WO2010101182A1 - Moisture absorbing fiber dyeable with cationic dye, and method for producing same - Google Patents
Moisture absorbing fiber dyeable with cationic dye, and method for producing same Download PDFInfo
- Publication number
- WO2010101182A1 WO2010101182A1 PCT/JP2010/053435 JP2010053435W WO2010101182A1 WO 2010101182 A1 WO2010101182 A1 WO 2010101182A1 JP 2010053435 W JP2010053435 W JP 2010053435W WO 2010101182 A1 WO2010101182 A1 WO 2010101182A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- acrylonitrile
- weight
- hygroscopic
- polymer
- Prior art date
Links
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/28—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D01F6/38—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising unsaturated nitriles as the major constituent
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/44—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
- D01F6/54—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of unsaturated nitriles
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06P—DYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
- D06P3/00—Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
- D06P3/70—Material containing nitrile groups
- D06P3/76—Material containing nitrile groups using basic dyes
Definitions
- the present invention relates to a dye-dyeable hygroscopic fiber composed of a crosslinked acrylic acid polymer and an acrylonitrile polymer, and a production method.
- cross-linked acrylic acid fibers and the like are known, among which cross-linked acrylic acid fibers are compared with other natural fibers having moisture absorption / release properties, It is known to have a characteristic of having a high moisture absorption rate.
- Such cross-linked acrylic fiber has a carboxyl group that functions as a dyeing seat, and it is possible to color the fiber with a cationic dye, but the ion bond between the carboxyl group and the dye is weak, so that the ion exchange is easy. Since the dyeing fastness is poor, a practical level of dyeing cannot be performed.
- Patent Documents 1 and 2 propose a dyeing method using a reactive dye of a crosslinked acrylic fiber.
- the fastness to dyeing is improved by using reactive dyes
- the problem of dyeing with cationic dyes has not been solved, and when a fiber structure mixed with cellulosic fibers is dyed.
- the hue with the cellulosic fiber is different, and there is a difficulty in practical color matching.
- the pH during dyeing needs to be a strongly acidic condition, and that it is necessary to deal with facilities such as restrictions on mixed fibers and countermeasures against corrosion.
- Patent Document 3 proposes a fiber in which a sulfonic acid group is introduced by impregnating and polymerizing a monomer having a sulfonic acid group into a raw material fiber having a carboxyl group.
- this fiber can introduce a large amount of sulfonic acid groups and is colored with a cationic dye, it has been difficult to obtain sufficient color developability, dyeing fastness and hue stability.
- a method of introducing a sulfonic acid group by impregnating and polymerizing a monomer having a sulfonic acid group into a raw fiber is employed, there is a problem that a complicated operation is required and the cost is increased.
- conventional cross-linked acrylic fiber has harmonious functions such as pH buffering, antistatic properties, water retention, high moisture absorption rate, high moisture absorption rate, high moisture absorption difference or temperature control and humidity control functions derived therefrom.
- the present invention is capable of practical dyeing with sufficient coloring property and fastness by a cationic dye while retaining the characteristics of the conventional crosslinked acrylic fiber, and is a low-cost hygroscopic fiber. The purpose is to provide.
- Cationic dye dyeable characterized by comprising a cross-linked acrylic acid polymer region and a sulfonic acid group-containing acrylonitrile polymer region, and the acrylonitrile polymer region is 20 to 80%.
- the hue of the fiber after dyeing with a cationic dye as defined below is such that L * in the L * a * b * color system (JIS-Z8729) is +45 or less, a * is ⁇ 5 or more and +5 or less, b * The cationic dye-dyeable hygroscopic fiber according to (1), wherein is from ⁇ 5 to +5.
- Color of fiber after dyeing with cationic dye 1 g of hygroscopic fiber, 3.3 dtex, and 2 g of acrylonitrile fiber with a saturated dyeing amount of 1.8 g of Malacite Green, with respect to the total fiber weight (3 g) (2.5% by weight) and an acetic acid (2% by weight) aqueous solution for 30 minutes, then immersed in an aqueous solution of hydrosulfite 2 g / L for 15 minutes at 60 ° C., then washed with running water for 5 minutes and then air-dried And dyed hygroscopic fibers are obtained by removing the acrylonitrile fibers.
- the acrylonitrile fiber is composed of at least two acrylonitrile polymers having different acrylonitrile contents, and the difference in the contents is 2% by weight or more (1) to (3)
- the cationic dye-dyeable hygroscopic fiber of the present invention has high hygroscopic performance and is excellent in color developability by the cationic dye, so that practical dyeing is possible. Therefore, it can be developed in applications where the use of conventional cross-linked acrylic acid fibers is restricted because practical dyeing has been difficult.
- the cationic dye-dyeable hygroscopic fiber of the present invention is a hygroscopic fiber obtained by crosslinking and hydrolyzing an acrylonitrile-based fiber having a sulfonic acid group of 0.03 mmol / g or more based on the fiber weight, It is a fiber having a structure comprising a region of a crosslinked acrylic acid polymer having a carboxyl group and a crosslinked structure and a region of an acrylonitrile polymer having a sulfonic acid group.
- the sulfonic acid group in the region of the acrylonitrile polymer may be contained in the acrylonitrile polymer itself or may be contained in another polymer contained in the region of the acrylonitrile polymer.
- the cationic dye-dyeable hygroscopic fiber of the present invention may be composed only of a cross-linked acrylic acid polymer region and an acrylonitrile polymer region, or an acrylic acid polymer region and an acrylonitrile polymer weight. There may be a region where these are mixed between the combined regions. Moreover, the area
- the region of the cross-linked acrylic acid polymer having such a carboxyl group and a cross-linked structure is a part mainly responsible for moisture absorption performance.
- the carboxyl group present in such a region functions as a dyeing seat, the ion bond with the dye is weak and the ion exchange is easy, so the dyeing fastness is poor and a practical level dyeing cannot be performed.
- the region other than the cross-linked acrylic acid polymer is a portion mainly responsible for the dyeing performance. Therefore, the existence of such a region and its dyeing ability are important.
- the cationic dyeable and hygroscopic fiber of the present invention by incorporating a sulfonic acid group functioning as a dyeing seat in such a region, it becomes possible to dye with the same formulation as in the case of acrylonitrile fiber. is there.
- the ratio of the cross-linked acrylic acid polymer region to the acrylonitrile polymer region the higher the proportion of the cross-linked acrylic polymer region, the higher the moisture absorption rate.
- the ratio of the area of the polymer is reduced and sufficient color developability is to be obtained, it is necessary to increase the concentration of the sulfonic acid group in the area of the acrylonitrile polymer. Therefore, it is necessary that the acrylonitrile-based polymer occupies an area of 20 to 80% of the fiber cross-sectional area in the dry state, and preferably 30 to 70%. Within such a range, a fiber in which both hygroscopicity and color development are balanced can be obtained.
- the cross-linked acrylic acid polymer region and the acrylonitrile polymer region are dyed with a cationic dye, then the fiber cross section is observed with an optical microscope, and the dyed region is an acrylonitrile polymer region.
- the region that is not dyed or in which the dyeing cannot be confirmed is the region of the crosslinked acrylic acid polymer. Therefore, the above-mentioned area ratio is calculated by cutting the dried fiber and observing the fiber cross section after the dyeing treatment.
- the acrylonitrile fiber as the raw fiber has a sulfonic acid group of 0.03 mmol / g or more with respect to the fiber weight, preferably 0.05 mmol / g or more, more preferably 0. It is desirable to have a sulfonic acid group of 0.055 mmol / g or more, more preferably 0.065 mmol / g or more.
- the dyeability of the cationic dyeable hygroscopic fiber of the present invention includes the hue of the hygroscopic fiber after dyeing in the same bath dyeing with the acrylonitrile fiber by the cationic dye, L * is +45 or less, and a * is ⁇ 5. It is preferably +5 or less and b * is ⁇ 5 or more and +5 or less, more preferably L * is +40 or less, and further preferably L * is +35 or less. If the upper limit of L * in this range is exceeded, sufficient color developability may not be obtained, and if it falls outside the range of a * and b *, it will be difficult to adjust the hue, and practical dyeing will be difficult. There is a case.
- the acrylic sulfonic acid group-containing resin 1 to 90 contains 90 to 99% by weight of an acrylonitrile-based polymer containing 80% by weight or more of acrylonitrile and the remaining 10 to 70% by weight of acrylonitrile. It is preferably composed of 10% by weight of a polymer. Thereby, a sufficient amount of sulfonic acid groups can be easily introduced into the acrylonitrile fiber.
- the acrylonitrile fiber is composed of at least two acrylonitrile polymers having different acrylonitrile contents, and the difference in the contents is 2% by weight or more.
- the difference in the contents is 2% by weight or more.
- Such an acrylonitrile fiber may be one in which two kinds of acrylonitrile polymers are joined side by side or may be randomly mixed, but one having a three-layer structure composed of ABA layers, Alternatively, a core-sheath structure is more preferable, and the B layer or the core part preferably has a high acrylonitrile content and has many sulfonic acid groups.
- the acrylonitrile content in the B layer or the core portion is preferably 82% by weight or more, more preferably 85% by weight or more, and still more preferably 90% by weight or more. Is preferably 0.05 mmol / g or more, more preferably 0.07 mmol / g or more, and still more preferably 0.1 mmol / g or more.
- an acrylonitrile fiber is introduced with a nitrogen-containing compound having two or more nitrogen atoms in one molecule, and an alkaline metal salt aqueous solution is introduced.
- the method of partially forming a cross-linked acrylic acid polymer region by hydrolyzing by the above-mentioned method or carrying out these treatments at the same time and leaving the region of the acrylonitrile polymer containing the amount of sulfonic acid group is the manufacturing equipment and cost. It is desirable from the aspect of. This method will be described in detail below.
- the starting acrylonitrile fiber (hereinafter sometimes referred to as acrylic fiber) contains acrylonitrile (hereinafter also referred to as AN) in an amount of 40% by weight or more, preferably 50% by weight or more, more preferably 80% by weight or more.
- the fibers are formed from AN polymer, and may be in any form such as short fibers, tows, yarns, knitted fabrics, and non-woven fabrics.
- the AN polymer may be either an AN homopolymer or a copolymer of AN and another monomer.
- Examples of the other monomer include methyl (meth) acrylate, ethyl (meth) acrylate, (Meth) acrylic acid ester compounds such as butyl (meth) acrylate, dimethylaminoethyl (meth) acrylate and diethylaminoethyl (meth) acrylate, sulfonic acid group-containing compounds such as methallylsulfonic acid and p-styrenesulfonic acid A monomer and a salt thereof; the monomer is not particularly limited as long as it is a monomer copolymerizable with AN, such as a monomer such as styrene and vinyl acetate, but 5 to 20% by weight of a vinyl ester compound represented by vinyl acetate. It is desirable to copolymerize.
- Such vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate and the like.
- the starting acrylonitrile fiber employed in the present invention it is necessary to have a sulfonic acid group of 0.03 mmol / g or more with respect to the fiber weight, so that the acrylonitrile polymer itself has a sulfonic acid group. If it is, a method of introducing a sulfonic acid group at the terminal by a redox catalyst or a method of copolymerizing a sulfonic acid group-containing monomer can be adopted, and the sulfonic acid group is introduced by another polymer. In this case, a method of mixing a sulfonic acid group-containing resin or the like with an acrylonitrile-based polymer can be employed.
- Examples of the monomer containing a sulfonic acid group include vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, 4-sulfobutyl (meth) acrylate, methallyloxybenzene sulfonic acid, allyloxybenzene sulfonic acid, 2 -Acrylamido-2-methylpropanesulfonic acid, 2-sulfoethyl (meth) acrylate and metal salts of these monomers.
- the sulfonic acid group-containing resin is not particularly limited as long as it contains a sulfonic acid group, but the above-described monomer containing a sulfonic acid group and a nitrile group such as acrylonitrile or methacrylonitrile are used. It is preferably an acrylic sulfonic acid group-containing resin obtained by copolymerizing a monomer having the above-mentioned monomers, and other monomers may be copolymerized in addition to such monomers.
- acrylic sulfonic acid group-containing resins examples include acrylic sulfonic acid group-containing resins composed of acrylonitrile / acrylic acid methyl ester / styrene parasulfonic acid soda monomer, which are mixed uniformly with an acrylonitrile polymer. Alternatively, it may be mixed locally such as side-by-side.
- the difference in the content of acrylonitrile is 2% by weight or more.
- the method described in Japanese Patent Application Laid-Open No. 2000-45126 can be employed as a method for obtaining an acrylic fiber having a three-layer structure composed of an ABA layer. It is preferable to reduce the exposure of the B component to the fiber surface by lowering the viscosity of the stock solution.
- the acrylic fiber is subjected to a crosslinking introduction treatment with an aqueous solution containing a nitrogen-containing compound having two or more nitrogen atoms in one molecule and a hydrolysis treatment with an aqueous solution containing an alkaline metal salt compound.
- a crosslinking introduction treatment with an aqueous solution containing a nitrogen-containing compound having two or more nitrogen atoms in one molecule
- a hydrolysis treatment with an aqueous solution containing an alkaline metal salt compound.
- a cross-linked structure is formed by the reaction of the nitrogen-containing compound having two or more nitrogen atoms in one molecule and the nitrile group of the acrylonitrile polymer of acrylic fiber, and an aqueous alkali metal salt compound solution A nitrile group reacts to form a carboxyl group, which is converted into a crosslinked acrylic acid polymer.
- the crosslinking introduction treatment and the hydrolysis treatment include a method in which a fiber is immersed in an aqueous solution used for the treatment, a method in which the aqueous solution is sprayed, and a method in which the aqueous solution is adhered to the fiber. Can be adopted.
- the concentration of the nitrogen-containing compound having two or more nitrogen atoms in one molecule is preferably 0.1 to 5% by weight, more preferably 0.1%. ⁇ 2% by weight. If this concentration is too low, the effect of suppressing the dissolution of the acrylic acid polymer may not be obtained.
- the concentration of the alkaline metal salt compound is preferably 0.5 to 5% by weight, more preferably 0.5 to 4% by weight. If the concentration of the alkaline metal salt compound is too low, the amount of carboxyl groups produced may be insufficient, and if it is too high, the acrylonitrile polymer to be left behind may be hydrolyzed.
- the suitable range changes according to the density
- concentration of the nitrogen-containing compound having two or more nitrogen atoms in one molecule is about 0.5 to 2% by weight and the concentration of the alkaline metal salt compound is about 1 to 2% by weight, Conditions of 90 to 100 ° C for about 2 hours are recommended.
- the nitrogen-containing compound having two or more nitrogen atoms in one molecule is preferably an amino compound or a hydrazine-based compound having two or more primary amino groups.
- amino compounds having two or more primary amino groups include diamine compounds such as ethylenediamine and hexamethylenediamine, diethylene and reamine, 3,3′-iminobis (propylamine), N-methyl-3, 3′- Triamine compounds such as iminobis (propylamine), triethylenetetramine, N, N′-bis (3-aminopropyl) -1,3-propylenediamine, N, N′-bis (3-aminopropyl) -1, Examples include tetraamine compounds such as 4-butylenediamine, polyamine compounds having two or more primary amino groups such as polyvinylamine and polyallylamine.
- hydrazine-based compound examples include hydrazine hydrate, hydrazine sulfate, hydrazine hydrochloride, hydrazine bromate, and hydrazine carbonate.
- the upper limit of the number of nitrogen atoms in one molecule is not particularly limited, but is preferably 12 or less, more preferably 6 or less, and particularly preferably 4 or less. When the number of nitrogen atoms in one molecule exceeds the above upper limit, the cross-linking agent molecule becomes large and it may be difficult to introduce cross-linking into the fiber.
- an alkaline metal salt compound An alkali metal hydroxide, an alkaline-earth metal hydroxide, an alkali metal carbonate, etc. can be used.
- the fiber that has undergone the cross-linking introduction treatment may be subjected to an acid treatment before the hydrolysis treatment.
- the coloring of the fiber can be lightened.
- the acid used here include aqueous solutions of mineral acids such as nitric acid, sulfuric acid, and hydrochloric acid, and organic acids, but are not particularly limited.
- the treatment conditions include immersing the fiber to be treated in an aqueous solution having an acid concentration of 5 to 20% by weight, preferably 7 to 15% by weight, at a temperature of 50 to 120 ° C. for 0.5 to 10 hours.
- treatments such as washing with an acidic aqueous solution adopted by conventional crosslinked acrylic fibers, pH adjustment treatment with a buffer solution, etc. may be performed.
- the cationic dye-dyeable hygroscopic fiber of the present invention can be obtained by the above method, it is preferable to further perform heat treatment.
- the step of performing the heat treatment may be performed during any of the above steps, and may be before the cross-linking hydrolysis or after all the steps of the above steps are completed, but after the cross-linking hydrolysis or with an acidic aqueous solution. It is desirable to carry out after washing. By this heat treatment, the color developability can be further improved.
- the heat treatment may be wet heat or dry heat, but it is desirable that the heat treatment be performed with hot water at 100 to 130 ° C. for 10 seconds or longer, preferably for 10 minutes or longer.
- the sulfonic acid group of the acrylonitrile fiber is 0.05 mmol / g or more, or when the sulfonic acid group of the acrylonitrile group-containing resin is contained in an amount of the sulfonic acid group or more, two or more kinds of AN-based fibers are used.
- a polymer it is not always necessary, but it is preferable to perform a heat treatment in order to obtain more excellent color developability.
- the amount of carboxyl groups in the portion made of the crosslinked acrylic acid polymer is preferably 1.0 to 10 mmol / g, more preferably 2.0 to 5.0 mmol / g, based on the fiber weight. If the lower limit of the range is not reached, sufficient moisture absorption performance may not be obtained, and if the upper limit is exceeded, the color developability when cationic dyeing may not be obtained.
- the carboxyl group may be a carboxylic acid or a carboxylate salt, or they may be mixed, but in the stage after fiber production, a carboxylic acid is used to facilitate processing such as spinning, After dyeing or at the final product stage, it is desirable that 50% or more is a carboxylate in order to obtain a high moisture absorption rate.
- Examples of cations constituting the carboxylate include alkali metals such as Li, Na, and K, alkaline earth metals such as Be, Ca, and Ba, Cu, Zn, Al, Mn, Ag, Fe, and Co. And a metal such as Ni, a cation such as ammonium and amine, and a plurality of types of cations may be mixed.
- the evaluation device uses a multi-light source spectrocolorimeter MSC-5 (C light source, 2-degree field of view) manufactured by Suga Test Instruments Co., Ltd., and is a screw-in cylindrical type having a bottom surface made of quartz glass and having a diameter of 40 mm.
- the bottom surface fixed to the cell was measured with a measurement hole having a diameter of 30 mm, and L *, a *, and b * values of the L * a * b * color system were calculated according to a conventional method.
- Example 1 A spinning stock solution in which 10 parts of acrylonitrile polymer A is dissolved in 90 parts of a 48% sodium rhodanoate aqueous solution is spun and stretched in accordance with a conventional method, then dried and wet heat treated, and an AN system having a single fiber fineness of 1.0 dtex. Fiber was obtained.
- the AN fiber was subjected to crosslinking / hydrolysis treatment at 95 ° C. for 2 hours in an aqueous solution containing 0.5% hydrazine hydrate and 1.5% sodium hydroxide, and washed with water. Subsequently, it was heat treated in water at 120 ° C. for 1 hour, and then washed with a 3% nitric acid aqueous solution.
- the treated fiber was washed with water, applied with a spinning oil, dehydrated and dried to obtain a hygroscopic fiber of Example 1.
- Table 2 shows the evaluation results of the obtained fibers.
- the adhesion amount of the oil agent was adjusted to 0.5% by weight with respect to the fiber.
- Comparative Example 1 A spinning stock solution in which 10 parts of acrylonitrile polymer B is dissolved in 90 parts of a 48% sodium rhodanate aqueous solution is spun and stretched according to a conventional method, and then dried and wet heat treated, and then an AN system having a single fiber fineness of 1.0 dtex. Fiber was obtained.
- the AN fiber was subjected to crosslinking / hydrolysis treatment at 95 ° C. for 2 hours in an aqueous solution containing 0.5% hydrazine hydrate and 2.0% sodium hydroxide, and washed with water. Subsequently, it was heat treated in water at 120 ° C. for 1 hour, and then washed with a 3% nitric acid aqueous solution.
- the treated fiber was washed with water, applied with a spinning oil, dehydrated and dried to obtain a hygroscopic fiber of Comparative Example 1.
- Table 2 shows the evaluation results of the obtained fibers.
- Example 2 The AN fiber obtained in Comparative Example 1 was subjected to crosslinking and hydrolysis treatment at 95 ° C. for 2 hours in an aqueous solution containing 0.5% hydrazine hydrate and 1.5% sodium hydroxide, and washed with water. Subsequently, it was heat treated in water at 120 ° C. for 1 hour, and then washed with a 3% nitric acid aqueous solution. The treated fiber was washed with water, applied with a spinning oil, dehydrated and dried to obtain a hygroscopic fiber of Example 2. Table 2 shows the evaluation results of the obtained fibers.
- Comparative Example 2 The AN fiber obtained in Comparative Example 1 was subjected to crosslinking and hydrolysis treatment at 95 ° C. for 2 hours in an aqueous solution containing 0.5% hydrazine hydrate and 1.5% sodium hydroxide, and washed with water. Washed with an aqueous solution of 3% nitric acid. The treated fiber was washed with water, applied with a spinning oil, dehydrated and dried to obtain a hygroscopic fiber of Comparative Example 2. Table 2 shows the evaluation results of the obtained fibers.
- Comparative Example 3 The AN fiber obtained in Comparative Example 1 was subjected to crosslinking introduction treatment at 98 ° C. for 3 hours in a 20% aqueous solution of hydrazine hydrate and washed with water. Next, it was acid-treated at 90 ° C. for 2 hours in a 3% nitric acid aqueous solution and washed with water. Subsequently, hydrolysis was performed at 90 ° C. for 2 hours in a 3% aqueous solution of sodium hydroxide and washed with water. Subsequently, it was washed with an aqueous nitric acid solution having a pH of 2. The treated fiber was washed with water, applied with a spinning oil, dehydrated and dried to obtain a hygroscopic fiber of Comparative Example 3. Table 2 shows the evaluation results of the obtained fibers.
- Example 3 10 parts of acrylonitrile polymer B was dissolved in 90 parts of a 48% aqueous sodium rhodate solution to prepare a spinning dope.
- a sulfonic acid group-containing resin D was added to the spinning stock solution so as to have the ratio shown in Table 3, mixed and dissolved to continuously prepare a mixed stock solution, which was led to a spinning device.
- the mixed stock solution led to the spinning device was spun and drawn according to a conventional method, and then dried and wet-heat treated to obtain AN fibers having a single fiber fineness of 1.0 dtex.
- a hygroscopic fiber of Example 3 was obtained according to the production method of Example 1. Table 3 shows the evaluation results of the obtained fibers.
- Example 4 A spinning dope was prepared in the same manner as in Example 3 except that the ratio of the acrylonitrile polymer B and the sulfonic acid group-containing resin D was changed to obtain AN fibers having a single fiber fineness of 1.0 dtex. Using the AN fiber, a hygroscopic fiber of Example 4 was obtained according to the production method of Example 1. Table 3 shows the evaluation results of the obtained fibers.
- Example 5 A spinning stock solution Qb was prepared by dissolving 12 parts of acrylonitrile polymer B in 88 parts of a 48% aqueous sodium rhodate solution so that the polymer concentration was 12% by weight.
- the spinning solution Qb had a viscosity of 3900 mPa ⁇ s at 30 ° C.
- 12 parts of the acrylonitrile polymer C12 shown below was dissolved in 88 parts of a 48% sodium rhodanate aqueous solution so that the polymer concentration was 12% by weight to prepare a spinning dope Qc.
- the spinning stock solution Qc had a viscosity at 30 ° C. of 4000 mPa ⁇ s.
- the two spinning stock solutions are mixed at a ratio of 1: 1 through a spinning stock solution distribution layer and a spinneret to form a Qb layer- It was led to become Qc layer-Qb layer, then spun in accordance with a conventional method, drawn, dried, and wet heat treated to obtain an AN fiber having a single fiber fineness of 1.0 dtex.
- a hygroscopic fiber of Example 5 was obtained according to the production method of Example 1. Table 3 shows the evaluation results of the obtained fibers.
- the cationic dye-dyeable hygroscopic fiber of the present invention has high hygroscopic performance and is excellent in color developability by the cationic dye, so that practical dyeing is possible. Therefore, it can be developed in applications where the use of conventional cross-linked acrylic acid fibers is restricted because practical dyeing has been difficult.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
Disclosed is a low-cost moisture absorbing fiber which can be practically dyed with a cationic dye and can sufficiently develop a color with the cationic dye, while maintaining the characteristics of a crosslinked acrylic acid-based fiber.
Specifically disclosed is a moisture absorbing fiber dyeable with a cationic dye, which is obtained by crosslinking and hydrolyzing an acrylonitrile fiber that contains not less than 0.03 mmol/g of sulfonic acid groups relative to the weight of the fiber. The moisture absorbing fiber dyeable with a cationic dye is characterized in that the fiber is composed of a region of a crosslinked acrylic acid polymer having a carboxyl group and a crosslinked structure, and a region of an acrylonitrile polymer having a sulfonic acid group. The moisture absorbing fiber dyeable with a cationic dye is also characterized in that the region of the acrylonitrile polymer is within the range of 20-80%.
Description
本発明は、架橋アクリル酸系重合体とアクリロニトリル系重合体から構成されるカチオン染料可染性吸湿性繊維及び製造方法に関する。
The present invention relates to a dye-dyeable hygroscopic fiber composed of a crosslinked acrylic acid polymer and an acrylonitrile polymer, and a production method.
吸放湿性を有する繊維としては、綿、羊毛、レーヨン、アセテート、架橋アクリル酸系繊維などが知られているが、中でも架橋アクリル酸系繊維は、他の吸放湿性を有する天然繊維と比べ、高い吸湿率を有するという特徴を有していることが知られている。かかる架橋アクリル酸系繊維は染着座席として機能するカルボキシル基を有しており、カチオン染料で繊維に色を付けることはできるが、カルボキシル基と染料のイオン結合が弱く容易にイオン交換するために、染色堅牢度が悪いことから、実用的なレベルの染色はできないものとされていた。
As fibers having moisture absorption / release properties, cotton, wool, rayon, acetate, cross-linked acrylic acid fibers and the like are known, among which cross-linked acrylic acid fibers are compared with other natural fibers having moisture absorption / release properties, It is known to have a characteristic of having a high moisture absorption rate. Such cross-linked acrylic fiber has a carboxyl group that functions as a dyeing seat, and it is possible to color the fiber with a cationic dye, but the ion bond between the carboxyl group and the dye is weak, so that the ion exchange is easy. Since the dyeing fastness is poor, a practical level of dyeing cannot be performed.
その染色に関する問題を解消するため、例えば、特許文献1、2には架橋アクリル系繊維の反応性染料による染色方法が提案されている。これらの方法では、反応性染料を用いることによって染色堅牢度は改善されるものの、カチオン染料での染色の問題は解決されておらず、また、セルロース系繊維と混用した繊維構造体を染色する場合において、セルロース系繊維との色相に違いが生じるケースがあり実用上の色合わせに難がある。また染色時pHを強酸性条件にする必要があり、混用繊維の制限や腐食対策等の設備対応が必要となるなどの問題もあった。
In order to solve the problem relating to the dyeing, for example, Patent Documents 1 and 2 propose a dyeing method using a reactive dye of a crosslinked acrylic fiber. In these methods, although the fastness to dyeing is improved by using reactive dyes, the problem of dyeing with cationic dyes has not been solved, and when a fiber structure mixed with cellulosic fibers is dyed. However, there is a case in which the hue with the cellulosic fiber is different, and there is a difficulty in practical color matching. In addition, there is a problem that the pH during dyeing needs to be a strongly acidic condition, and that it is necessary to deal with facilities such as restrictions on mixed fibers and countermeasures against corrosion.
一方で、特許文献3にはカルボキシル基を有する原料繊維にスルホン酸基を有するモノマーを含浸、重合させることでスルホン酸基を導入させた繊維が提案されている。この繊維は多量のスルホン酸基を導入でき、カチオン染料で色がつくが、十分な発色性あるいは染色堅牢度や色相安定性を得ることが困難であった。また、原料繊維にスルホン酸基を有するモノマーを含浸、重合させることでスルホン酸基を導入するという手段を採用するため、複雑な操作が必要となりコスト高になるという問題を有していた。
On the other hand, Patent Document 3 proposes a fiber in which a sulfonic acid group is introduced by impregnating and polymerizing a monomer having a sulfonic acid group into a raw material fiber having a carboxyl group. Although this fiber can introduce a large amount of sulfonic acid groups and is colored with a cationic dye, it has been difficult to obtain sufficient color developability, dyeing fastness and hue stability. In addition, since a method of introducing a sulfonic acid group by impregnating and polymerizing a monomer having a sulfonic acid group into a raw fiber is employed, there is a problem that a complicated operation is required and the cost is increased.
以上のようにこれまでの架橋アクリル酸系繊維はpH緩衝性、制電性、保水性などの調和機能や高吸湿率、高吸湿速度、高吸湿率差あるいはそれに由来する調温、調湿機能などの特徴を有するものであったが、染色性について課題を残すものであった。本発明は、かかる現状に基づき、これまでの架橋アクリル酸系繊維の特徴を保持しつつ、カチオン染料による十分な発色性と堅牢度により実用的な染色が可能で、かつ低コストの吸湿性繊維を提供することを目的とする。
As described above, conventional cross-linked acrylic fiber has harmonious functions such as pH buffering, antistatic properties, water retention, high moisture absorption rate, high moisture absorption rate, high moisture absorption difference or temperature control and humidity control functions derived therefrom. However, it still has a problem with dyeability. Based on the present situation, the present invention is capable of practical dyeing with sufficient coloring property and fastness by a cationic dye while retaining the characteristics of the conventional crosslinked acrylic fiber, and is a low-cost hygroscopic fiber. The purpose is to provide.
本発明者は、上述の目的を達成するために鋭意検討を進めた結果、以下に示す本発明に到達した。
As a result of diligent studies to achieve the above-mentioned object, the present inventor has reached the present invention shown below.
(1)繊維重量に対して0.03mmol/g以上のスルホン酸基を有するアクリロニトリル系繊維を架橋、加水分解することによって得られる吸湿性繊維であって、該繊維がカルボキシル基と架橋構造を有する架橋アクリル酸系重合体の領域と、スルホン酸基を有するアクリロニトリル系重合体の領域とからなり、且つ、アクリロニトリル系重合体の領域が20~80%であることを特徴とするカチオン染料可染性吸湿性繊維。
(2)以下に定義するカチオン染料による染色後の繊維の色相が、L*a*b*表色系(JIS-Z8729)におけるL*が+45以下、a*が-5以上+5以下、b*が-5以上+5以下であることを特徴とする(1)記載のカチオン染料可染性吸湿性繊維。
カチオン染料による染色後の繊維の色相:吸湿性繊維1gと3.3dtex、Malacite Green飽和染着量が1.8であるアクリロニトリル系繊維2gを、繊維総重量(3g)に対し、Nichilon Black G200%(2.5重量%)、酢酸(2重量%)の水溶液で30分間煮沸処理した後にハイドロサルファイト2g/Lの水溶液に60℃で15分間浸漬処理し、次いで流水で5分間水洗した後に風乾させ、該アクリロニトリル系繊維を取除くことにより染色された吸湿性繊維を得る。かかる染色された吸湿性繊維を開繊し、底面が石英ガラス面になっている円筒型セルに詰めて、分光測色計を用いて測定した時の色相。
(3)アクリロニトリル系繊維が、80重量%以上のアクリロニトリルを結合含有するアクリロニトリル系重合体90~99重量%、及び残部が10~70重量%のアクリロニトリルを結合含有するアクリル系スルホン酸基含有樹脂1~10重量%である重合体とからなるものであることを特徴とする(1)又は(2)に記載のカチオン染料可染性吸湿性繊維。
(4)アクリロニトリル系繊維が、少なくとも、アクリロニトリルの含有率の異なる2種のアクリロニトリル系重合体からなり、かかる含有率の差が2重量%以上であることを特徴とする(1)から(3)のいずれかに記載のカチオン染料可染性吸湿性繊維。
(5)アクリロニトリル系繊維を架橋、加水分解し、さらに熱処理を行うことを特徴とする(1)から(4)のいずれかに記載のカチオン染料可染性吸湿性繊維の製造方法。 (1) A hygroscopic fiber obtained by crosslinking and hydrolyzing an acrylonitrile-based fiber having a sulfonic acid group of 0.03 mmol / g or more with respect to the fiber weight, and the fiber has a carboxyl group and a crosslinked structure. Cationic dye dyeable, characterized by comprising a cross-linked acrylic acid polymer region and a sulfonic acid group-containing acrylonitrile polymer region, and the acrylonitrile polymer region is 20 to 80%. Hygroscopic fiber.
(2) The hue of the fiber after dyeing with a cationic dye as defined below is such that L * in the L * a * b * color system (JIS-Z8729) is +45 or less, a * is −5 or more and +5 or less, b * The cationic dye-dyeable hygroscopic fiber according to (1), wherein is from −5 to +5.
Color of fiber after dyeing with cationic dye: 1 g of hygroscopic fiber, 3.3 dtex, and 2 g of acrylonitrile fiber with a saturated dyeing amount of 1.8 g of Malacite Green, with respect to the total fiber weight (3 g) (2.5% by weight) and an acetic acid (2% by weight) aqueous solution for 30 minutes, then immersed in an aqueous solution of hydrosulfite 2 g / L for 15 minutes at 60 ° C., then washed with running water for 5 minutes and then air-dried And dyed hygroscopic fibers are obtained by removing the acrylonitrile fibers. Hue when the dyed hygroscopic fibers are opened, packed in a cylindrical cell whose bottom surface is a quartz glass surface, and measured using a spectrocolorimeter.
(3) Acrylic sulfonic acid group-containing resin 1 in which the acrylonitrile fiber contains 90 to 99% by weight of an acrylonitrile polymer containing 80% by weight or more of acrylonitrile and the balance contains 10 to 70% by weight of acrylonitrile. The cationic dye-dyeable hygroscopic fiber according to (1) or (2), which is composed of a polymer of ˜10% by weight.
(4) The acrylonitrile fiber is composed of at least two acrylonitrile polymers having different acrylonitrile contents, and the difference in the contents is 2% by weight or more (1) to (3) The dye-dyeable hygroscopic fiber according to any one of the above.
(5) The method for producing a dye-dyeable hygroscopic fiber according to any one of (1) to (4), wherein acrylonitrile fiber is crosslinked, hydrolyzed, and further subjected to heat treatment.
(2)以下に定義するカチオン染料による染色後の繊維の色相が、L*a*b*表色系(JIS-Z8729)におけるL*が+45以下、a*が-5以上+5以下、b*が-5以上+5以下であることを特徴とする(1)記載のカチオン染料可染性吸湿性繊維。
カチオン染料による染色後の繊維の色相:吸湿性繊維1gと3.3dtex、Malacite Green飽和染着量が1.8であるアクリロニトリル系繊維2gを、繊維総重量(3g)に対し、Nichilon Black G200%(2.5重量%)、酢酸(2重量%)の水溶液で30分間煮沸処理した後にハイドロサルファイト2g/Lの水溶液に60℃で15分間浸漬処理し、次いで流水で5分間水洗した後に風乾させ、該アクリロニトリル系繊維を取除くことにより染色された吸湿性繊維を得る。かかる染色された吸湿性繊維を開繊し、底面が石英ガラス面になっている円筒型セルに詰めて、分光測色計を用いて測定した時の色相。
(3)アクリロニトリル系繊維が、80重量%以上のアクリロニトリルを結合含有するアクリロニトリル系重合体90~99重量%、及び残部が10~70重量%のアクリロニトリルを結合含有するアクリル系スルホン酸基含有樹脂1~10重量%である重合体とからなるものであることを特徴とする(1)又は(2)に記載のカチオン染料可染性吸湿性繊維。
(4)アクリロニトリル系繊維が、少なくとも、アクリロニトリルの含有率の異なる2種のアクリロニトリル系重合体からなり、かかる含有率の差が2重量%以上であることを特徴とする(1)から(3)のいずれかに記載のカチオン染料可染性吸湿性繊維。
(5)アクリロニトリル系繊維を架橋、加水分解し、さらに熱処理を行うことを特徴とする(1)から(4)のいずれかに記載のカチオン染料可染性吸湿性繊維の製造方法。 (1) A hygroscopic fiber obtained by crosslinking and hydrolyzing an acrylonitrile-based fiber having a sulfonic acid group of 0.03 mmol / g or more with respect to the fiber weight, and the fiber has a carboxyl group and a crosslinked structure. Cationic dye dyeable, characterized by comprising a cross-linked acrylic acid polymer region and a sulfonic acid group-containing acrylonitrile polymer region, and the acrylonitrile polymer region is 20 to 80%. Hygroscopic fiber.
(2) The hue of the fiber after dyeing with a cationic dye as defined below is such that L * in the L * a * b * color system (JIS-Z8729) is +45 or less, a * is −5 or more and +5 or less, b * The cationic dye-dyeable hygroscopic fiber according to (1), wherein is from −5 to +5.
Color of fiber after dyeing with cationic dye: 1 g of hygroscopic fiber, 3.3 dtex, and 2 g of acrylonitrile fiber with a saturated dyeing amount of 1.8 g of Malacite Green, with respect to the total fiber weight (3 g) (2.5% by weight) and an acetic acid (2% by weight) aqueous solution for 30 minutes, then immersed in an aqueous solution of hydrosulfite 2 g / L for 15 minutes at 60 ° C., then washed with running water for 5 minutes and then air-dried And dyed hygroscopic fibers are obtained by removing the acrylonitrile fibers. Hue when the dyed hygroscopic fibers are opened, packed in a cylindrical cell whose bottom surface is a quartz glass surface, and measured using a spectrocolorimeter.
(3) Acrylic sulfonic acid group-containing resin 1 in which the acrylonitrile fiber contains 90 to 99% by weight of an acrylonitrile polymer containing 80% by weight or more of acrylonitrile and the balance contains 10 to 70% by weight of acrylonitrile. The cationic dye-dyeable hygroscopic fiber according to (1) or (2), which is composed of a polymer of ˜10% by weight.
(4) The acrylonitrile fiber is composed of at least two acrylonitrile polymers having different acrylonitrile contents, and the difference in the contents is 2% by weight or more (1) to (3) The dye-dyeable hygroscopic fiber according to any one of the above.
(5) The method for producing a dye-dyeable hygroscopic fiber according to any one of (1) to (4), wherein acrylonitrile fiber is crosslinked, hydrolyzed, and further subjected to heat treatment.
本発明のカチオン染料可染性吸湿性繊維は、高吸湿性能を有し、且つ、カチオン染料による発色性に優れるため、実用的な染色が可能である。そのため従来の架橋アクリル酸系繊維が実用的な染色が困難とされていたために使用が制限されていた用途に展開できる。
The cationic dye-dyeable hygroscopic fiber of the present invention has high hygroscopic performance and is excellent in color developability by the cationic dye, so that practical dyeing is possible. Therefore, it can be developed in applications where the use of conventional cross-linked acrylic acid fibers is restricted because practical dyeing has been difficult.
以下、本発明について詳述する。本発明のカチオン染料可染性吸湿性繊維は、繊維重量に対して0.03mmol/g以上のスルホン酸基を有するアクリロニトリル系繊維を架橋、加水分解することによって得られる吸湿性繊維であって、カルボキシル基と架橋構造を有する架橋アクリル酸系重合体の領域と、スルホン酸基を有するアクリロニトリル系重合体の領域とからなる構造の繊維である。かかるアクリロニトリル系重合体の領域のスルホン酸基は、アクリロニトリル系重合体自身が有していても、アクリロニトリル系重合体の領域中に含まれる他の重合体が有していても構わない。また、本発明のカチオン染料可染性吸湿性繊維は架橋アクリル酸系重合体の領域とアクリロニトリル系重合体の領域のみから構成されていてもよいし、アクリル酸系重合体の領域とアクリロニトリル系重合体の領域の間にこれらが混在する領域が存在してもよい。また、これらの重合体とは異なる重合体で構成される領域が存在してもよい。
Hereinafter, the present invention will be described in detail. The cationic dye-dyeable hygroscopic fiber of the present invention is a hygroscopic fiber obtained by crosslinking and hydrolyzing an acrylonitrile-based fiber having a sulfonic acid group of 0.03 mmol / g or more based on the fiber weight, It is a fiber having a structure comprising a region of a crosslinked acrylic acid polymer having a carboxyl group and a crosslinked structure and a region of an acrylonitrile polymer having a sulfonic acid group. The sulfonic acid group in the region of the acrylonitrile polymer may be contained in the acrylonitrile polymer itself or may be contained in another polymer contained in the region of the acrylonitrile polymer. The cationic dye-dyeable hygroscopic fiber of the present invention may be composed only of a cross-linked acrylic acid polymer region and an acrylonitrile polymer region, or an acrylic acid polymer region and an acrylonitrile polymer weight. There may be a region where these are mixed between the combined regions. Moreover, the area | region comprised with a polymer different from these polymers may exist.
かかるカルボキシル基及び架橋構造を有する架橋アクリル酸系重合体の領域は、吸湿性能を主に担う部分である。上述したように、かかる領域に存在するカルボキシル基は染着座席として機能するものの、染料とのイオン結合が弱く容易にイオン交換するために染色堅牢度が悪く実用的なレベルの染色はできないことから、架橋アクリル酸系重合体以外の領域が、主に染色性能を担う部分となる。従って、かかる領域の存在、さらには、その染色能力が重要となる。本発明のカチオン染料可染性吸湿性繊維では、かかる領域に染着座席として機能するスルホン酸基を含有せしめることによって、アクリロニトリル系繊維の場合と同様の処方で染色することが可能となったのである。
The region of the cross-linked acrylic acid polymer having such a carboxyl group and a cross-linked structure is a part mainly responsible for moisture absorption performance. As described above, although the carboxyl group present in such a region functions as a dyeing seat, the ion bond with the dye is weak and the ion exchange is easy, so the dyeing fastness is poor and a practical level dyeing cannot be performed. The region other than the cross-linked acrylic acid polymer is a portion mainly responsible for the dyeing performance. Therefore, the existence of such a region and its dyeing ability are important. In the cationic dyeable and hygroscopic fiber of the present invention, by incorporating a sulfonic acid group functioning as a dyeing seat in such a region, it becomes possible to dye with the same formulation as in the case of acrylonitrile fiber. is there.
また、架橋アクリル酸系重合体の領域と、アクリロニトリル系重合体の領域との比率については、架橋アクリル酸系重合体の領域の割合が高いほど吸湿率の高い繊維が得られるが、一方でアクリロニトリル系重合体の領域の割合が低くなり、十分な発色性を得ようとする場合には、アクリロニトリル系重合体の領域中のスルホン酸基の濃度を高くする必要がある。そのため、乾燥状態において繊維断面積の20~80%の面積をアクリロニトリル系重合体が占めることが必要であり、好ましくは30~70%が望ましい。かかる範囲内であれば、吸湿性及び発色性の両方のバランスのとれた繊維が得られる。
As for the ratio of the cross-linked acrylic acid polymer region to the acrylonitrile polymer region, the higher the proportion of the cross-linked acrylic polymer region, the higher the moisture absorption rate. When the ratio of the area of the polymer is reduced and sufficient color developability is to be obtained, it is necessary to increase the concentration of the sulfonic acid group in the area of the acrylonitrile polymer. Therefore, it is necessary that the acrylonitrile-based polymer occupies an area of 20 to 80% of the fiber cross-sectional area in the dry state, and preferably 30 to 70%. Within such a range, a fiber in which both hygroscopicity and color development are balanced can be obtained.
ここで、架橋アクリル酸系重合体の領域とアクリロニトリル系重合体の領域は、カチオン染料で染色処理した後、繊維断面を光学顕微鏡で観察し、染色されている領域がアクリロニトリル系重合体の領域で、染色されていないあるいは染色が確認できない領域が架橋アクリル酸系重合体の領域である。従って、上述の面積比率は、染色処理後、乾燥した繊維を切断し繊維断面を観察することにより算出したものである。
Here, the cross-linked acrylic acid polymer region and the acrylonitrile polymer region are dyed with a cationic dye, then the fiber cross section is observed with an optical microscope, and the dyed region is an acrylonitrile polymer region. The region that is not dyed or in which the dyeing cannot be confirmed is the region of the crosslinked acrylic acid polymer. Therefore, the above-mentioned area ratio is calculated by cutting the dried fiber and observing the fiber cross section after the dyeing treatment.
さらに、原料繊維であるアクリロニトリル系繊維が、繊維重量に対して0.03mmol/g以上のスルホン酸基を有するものであることが必要であり、好ましくは0.05mmol/g以上、より好ましくは0.055mmol/g以上、さらに好ましくは0.065mmol/g以上のスルホン酸基を有するものであることが望ましい。かかるアクリロニトリル系繊維を原料繊維として、架橋、加水分解することによって、染色性に優れたカチオン染料可染性吸湿性繊維が得られる。
Furthermore, it is necessary that the acrylonitrile fiber as the raw fiber has a sulfonic acid group of 0.03 mmol / g or more with respect to the fiber weight, preferably 0.05 mmol / g or more, more preferably 0. It is desirable to have a sulfonic acid group of 0.055 mmol / g or more, more preferably 0.065 mmol / g or more. By using such acrylonitrile fiber as a raw material fiber, crosslinking and hydrolysis can yield a cationic dye-dyeable hygroscopic fiber having excellent dyeability.
本発明のカチオン染料可染性吸湿性繊維の染色性としては、カチオン染料によるアクリロニトリル系繊維との同浴染色における染色後の吸湿性繊維の色相が、L*が+45以下、a*が-5以上+5以下、b*が-5以上+5以下であることが好ましく、より好ましくはL*が+40以下、さらに好ましくはL*が+35以下であることが望ましい。かかる範囲でのL*の上限を上回る場合は十分な発色性が得られない場合があり、またa*、b*の範囲を外れる場合は色相の調整が困難となり、実用的な染色が困難となる場合がある。
The dyeability of the cationic dyeable hygroscopic fiber of the present invention includes the hue of the hygroscopic fiber after dyeing in the same bath dyeing with the acrylonitrile fiber by the cationic dye, L * is +45 or less, and a * is −5. It is preferably +5 or less and b * is −5 or more and +5 or less, more preferably L * is +40 or less, and further preferably L * is +35 or less. If the upper limit of L * in this range is exceeded, sufficient color developability may not be obtained, and if it falls outside the range of a * and b *, it will be difficult to adjust the hue, and practical dyeing will be difficult. There is a case.
さらに、アクリロニトリル系繊維が、80重量%以上のアクリロニトリルを結合含有するアクリロニトリル系重合体90~99重量%、及び残部が10~70重量%のアクリロニトリルを結合含有するアクリル系スルホン酸基含有樹脂1~10重量%である重合体とからなるものであることが好ましい。これにより、アクリロニトリル系繊維に十分な量のスルホン酸基を容易に導入することができる。
Furthermore, the acrylic sulfonic acid group-containing resin 1 to 90 contains 90 to 99% by weight of an acrylonitrile-based polymer containing 80% by weight or more of acrylonitrile and the remaining 10 to 70% by weight of acrylonitrile. It is preferably composed of 10% by weight of a polymer. Thereby, a sufficient amount of sulfonic acid groups can be easily introduced into the acrylonitrile fiber.
また、アクリロニトリル系繊維が、少なくとも、アクリロニトリルの含有率の異なる2種のアクリロニトリル系重合体からなり、かかる含有率の差が2重量%以上であることも好ましい。これにより、架橋、加水分解のされやすさに差が生まれ、架橋アクリル酸系重合体の領域と、スルホン酸基を有するアクリロニトリル系重合体の領域が形成されやすくなる。かかるアクリロニトリル系繊維は、2種のアクリロニトリル系重合体がサイドバイサイドに接合されてなるものでも、ランダムに混合されてなるものでも構わないが、A-B-A層からなる3層構造でなるもの、あるいは芯鞘構造のものがより好ましく、B層もしくは芯の部分がアクリロニトリルの含有率が高く、かつ多くのスルホン酸基を有するものであることが好ましい。具体的には、B層もしくは芯の部分のアクリロニトリル含有率が82重量%以上であることが好ましく、より好ましくは85重量%以上、さらに好ましくは90重量%以上であり、スルホン酸基の含有量が0.05mmol/g以上であることが好ましく、より好ましくは0.07mmol/g以上、さらに好ましくは0.1mmol/g以上である。
It is also preferable that the acrylonitrile fiber is composed of at least two acrylonitrile polymers having different acrylonitrile contents, and the difference in the contents is 2% by weight or more. As a result, a difference in ease of crosslinking and hydrolysis occurs, and a region of the crosslinked acrylic acid polymer and a region of the acrylonitrile polymer having a sulfonic acid group are easily formed. Such an acrylonitrile fiber may be one in which two kinds of acrylonitrile polymers are joined side by side or may be randomly mixed, but one having a three-layer structure composed of ABA layers, Alternatively, a core-sheath structure is more preferable, and the B layer or the core part preferably has a high acrylonitrile content and has many sulfonic acid groups. Specifically, the acrylonitrile content in the B layer or the core portion is preferably 82% by weight or more, more preferably 85% by weight or more, and still more preferably 90% by weight or more. Is preferably 0.05 mmol / g or more, more preferably 0.07 mmol / g or more, and still more preferably 0.1 mmol / g or more.
以上に説明した本発明のカチオン染料可染性吸湿性繊維の製造方法としては、アクリロニトリル系繊維を1分子中に2個以上の窒素原子を有する窒素含有化合物により架橋を導入し、アルカリ性金属塩水溶液により加水分解すること、あるいはそれらの処理を同時に行なうことにより部分的に架橋アクリル酸系重合体の領域を形成し、スルホン酸基量を含むアクリロニトリル系重合体の領域を残す方法が製造設備やコストの面から望ましい。かかる方法について以下に詳述する。
As a method for producing the dye-dyed hygroscopic fiber of the present invention described above, an acrylonitrile fiber is introduced with a nitrogen-containing compound having two or more nitrogen atoms in one molecule, and an alkaline metal salt aqueous solution is introduced. The method of partially forming a cross-linked acrylic acid polymer region by hydrolyzing by the above-mentioned method or carrying out these treatments at the same time and leaving the region of the acrylonitrile polymer containing the amount of sulfonic acid group is the manufacturing equipment and cost. It is desirable from the aspect of. This method will be described in detail below.
ここで、出発アクリロニトリル系繊維(以下、アクリル系繊維と呼ぶこともある)としてはアクリロニトリル(以下、ANともいう)を40重量%以上、好ましくは50重量%以上、より好ましくは80重量%以上含有するAN系重合体により形成された繊維であり、短繊維、トウ、糸、編織物、不織布等いずれの形態のものでも良く、また、製造工程中途品、廃繊維などでも構わない。AN系重合体は、AN単独重合体、ANと他の単量体との共重合体のいずれでも良く、他の単量体としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル等の(メタ)アクリル酸エステル化合物、メタリルスルホン酸、p-スチレンスルホン酸等のスルホン酸基含有単量体及びその塩;スチレン、酢酸ビニル等の単量体等、ANと共重合可能な単量体であれば特に限定されないが、酢酸ビニルに代表されるビニルエステル系化合物を5~20重量%共重合させることが望ましい。かかるビニルエステルとしては酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等が挙げられる。
Here, the starting acrylonitrile fiber (hereinafter sometimes referred to as acrylic fiber) contains acrylonitrile (hereinafter also referred to as AN) in an amount of 40% by weight or more, preferably 50% by weight or more, more preferably 80% by weight or more. The fibers are formed from AN polymer, and may be in any form such as short fibers, tows, yarns, knitted fabrics, and non-woven fabrics. The AN polymer may be either an AN homopolymer or a copolymer of AN and another monomer. Examples of the other monomer include methyl (meth) acrylate, ethyl (meth) acrylate, (Meth) acrylic acid ester compounds such as butyl (meth) acrylate, dimethylaminoethyl (meth) acrylate and diethylaminoethyl (meth) acrylate, sulfonic acid group-containing compounds such as methallylsulfonic acid and p-styrenesulfonic acid A monomer and a salt thereof; the monomer is not particularly limited as long as it is a monomer copolymerizable with AN, such as a monomer such as styrene and vinyl acetate, but 5 to 20% by weight of a vinyl ester compound represented by vinyl acetate. It is desirable to copolymerize. Such vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate and the like.
また、本発明の採用する出発アクリロニトリル系繊維においては、繊維重量に対して0.03mmol/g以上のスルホン酸基を有することが必要であることから、アクリロニトリル系重合体自身がスルホン酸基を有するものである場合は、レドックス触媒により末端にスルホン酸基を導入する方法や、スルホン酸基含有単量体を共重合させる方法を採用することができ、他の重合体によりスルホン酸基を導入する場合は、スルホン酸基含有樹脂等をアクリロニトリル系重合体に混合する方法を採用することができる。
In addition, in the starting acrylonitrile fiber employed in the present invention, it is necessary to have a sulfonic acid group of 0.03 mmol / g or more with respect to the fiber weight, so that the acrylonitrile polymer itself has a sulfonic acid group. If it is, a method of introducing a sulfonic acid group at the terminal by a redox catalyst or a method of copolymerizing a sulfonic acid group-containing monomer can be adopted, and the sulfonic acid group is introduced by another polymer. In this case, a method of mixing a sulfonic acid group-containing resin or the like with an acrylonitrile-based polymer can be employed.
かかるスルホン酸基を含有する単量体としては、ビニルスルホン酸、(メタ)アリルスルホン酸、スチレンスルホン酸、4-スルホブチル(メタ)アクリレート、メタリルオキシベンゼンスルホン酸、アリルオキシベンゼンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、2-スルホエチル(メタ)アクリレートやこれらの単量体の金属塩などが挙げられる。
Examples of the monomer containing a sulfonic acid group include vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, 4-sulfobutyl (meth) acrylate, methallyloxybenzene sulfonic acid, allyloxybenzene sulfonic acid, 2 -Acrylamido-2-methylpropanesulfonic acid, 2-sulfoethyl (meth) acrylate and metal salts of these monomers.
また、スルホン酸基含有樹脂としては、スルホン酸基を含有するものであれば特に限定されるものではないが、上述したスルホン酸基を含有する単量体とアクリロニトリルやメタクリルニトリル等のニトリル基を有する単量体を共重合させたアクリル系スルホン酸基含有樹脂であることが好ましく、かかる単量体以外に他の単量体を共重合させたものでも構わない。かかるアクリル系スルホン酸基含有樹脂としては、例えばアクリロニトリル/アクリル酸メチルエステル/スチレンパラスルホン酸ソーダ単量体からなるアクリル系スルホン酸基含有樹脂等があげられ、アクリロニトリル系重合体に均一に混合してもよいし、サイド-バイ-サイド等、局所的に混在させてもよい。
The sulfonic acid group-containing resin is not particularly limited as long as it contains a sulfonic acid group, but the above-described monomer containing a sulfonic acid group and a nitrile group such as acrylonitrile or methacrylonitrile are used. It is preferably an acrylic sulfonic acid group-containing resin obtained by copolymerizing a monomer having the above-mentioned monomers, and other monomers may be copolymerized in addition to such monomers. Examples of such acrylic sulfonic acid group-containing resins include acrylic sulfonic acid group-containing resins composed of acrylonitrile / acrylic acid methyl ester / styrene parasulfonic acid soda monomer, which are mixed uniformly with an acrylonitrile polymer. Alternatively, it may be mixed locally such as side-by-side.
また、上述の通り、2種以上のAN系重合体を使用する場合は、アクリロニトリルの含有率の差が2重量%以上であることが望ましい。なお、A-B-A層からなる3層構造のアクリル系繊維を得る方法としては、特開2000-45126号公報に記載の方法などが採用でき、この際、A成分の原液粘度がB成分の原液粘度より低くなるようにし、B成分の繊維表面への露出を少なくすることが好ましい。
Moreover, as mentioned above, when using 2 or more types of AN polymers, it is desirable that the difference in the content of acrylonitrile is 2% by weight or more. In addition, as a method for obtaining an acrylic fiber having a three-layer structure composed of an ABA layer, the method described in Japanese Patent Application Laid-Open No. 2000-45126 can be employed. It is preferable to reduce the exposure of the B component to the fiber surface by lowering the viscosity of the stock solution.
該アクリル系繊維は、1分子中に2個以上の窒素原子を有する窒素含有化合物を含有する水溶液による架橋導入処理およびアルカリ性金属塩化合物を含有する水溶液による加水分解処理を施される。これらの処理は架橋導入処理後に加水分解処理を施すという個別処理で行なうこともできるし、1分子中に2個以上の窒素原子を有する窒素含有化合物とアルカリ性金属塩化合物を共存させた水溶液を用いる同時処理で行なうこともできる。いずれの場合も1分子中に2個以上の窒素原子を有する窒素含有化合物とアクリル系繊維のアクリロニトリル系重合体が有するニトリル基が反応することで架橋構造が形成され、またアルカリ性金属塩化合物水溶液とニトリル基が反応することでカルボキシル基が形成され、架橋アクリル酸系重合体に変換されることになる。
The acrylic fiber is subjected to a crosslinking introduction treatment with an aqueous solution containing a nitrogen-containing compound having two or more nitrogen atoms in one molecule and a hydrolysis treatment with an aqueous solution containing an alkaline metal salt compound. These treatments can be carried out by individual treatment in which hydrolysis treatment is performed after the cross-linking introduction treatment, or an aqueous solution in which a nitrogen-containing compound having two or more nitrogen atoms in one molecule and an alkaline metal salt compound coexist is used. It can also be performed by simultaneous processing. In any case, a cross-linked structure is formed by the reaction of the nitrogen-containing compound having two or more nitrogen atoms in one molecule and the nitrile group of the acrylonitrile polymer of acrylic fiber, and an aqueous alkali metal salt compound solution A nitrile group reacts to form a carboxyl group, which is converted into a crosslinked acrylic acid polymer.
上記架橋導入処理及び加水分解処理の具体的な方法としては、処理に用いる水溶液に繊維を浸漬した状態で反応させる方法や該水溶液を噴霧するなどして繊維に付着させた状態で反応させる方法などを採用することができる。また、個別処理、同時処理のいずれの場合においても、1分子中に2個以上の窒素原子を有する窒素含有化合物の濃度としては、好ましくは0.1~5重量%、より好ましくは0.1~2重量%である。この濃度が低すぎるとアクリル酸系重合体の溶出抑制の効果が得られないことがあり、高すぎると繊維の着色が強くなる、あるいは十分な吸湿性を発現させるだけのカルボキシル基を導入できなくなる恐れがある。また、アルカリ性金属塩化合物の濃度については、好ましくは0.5~5重量%、より好ましくは0.5~4重量%である。アルカリ性金属塩化合物の濃度が低すぎると生成されるカルボキシル基量が不十分となることがあり、高すぎると残すべきアクリロニトリル系重合体まで加水分解されてしまう恐れがある。
Specific examples of the crosslinking introduction treatment and the hydrolysis treatment include a method in which a fiber is immersed in an aqueous solution used for the treatment, a method in which the aqueous solution is sprayed, and a method in which the aqueous solution is adhered to the fiber. Can be adopted. In both cases of individual treatment and simultaneous treatment, the concentration of the nitrogen-containing compound having two or more nitrogen atoms in one molecule is preferably 0.1 to 5% by weight, more preferably 0.1%. ~ 2% by weight. If this concentration is too low, the effect of suppressing the dissolution of the acrylic acid polymer may not be obtained. If it is too high, the coloring of the fiber becomes strong, or it becomes impossible to introduce a carboxyl group sufficient to develop sufficient hygroscopicity. There is a fear. The concentration of the alkaline metal salt compound is preferably 0.5 to 5% by weight, more preferably 0.5 to 4% by weight. If the concentration of the alkaline metal salt compound is too low, the amount of carboxyl groups produced may be insufficient, and if it is too high, the acrylonitrile polymer to be left behind may be hydrolyzed.
また反応温度および時間については、1分子中に2個以上の窒素原子を有する窒素含有化合物および/またはアルカリ性金属塩化合物の濃度に応じて適切な範囲が異なる。同時処理の場合で、1分子中に2個以上の窒素原子を有する窒素含有化合物の濃度が0.5~2重量%程度、アルカリ性金属塩化合物の濃度が1~2重量%程度であれば、90~100℃で2時間程度の条件が推奨される。
Moreover, about reaction temperature and time, the suitable range changes according to the density | concentration of the nitrogen-containing compound and / or alkaline metal salt compound which have a 2 or more nitrogen atom in 1 molecule. In the case of simultaneous treatment, if the concentration of the nitrogen-containing compound having two or more nitrogen atoms in one molecule is about 0.5 to 2% by weight and the concentration of the alkaline metal salt compound is about 1 to 2% by weight, Conditions of 90 to 100 ° C for about 2 hours are recommended.
ここで、1分子中に2個以上の窒素原子を有する窒素含有化合物としては、2個以上の1級アミノ基を有するアミノ化合物やヒドラジン系化合物が好ましい。2個以上の1級アミノ基を有するアミノ化合物としては、エチレンジアミン、ヘキサメチレンジアミン、などのジアミン化合物、ジエチレンとリアミン、3、3’-イミノビス(プロピルアミン)、N-メチル-3、3’-イミノビス(プロピルアミン)などのトリアミン系化合物、トリエチレンテトラミン、N、N’-ビス(3-アミノプロピル)-1、3-プロピレンジアミン、N、N’-ビス(3-アミノプロピル)-1、4-ブチレンジアミンなどのテトラミン系化合物、ポリビニルアミン、ポリアリルアミンなどで2個以上の1級アミノ基を有するポリアミン系化合物が例示される。また、ヒドラジン系化合物としては、水加ヒドラジン、硫酸ヒドラジン、塩酸ヒドラジン、臭素酸ヒドラジン、ヒドラジンカーボネートなどが例示される。なお、1分子中の窒素原子の数の上限は特に制限されないが、12個以下であることが好ましく、さらに好ましくは6個以下であり、特に好ましくは4個以下である。1分子中の窒素原子の数が上記上限を超えると架橋剤分子が大きくなり、繊維内に架橋を導入しにくくなる場合がある。また、アルカリ性金属塩化合物としては、特に限定されるものではなく、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属炭酸塩などを使用することができる。
Here, the nitrogen-containing compound having two or more nitrogen atoms in one molecule is preferably an amino compound or a hydrazine-based compound having two or more primary amino groups. Examples of amino compounds having two or more primary amino groups include diamine compounds such as ethylenediamine and hexamethylenediamine, diethylene and reamine, 3,3′-iminobis (propylamine), N-methyl-3, 3′- Triamine compounds such as iminobis (propylamine), triethylenetetramine, N, N′-bis (3-aminopropyl) -1,3-propylenediamine, N, N′-bis (3-aminopropyl) -1, Examples include tetraamine compounds such as 4-butylenediamine, polyamine compounds having two or more primary amino groups such as polyvinylamine and polyallylamine. Examples of the hydrazine-based compound include hydrazine hydrate, hydrazine sulfate, hydrazine hydrochloride, hydrazine bromate, and hydrazine carbonate. The upper limit of the number of nitrogen atoms in one molecule is not particularly limited, but is preferably 12 or less, more preferably 6 or less, and particularly preferably 4 or less. When the number of nitrogen atoms in one molecule exceeds the above upper limit, the cross-linking agent molecule becomes large and it may be difficult to introduce cross-linking into the fiber. Moreover, it does not specifically limit as an alkaline metal salt compound, An alkali metal hydroxide, an alkaline-earth metal hydroxide, an alkali metal carbonate, etc. can be used.
上記の個別処理の場合、架橋導入処理を経た繊維は、加水分解処理の前に酸処理を施してもよい。かかる酸処理により、繊維の着色を淡色化することができる。ここで使用する酸としては、硝酸、硫酸、塩酸等の鉱酸の水溶液、有機酸等が挙げられるが、特に限定されない。また、処理条件としては、酸濃度5~20重量%、好ましくは7~15重量%の水溶液に、温度50~120℃で0.5~10時間被処理繊維を浸漬するといった例が挙げられる。また、加水分解あるいは架橋・加水分解同時処理後に、従来の架橋アクリル酸系繊維が採用する酸性水溶液よる洗浄、緩衝液などによるpH調整処理などの処理を施しても構わない。
In the case of the above individual treatment, the fiber that has undergone the cross-linking introduction treatment may be subjected to an acid treatment before the hydrolysis treatment. By this acid treatment, the coloring of the fiber can be lightened. Examples of the acid used here include aqueous solutions of mineral acids such as nitric acid, sulfuric acid, and hydrochloric acid, and organic acids, but are not particularly limited. Examples of the treatment conditions include immersing the fiber to be treated in an aqueous solution having an acid concentration of 5 to 20% by weight, preferably 7 to 15% by weight, at a temperature of 50 to 120 ° C. for 0.5 to 10 hours. Further, after hydrolysis or simultaneous crosslinking / hydrolysis treatments, treatments such as washing with an acidic aqueous solution adopted by conventional crosslinked acrylic fibers, pH adjustment treatment with a buffer solution, etc. may be performed.
以上の方法により本発明のカチオン染料可染性吸湿性繊維を得ることができるが、さらに熱処理を施すことが好ましい。熱処理を行う工程は、上記工程のどの工程の間でもよく、また架橋加水分解前であっても、上記工程のすべての工程が終了した後でも構わないが、架橋加水分解後、あるいは酸性水溶液による洗浄後に行うことが望ましい。この熱処理により、より発色性に優れたものとすることができる。
Although the cationic dye-dyeable hygroscopic fiber of the present invention can be obtained by the above method, it is preferable to further perform heat treatment. The step of performing the heat treatment may be performed during any of the above steps, and may be before the cross-linking hydrolysis or after all the steps of the above steps are completed, but after the cross-linking hydrolysis or with an acidic aqueous solution. It is desirable to carry out after washing. By this heat treatment, the color developability can be further improved.
かかる熱処理は、湿熱であっても乾熱であっても構わないが、100~130℃の熱水により、10秒以上、好ましくは10分以上処理することが望ましい。なお、アクリロニトリル系繊維のスルホン酸基が0.05mmol/g以上の場合、あるいはアクリル系スルホン酸基含有樹脂によりかかる量以上のスルホン酸基を含有せしめた場合、さらには、2種以上のAN系重合体を使用した場合には、必ずしも必要ではないが、より優れた発色性を得るためには、熱処理を行うことが好ましい。
The heat treatment may be wet heat or dry heat, but it is desirable that the heat treatment be performed with hot water at 100 to 130 ° C. for 10 seconds or longer, preferably for 10 minutes or longer. In addition, when the sulfonic acid group of the acrylonitrile fiber is 0.05 mmol / g or more, or when the sulfonic acid group of the acrylonitrile group-containing resin is contained in an amount of the sulfonic acid group or more, two or more kinds of AN-based fibers are used. When a polymer is used, it is not always necessary, but it is preferable to perform a heat treatment in order to obtain more excellent color developability.
また、架橋アクリル酸系重合体からなる部分のカルボキシル基量としては、繊維重量に対して好ましくは1.0~10mmol/g、より好ましくは2.0~5.0mmol/gである。かかる範囲の下限を下回る場合は十分な吸湿性能が得られない場合があり、また上限を上回る場合はカチオン染色したときの発色性が得られない場合がある。該カルボキシル基はカルボン酸であってもカルボン酸塩であっても、それらが混在していても構わないが、繊維製造後の段階においては、紡績等の加工を容易にするためカルボン酸とし、染色後あるいは最終製品の段階においては、高い吸湿率を得るため50%以上がカルボン酸塩であることが望ましい。
The amount of carboxyl groups in the portion made of the crosslinked acrylic acid polymer is preferably 1.0 to 10 mmol / g, more preferably 2.0 to 5.0 mmol / g, based on the fiber weight. If the lower limit of the range is not reached, sufficient moisture absorption performance may not be obtained, and if the upper limit is exceeded, the color developability when cationic dyeing may not be obtained. The carboxyl group may be a carboxylic acid or a carboxylate salt, or they may be mixed, but in the stage after fiber production, a carboxylic acid is used to facilitate processing such as spinning, After dyeing or at the final product stage, it is desirable that 50% or more is a carboxylate in order to obtain a high moisture absorption rate.
なお、カルボン酸塩を構成する陽イオンの例としては、Li、Na、K等のアルカリ金属、Be、Ca、Ba等のアルカリ土類金属、Cu、Zn、Al、Mn、Ag、Fe、Co、Ni等の金属、アンモニウム、アミン等の陽イオン等が挙げられ、複数種類の陽イオンが混在してもよい。
Examples of cations constituting the carboxylate include alkali metals such as Li, Na, and K, alkaline earth metals such as Be, Ca, and Ba, Cu, Zn, Al, Mn, Ag, Fe, and Co. And a metal such as Ni, a cation such as ammonium and amine, and a plurality of types of cations may be mixed.
以下に実施例により本発明を具体的に示すが、これはあくまで例示的なものであり、本発明はこれらにより限定されるものではない。なお、実施例中の部および百分率は特に断りのない限り重量基準で示す。実施例中の特性の評価方法は以下の通りである。
EXAMPLES The present invention will be specifically described below with reference to examples, but this is illustrative only and the present invention is not limited thereto. In the examples, parts and percentages are shown on a weight basis unless otherwise specified. The evaluation method of characteristics in the examples is as follows.
(1)カルボキシル基量(mmol/g)
十分乾燥した試料約1gを精秤し(Yg)、これに200mLの水を加えた後、50℃に加温しながら1mol/L塩酸水溶液を添加してpH2にし、次いで0.1mol/Lの水酸化ナトリウム水溶液で常法に従って滴定曲線を求める。該滴定曲線からカルボキシル基に消費された水酸化ナトリウム水溶液消費量(ZmL)を求め、次式によってカルボキシル基量(mmol/g)を算出した。
(カルボキシル基量)=0.1Z/Y (1) Carboxyl group amount (mmol / g)
About 1 g of a well-dried sample was precisely weighed (Yg), 200 mL of water was added thereto, 1 mol / L hydrochloric acid aqueous solution was added to the solution while being heated to 50 ° C. to pH 2, and then 0.1 mol / L A titration curve is obtained with an aqueous sodium hydroxide solution according to a conventional method. The consumption amount (ZmL) of the aqueous sodium hydroxide solution consumed by the carboxyl groups was determined from the titration curve, and the carboxyl group amount (mmol / g) was calculated by the following formula.
(Carboxyl group amount) = 0.1 Z / Y
十分乾燥した試料約1gを精秤し(Yg)、これに200mLの水を加えた後、50℃に加温しながら1mol/L塩酸水溶液を添加してpH2にし、次いで0.1mol/Lの水酸化ナトリウム水溶液で常法に従って滴定曲線を求める。該滴定曲線からカルボキシル基に消費された水酸化ナトリウム水溶液消費量(ZmL)を求め、次式によってカルボキシル基量(mmol/g)を算出した。
(カルボキシル基量)=0.1Z/Y (1) Carboxyl group amount (mmol / g)
About 1 g of a well-dried sample was precisely weighed (Yg), 200 mL of water was added thereto, 1 mol / L hydrochloric acid aqueous solution was added to the solution while being heated to 50 ° C. to pH 2, and then 0.1 mol / L A titration curve is obtained with an aqueous sodium hydroxide solution according to a conventional method. The consumption amount (ZmL) of the aqueous sodium hydroxide solution consumed by the carboxyl groups was determined from the titration curve, and the carboxyl group amount (mmol / g) was calculated by the following formula.
(Carboxyl group amount) = 0.1 Z / Y
(2)飽和吸湿率(%)
試料約5.0gを水に浸漬し、カルボキシル基に対し、Na中和度70モル%になるように水酸化ナトリウム水溶液を添加して、90℃で2時間浸漬処理した後に、水洗し、脱水、24時間風乾させた。中和処理した該試料を熱風乾燥機で105℃、16時間乾燥して重量を測定する(W1 g)。次に該試料を20℃×65%RHの条件に調整した恒温恒湿器に24時間入れておく。このようにして吸湿させた試料の重量を測定する(W2 g)。
(飽和吸湿率%)=(W2-W1)/W1×100 (2) Saturated moisture absorption (%)
About 5.0 g of the sample is immersed in water, an aqueous sodium hydroxide solution is added so that the degree of Na neutralization is 70 mol% with respect to the carboxyl group, and after immersion at 90 ° C. for 2 hours, it is washed with water and dehydrated. And air-dried for 24 hours. The neutralized sample is dried with a hot air dryer at 105 ° C. for 16 hours and weighed (W1 g). Next, the sample is placed in a thermo-hygrostat adjusted to 20 ° C. × 65% RH for 24 hours. The weight of the sample thus absorbed is measured (W2 g).
(Saturated moisture absorption%) = (W2-W1) / W1 × 100
試料約5.0gを水に浸漬し、カルボキシル基に対し、Na中和度70モル%になるように水酸化ナトリウム水溶液を添加して、90℃で2時間浸漬処理した後に、水洗し、脱水、24時間風乾させた。中和処理した該試料を熱風乾燥機で105℃、16時間乾燥して重量を測定する(W1 g)。次に該試料を20℃×65%RHの条件に調整した恒温恒湿器に24時間入れておく。このようにして吸湿させた試料の重量を測定する(W2 g)。
(飽和吸湿率%)=(W2-W1)/W1×100 (2) Saturated moisture absorption (%)
About 5.0 g of the sample is immersed in water, an aqueous sodium hydroxide solution is added so that the degree of Na neutralization is 70 mol% with respect to the carboxyl group, and after immersion at 90 ° C. for 2 hours, it is washed with water and dehydrated. And air-dried for 24 hours. The neutralized sample is dried with a hot air dryer at 105 ° C. for 16 hours and weighed (W1 g). Next, the sample is placed in a thermo-hygrostat adjusted to 20 ° C. × 65% RH for 24 hours. The weight of the sample thus absorbed is measured (W2 g).
(Saturated moisture absorption%) = (W2-W1) / W1 × 100
(3)染色性
試料約1.0gと通常の3.3dtexのアクリロニトリル系繊維(日本エクスラン工業(株)エクスランK8-3.3T)2.0gを、繊維総重量(3.0g)に対してNichilon Black G 200%(2.5重量%)、酢酸(2重量%)の水溶液300mLに浸漬し、30分間煮沸処理した後に、ハイドロサルファイト2g/Lの水溶液300mLに60℃で15分間浸漬処理し、5分間流水で水洗した後に風乾する。該染色処理を施された繊維からアクリロニトリル系繊維を取り除き、得られた試料について、染色性を以下の判断基準に基づき、目視によって評価する。
○:十分に染色可能
△:淡色に染色可能
×:ほとんど染まらない、または色相が異常 (3) About 1.0 g of a dyeable sample and 2.0 g of ordinary 3.3 dtex acrylonitrile fiber (Nippon Exlan Industry Co., Ltd. Exlan K8-3.3T) with respect to the total fiber weight (3.0 g) Immerse it in 300 mL of an aqueous solution of 200% (2.5% by weight) Nicholon Black G and acetic acid (2% by weight), boil it for 30 minutes, and then soak it in 300 mL of an aqueous solution of hydrosulfite 2 g / L at 60 ° C. for 15 minutes. Then, rinse with running water for 5 minutes and air dry. Acrylonitrile fiber is removed from the dyed fiber, and the obtained sample is visually evaluated for dyeability based on the following criteria.
○: Fully dyeable △: Lightly dyeable ×: Almost not dyed or abnormal hue
試料約1.0gと通常の3.3dtexのアクリロニトリル系繊維(日本エクスラン工業(株)エクスランK8-3.3T)2.0gを、繊維総重量(3.0g)に対してNichilon Black G 200%(2.5重量%)、酢酸(2重量%)の水溶液300mLに浸漬し、30分間煮沸処理した後に、ハイドロサルファイト2g/Lの水溶液300mLに60℃で15分間浸漬処理し、5分間流水で水洗した後に風乾する。該染色処理を施された繊維からアクリロニトリル系繊維を取り除き、得られた試料について、染色性を以下の判断基準に基づき、目視によって評価する。
○:十分に染色可能
△:淡色に染色可能
×:ほとんど染まらない、または色相が異常 (3) About 1.0 g of a dyeable sample and 2.0 g of ordinary 3.3 dtex acrylonitrile fiber (Nippon Exlan Industry Co., Ltd. Exlan K8-3.3T) with respect to the total fiber weight (3.0 g) Immerse it in 300 mL of an aqueous solution of 200% (2.5% by weight) Nicholon Black G and acetic acid (2% by weight), boil it for 30 minutes, and then soak it in 300 mL of an aqueous solution of hydrosulfite 2 g / L at 60 ° C. for 15 minutes. Then, rinse with running water for 5 minutes and air dry. Acrylonitrile fiber is removed from the dyed fiber, and the obtained sample is visually evaluated for dyeability based on the following criteria.
○: Fully dyeable △: Lightly dyeable ×: Almost not dyed or abnormal hue
(4)色相(発色性の目安)
上記(3)で得られた試料約1.0gを測色した。なお、評価装置はスガ試験機(株)製の多光源分光測色計MSC-5(C光源、2度視野)を使用し、底面が石英ガラスで構成される直径40mmのねじ込み式の円筒型セルに固定した底面を、直径30mmの測定孔で測定し、常法に従ってL*a*b*表色系のL*、a*、b*の値を算出した。L*の値が低い程、暗い、即ち発色性が高いことを示す。a*、b*の値がゼロから離れる程、黒色とは異なる色相となることを示す。 (4) Hue (standard color development)
About 1.0 g of the sample obtained in the above (3) was measured. The evaluation device uses a multi-light source spectrocolorimeter MSC-5 (C light source, 2-degree field of view) manufactured by Suga Test Instruments Co., Ltd., and is a screw-in cylindrical type having a bottom surface made of quartz glass and having a diameter of 40 mm. The bottom surface fixed to the cell was measured with a measurement hole having a diameter of 30 mm, and L *, a *, and b * values of the L * a * b * color system were calculated according to a conventional method. The lower the value of L *, the darker, that is, the higher the color developability. It shows that it becomes a hue different from black, so that the value of a * and b * leaves | separates from zero.
上記(3)で得られた試料約1.0gを測色した。なお、評価装置はスガ試験機(株)製の多光源分光測色計MSC-5(C光源、2度視野)を使用し、底面が石英ガラスで構成される直径40mmのねじ込み式の円筒型セルに固定した底面を、直径30mmの測定孔で測定し、常法に従ってL*a*b*表色系のL*、a*、b*の値を算出した。L*の値が低い程、暗い、即ち発色性が高いことを示す。a*、b*の値がゼロから離れる程、黒色とは異なる色相となることを示す。 (4) Hue (standard color development)
About 1.0 g of the sample obtained in the above (3) was measured. The evaluation device uses a multi-light source spectrocolorimeter MSC-5 (C light source, 2-degree field of view) manufactured by Suga Test Instruments Co., Ltd., and is a screw-in cylindrical type having a bottom surface made of quartz glass and having a diameter of 40 mm. The bottom surface fixed to the cell was measured with a measurement hole having a diameter of 30 mm, and L *, a *, and b * values of the L * a * b * color system were calculated according to a conventional method. The lower the value of L *, the darker, that is, the higher the color developability. It shows that it becomes a hue different from black, so that the value of a * and b * leaves | separates from zero.
(5)アクリロニトリル系繊維のスルホン酸基量
乾燥した繊維試料約0.25gを精秤し(Sg)、20mLのDMFに溶解させた。次いでアンバーライトIR-120B(ローム・アンド・ハース株式会社製、強酸性カチオン交換樹脂)10mLを加え、15分間撹拌した後、ろ別した。DMFを加えてろ液を50mLに希釈し、0.0075mol/Lの水酸化ナトリウムエタノール溶液で伝導度滴定を行い、滴定曲線を求めた。該滴定曲線からスルホン酸基に消費された水酸化ナトリウム消費量(VmL)を求め、次式によってスルホン酸基量(mmol/g)を算出した。
(スルホン酸基量)=0.0075V/S (5) About 0.25 g of a fiber sample obtained by drying the amount of sulfonic acid group of acrylonitrile fiber was precisely weighed (Sg) and dissolved in 20 mL of DMF. Next, 10 mL of Amberlite IR-120B (Rohm and Haas Co., Ltd., strongly acidic cation exchange resin) was added, stirred for 15 minutes, and filtered. DMF was added to dilute the filtrate to 50 mL, and conductivity titration was performed with a 0.0075 mol / L sodium hydroxide ethanol solution to obtain a titration curve. The consumption amount (VmL) of sodium hydroxide consumed by the sulfonic acid group was determined from the titration curve, and the sulfonic acid group amount (mmol / g) was calculated by the following formula.
(Amount of sulfonic acid group) = 0.0075 V / S
乾燥した繊維試料約0.25gを精秤し(Sg)、20mLのDMFに溶解させた。次いでアンバーライトIR-120B(ローム・アンド・ハース株式会社製、強酸性カチオン交換樹脂)10mLを加え、15分間撹拌した後、ろ別した。DMFを加えてろ液を50mLに希釈し、0.0075mol/Lの水酸化ナトリウムエタノール溶液で伝導度滴定を行い、滴定曲線を求めた。該滴定曲線からスルホン酸基に消費された水酸化ナトリウム消費量(VmL)を求め、次式によってスルホン酸基量(mmol/g)を算出した。
(スルホン酸基量)=0.0075V/S (5) About 0.25 g of a fiber sample obtained by drying the amount of sulfonic acid group of acrylonitrile fiber was precisely weighed (Sg) and dissolved in 20 mL of DMF. Next, 10 mL of Amberlite IR-120B (Rohm and Haas Co., Ltd., strongly acidic cation exchange resin) was added, stirred for 15 minutes, and filtered. DMF was added to dilute the filtrate to 50 mL, and conductivity titration was performed with a 0.0075 mol / L sodium hydroxide ethanol solution to obtain a titration curve. The consumption amount (VmL) of sodium hydroxide consumed by the sulfonic acid group was determined from the titration curve, and the sulfonic acid group amount (mmol / g) was calculated by the following formula.
(Amount of sulfonic acid group) = 0.0075 V / S
アクリロニトリル系重合体A~Cの製造
表1に示す組成のモノマーを塩素酸ソーダ/ピロ亜硫酸ソーダのレドックス系触媒で連続水系懸濁重合を行い、アクリロニトリル系重合体A~Cを作成した。
なお、表中の略号はそれぞれ、AN:アクリロニトリル、MA:アクリル酸メチル、SMAS:メタスルホン酸ナトリウム、VAc:酢酸ビニルを示している。また該重合体のスルホン酸基量を併記した。 Production of Acrylonitrile Polymers A to C Monomers having the composition shown in Table 1 were subjected to continuous aqueous suspension polymerization with a redox catalyst of sodium chlorate / sodium pyrosulfite to prepare acrylonitrile polymers A to C.
The abbreviations in the table indicate AN: acrylonitrile, MA: methyl acrylate, SMAS: sodium metasulfonate, and VAc: vinyl acetate. The amount of sulfonic acid groups of the polymer is also shown.
表1に示す組成のモノマーを塩素酸ソーダ/ピロ亜硫酸ソーダのレドックス系触媒で連続水系懸濁重合を行い、アクリロニトリル系重合体A~Cを作成した。
なお、表中の略号はそれぞれ、AN:アクリロニトリル、MA:アクリル酸メチル、SMAS:メタスルホン酸ナトリウム、VAc:酢酸ビニルを示している。また該重合体のスルホン酸基量を併記した。 Production of Acrylonitrile Polymers A to C Monomers having the composition shown in Table 1 were subjected to continuous aqueous suspension polymerization with a redox catalyst of sodium chlorate / sodium pyrosulfite to prepare acrylonitrile polymers A to C.
The abbreviations in the table indicate AN: acrylonitrile, MA: methyl acrylate, SMAS: sodium metasulfonate, and VAc: vinyl acetate. The amount of sulfonic acid groups of the polymer is also shown.
スルホン酸基含有樹脂Dの製造
アクリロニトリル48重量%、アクリル酸メチルエステル22重量%、スルホン酸基含有モノマーとしてパラスチレンスルホン酸ソーダ30重量%をアンモニュームパーサルファイト/ピロ亜硫酸ソーダのレドックス系触媒で連続重合してスルホン酸基を1.46mmol/g含有する半透明ラテックスを得た。 Production of sulfonic acid group-containing resin D 48% by weight of acrylonitrile, 22% by weight of acrylic acid methyl ester, and 30% by weight of sodium styrene sulfonate as a sulfonic acid group-containing monomer are used as a redox catalyst of ammonium persulfite / sodium pyrosulfite. Continuous polymerization was performed to obtain a translucent latex containing 1.46 mmol / g of sulfonic acid groups.
アクリロニトリル48重量%、アクリル酸メチルエステル22重量%、スルホン酸基含有モノマーとしてパラスチレンスルホン酸ソーダ30重量%をアンモニュームパーサルファイト/ピロ亜硫酸ソーダのレドックス系触媒で連続重合してスルホン酸基を1.46mmol/g含有する半透明ラテックスを得た。 Production of sulfonic acid group-containing resin D 48% by weight of acrylonitrile, 22% by weight of acrylic acid methyl ester, and 30% by weight of sodium styrene sulfonate as a sulfonic acid group-containing monomer are used as a redox catalyst of ammonium persulfite / sodium pyrosulfite. Continuous polymerization was performed to obtain a translucent latex containing 1.46 mmol / g of sulfonic acid groups.
実施例1
48%ロダン酸ナトリウム水溶液90部に対して、アクリロニトリル系重合体A10部を溶解させた紡糸原液を、常法に従って紡糸、延伸した後、乾燥、湿熱処理して単繊維繊度1.0dtexのAN系繊維を得た。該AN系繊維を、水加ヒドラジン0.5%及び水酸化ナトリウム1.5%を含有する水溶液中、95℃で2時間架橋・加水分解処理を行い、水洗した。続いて120℃の水中で1時間熱処理した後、硝酸3%水溶液で洗浄した。処理された繊維を水洗し、紡績油剤を付与した後脱水、乾燥し、実施例1の吸湿性繊維を得た。得られた繊維の評価結果を表2に示す。なお、油剤の付着量は繊維に対し、0.5重量%となるように調整した。 Example 1
A spinning stock solution in which 10 parts of acrylonitrile polymer A is dissolved in 90 parts of a 48% sodium rhodanoate aqueous solution is spun and stretched in accordance with a conventional method, then dried and wet heat treated, and an AN system having a single fiber fineness of 1.0 dtex. Fiber was obtained. The AN fiber was subjected to crosslinking / hydrolysis treatment at 95 ° C. for 2 hours in an aqueous solution containing 0.5% hydrazine hydrate and 1.5% sodium hydroxide, and washed with water. Subsequently, it was heat treated in water at 120 ° C. for 1 hour, and then washed with a 3% nitric acid aqueous solution. The treated fiber was washed with water, applied with a spinning oil, dehydrated and dried to obtain a hygroscopic fiber of Example 1. Table 2 shows the evaluation results of the obtained fibers. In addition, the adhesion amount of the oil agent was adjusted to 0.5% by weight with respect to the fiber.
48%ロダン酸ナトリウム水溶液90部に対して、アクリロニトリル系重合体A10部を溶解させた紡糸原液を、常法に従って紡糸、延伸した後、乾燥、湿熱処理して単繊維繊度1.0dtexのAN系繊維を得た。該AN系繊維を、水加ヒドラジン0.5%及び水酸化ナトリウム1.5%を含有する水溶液中、95℃で2時間架橋・加水分解処理を行い、水洗した。続いて120℃の水中で1時間熱処理した後、硝酸3%水溶液で洗浄した。処理された繊維を水洗し、紡績油剤を付与した後脱水、乾燥し、実施例1の吸湿性繊維を得た。得られた繊維の評価結果を表2に示す。なお、油剤の付着量は繊維に対し、0.5重量%となるように調整した。 Example 1
A spinning stock solution in which 10 parts of acrylonitrile polymer A is dissolved in 90 parts of a 48% sodium rhodanoate aqueous solution is spun and stretched in accordance with a conventional method, then dried and wet heat treated, and an AN system having a single fiber fineness of 1.0 dtex. Fiber was obtained. The AN fiber was subjected to crosslinking / hydrolysis treatment at 95 ° C. for 2 hours in an aqueous solution containing 0.5% hydrazine hydrate and 1.5% sodium hydroxide, and washed with water. Subsequently, it was heat treated in water at 120 ° C. for 1 hour, and then washed with a 3% nitric acid aqueous solution. The treated fiber was washed with water, applied with a spinning oil, dehydrated and dried to obtain a hygroscopic fiber of Example 1. Table 2 shows the evaluation results of the obtained fibers. In addition, the adhesion amount of the oil agent was adjusted to 0.5% by weight with respect to the fiber.
比較例1
48%ロダン酸ナトリウム水溶液90部に対して、アクリロニトリル系重合体B10部を溶解させた紡糸原液を、常法に従って紡糸、延伸した後、乾燥、湿熱処理して単繊維繊度1.0dtexのAN系繊維を得た。該AN系繊維を、水加ヒドラジン0.5%及び水酸化ナトリウム2.0%を含有する水溶液中、95℃で2時間架橋・加水分解処理を行い、水洗した。続いて120℃の水中で1時間熱処理した後、硝酸3%水溶液で洗浄した。処理された繊維を水洗し、紡績油剤を付与した後脱水、乾燥し、比較例1の吸湿性繊維を得た。得られた繊維の評価結果を表2に示す。 Comparative Example 1
A spinning stock solution in which 10 parts of acrylonitrile polymer B is dissolved in 90 parts of a 48% sodium rhodanate aqueous solution is spun and stretched according to a conventional method, and then dried and wet heat treated, and then an AN system having a single fiber fineness of 1.0 dtex. Fiber was obtained. The AN fiber was subjected to crosslinking / hydrolysis treatment at 95 ° C. for 2 hours in an aqueous solution containing 0.5% hydrazine hydrate and 2.0% sodium hydroxide, and washed with water. Subsequently, it was heat treated in water at 120 ° C. for 1 hour, and then washed with a 3% nitric acid aqueous solution. The treated fiber was washed with water, applied with a spinning oil, dehydrated and dried to obtain a hygroscopic fiber of Comparative Example 1. Table 2 shows the evaluation results of the obtained fibers.
48%ロダン酸ナトリウム水溶液90部に対して、アクリロニトリル系重合体B10部を溶解させた紡糸原液を、常法に従って紡糸、延伸した後、乾燥、湿熱処理して単繊維繊度1.0dtexのAN系繊維を得た。該AN系繊維を、水加ヒドラジン0.5%及び水酸化ナトリウム2.0%を含有する水溶液中、95℃で2時間架橋・加水分解処理を行い、水洗した。続いて120℃の水中で1時間熱処理した後、硝酸3%水溶液で洗浄した。処理された繊維を水洗し、紡績油剤を付与した後脱水、乾燥し、比較例1の吸湿性繊維を得た。得られた繊維の評価結果を表2に示す。 Comparative Example 1
A spinning stock solution in which 10 parts of acrylonitrile polymer B is dissolved in 90 parts of a 48% sodium rhodanate aqueous solution is spun and stretched according to a conventional method, and then dried and wet heat treated, and then an AN system having a single fiber fineness of 1.0 dtex. Fiber was obtained. The AN fiber was subjected to crosslinking / hydrolysis treatment at 95 ° C. for 2 hours in an aqueous solution containing 0.5% hydrazine hydrate and 2.0% sodium hydroxide, and washed with water. Subsequently, it was heat treated in water at 120 ° C. for 1 hour, and then washed with a 3% nitric acid aqueous solution. The treated fiber was washed with water, applied with a spinning oil, dehydrated and dried to obtain a hygroscopic fiber of Comparative Example 1. Table 2 shows the evaluation results of the obtained fibers.
実施例2
比較例1で得られたAN系繊維を、水加ヒドラジン0.5%及び水酸化ナトリウム1.5%を含有する水溶液中、95℃で2時間架橋・加水分解処理を行い、水洗した。続いて120℃の水中で1時間熱処理した後、硝酸3%の水溶液で洗浄した。処理された繊維を水洗し、紡績油剤を付与した後脱水、乾燥し、実施例2の吸湿性繊維を得た。得られた繊維の評価結果を表2に示す。 Example 2
The AN fiber obtained in Comparative Example 1 was subjected to crosslinking and hydrolysis treatment at 95 ° C. for 2 hours in an aqueous solution containing 0.5% hydrazine hydrate and 1.5% sodium hydroxide, and washed with water. Subsequently, it was heat treated in water at 120 ° C. for 1 hour, and then washed with a 3% nitric acid aqueous solution. The treated fiber was washed with water, applied with a spinning oil, dehydrated and dried to obtain a hygroscopic fiber of Example 2. Table 2 shows the evaluation results of the obtained fibers.
比較例1で得られたAN系繊維を、水加ヒドラジン0.5%及び水酸化ナトリウム1.5%を含有する水溶液中、95℃で2時間架橋・加水分解処理を行い、水洗した。続いて120℃の水中で1時間熱処理した後、硝酸3%の水溶液で洗浄した。処理された繊維を水洗し、紡績油剤を付与した後脱水、乾燥し、実施例2の吸湿性繊維を得た。得られた繊維の評価結果を表2に示す。 Example 2
The AN fiber obtained in Comparative Example 1 was subjected to crosslinking and hydrolysis treatment at 95 ° C. for 2 hours in an aqueous solution containing 0.5% hydrazine hydrate and 1.5% sodium hydroxide, and washed with water. Subsequently, it was heat treated in water at 120 ° C. for 1 hour, and then washed with a 3% nitric acid aqueous solution. The treated fiber was washed with water, applied with a spinning oil, dehydrated and dried to obtain a hygroscopic fiber of Example 2. Table 2 shows the evaluation results of the obtained fibers.
比較例2
比較例1で得られたAN系繊維を、水加ヒドラジン0.5%及び水酸化ナトリウム1.5%を含有する水溶液中、95℃で2時間架橋・加水分解処理を行い、水洗した後、硝酸3%の水溶液で洗浄した。処理された繊維を水洗し、紡績油剤を付与した後脱水、乾燥し、比較例2の吸湿性繊維を得た。得られた繊維の評価結果を表2に示す。 Comparative Example 2
The AN fiber obtained in Comparative Example 1 was subjected to crosslinking and hydrolysis treatment at 95 ° C. for 2 hours in an aqueous solution containing 0.5% hydrazine hydrate and 1.5% sodium hydroxide, and washed with water. Washed with an aqueous solution of 3% nitric acid. The treated fiber was washed with water, applied with a spinning oil, dehydrated and dried to obtain a hygroscopic fiber of Comparative Example 2. Table 2 shows the evaluation results of the obtained fibers.
比較例1で得られたAN系繊維を、水加ヒドラジン0.5%及び水酸化ナトリウム1.5%を含有する水溶液中、95℃で2時間架橋・加水分解処理を行い、水洗した後、硝酸3%の水溶液で洗浄した。処理された繊維を水洗し、紡績油剤を付与した後脱水、乾燥し、比較例2の吸湿性繊維を得た。得られた繊維の評価結果を表2に示す。 Comparative Example 2
The AN fiber obtained in Comparative Example 1 was subjected to crosslinking and hydrolysis treatment at 95 ° C. for 2 hours in an aqueous solution containing 0.5% hydrazine hydrate and 1.5% sodium hydroxide, and washed with water. Washed with an aqueous solution of 3% nitric acid. The treated fiber was washed with water, applied with a spinning oil, dehydrated and dried to obtain a hygroscopic fiber of Comparative Example 2. Table 2 shows the evaluation results of the obtained fibers.
比較例3
比較例1で得られたAN系繊維を、水加ヒドラジン20%水溶液中で、98℃で3時間架橋導入処理を行い、水洗した。次に硝酸3%水溶液中で、90℃で2時間酸処理を行ない、水洗した。続いて水酸化ナトリウム3%水溶液中で90℃×2時間の加水分解処理を行い、水洗した。続いてpH2の硝酸水溶液で洗浄した。処理された繊維を水洗し、紡績油剤を付与した後脱水、乾燥し、比較例3の吸湿性繊維を得た。得られた繊維の評価結果を表2に示す。 Comparative Example 3
The AN fiber obtained in Comparative Example 1 was subjected to crosslinking introduction treatment at 98 ° C. for 3 hours in a 20% aqueous solution of hydrazine hydrate and washed with water. Next, it was acid-treated at 90 ° C. for 2 hours in a 3% nitric acid aqueous solution and washed with water. Subsequently, hydrolysis was performed at 90 ° C. for 2 hours in a 3% aqueous solution of sodium hydroxide and washed with water. Subsequently, it was washed with an aqueous nitric acid solution having a pH of 2. The treated fiber was washed with water, applied with a spinning oil, dehydrated and dried to obtain a hygroscopic fiber of Comparative Example 3. Table 2 shows the evaluation results of the obtained fibers.
比較例1で得られたAN系繊維を、水加ヒドラジン20%水溶液中で、98℃で3時間架橋導入処理を行い、水洗した。次に硝酸3%水溶液中で、90℃で2時間酸処理を行ない、水洗した。続いて水酸化ナトリウム3%水溶液中で90℃×2時間の加水分解処理を行い、水洗した。続いてpH2の硝酸水溶液で洗浄した。処理された繊維を水洗し、紡績油剤を付与した後脱水、乾燥し、比較例3の吸湿性繊維を得た。得られた繊維の評価結果を表2に示す。 Comparative Example 3
The AN fiber obtained in Comparative Example 1 was subjected to crosslinking introduction treatment at 98 ° C. for 3 hours in a 20% aqueous solution of hydrazine hydrate and washed with water. Next, it was acid-treated at 90 ° C. for 2 hours in a 3% nitric acid aqueous solution and washed with water. Subsequently, hydrolysis was performed at 90 ° C. for 2 hours in a 3% aqueous solution of sodium hydroxide and washed with water. Subsequently, it was washed with an aqueous nitric acid solution having a pH of 2. The treated fiber was washed with water, applied with a spinning oil, dehydrated and dried to obtain a hygroscopic fiber of Comparative Example 3. Table 2 shows the evaluation results of the obtained fibers.
実施例3
48%ロダン酸ナトリウム水溶液90部に対して、アクリロニトリル系重合体B10部を溶解し、紡糸原液を作成した。該紡糸原液に、表3に示す比率になるようにスルホン酸基含有樹脂Dを添加、混合、溶解して混合原液を連続的に作成し、紡糸装置に導いた。次いで紡糸装置に導いた混合原液を、常法に従って紡糸、延伸した後、乾燥、湿熱処理して単繊維繊度1.0dtexのAN系繊維を得た。該AN系繊維を用いて、実施例1の製造方法に従って実施例3の吸湿性繊維を得た。得られた繊維の評価結果を表3に示す。 Example 3
10 parts of acrylonitrile polymer B was dissolved in 90 parts of a 48% aqueous sodium rhodate solution to prepare a spinning dope. A sulfonic acid group-containing resin D was added to the spinning stock solution so as to have the ratio shown in Table 3, mixed and dissolved to continuously prepare a mixed stock solution, which was led to a spinning device. Next, the mixed stock solution led to the spinning device was spun and drawn according to a conventional method, and then dried and wet-heat treated to obtain AN fibers having a single fiber fineness of 1.0 dtex. Using the AN fiber, a hygroscopic fiber of Example 3 was obtained according to the production method of Example 1. Table 3 shows the evaluation results of the obtained fibers.
48%ロダン酸ナトリウム水溶液90部に対して、アクリロニトリル系重合体B10部を溶解し、紡糸原液を作成した。該紡糸原液に、表3に示す比率になるようにスルホン酸基含有樹脂Dを添加、混合、溶解して混合原液を連続的に作成し、紡糸装置に導いた。次いで紡糸装置に導いた混合原液を、常法に従って紡糸、延伸した後、乾燥、湿熱処理して単繊維繊度1.0dtexのAN系繊維を得た。該AN系繊維を用いて、実施例1の製造方法に従って実施例3の吸湿性繊維を得た。得られた繊維の評価結果を表3に示す。 Example 3
10 parts of acrylonitrile polymer B was dissolved in 90 parts of a 48% aqueous sodium rhodate solution to prepare a spinning dope. A sulfonic acid group-containing resin D was added to the spinning stock solution so as to have the ratio shown in Table 3, mixed and dissolved to continuously prepare a mixed stock solution, which was led to a spinning device. Next, the mixed stock solution led to the spinning device was spun and drawn according to a conventional method, and then dried and wet-heat treated to obtain AN fibers having a single fiber fineness of 1.0 dtex. Using the AN fiber, a hygroscopic fiber of Example 3 was obtained according to the production method of Example 1. Table 3 shows the evaluation results of the obtained fibers.
実施例4
アクリロニトリル系重合体Bとスルホン酸基含有樹脂Dの割合を変える他は、実施例3と同じ方法で紡糸原液を作成し、単繊維繊度1.0dtexのAN系繊維を得た。該AN系繊維を用いて、実施例1の製造方法に従って実施例4の吸湿性繊維を得た。得られた繊維の評価結果を表3に示す。 Example 4
A spinning dope was prepared in the same manner as in Example 3 except that the ratio of the acrylonitrile polymer B and the sulfonic acid group-containing resin D was changed to obtain AN fibers having a single fiber fineness of 1.0 dtex. Using the AN fiber, a hygroscopic fiber of Example 4 was obtained according to the production method of Example 1. Table 3 shows the evaluation results of the obtained fibers.
アクリロニトリル系重合体Bとスルホン酸基含有樹脂Dの割合を変える他は、実施例3と同じ方法で紡糸原液を作成し、単繊維繊度1.0dtexのAN系繊維を得た。該AN系繊維を用いて、実施例1の製造方法に従って実施例4の吸湿性繊維を得た。得られた繊維の評価結果を表3に示す。 Example 4
A spinning dope was prepared in the same manner as in Example 3 except that the ratio of the acrylonitrile polymer B and the sulfonic acid group-containing resin D was changed to obtain AN fibers having a single fiber fineness of 1.0 dtex. Using the AN fiber, a hygroscopic fiber of Example 4 was obtained according to the production method of Example 1. Table 3 shows the evaluation results of the obtained fibers.
実施例5
48%ロダン酸ナトリウム水溶液88部に対して、アクリロニトリル系重合体B12部を該重合体濃度が12重量%となるように溶解させ、紡糸原液Qbを作成した。尚、該紡糸原液Qbの30℃における粘度は3900mPa・sであった。これとは別に48%ロダン酸ナトリウム水溶液88部に対して、示すアクリロニトリル系重合体C12部を該重合体濃度が12重量%となるように溶解させ、紡糸原液Qcを作成した。尚、該紡糸原液Qcの30℃における粘度は4000mPa・sであった。
次いで、特開2000-45126号公報に記載の3層積層構造形成タイプの紡糸装置を用い、2種の紡糸原液を1:1の比率で、紡糸原液分配層と紡糸口金を介してQb層-Qc層-Qb層となるよう導き、その後常法に従って紡糸し、延伸した後、乾燥、湿熱処理して、単繊維繊度1.0dtexのAN系繊維を得た。該AN系繊維を用いて、実施例1の製造方法に従って実施例5の吸湿性繊維を得た。得られた繊維の評価結果を表3に示す。 Example 5
A spinning stock solution Qb was prepared by dissolving 12 parts of acrylonitrile polymer B in 88 parts of a 48% aqueous sodium rhodate solution so that the polymer concentration was 12% by weight. The spinning solution Qb had a viscosity of 3900 mPa · s at 30 ° C. Separately, 12 parts of the acrylonitrile polymer C12 shown below was dissolved in 88 parts of a 48% sodium rhodanate aqueous solution so that the polymer concentration was 12% by weight to prepare a spinning dope Qc. The spinning stock solution Qc had a viscosity at 30 ° C. of 4000 mPa · s.
Next, using a spinning device of a three-layer laminated structure formation type described in Japanese Patent Application Laid-Open No. 2000-45126, the two spinning stock solutions are mixed at a ratio of 1: 1 through a spinning stock solution distribution layer and a spinneret to form a Qb layer- It was led to become Qc layer-Qb layer, then spun in accordance with a conventional method, drawn, dried, and wet heat treated to obtain an AN fiber having a single fiber fineness of 1.0 dtex. Using the AN fiber, a hygroscopic fiber of Example 5 was obtained according to the production method of Example 1. Table 3 shows the evaluation results of the obtained fibers.
48%ロダン酸ナトリウム水溶液88部に対して、アクリロニトリル系重合体B12部を該重合体濃度が12重量%となるように溶解させ、紡糸原液Qbを作成した。尚、該紡糸原液Qbの30℃における粘度は3900mPa・sであった。これとは別に48%ロダン酸ナトリウム水溶液88部に対して、示すアクリロニトリル系重合体C12部を該重合体濃度が12重量%となるように溶解させ、紡糸原液Qcを作成した。尚、該紡糸原液Qcの30℃における粘度は4000mPa・sであった。
次いで、特開2000-45126号公報に記載の3層積層構造形成タイプの紡糸装置を用い、2種の紡糸原液を1:1の比率で、紡糸原液分配層と紡糸口金を介してQb層-Qc層-Qb層となるよう導き、その後常法に従って紡糸し、延伸した後、乾燥、湿熱処理して、単繊維繊度1.0dtexのAN系繊維を得た。該AN系繊維を用いて、実施例1の製造方法に従って実施例5の吸湿性繊維を得た。得られた繊維の評価結果を表3に示す。 Example 5
A spinning stock solution Qb was prepared by dissolving 12 parts of acrylonitrile polymer B in 88 parts of a 48% aqueous sodium rhodate solution so that the polymer concentration was 12% by weight. The spinning solution Qb had a viscosity of 3900 mPa · s at 30 ° C. Separately, 12 parts of the acrylonitrile polymer C12 shown below was dissolved in 88 parts of a 48% sodium rhodanate aqueous solution so that the polymer concentration was 12% by weight to prepare a spinning dope Qc. The spinning stock solution Qc had a viscosity at 30 ° C. of 4000 mPa · s.
Next, using a spinning device of a three-layer laminated structure formation type described in Japanese Patent Application Laid-Open No. 2000-45126, the two spinning stock solutions are mixed at a ratio of 1: 1 through a spinning stock solution distribution layer and a spinneret to form a Qb layer- It was led to become Qc layer-Qb layer, then spun in accordance with a conventional method, drawn, dried, and wet heat treated to obtain an AN fiber having a single fiber fineness of 1.0 dtex. Using the AN fiber, a hygroscopic fiber of Example 5 was obtained according to the production method of Example 1. Table 3 shows the evaluation results of the obtained fibers.
表2、3からわかるように、実施例1、3乃至5では染色によって十分な発色性が得られる吸湿性繊維が得られた。スルホン酸基量が0.05mmol/g以下のアクリロニトリル系重合体Bを用いた比較例1では、ほとんど染色することができなかったが、アクリロニトリル系重合体の領域を増やすよう処理した実施例2では、飽和吸湿率は低下するものの、実用レベルの染色は可能であった。さらに架橋・加水分解後に熱水処理を施さない他は実施例2と同様の方法で作成された比較例2はほとんど染色することができず、比較例3では、高い飽和吸湿率が得られるものの、該染色処理を施した繊維の色相が意図した色とは異なる緑色を示し、実用染色には不適であり、カチオン染料可染性吸湿性繊維と呼べるものではなかった。
As can be seen from Tables 2 and 3, in Examples 1, 3 to 5, hygroscopic fibers capable of obtaining sufficient color developability by dyeing were obtained. In Comparative Example 1 using acrylonitrile-based polymer B having a sulfonic acid group amount of 0.05 mmol / g or less, it was hardly dyed, but in Example 2 where treatment was performed to increase the area of acrylonitrile-based polymer. Although the saturated moisture absorption rate was decreased, dyeing at a practical level was possible. Further, Comparative Example 2 prepared by the same method as Example 2 can hardly be dyed except that it is not subjected to hydrothermal treatment after crosslinking and hydrolysis. In Comparative Example 3, a high saturated moisture absorption rate is obtained. The color of the dyed fiber showed a green color different from the intended color, was unsuitable for practical dyeing, and could not be called a cationic dye-dyeable hygroscopic fiber.
本発明のカチオン染料可染性吸湿性繊維は高吸湿性能を有し、且つ、カチオン染料による発色性に優れるため、実用的な染色が可能である。そのため従来の架橋アクリル酸系繊維が実用的な染色が困難とされていたために使用が制限されていた用途に展開できる。
The cationic dye-dyeable hygroscopic fiber of the present invention has high hygroscopic performance and is excellent in color developability by the cationic dye, so that practical dyeing is possible. Therefore, it can be developed in applications where the use of conventional cross-linked acrylic acid fibers is restricted because practical dyeing has been difficult.
The cationic dye-dyeable hygroscopic fiber of the present invention has high hygroscopic performance and is excellent in color developability by the cationic dye, so that practical dyeing is possible. Therefore, it can be developed in applications where the use of conventional cross-linked acrylic acid fibers is restricted because practical dyeing has been difficult.
Claims (5)
- 繊維重量に対して0.03mmol/g以上のスルホン酸基を有するアクリロニトリル系繊維を架橋、加水分解することによって得られる吸湿性繊維であって、該繊維がカルボキシル基と架橋構造を有する架橋アクリル酸系重合体の領域と、スルホン酸基を有するアクリロニトリル系重合体の領域とからなり、且つ、アクリロニトリル系重合体の領域が20~80%であることを特徴とするカチオン染料可染性吸湿性繊維。 A hygroscopic fiber obtained by crosslinking and hydrolyzing an acrylonitrile fiber having a sulfonic acid group of 0.03 mmol / g or more with respect to the fiber weight, wherein the fiber has a carboxyl group and a crosslinked structure. Cationic dye-dyeable hygroscopic fiber, characterized in that it comprises an area of a polymer and an area of an acrylonitrile polymer having a sulfonic acid group, and the area of the acrylonitrile polymer is 20 to 80% .
- 以下に定義するカチオン染料による染色後の繊維の色相が、L*a*b*表色系(JIS-Z8729)におけるL*が+45以下、a*が-5以上+5以下、b*が-5以上+5以下であることを特徴とする請求項1記載のカチオン染料可染性吸湿性繊維。
カチオン染料による染色後の繊維の色相:吸湿性繊維1gと3.3dtex、Malacite Green飽和染着量が1.8であるアクリロニトリル系繊維2gを、繊維総重量(3g)に対し、Nichilon Black G200%(2.5重量%)、酢酸(2重量%)の水溶液で30分間煮沸処理した後にハイドロサルファイト2g/Lの水溶液に60℃で15分間浸漬処理し、次いで流水で5分間水洗した後に風乾させ、該アクリロニトリル系繊維を取除くことにより染色された吸湿性繊維を得る。かかる染色された吸湿性繊維を開繊し、底面が石英ガラス面になっている円筒型セルに詰めて、分光測色計を用いて測定した時の色相。 The color of the fiber after dyeing with a cationic dye as defined below is such that the L * in the L * a * b * color system (JIS-Z8729) is +45 or less, a * is −5 or more and +5 or less, and b * is −5. The cationic dye-dyeable hygroscopic fiber according to claim 1, wherein the fiber is +5 or less.
Color of fiber after dyeing with cationic dye: 1 g of hygroscopic fiber, 3.3 dtex, and 2 g of acrylonitrile fiber with a saturated dyeing amount of 1.8 g of Malacite Green, with respect to the total fiber weight (3 g) (2.5% by weight) and an acetic acid (2% by weight) aqueous solution for 30 minutes, then immersed in an aqueous solution of hydrosulfite 2 g / L for 15 minutes at 60 ° C., then washed with running water for 5 minutes and then air-dried And dyed hygroscopic fibers by removing the acrylonitrile fibers. Hue when the dyed hygroscopic fibers are opened, packed in a cylindrical cell having a quartz glass surface at the bottom, and measured using a spectrocolorimeter. - アクリロニトリル系繊維が、80重量%以上のアクリロニトリルを結合含有するアクリロニトリル系重合体90~99重量%、及び残部が10~70重量%のアクリロニトリルを結合含有するアクリル系スルホン酸基含有樹脂1~10重量%である重合体とからなるものであることを特徴とする請求項1又は2に記載のカチオン染料可染性吸湿性繊維。 Acrylonitrile fiber 90 to 99% by weight of acrylonitrile polymer containing 80% by weight or more of acrylonitrile and 1 to 10% by weight of acrylic sulfonic acid group-containing resin 10% to 70% by weight of acrylonitrile %. The cationic dye-dyeable hygroscopic fiber according to claim 1, wherein the fiber is composed of a polymer.
- アクリロニトリル系繊維が、少なくとも、アクリロニトリルの含有率の異なる2種のアクリロニトリル系重合体からなり、かかる含有率の差が2重量%以上であることを特徴とする請求項1から3のいずれかに記載のカチオン染料可染性吸湿性繊維。 The acrylonitrile fiber is composed of at least two acrylonitrile polymers having different acrylonitrile contents, and the difference in the contents is 2% by weight or more. Cationic dye dyeable hygroscopic fibers.
- アクリロニトリル系繊維を架橋、加水分解し、さらに熱処理を行うことを特徴とする請求項1から4のいずれかに記載のカチオン染料可染性吸湿性繊維の製造方法。
The method for producing a dye-dyeable hygroscopic fiber according to any one of claims 1 to 4, wherein the acrylonitrile fiber is crosslinked, hydrolyzed, and further subjected to heat treatment.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-052991 | 2009-03-06 | ||
JP2009052991 | 2009-03-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010101182A1 true WO2010101182A1 (en) | 2010-09-10 |
Family
ID=42709737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/053435 WO2010101182A1 (en) | 2009-03-06 | 2010-03-03 | Moisture absorbing fiber dyeable with cationic dye, and method for producing same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010101182A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012077431A (en) * | 2010-09-08 | 2012-04-19 | Japan Exlan Co Ltd | Heat insulating fiber |
CN106420799A (en) * | 2015-08-06 | 2017-02-22 | 日本爱克兰工业株式会社 | Antiviral material and product containing the material and with antiviral property |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07150471A (en) * | 1993-11-30 | 1995-06-13 | Japan Exlan Co Ltd | Porous acrylonitrile fiber |
JPH08325833A (en) * | 1995-06-05 | 1996-12-10 | Mitsubishi Rayon Co Ltd | Ultrafine acrylic fiber and its production |
JPH10156179A (en) * | 1996-11-29 | 1998-06-16 | Japan Exlan Co Ltd | Acid and aldehyde absorbing polymer, its production and sheetlike body containing the same |
JP3248401B2 (en) * | 1995-06-05 | 2002-01-21 | 日本エクスラン工業株式会社 | Hygroscopic cross-linked acrylic fiber and fiber structure using the fiber |
WO2005064057A1 (en) * | 2003-12-26 | 2005-07-14 | Kaneka Corporation | Step pile fabric and process for producing the same |
JP3674202B2 (en) * | 1996-12-04 | 2005-07-20 | 日本エクスラン工業株式会社 | Antibacterial acrylonitrile fiber and method for producing the same |
JP2006097159A (en) * | 2004-09-28 | 2006-04-13 | Kaneka Corp | Acrylic moisture-absorbing fiber and method for producing the same |
-
2010
- 2010-03-03 WO PCT/JP2010/053435 patent/WO2010101182A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07150471A (en) * | 1993-11-30 | 1995-06-13 | Japan Exlan Co Ltd | Porous acrylonitrile fiber |
JPH08325833A (en) * | 1995-06-05 | 1996-12-10 | Mitsubishi Rayon Co Ltd | Ultrafine acrylic fiber and its production |
JP3248401B2 (en) * | 1995-06-05 | 2002-01-21 | 日本エクスラン工業株式会社 | Hygroscopic cross-linked acrylic fiber and fiber structure using the fiber |
JPH10156179A (en) * | 1996-11-29 | 1998-06-16 | Japan Exlan Co Ltd | Acid and aldehyde absorbing polymer, its production and sheetlike body containing the same |
JP3674202B2 (en) * | 1996-12-04 | 2005-07-20 | 日本エクスラン工業株式会社 | Antibacterial acrylonitrile fiber and method for producing the same |
WO2005064057A1 (en) * | 2003-12-26 | 2005-07-14 | Kaneka Corporation | Step pile fabric and process for producing the same |
JP2006097159A (en) * | 2004-09-28 | 2006-04-13 | Kaneka Corp | Acrylic moisture-absorbing fiber and method for producing the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012077431A (en) * | 2010-09-08 | 2012-04-19 | Japan Exlan Co Ltd | Heat insulating fiber |
CN106420799A (en) * | 2015-08-06 | 2017-02-22 | 日本爱克兰工业株式会社 | Antiviral material and product containing the material and with antiviral property |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101650495B1 (en) | Moisture-absorbing fiber dyeable with acid dyes and method for producing same | |
TWI727079B (en) | Modified acrylonitrile-based fiber, method for manufacturing fiber of the same, and fiber structure containing fiber thereof | |
KR101414364B1 (en) | Dyeable crosslinked acrylate fiber, process for producing the same, and dyed crosslinked acrylate fiber obtained by dyeing the fiber | |
CN100368608C (en) | Method for preparing copolymerized acrylonitrile high water-absorption fiber | |
JP4696724B2 (en) | Method for dyeing cross-linked acrylate fibers and fiber products containing cross-linked acrylate fibers dyed by the dyeing method | |
CN100494556C (en) | Dyeing method for cross linked acrylic fiber and fiber products containing cross linked acrylic fibers dyed by such method | |
JP2998958B1 (en) | Crosslinked acrylic hygroscopic fiber and method for producing the same | |
WO2010101182A1 (en) | Moisture absorbing fiber dyeable with cationic dye, and method for producing same | |
JP5765570B2 (en) | Thermal insulation fiber | |
US5436275A (en) | Porous acrylonitrile polymer fiber | |
JP5141915B2 (en) | High whiteness discoloration resistance cross-linked acrylate fiber | |
TWI739033B (en) | Moisture-absorptive acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber | |
JP7177982B2 (en) | Hygroscopic acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber | |
CN1142952C (en) | Polyacrylonitrile polymer treatment | |
JP5169241B2 (en) | Hygroscopic composite fiber | |
JP3728862B2 (en) | Water-absorbing acrylic fiber | |
JP5141914B2 (en) | High whiteness discoloration-resistant cross-linked acrylate fiber and process for producing the same | |
JP4338574B2 (en) | Colored moisture absorbing / releasing exothermic fiber and method for producing the same | |
JP2005336631A (en) | Method for producing colored mixed yarn | |
JP2019060066A (en) | Moisture-absorptive acrylonitrile-based fiber, production method of the fiber, and fiber structure containing the fiber | |
JP7276703B2 (en) | Dyeing method for fiber structure containing acrylonitrile/crosslinked acrylate system | |
JPH07150471A (en) | Porous acrylonitrile fiber | |
JPH07150470A (en) | Porous acrylonitrile fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10748776 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10748776 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |