyed to the intended hue, and has a low dyeing fastness. This is presumably because the hydrolysis treatment conditions were strengthened, so that hydrolysis occurred in the entire fiber and many of the cationic groups possessed by the raw fiber were lost. In addition, the functional group that becomes the acidic dye dyeing seat derived from the cross-linking agent also changes to another functional group by hydrolysis, or many carboxyl groups are formed by hydrolysis around the functional group, It is considered that the structure absorbs water easily and swells, and even if the dye is dyed, it does not function sufficiently as an acid dye dyeing seat because it comes into contact with water and easily flows out. Moreover, since the fiber of the comparative example 2 stopped the crosslinking process and the hydrolysis process only in the fiber surface layer part with respect to the raw material fiber which does not have a functional group used as an acid dye dyeing | seat seat, acid dye dyeing | staining is carried out to a core part. There is no functional group serving as a seat, and the surface layer portion has the same structure as that of the fiber of Comparative Example 1, which is considered to be inferior in dyeability. In addition, about the fiber of these comparative examples, since appropriate dyeing | staining cannot be performed, the cross-sectional area ratio of the area | region of an acrylonitrile-type polymer was not able to be calculated | required.

本発明の酸性染料可染性吸湿性繊維は高吸湿性能を有し、且つ、酸性染料による染色性に優れるため、実用的な染色が可能である。そのため従来の架橋アクリル酸系繊維では実用的な染色が困難とされていたために使用が制限されていた用途にも展開が可能である。 Since the acid dye-dyeable and hygroscopic fiber of the present invention has high hygroscopic performance and excellent dyeability with an acid dye, practical dyeing is possible. For this reason, it is possible to develop applications where the use of the conventional crosslinked acrylic fiber is restricted because practical dyeing is difficult.

【0002】
案されている。この繊維はカチオン性染料の染着座席として機能するスルホン酸基を多量に有するため、カチオン性染料で色を付けることができるが、十分な発色性あるいは染色堅牢度や色相安定性を得ることは困難であった。また、原料繊維にスルホン酸基を有するモノマーを含浸、重合させることでスルホン酸基を導入するという手段を採用するため、複雑な操作が必要となりコスト高になるという問題を有している。
先行技術文献
特許文献
[0006]
特許文献1:特開2003−278079号公報
特許文献2:特開2006−70421号公報
特許文献3:特開2008−174849号公報
発明の概要
発明が解決しようとする課題
[0007]
以上のように、従来の架橋アクリル酸系繊維は、pH緩衝性、制電性、保水性等の調和機能や高吸湿率、高吸湿速度、高吸湿率差あるいはそれに由来する調温・調湿機能などの特徴を有するものであったが、染色性について課題を残すものであった。本発明は、かかる現状に基づきなされたものであり、高吸湿性、高吸湿率差等の架橋アクリル酸系繊維の特徴を保持しつつ、酸性染料による実用的な染色が可能な繊維を提供することを目的とする。
課題を解決するための手段
[0008]
本発明者らは、上述の目的を達成するために鋭意検討を進めた結果、以下に示す本発明に到達した。
[0009]
(1)架橋構造とカルボキシル基を有する重合体の領域と、かかる領域とは別の、酸性染料染着座席となる官能基を有する重合体の領域とからなる繊維であり、
かつ、繊維重量に対する酸性染料の飽和染着量が3.5〜10重量%であり、カルボキシル基量が1.0〜10mmol/gである酸性染料可染性吸湿性繊維。
[0002]
It has been proposed. Since this fiber has a large amount of sulfonic acid groups that function as a dyeing seat for cationic dyes, it can be colored with cationic dyes, but it is not possible to obtain sufficient color development or dyeing fastness or hue stability. It was difficult. In addition, since a method of introducing a sulfonic acid group by impregnating and polymerizing a monomer having a sulfonic acid group into a raw fiber is employed, there is a problem that a complicated operation is required and the cost is increased.
Prior Art Literature Patent Literature [0006]
Patent Document 1: Japanese Patent Application Laid-Open No. 2003-278079 Patent Document 2: Japanese Patent Application Laid-Open No. 2006-70421 Patent Document 3: Japanese Patent Application Laid-Open No. 2008-174849 SUMMARY OF THE INVENTION Problems to be Solved by the Invention [0007]
As described above, the conventional cross-linked acrylic fiber has a harmonious function such as pH buffering property, antistatic property, water retention, high moisture absorption rate, high moisture absorption rate, high moisture absorption rate difference or temperature control / humidity control derived therefrom. Although it had features such as functions, it left a problem regarding dyeability. The present invention has been made based on the current situation, and provides a fiber capable of practical dyeing with an acid dye while maintaining the characteristics of the crosslinked acrylic acid fiber such as high hygroscopicity and high moisture absorption difference. For the purpose.
Means for Solving the Problems [0008]
As a result of diligent studies to achieve the above-mentioned object, the present inventors have reached the present invention shown below.
[0009]
(1) A fiber comprising a polymer region having a cross-linked structure and a carboxyl group, and a polymer region having a functional group serving as an acid dye dyeing seat, separate from the region,
And the acid dye dyeable hygroscopic fiber whose saturation dyeing amount of the acid dye with respect to fiber weight is 3.5 to 10 weight% and whose carboxyl group amount is 1.0 to 10 mmol / g.

Claims (6)

酸性染料染着座席となる官能基を有する重合体の領域と架橋構造とカルボキシル基を有する重合体の領域とからなる繊維であり、
かつ、繊維重量に対する酸性染料の飽和染着量が3.5〜10重量%であり、カルボキシル基量が1.0〜10mmol/gである酸性染料可染性吸湿性繊維。
It is a fiber composed of a polymer region having a functional group serving as an acid dye dyeing seat and a polymer region having a crosslinked structure and a carboxyl group,
And the acid dye dyeable hygroscopic fiber whose saturation dyeing amount of the acid dye with respect to fiber weight is 3.5 to 10 weight% and whose carboxyl group amount is 1.0 to 10 mmol / g.
酸性染料染着座席となる官能基を有する重合体が、アクリロニトリルを主成分とし、少なくともカチオン性基を有するビニル系単量体を共重合成分とする重合体であることを特徴とする請求項1に記載の酸性染料可染性吸湿性繊維。 2. The polymer having a functional group serving as an acid dye dyeing seat is a polymer containing acrylonitrile as a main component and a vinyl monomer having at least a cationic group as a copolymerization component. Acid dye-dyeable hygroscopic fibers as described in 1. 酸性染料染着座席となる官能基を有する重合体が、アクリロニトリルを主成分とする重合体に、1分子中に2個以上の窒素原子を有する窒素含有化合物による処理を施して得られるものであることを特徴とする請求項1に記載の酸性染料可染性吸湿性繊維。 A polymer having a functional group serving as an acid dye dyeing seat is obtained by treating a polymer mainly composed of acrylonitrile with a nitrogen-containing compound having two or more nitrogen atoms in one molecule. The acid dye-dyeable hygroscopic fiber according to claim 1. 架橋構造とカルボキシル基を有する重合体が、アクリロニトリルを主成分とする重合体に1分子中に2個以上の窒素原子を有する窒素含有化合物による処理、および、加水分解処理を施して得られるものであることを特徴とする請求項1に記載の酸性染料可染性吸湿性繊維。 A polymer having a crosslinked structure and a carboxyl group is obtained by subjecting a polymer containing acrylonitrile as a main component to a treatment with a nitrogen-containing compound having two or more nitrogen atoms in one molecule and a hydrolysis treatment. The acid dye-dyeable hygroscopic fiber according to claim 1, wherein the dye is hygroscopic. アクリロニトリルを主成分とし、少なくともカチオン性基を有するビニル系単量体を共重合成分とする重合体からなる繊維の表層部に対して1分子中に2個以上の窒素原子を有する窒素含有化合物による架橋処理および加水分解処理を施すことを特徴とする請求項1に記載の酸性染料可染性吸湿性繊維の製造方法。 Due to a nitrogen-containing compound having two or more nitrogen atoms in one molecule with respect to the surface layer portion of the fiber composed of a polymer composed mainly of acrylonitrile and having a vinyl monomer having at least a cationic group as a copolymerization component The method for producing an acid dye-dyeable hygroscopic fiber according to claim 1, wherein a crosslinking treatment and a hydrolysis treatment are performed. アクリロニトリルを主成分とする重合体からなる繊維に対して1分子中に2個以上の窒素原子を有する窒素含有化合物による架橋処理を施した後に加水分解処理を施す方法であって、前記架橋処理を施す範囲よりも前記加水分解処理を施す範囲を小さくすることを特徴とする請求項1に記載の酸性染料可染性吸湿性繊維の製造方法。 A method comprising subjecting fibers made of a polymer mainly composed of acrylonitrile to a crosslinking treatment with a nitrogen-containing compound having two or more nitrogen atoms in one molecule, followed by a hydrolysis treatment, The method for producing an acid dye-dyeable hygroscopic fiber according to claim 1, wherein the hydrolysis treatment range is smaller than the application range.
JP2011523618A 2009-07-22 2010-07-15 Acid dye-dyeable hygroscopic fiber and method for producing the same Active JP5590341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011523618A JP5590341B2 (en) 2009-07-22 2010-07-15 Acid dye-dyeable hygroscopic fiber and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009170867 2009-07-22
JP2009170867 2009-07-22
PCT/JP2010/061937 WO2011010590A1 (en) 2009-07-22 2010-07-15 Moisture-absorbing fiber dyeable with acid dyes and method for producing same
JP2011523618A JP5590341B2 (en) 2009-07-22 2010-07-15 Acid dye-dyeable hygroscopic fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JPWO2011010590A1 true JPWO2011010590A1 (en) 2012-12-27
JP5590341B2 JP5590341B2 (en) 2014-09-17

Family

ID=43499063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011523618A Active JP5590341B2 (en) 2009-07-22 2010-07-15 Acid dye-dyeable hygroscopic fiber and method for producing the same

Country Status (6)

Country Link
EP (1) EP2458082A4 (en)
JP (1) JP5590341B2 (en)
KR (1) KR101650495B1 (en)
CN (1) CN102575415B (en)
TW (1) TWI481759B (en)
WO (1) WO2011010590A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5056358B2 (en) * 2007-11-02 2012-10-24 日本エクスラン工業株式会社 Dyeable cross-linked acrylate fiber, method for producing the same, and dyed cross-linked acrylate fiber obtained by dyeing the fiber
JP5765570B2 (en) * 2010-09-08 2015-08-19 日本エクスラン工業株式会社 Thermal insulation fiber
TWI645086B (en) * 2013-09-20 2018-12-21 日本Exlan工業股份有限公司 Crosslinking acrylate based fiber and fiber structure comprising the same
TWI667270B (en) * 2014-05-26 2019-08-01 日商王子控股股份有限公司 Methods for producing fine fiber and fine-fiber-containing sheet, sheet obtained thereby, and resin-laminated composite sheet
JP6339861B2 (en) * 2014-05-29 2018-06-06 日本エクスラン工業株式会社 Filling, and futon and garment containing the filling
JP6786057B2 (en) * 2016-04-14 2020-11-18 日本エクスラン工業株式会社 Functional component Sustained release fiber, fiber structure having the fiber and underwear, and method for regenerating them
WO2018067092A2 (en) 2016-08-09 2018-04-12 Aksa Akri̇li̇k Ki̇mya Sanayi̇i̇ Anoni̇m Şi̇rketi̇ Fibre dyeing method
CN109642349B (en) * 2016-09-26 2021-08-06 东洋纺株式会社 Moisture-absorbing heat-generating fiber
TWI771378B (en) * 2017-03-23 2022-07-21 日商日本Exlan工業股份有限公司 Hygroscopic (moisture-absorption) granular cotton and batting (inner cotton) comprising the granular cotton thereof
JP7177982B2 (en) * 2017-11-06 2022-11-29 日本エクスラン工業株式会社 Hygroscopic acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP7276703B2 (en) * 2018-02-22 2023-05-18 日本エクスラン工業株式会社 Dyeing method for fiber structure containing acrylonitrile/crosslinked acrylate system
WO2020255680A1 (en) * 2019-06-20 2020-12-24 日本エクスラン工業株式会社 Ion-exchange fiber, and ion-exchange filter containing same
CN114474890B (en) * 2022-01-27 2023-11-21 福建信达针织有限公司 Moisture-absorbing and quick-drying fabric and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920251B1 (en) * 1970-12-29 1974-05-23
JPS4939514B2 (en) * 1971-08-16 1974-10-25
JPS5117610B2 (en) * 1973-01-09 1976-06-03
JPS5673117A (en) * 1979-11-09 1981-06-17 Asahi Chem Ind Co Ltd Hollow acrylic fiber
JP2000045126A (en) 1998-07-28 2000-02-15 Japan Exlan Co Ltd Improved acrylic composite fiber and its production
JP4674429B2 (en) * 2001-09-18 2011-04-20 日本エクスラン工業株式会社 Black high moisture absorbing / releasing fiber
JP3959738B2 (en) 2002-03-22 2007-08-15 日本エクスラン工業株式会社 Reactive dye-dyeable cross-linked acrylate fiber and fiber structure and process for producing them
JP4696724B2 (en) * 2004-08-03 2011-06-08 日本エクスラン工業株式会社 Method for dyeing cross-linked acrylate fibers and fiber products containing cross-linked acrylate fibers dyed by the dyeing method
CN100494556C (en) * 2004-08-03 2009-06-03 日本爱克兰工业株式会社 Dyeing method for cross linked acrylic fiber and fiber products containing cross linked acrylic fibers dyed by such method
JP4931612B2 (en) 2007-01-16 2012-05-16 日本エクスラン工業株式会社 Ion exchange fiber, production method thereof, and fiber structure using ion exchange fiber
CN100579997C (en) * 2007-09-11 2010-01-13 东华大学 Functionalization polyacrylonitrile resin, production and application of the same in fibre
JP5056358B2 (en) * 2007-11-02 2012-10-24 日本エクスラン工業株式会社 Dyeable cross-linked acrylate fiber, method for producing the same, and dyed cross-linked acrylate fiber obtained by dyeing the fiber

Also Published As

Publication number Publication date
TWI481759B (en) 2015-04-21
KR20120035149A (en) 2012-04-13
TW201107556A (en) 2011-03-01
EP2458082A1 (en) 2012-05-30
CN102575415B (en) 2014-02-19
WO2011010590A1 (en) 2011-01-27
JP5590341B2 (en) 2014-09-17
CN102575415A (en) 2012-07-11
KR101650495B1 (en) 2016-08-23
EP2458082A4 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
JP5590341B2 (en) Acid dye-dyeable hygroscopic fiber and method for producing the same
US5562739A (en) Lyocell fiber treatment method
KR101414364B1 (en) Dyeable crosslinked acrylate fiber, process for producing the same, and dyed crosslinked acrylate fiber obtained by dyeing the fiber
JP4696724B2 (en) Method for dyeing cross-linked acrylate fibers and fiber products containing cross-linked acrylate fibers dyed by the dyeing method
KR100866842B1 (en) Black fiber highly moisture-absorbing and desorbing
JP5765570B2 (en) Thermal insulation fiber
CN108486899B (en) Fabric softening finishing agent and preparation method thereof
JP5141915B2 (en) High whiteness discoloration resistance cross-linked acrylate fiber
JP5169241B2 (en) Hygroscopic composite fiber
JP3196577B2 (en) pH buffering hygroscopic acrylic fiber and method for producing the same
WO2019058966A1 (en) Moisture absorbent acrylonitrile-based fiber, method for producing same and fiber structure containing same
JP6247800B1 (en) Hygroscopic exothermic fiber
JP5141914B2 (en) High whiteness discoloration-resistant cross-linked acrylate fiber and process for producing the same
WO2010101182A1 (en) Moisture absorbing fiber dyeable with cationic dye, and method for producing same
JP7276703B2 (en) Dyeing method for fiber structure containing acrylonitrile/crosslinked acrylate system
JP7177982B2 (en) Hygroscopic acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
EP0815311A1 (en) Fibre treatment
JP2019060066A (en) Moisture-absorptive acrylonitrile-based fiber, production method of the fiber, and fiber structure containing the fiber
JP4032295B2 (en) uniform
WO2018055868A1 (en) Hygroscopic heat-generating fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140715

R150 Certificate of patent or registration of utility model

Ref document number: 5590341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250