JPWO2009147826A1 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JPWO2009147826A1
JPWO2009147826A1 JP2010515764A JP2010515764A JPWO2009147826A1 JP WO2009147826 A1 JPWO2009147826 A1 JP WO2009147826A1 JP 2010515764 A JP2010515764 A JP 2010515764A JP 2010515764 A JP2010515764 A JP 2010515764A JP WO2009147826 A1 JPWO2009147826 A1 JP WO2009147826A1
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
expander
low
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010515764A
Other languages
Japanese (ja)
Inventor
岡市 敦雄
敦雄 岡市
高橋 康文
康文 高橋
雄司 尾形
雄司 尾形
賢宣 和田
賢宣 和田
引地 巧
巧 引地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JPWO2009147826A1 publication Critical patent/JPWO2009147826A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2109Temperatures of a separator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator

Abstract

冷凍サイクル装置100は、低圧段圧縮機113、高圧段圧縮機101、放熱器103、気液分離器107、膨張弁109、膨張機105および蒸発器111を備えている。低圧段圧縮機113と膨張機105とは、軸116で連結されており、膨張機105が冷媒から回収した動力で低圧段圧縮機113が駆動される。低圧段圧縮機113と高圧段圧縮機101とは、中間圧流路114によって直列に接続されている。気液分離器107と中間圧流路114とは、往還流路115によって接続されている。往還流路115は、冷媒が双方向に流通しうるように構成されている。膨張弁109の開度を制御することによって、往還流路115の冷媒流量が調節される。The refrigeration cycle apparatus 100 includes a low-pressure stage compressor 113, a high-pressure stage compressor 101, a radiator 103, a gas-liquid separator 107, an expansion valve 109, an expander 105, and an evaporator 111. The low-pressure compressor 113 and the expander 105 are connected by a shaft 116, and the low-pressure compressor 113 is driven by the power recovered by the expander 105 from the refrigerant. The low-pressure compressor 113 and the high-pressure compressor 101 are connected in series by an intermediate pressure channel 114. The gas-liquid separator 107 and the intermediate pressure flow path 114 are connected by a forward return path 115. The forward recirculation path 115 is configured so that the refrigerant can flow in both directions. By controlling the opening degree of the expansion valve 109, the refrigerant flow rate in the forward recirculation path 115 is adjusted.

Description

本発明は、冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus.

空調機や給湯機に用いられる冷凍サイクル装置として、図13に示すように、第1圧縮機801a、放熱器802、膨張機803、吸熱器804および第2圧縮機801bを有するものが知られている(特許文献1)。第2圧縮機801bと膨張機803とが回転軸806によって連結されおり、第2圧縮機801bの駆動力が膨張機803での冷媒の膨張に伴う動力で賄われる。そのため、冷媒圧力を所定圧力まで上昇させるために費やされる第1圧縮機801aの動力を低減できる。   As a refrigeration cycle apparatus used for an air conditioner or a hot water heater, as shown in FIG. 13, one having a first compressor 801a, a radiator 802, an expander 803, a heat absorber 804, and a second compressor 801b is known. (Patent Document 1). The second compressor 801b and the expander 803 are connected by a rotating shaft 806, and the driving force of the second compressor 801b is covered by the power accompanying the expansion of the refrigerant in the expander 803. Therefore, it is possible to reduce the power of the first compressor 801a that is consumed to increase the refrigerant pressure to a predetermined pressure.

図13に示す冷凍サイクル装置によれば、膨張機803の回転数と第2圧縮機801bの回転数とが一致する。また、膨張機803で膨張した冷媒は、吸熱器804を経て第2圧縮機801bで圧縮されるので、膨張機803を通過する冷媒の質量流量と第2圧縮機801bを通過する冷媒の質量流量とが一致する。さらに、膨張機803の吸入容積および第2圧縮機801bの吸入容積が各々の設計時点で定められるため、膨張機803の吸入冷媒密度および第2圧縮機801bの吸入冷媒密度に制約が加わる。   According to the refrigeration cycle apparatus shown in FIG. 13, the rotational speed of the expander 803 and the rotational speed of the second compressor 801b coincide. Further, since the refrigerant expanded by the expander 803 is compressed by the second compressor 801b through the heat absorber 804, the mass flow rate of the refrigerant passing through the expander 803 and the mass flow rate of the refrigerant passing through the second compressor 801b. Matches. Furthermore, since the suction volume of the expander 803 and the suction volume of the second compressor 801b are determined at each design time point, restrictions are imposed on the suction refrigerant density of the expander 803 and the suction refrigerant density of the second compressor 801b.

すなわち、膨張機803の吸入容積Vexiと膨張機803の吸入冷媒密度ρexiとの積は、第2圧縮機801bの吸入容積VC2iと第2圧縮機801bの吸入冷媒密度ρc2iとの積に常に等しくなる。膨張機803の吸入冷媒密度と第2圧縮機801bの吸入冷媒密度との間には、(ρexi/ρc2i)=(VC2i/Vexi)の関係が常に成立する。この関係のことを、密度比一定の制約という。冷凍サイクル装置を最適効率で運転するには、季節や天候などの外的条件に応じて密度ρexiおよび密度ρc2iを自由に調節できることが不可欠である。しかし、密度比一定の制約があると密度ρexiおよび密度ρc2iを自由に調節できず、効率的な運転の実現が難しくなる。That is, the product of the suction refrigerant density [rho exi the suction volume V exi and the expander 803 of the expander 803, the product of the suction refrigerant density [rho c2i of the suction volume V C2i of the second compressor 801b and the second compressor 801b Is always equal to Between the suction refrigerant density of the expander 803 and the suction refrigerant density of the second compressor 801b, (ρ exi / ρ c2i ) = relationship always holds the (V C2i / V exi). This relationship is called a constraint with a constant density ratio. To operate the refrigeration cycle apparatus at optimum efficiency, it is essential to be able to freely adjust the density [rho exi and the density [rho c2i depending on external conditions such as seasonal and weather. However, it can not be freely adjusted certain the density [rho exi and the density [rho c2i is constraint of constant density ratio, realization of efficient operation becomes difficult.

こうした課題を解決する目的で、図14に示す冷凍サイクル装置が提案されている(特許文献2)。図14に示す冷凍サイクル装置は、2段圧縮機903、放熱器904、膨張機905、気液分離器906、蒸発器908、ガスインジェクション回路910およびバイパス回路911を備えている。2段圧縮機903は、低圧段圧縮機901および高圧段圧縮機902を含む。低圧段圧縮機901と膨張機905とは、回転軸で連結されている。バイパス回路911には、流量制御弁913が設けられている。流量制御弁913の開度を適切に制御し、冷媒の一部をバイパス回路911に流すことによって、密度比一定の制約を回避できる。   In order to solve these problems, a refrigeration cycle apparatus shown in FIG. 14 has been proposed (Patent Document 2). The refrigeration cycle apparatus shown in FIG. 14 includes a two-stage compressor 903, a radiator 904, an expander 905, a gas-liquid separator 906, an evaporator 908, a gas injection circuit 910, and a bypass circuit 911. The two-stage compressor 903 includes a low-pressure stage compressor 901 and a high-pressure stage compressor 902. The low pressure compressor 901 and the expander 905 are connected by a rotating shaft. The bypass circuit 911 is provided with a flow rate control valve 913. By appropriately controlling the opening degree of the flow control valve 913 and allowing a part of the refrigerant to flow through the bypass circuit 911, it is possible to avoid the restriction of a constant density ratio.

特開2003−307358号公報JP 2003-307358 A 特開2006−71257号公報JP 2006-71257 A

しかし、冷媒の一部をバイパス回路911に流すと、膨張機905で動力回収に寄与する冷媒の量が少なくなり、動力回収効率が悪くなる問題がある。この問題は、例えば、同じ設計の冷凍サイクル装置をヒートポンプ温水床暖房機と空調機とのそれぞれに適用するような場合に顕著となる。ある設計のCO2冷凍サイクル装置に関して、最適効率を実現できる密度比(ρexi/ρc2i)を本発明者らが計算したところ、床暖房の定格条件では7.13、冷房の定格条件では3.59、暖房の定格条件では2.98であった。仮に、床暖房に合わせて低圧段圧縮機901および膨張機905の設計を行った場合、冷房時には49.6%の冷媒をバイパス回路911に流し、暖房時には58.2%の冷媒をバイパス回路911に流さざるを得ず、回収できる動力が床暖房時の約半分に低下する。However, when a part of the refrigerant flows through the bypass circuit 911, the amount of refrigerant contributing to power recovery by the expander 905 decreases, and there is a problem that power recovery efficiency deteriorates. This problem becomes remarkable when, for example, the refrigeration cycle apparatus having the same design is applied to each of the heat pump hot water floor heater and the air conditioner. Respect CO 2 refrigeration cycle device of one design, the density ratio can realize optimum efficiency where (ρ exi / ρ c2i) The present inventors have calculated, at rated conditions of floor heating 7.13, 3 in rated conditions of cooling It was 2.98 in the rated condition of heating. If the low-pressure compressor 901 and the expander 905 are designed in accordance with floor heating, 49.6% refrigerant flows through the bypass circuit 911 during cooling, and 58.2% refrigerant flows through the bypass circuit 911 during heating. In other words, the power that can be recovered is reduced to about half that of floor heating.

本発明の目的は、密度比一定の制約を回避しながらも効率的な動力回収を行える冷凍サイクル装置を提供することにある。   An object of the present invention is to provide a refrigeration cycle apparatus capable of efficient power recovery while avoiding the restriction of a constant density ratio.

すなわち、本発明は、
冷媒を予備圧縮するための容積式の低圧段圧縮機と、
前記低圧段圧縮機で予備圧縮された冷媒をさらに圧縮するための高圧段圧縮機と、
前記低圧段圧縮機で予備圧縮された冷媒が前記高圧段圧縮機に送られるように前記低圧段圧縮機と前記高圧段圧縮機とを直列に接続している中間圧流路と、
前記高圧段圧縮機で圧縮された冷媒を冷却するための放熱器と、
動力伝達が行われるように前記低圧段圧縮機に同軸に連結されており、前記放熱器で冷却された冷媒の全量が通過するように構成され、冷媒を膨張させることによって動力回収を行うための容積式の膨張機と、
前記膨張機で膨張した冷媒をガス冷媒と液冷媒とに分離するための気液分離器と、
前記気液分離器で分離された液冷媒を蒸発させるための蒸発器と、
前記気液分離器の液冷媒出口と前記蒸発器の入口との間の流路上に設けられた開度可変の膨張弁と、
前記気液分離器に貯められた冷媒が前記蒸発器および前記低圧段圧縮機を経由することなく前記高圧段圧縮機の入口に導かれる第1流通状態と、前記低圧段圧縮機で予備圧縮された冷媒の一部が前記気液分離器に還流する第2流通状態とを相互に切り替え可能となるように、前記中間圧流路と前記気液分離器とを接続している往還流路と、
前記膨張弁の開度を制御することによって、前記第1流通状態および前記第2流通状態の各々における前記往還流路の冷媒流量を調節するためのコントローラと、
を備えた、冷凍サイクル装置を提供する。
That is, the present invention
A positive displacement low-pressure stage compressor for pre-compressing the refrigerant;
A high-pressure stage compressor for further compressing the refrigerant pre-compressed by the low-pressure stage compressor;
An intermediate pressure flow path connecting the low pressure stage compressor and the high pressure stage compressor in series so that the refrigerant pre-compressed by the low pressure stage compressor is sent to the high pressure stage compressor;
A radiator for cooling the refrigerant compressed by the high-pressure stage compressor;
It is coaxially connected to the low-pressure stage compressor so that power transmission is performed, and is configured so that the entire amount of the refrigerant cooled by the radiator passes, and for recovering power by expanding the refrigerant A positive displacement expander;
A gas-liquid separator for separating the refrigerant expanded by the expander into a gas refrigerant and a liquid refrigerant;
An evaporator for evaporating the liquid refrigerant separated by the gas-liquid separator;
An expansion valve with variable opening provided on a flow path between the liquid refrigerant outlet of the gas-liquid separator and the inlet of the evaporator;
The refrigerant stored in the gas-liquid separator is preliminarily compressed by the low-pressure stage compressor in a first flow state where the refrigerant is led to the inlet of the high-pressure stage compressor without passing through the evaporator and the low-pressure stage compressor. A recirculation path connecting the intermediate pressure flow path and the gas-liquid separator so as to be able to switch between a second flow state in which a part of the refrigerant circulates back to the gas-liquid separator;
A controller for adjusting the flow rate of the refrigerant in the forward / return path in each of the first circulation state and the second circulation state by controlling the opening of the expansion valve;
A refrigeration cycle apparatus is provided.

上記本発明によれば、膨張機の吸入容積に比べて低圧段圧縮機の吸入容積が不足している場合には、往還流路を通じてガス冷媒が気液分離器から中間圧流路へと送られ、高圧段圧縮機に吸入される。これにより、冷凍サイクルの流量バランスが成立する。他方、低圧段圧縮機の吸入容積に比べて膨張機の吸入容積が不足している場合には、低圧段圧縮機で予備圧縮されたガス冷媒の一部が、中間圧流路および往還流路を通じて気液分離器へと送られる。これにより、冷凍サイクルの流量バランスが成立する。低圧段圧縮機の吸入容積と膨張機の吸入容積との比が、如何なる値(設計値)であったとしても、往還流路の働きによって、冷凍サイクルの流量バランスは成立する。   According to the present invention, when the suction volume of the low-pressure compressor is insufficient compared to the suction volume of the expander, the gas refrigerant is sent from the gas-liquid separator to the intermediate pressure channel through the forward recirculation path. And sucked into the high-pressure stage compressor. Thereby, the flow volume balance of a refrigerating cycle is materialized. On the other hand, when the suction volume of the expander is insufficient compared to the suction volume of the low-pressure stage compressor, part of the gas refrigerant pre-compressed by the low-pressure stage compressor passes through the intermediate pressure flow path and the forward recirculation path. It is sent to the gas-liquid separator. Thereby, the flow volume balance of a refrigerating cycle is materialized. Regardless of the value of the suction volume of the low-pressure compressor and the suction volume of the expander (design value), the flow rate balance of the refrigeration cycle is established by the action of the forward recirculation path.

一方、膨張弁によって、気液分離器内の圧力を自由に調節できる。気液分離器内の圧力を調節することで、放熱器の側の冷媒圧力を任意に調節できる。例えば、任意の運転条件で膨張弁を全開にすると、気液分離器内の圧力は、蒸発器における冷媒の蒸発圧力に限りなく近づく。すると、気液分離器と中間圧流路とが往還流路で接続されているので、低圧段圧縮機の入口と出口との圧力差が限りなくゼロに近づく。つまり、低圧段圧縮機の圧縮仕事量が減少する。一方で、膨張機の入口と出口との圧力差が拡大するので、膨張機の動力回収量が増加する。この(動力回収量)>(圧縮仕事量)の関係に基づき、膨張機と低圧段圧縮機の回転数が増加する。その結果、高圧段圧縮機の吐出冷媒流量に対して、膨張機の吐出冷媒流量が過剰になるため、放熱器の側の冷媒圧力が低下する。その結果、膨張機の動力回収量が低下して低圧段圧縮機の圧縮仕事量と釣り合い、冷凍サイクルが安定する。つまり、膨張弁を開くと放熱器の側の冷媒圧力を下げることができる。   On the other hand, the pressure in the gas-liquid separator can be freely adjusted by the expansion valve. The refrigerant pressure on the radiator side can be arbitrarily adjusted by adjusting the pressure in the gas-liquid separator. For example, when the expansion valve is fully opened under an arbitrary operating condition, the pressure in the gas-liquid separator approaches the evaporating pressure of the refrigerant in the evaporator as much as possible. Then, since the gas-liquid separator and the intermediate pressure flow path are connected by the forward recirculation path, the pressure difference between the inlet and the outlet of the low-pressure stage compressor approaches zero as much as possible. That is, the amount of compression work of the low-pressure stage compressor is reduced. On the other hand, since the pressure difference between the inlet and the outlet of the expander increases, the power recovery amount of the expander increases. Based on this relationship (power recovery amount)> (compression work amount), the rotation speeds of the expander and the low-pressure compressor are increased. As a result, since the discharge refrigerant flow rate of the expander becomes excessive with respect to the discharge refrigerant flow rate of the high-pressure compressor, the refrigerant pressure on the radiator side decreases. As a result, the power recovery amount of the expander is reduced, and is balanced with the compression work amount of the low-pressure compressor, so that the refrigeration cycle is stabilized. That is, when the expansion valve is opened, the refrigerant pressure on the radiator side can be reduced.

逆に、膨張弁を徐々に絞っていくと、気液分離器内の圧力は次第に上昇する。気液分離器と中間圧流路とが往還流路で接続されているので、低圧段圧縮機の入口と出口との圧力差が拡大する。つまり、低圧段圧縮機の圧縮仕事量が増加する。一方で、膨張機の入口と出口との圧力差が減少するので、膨張機の動力回収量が低下する。この(動力回収量)<(圧縮仕事量)の関係に基づき、膨張機と低圧段圧縮機の回転数が減少する。その結果、高圧段圧縮機の吐出冷媒流量に対して、膨張機の吐出冷媒流量が不足するため、放熱器の側の冷媒圧力が上昇する。その結果、膨張機の動力回収量が増加して低圧段圧縮機の圧縮仕事量と釣り合い、冷凍サイクルが安定する。つまり、膨張弁を絞ると放熱器の側の冷媒圧力を上げることができる。   Conversely, as the expansion valve is gradually throttled, the pressure in the gas-liquid separator gradually increases. Since the gas-liquid separator and the intermediate pressure flow path are connected by the forward recirculation path, the pressure difference between the inlet and the outlet of the low-pressure compressor is increased. That is, the compression work of the low-pressure stage compressor increases. On the other hand, since the pressure difference between the inlet and outlet of the expander decreases, the power recovery amount of the expander decreases. Based on this relationship (power recovery amount) <(compression work amount), the rotation speeds of the expander and the low-pressure compressor are reduced. As a result, since the discharge refrigerant flow rate of the expander is insufficient with respect to the discharge refrigerant flow rate of the high-pressure compressor, the refrigerant pressure on the radiator side increases. As a result, the power recovery amount of the expander is increased to balance the amount of compression work of the low-pressure compressor, and the refrigeration cycle is stabilized. That is, if the expansion valve is throttled, the refrigerant pressure on the radiator side can be increased.

このように、膨張弁の開度を適切に制御し、これにより膨張機と低圧段圧縮機との回転数を制御すれば、放熱器の側の冷媒圧力を常に最適に調節することができる。しかも、冷媒の全量が膨張機を通過するので、効率的な動力回収を行える。仮に、冷媒が往還流路を還流(第2流通状態)し、回収した動力の一部が冷媒の循環に消費されたとしても、本発明によれば、バイパス回路に冷媒を流す従来例(図14参照)よりもエネルギー収支の面では良くなる。したがって、用途に適した容積比の膨張機と低圧段圧縮機とを備えた冷凍サイクル装置をエネルギー効率の観点で望ましい圧力・温度条件で運転できる。   Thus, if the opening degree of the expansion valve is appropriately controlled and thereby the rotational speeds of the expander and the low-pressure compressor are controlled, the refrigerant pressure on the radiator side can always be optimally adjusted. In addition, since the entire amount of refrigerant passes through the expander, efficient power recovery can be performed. Even if the refrigerant recirculates in the forward recirculation path (second circulation state) and a part of the recovered power is consumed for the circulation of the refrigerant, according to the present invention, the conventional example of flowing the refrigerant through the bypass circuit (FIG. 14)) in terms of energy balance. Therefore, it is possible to operate a refrigeration cycle apparatus including an expander having a volume ratio suitable for an application and a low-pressure compressor at a pressure / temperature condition desirable from the viewpoint of energy efficiency.

また、以上に説明した理論は、低圧段圧縮機と膨張機との容積比が如何なる値であっても成立しうる。したがって、本発明によれば、年間の消費電力を理論上最小にできる任意の容積比となるように、低圧段圧縮機および膨張機を設計できる。つまり、本発明によれば、冷凍サイクル装置の設計の自由度も高まる。   The theory described above can be established regardless of the value of the volume ratio between the low-pressure stage compressor and the expander. Therefore, according to the present invention, the low-pressure stage compressor and the expander can be designed to have an arbitrary volume ratio that can theoretically minimize the annual power consumption. That is, according to the present invention, the degree of freedom in designing the refrigeration cycle apparatus is also increased.

本発明の第1実施形態にかかる冷凍サイクル装置の構成図The block diagram of the refrigerating-cycle apparatus concerning 1st Embodiment of this invention. 多機能ヒートポンプシステムの構成図Configuration diagram of multi-function heat pump system 第1実施形態の制御フローチャートControl flowchart of the first embodiment 中間圧制御を示すモリエル線図Mollier diagram showing intermediate pressure control 床暖房サイクル条件での冷凍サイクルを示すモリエル線図Mollier diagram showing refrigeration cycle under floor heating cycle conditions 冷房サイクル条件での冷凍サイクルを示すモリエル線図Mollier diagram showing refrigeration cycle under cooling cycle conditions 暖房サイクル条件での冷凍サイクルを示すモリエル線図Mollier diagram showing refrigeration cycle under heating cycle conditions 床暖房サイクル条件での、容積比の変化に対する各種サイクル特性の変化を示すグラフGraph showing changes in various cycle characteristics relative to changes in volume ratio under floor heating cycle conditions 床暖房サイクル条件での、容積比の変化に対する高圧段圧縮機の吐出冷媒温度の変化を示すグラフThe graph which shows the change of the discharge refrigerant temperature of the high-pressure stage compressor to the change of the volume ratio under the floor heating cycle condition 冷房サイクル条件での、容積比の変化に対する各種サイクル特性の変化を示すグラフGraph showing changes in various cycle characteristics relative to changes in volume ratio under cooling cycle conditions 冷房サイクル条件での、容積比の変化に対する高圧段圧縮機の吐出冷媒温度の変化を示すグラフThe graph which shows the change of the discharge refrigerant temperature of the high-pressure stage compressor to the change of the volume ratio under the cooling cycle condition 暖房サイクル条件での、容積比の変化に対する各種サイクル特性の変化を示すグラフGraph showing changes in various cycle characteristics with respect to changes in volume ratio under heating cycle conditions 暖房サイクル条件での、容積比の変化に対する高圧段圧縮機の吐出冷媒温度の変化を示すグラフThe graph which shows the change of the discharge refrigerant temperature of the high-pressure stage compressor to the change of the volume ratio under the heating cycle condition 本発明の第2実施形態にかかる冷凍サイクル装置の構成図The block diagram of the refrigerating-cycle apparatus concerning 2nd Embodiment of this invention. 第2実施形態の制御フローチャートControl flowchart of the second embodiment 本発明の第3実施形態にかかる冷凍サイクル装置の構成図The block diagram of the refrigerating-cycle apparatus concerning 3rd Embodiment of this invention. 本発明の第4実施形態にかかる冷凍サイクル装置の構成図The block diagram of the refrigerating-cycle apparatus concerning 4th Embodiment of this invention. 2段ロータリ膨張機の詳細な構造を示す、図12Aの部分拡大図Partial enlarged view of FIG. 12A showing the detailed structure of the two-stage rotary expander 従来の冷凍サイクル装置の構成図Configuration diagram of conventional refrigeration cycle equipment 他の従来の冷凍サイクル装置の構成図Configuration diagram of another conventional refrigeration cycle apparatus

以下、添付の図面を参照しつつ本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

(第1実施形態)
図1に示すように、冷凍サイクル装置100は、高圧段圧縮機101、放熱器103、膨張機105、気液分離器107、膨張弁109、蒸発器111および低圧段圧縮機113を備えている。
(First embodiment)
As shown in FIG. 1, the refrigeration cycle apparatus 100 includes a high-pressure stage compressor 101, a radiator 103, an expander 105, a gas-liquid separator 107, an expansion valve 109, an evaporator 111, and a low-pressure stage compressor 113. .

低圧段圧縮機113は、蒸発器111で蒸発したガス冷媒を予備圧縮する。高圧段圧縮機101は、低圧段圧縮機113で予備圧縮された冷媒(作動流体)をさらに圧縮する。膨張機105は、放熱器103で冷却された冷媒を膨張させることによって動力回収を行う。また、膨張機105は、放熱器103で冷却された冷媒の全量が通過するように構成されている。つまり、膨張機105を迂回して冷媒を流すためのバイパス回路が設けられていない。冷媒の全量が動力回収に寄与するため、動力回収に基づくCOP(coefficient of performance)の改善効果が高い。なお、冷凍または加熱能力を発揮している通常の運転では、冷媒の全量が膨張機105を通過するが、デフロスト等の特別な運転では、冷媒が膨張機105を通過しないこともある。   The low-pressure stage compressor 113 pre-compresses the gas refrigerant evaporated in the evaporator 111. The high-pressure compressor 101 further compresses the refrigerant (working fluid) preliminarily compressed by the low-pressure compressor 113. The expander 105 performs power recovery by expanding the refrigerant cooled by the radiator 103. The expander 105 is configured so that the entire amount of the refrigerant cooled by the radiator 103 passes through. That is, no bypass circuit is provided for bypassing the expander 105 and flowing the refrigerant. Since the total amount of refrigerant contributes to power recovery, the effect of improving COP (coefficient of performance) based on power recovery is high. Note that, in a normal operation that exhibits refrigeration or heating capacity, the entire amount of refrigerant passes through the expander 105, but in a special operation such as defrosting, the refrigerant may not pass through the expander 105.

低圧段圧縮機113および膨張機105は、いずれも容積式の流体機械によって構成されている。低圧段圧縮機113および膨張機105は、膨張機105で冷媒から回収した動力が低圧段圧縮機113に伝達されるように軸116で連結されているとともに、共通の密閉容器117に収容されている。低圧段圧縮機113の気筒容積および膨張機105の気筒容積が、それぞれ一定である。具体的に、本実施形態では、低圧段圧縮機113の吸入容積および膨張機105の吸入容積が、それぞれ一定である。低圧段圧縮機113の吸入容積が膨張機105の吸入容積よりも大きい。従来から、容積可変流体機械を用いることによって、密度比一定の制約を回避できることが知られているが、容積可変流体機械の構造は複雑で、コストアップの要因になる。そのため、本実施形態のように、圧縮機や膨張機には、吸入容量が一定の流体機械を用いるのが好ましい。   The low-pressure stage compressor 113 and the expander 105 are both constituted by positive displacement fluid machines. The low-pressure stage compressor 113 and the expander 105 are connected by a shaft 116 so that the power recovered from the refrigerant in the expander 105 is transmitted to the low-pressure stage compressor 113, and are housed in a common hermetic container 117. Yes. The cylinder volume of the low-pressure stage compressor 113 and the cylinder volume of the expander 105 are constant. Specifically, in the present embodiment, the suction volume of the low-pressure compressor 113 and the suction volume of the expander 105 are constant. The suction volume of the low-pressure stage compressor 113 is larger than the suction volume of the expander 105. Conventionally, it is known that a constant density ratio can be avoided by using a variable volume fluid machine. However, the structure of the variable volume fluid machine is complicated and causes an increase in cost. Therefore, as in the present embodiment, it is preferable to use a fluid machine having a constant suction capacity for the compressor and the expander.

なお、「気筒容積」は、吸入行程完了時の作動室(膨張室または圧縮室)の容積を意味し、しばしば「閉じ込め容積」とも呼ばれる。「吸入容積」は、圧縮機または膨張機の1サイクル(吸入→圧縮または膨張→吐出)で圧縮機または膨張機に吸い込まれる冷媒の容積を意味する。本実施形態、第2実施形態および第3実施形態では、「気筒容積」は「吸入容積」に等しい。しかし、後の第4実施形態で説明するように、冷媒が膨張している最中に膨張室に高圧冷媒をインジェクションすることもある。この場合、膨張機の1サイクルで当該膨張機に吸い込まれる冷媒の容積(吸入容積)は、気筒容積を上回る。   The “cylinder volume” means the volume of the working chamber (expansion chamber or compression chamber) when the suction stroke is completed, and is often referred to as “confined volume”. “Suction volume” means the volume of refrigerant sucked into the compressor or expander in one cycle (suction → compression or expansion → discharge) of the compressor or expander. In the present embodiment, the second embodiment, and the third embodiment, the “cylinder volume” is equal to the “suction volume”. However, as will be described later in the fourth embodiment, the high-pressure refrigerant may be injected into the expansion chamber while the refrigerant is expanding. In this case, the volume (intake volume) of the refrigerant sucked into the expander in one cycle of the expander exceeds the cylinder volume.

また、本実施形態では、高圧段圧縮機101としてロータリ圧縮機を用いているが、高圧段圧縮機101の型式は何ら限定されず、スクロール圧縮機などの他の容積式圧縮機やターボ圧縮機などの遠心圧縮機を用いてもよい。低圧段圧縮機113の型式や膨張機105の型式も、動力を伝達しうるように互いを軸116で連結できる限りロータリ式に限定されない。低圧段圧縮機113および膨張機105には、スクロール流体機械などの他の容積式流体機械を用いてもよい。   In this embodiment, a rotary compressor is used as the high-pressure stage compressor 101, but the type of the high-pressure stage compressor 101 is not limited at all, and other positive displacement compressors such as a scroll compressor or a turbo compressor. A centrifugal compressor such as may be used. The type of the low-pressure compressor 113 and the type of the expander 105 are not limited to the rotary type as long as they can be connected to each other by the shaft 116 so that power can be transmitted. For the low-pressure compressor 113 and the expander 105, other positive displacement fluid machines such as a scroll fluid machine may be used.

放熱器103は、高圧段圧縮機101で圧縮された冷媒を冷却するための機器であり、典型的には、水−冷媒熱交換器または空気−冷媒熱交換器で構成されている。気液分離器107は、膨張機105で膨張した冷媒をガス冷媒と液冷媒とに分離するための機器である。気液分離器107には、底部に液冷媒出口、上部に冷媒出入り口、側部に冷媒入口が設けられている。蒸発器111は、気液分離器107で分離された液冷媒を蒸発させるための機器であり、典型的には、空気−冷媒熱交換器で構成されている。膨張弁109は、開度可変な弁、例えば電動膨張弁であり、気液分離器107の液冷媒出口と蒸発器111の入口との間の流路上に設けられている。   The radiator 103 is a device for cooling the refrigerant compressed by the high-pressure compressor 101, and typically includes a water-refrigerant heat exchanger or an air-refrigerant heat exchanger. The gas-liquid separator 107 is a device for separating the refrigerant expanded by the expander 105 into a gas refrigerant and a liquid refrigerant. The gas-liquid separator 107 has a liquid refrigerant outlet at the bottom, a refrigerant inlet / outlet at the top, and a refrigerant inlet at the side. The evaporator 111 is a device for evaporating the liquid refrigerant separated by the gas-liquid separator 107, and typically includes an air-refrigerant heat exchanger. The expansion valve 109 is a valve having a variable opening, for example, an electric expansion valve, and is provided on a flow path between the liquid refrigerant outlet of the gas-liquid separator 107 and the inlet of the evaporator 111.

上記の機器は、冷媒回路が形成されるように冷媒配管によって相互に接続されている。具体的に、高圧段圧縮機101の出口と放熱器103の入口とが、冷媒配管102によって接続されている。放熱器103の出口と膨張機105の入口とが、冷媒配管104によって接続されている。膨張機105の出口と気液分離器107の入口とが、冷媒配管106によって接続されている。気液分離器107の液冷媒出口と膨張弁109の入口とが、冷媒配管108によって接続されている。膨張弁109の出口と蒸発器111の入口とが、冷媒配管110によって接続されている。蒸発器111の出口と低圧段圧縮機113の入口とが、冷媒配管112によって接続されている。低圧段圧縮機113の出口と高圧段圧縮機101の入口とが、冷媒配管114によって接続されている。   The above devices are connected to each other by a refrigerant pipe so that a refrigerant circuit is formed. Specifically, the outlet of the high-pressure compressor 101 and the inlet of the radiator 103 are connected by the refrigerant pipe 102. The outlet of the radiator 103 and the inlet of the expander 105 are connected by a refrigerant pipe 104. The outlet of the expander 105 and the inlet of the gas-liquid separator 107 are connected by a refrigerant pipe 106. The liquid refrigerant outlet of the gas-liquid separator 107 and the inlet of the expansion valve 109 are connected by a refrigerant pipe 108. The outlet of the expansion valve 109 and the inlet of the evaporator 111 are connected by a refrigerant pipe 110. The outlet of the evaporator 111 and the inlet of the low-pressure compressor 113 are connected by a refrigerant pipe 112. The outlet of the low-pressure stage compressor 113 and the inlet of the high-pressure stage compressor 101 are connected by a refrigerant pipe 114.

さらに、気液分離器107の上部にある冷媒出入り口と冷媒配管114とが、冷媒配管115によって接続されている。以下、本明細書において、冷媒配管114によって形成された流路を中間圧流路114と、冷媒配管115によって形成された流路を往還流路115と、それぞれ称する。   Further, the refrigerant inlet / outlet at the upper part of the gas-liquid separator 107 and the refrigerant pipe 114 are connected by the refrigerant pipe 115. Hereinafter, in this specification, the flow path formed by the refrigerant pipe 114 is referred to as an intermediate pressure flow path 114, and the flow path formed by the refrigerant pipe 115 is referred to as an outward recirculation path 115, respectively.

往還流路115には、冷媒の流通方向を規定したり冷媒の流量を調節したりする弁が設けられていない。したがって、気液分離器107内の圧力が低圧段圧縮機113の吐出冷媒圧力よりも高い場合には、往還流路115を通じて気液分離器107から中間圧流路114へと冷媒が流れる(第1流通状態:インジェクション)。言い換えれば、気液分離器107で分離された冷媒が蒸発器111および低圧段圧縮機113を経由することなく高圧段圧縮機101の入口に導かれる。他方、気液分離器107内の圧力が低圧段圧縮機113の吐出冷媒圧力よりも低い場合には、往還流路115を通じて中間圧流路114から気液分離器107へと冷媒が流れる。言い換えれば、低圧段圧縮機113で予備圧縮された冷媒の一部が気液分離器107に還流する(第2流通状態:還流)。このように、往還流路115は、気液分離器107から中間圧流路114に向かう方向と、中間圧流路114から気液分離器107に向かう方向との双方向に冷媒が流通可能に構成されている。   The return flow path 115 is not provided with a valve for regulating the flow direction of the refrigerant or adjusting the flow rate of the refrigerant. Therefore, when the pressure in the gas-liquid separator 107 is higher than the discharge refrigerant pressure of the low-pressure stage compressor 113, the refrigerant flows from the gas-liquid separator 107 to the intermediate pressure flow path 114 through the forward recirculation path 115 (first Distribution state: injection). In other words, the refrigerant separated by the gas-liquid separator 107 is guided to the inlet of the high-pressure stage compressor 101 without passing through the evaporator 111 and the low-pressure stage compressor 113. On the other hand, when the pressure in the gas-liquid separator 107 is lower than the discharge refrigerant pressure of the low-pressure compressor 113, the refrigerant flows from the intermediate pressure channel 114 to the gas-liquid separator 107 through the forward recirculation channel 115. In other words, a part of the refrigerant preliminarily compressed by the low-pressure stage compressor 113 is returned to the gas-liquid separator 107 (second circulation state: reflux). In this way, the forward recirculation path 115 is configured to allow refrigerant to flow in both directions, the direction from the gas-liquid separator 107 toward the intermediate pressure flow path 114 and the direction from the intermediate pressure flow path 114 toward the gas-liquid separator 107. ing.

冷凍サイクル装置100は、さらに、第1温度センサ121、第2温度センサ122、第3温度センサ123、第4温度センサ124およびコントローラ118を備えている。第1温度センサ121は、膨張機105の吸入冷媒温度を検出する。第2温度センサ122は、蒸発器111内の冷媒温度を検出する。第3温度センサ123は、低圧段圧縮機113の吸入冷媒温度を検出する。第4温度センサ124は、気液分離器107内の冷媒温度を検出する。各温度センサの具体例は、熱電対またはサーミスタである。各温度センサは、コントローラ118に接続されている。コントローラ118の具体例は、DSP(digital signal processor)である。コントローラ118は、各温度センサから取得した信号に基づいて、膨張弁109の開度を制御する。   The refrigeration cycle apparatus 100 further includes a first temperature sensor 121, a second temperature sensor 122, a third temperature sensor 123, a fourth temperature sensor 124, and a controller 118. The first temperature sensor 121 detects the intake refrigerant temperature of the expander 105. The second temperature sensor 122 detects the refrigerant temperature in the evaporator 111. The third temperature sensor 123 detects the suction refrigerant temperature of the low-pressure compressor 113. The fourth temperature sensor 124 detects the refrigerant temperature in the gas-liquid separator 107. A specific example of each temperature sensor is a thermocouple or a thermistor. Each temperature sensor is connected to the controller 118. A specific example of the controller 118 is a DSP (digital signal processor). The controller 118 controls the opening degree of the expansion valve 109 based on the signal acquired from each temperature sensor.

以下の説明において、低圧段圧縮機113の吸入容積をVlc、膨張機105の吸入容積をVex、低圧段圧縮機113と膨張機105との容積比を(Vlc/Vex)、低圧段圧縮機113の吸入冷媒密度をρlci、膨張機105の吸入冷媒密度をρexi、膨張機105の吐出冷媒の渇き度をQexoと表す。また、気液分離器107内の圧力を中間圧力という。In the following description, the suction volume of the low-pressure compressor 113 is V lc , the suction volume of the expander 105 is V ex , the volume ratio of the low-pressure compressor 113 and the expander 105 is (V lc / V ex ), and the low pressure lci the suction refrigerant density of the stage compressor 113 [rho, exi the suction refrigerant density of the expander 105 [rho, thirst of the discharge refrigerant of the expander 105 is expressed as Q exo. The pressure in the gas-liquid separator 107 is referred to as an intermediate pressure.

本実施形態では、容積比(Vlc/Vex)が(1−Qexo)×(ρexi/ρlci)以上かつ密度比(ρexi/ρlci)以下となるように、低圧段圧縮機113および膨張機105の設計がなされている。In the present embodiment, the volume ratio (V lc / V ex) is (1-Q exo) × ( ρ exi / ρ lci) or more and the density ratio (ρ exi / ρ lci) as to become less, the low-pressure compressor 113 and the expander 105 are designed.

まず、容積比(Vlc/Vex)が密度比(ρexi/ρlci)以下であれば、低圧段圧縮機113の冷媒質量流量が膨張機105の冷媒質量流量よりも少なくなるので、往還流路115を通じて、気液分離器107から中間圧流路114へと冷媒が流れる(インジェクション)。この場合、往還流路115を通過した冷媒を圧縮する必要がないので、低圧段圧縮機113の負荷を軽減できる。さらに、蒸発器111を通過する冷媒流量が減少するので、蒸発器111を通過する際の圧力損失が小さくなる。First, if the following volume ratio (V lc / V ex) is the density ratio (ρ exi / ρ lci), the refrigerant mass flow rate of the low-pressure compressor 113 is less than the refrigerant mass flow rate of the expander 105, the forward The refrigerant flows from the gas-liquid separator 107 to the intermediate pressure channel 114 through the reflux path 115 (injection). In this case, since it is not necessary to compress the refrigerant that has passed through the forward recirculation path 115, the load on the low-pressure compressor 113 can be reduced. Further, since the flow rate of the refrigerant passing through the evaporator 111 is reduced, the pressure loss when passing through the evaporator 111 is reduced.

逆に、容積比(Vlc/Vex)が密度比(ρexi/ρlci)を超えると、低圧段圧縮機113の冷媒質量流量が膨張機105の冷媒質量流量よりも多くなるので、往還流路115を通じて、中間圧流路114から気液分離器107へと冷媒が流れる(還流)。この場合、低圧段圧縮機113で予備圧縮された冷媒が膨張弁109で再膨張する。膨張機105の回収動力が冷媒の循環に消費されるので、COPの改善効果が薄れる。Conversely, when the volume ratio (V lc / V ex) exceeds the density ratio (ρ exi / ρ lci), the refrigerant mass flow rate of the low-pressure compressor 113 is larger than the refrigerant mass flow rate of the expander 105, the forward The refrigerant flows from the intermediate pressure channel 114 to the gas-liquid separator 107 through the reflux channel 115 (reflux). In this case, the refrigerant pre-compressed by the low-pressure compressor 113 is re-expanded by the expansion valve 109. Since the recovery power of the expander 105 is consumed for the circulation of the refrigerant, the COP improvement effect is diminished.

これらのことから、下式で表された関係を満足するように設計を行い、還流が起こらないようにするのが望ましい。言い換えれば、インジェクションが起こるように運転しているときは、下記関係が満たされる。
(Vlc/Vex)≦(ρexi/ρlci
From these facts, it is desirable to design so as to satisfy the relationship represented by the following formula so that reflux does not occur. In other words, the following relationship is satisfied when driving to cause injection.
(V lc / V ex) ≦ (ρ exi / ρ lci)

一方、容積比(Vlc/Vex)が(1−Qexo)×(ρexi/ρlci)以上であれば、往還流路115を通じて気液分離器107から中間圧流路114へと流れる冷媒の割合が膨張機105の吐出冷媒の渇き度Qexoに等しくなる、もしくはそれよりも小さくなる。つまり、ガス冷媒のみが高圧段圧縮機101にインジェクションされる。往還流路115を通じて気液分離器107から中間圧流路114へと流れる冷媒の割合Riは、膨張機105の冷媒質量流量を(Vex×ρexi)、低圧段圧縮機113の冷媒質量流量を(Vlc×ρlci)として、(Vex×ρexi−Vlc×ρlci)/(Vex×ρexi)で表すことができる。割合Riが渇き度Qexoよりも小さい場合の容積比(Vlc/Vex)は、(1−Qexo)×(ρexi/ρlci)よりも大きくなる。よって、容積比(Vlc/Vex)が(1−Qexo)×(ρexi/ρlci)以上であれば、往還流路115を通じて気液分離器107から中間圧流路114へと流れる冷媒の割合Riが、膨張機105の吐出冷媒の渇き度Qexoを越えず、液冷媒のインジェクションを回避できる。言い換えれば、液インジェクションが起こらないように運転しているときには、(1−Qexo)×(ρexi/ρlci)≦(Vlc/Vex)の関係が満たされる。The refrigerant flowing through the long volume ratio (V lc / V ex) is (1-Q exo) × ( ρ exi / ρ lci) above, from the gas-liquid separator 107 via shuttle passage 115 to the intermediate pressure passage 114 Is equal to or less than the thirst degree Q exo of the refrigerant discharged from the expander 105. That is, only the gas refrigerant is injected into the high pressure compressor 101. The ratio R i of the refrigerant flowing from the gas-liquid separator 107 to the intermediate pressure flow path 114 through the return flow path 115 is the refrigerant mass flow rate of the expander 105 (V ex × ρ exi ), and the refrigerant mass flow rate of the low pressure compressor 113. as (V lc × ρ lci), it can be represented by (V ex × ρ exi -V lc × ρ lci) / (V ex × ρ exi). Volume ratio when the ratio R i is smaller than the thirst of Q exo (V lc / V ex ) is larger than (1-Q exo) × ( ρ exi / ρ lci). Therefore, the refrigerant flowing if the volume ratio (V lc / V ex) is (1-Q exo) × ( ρ exi / ρ lci) above, from the gas-liquid separator 107 via shuttle passage 115 to the intermediate pressure passage 114 The ratio R i does not exceed the thirsty degree Q exo of the refrigerant discharged from the expander 105, and the liquid refrigerant injection can be avoided. In other words, when driving to avoid potential liquid injection is satisfied relation (1-Q exo) × ( ρ exi / ρ lci) ≦ (V lc / V ex).

このように、本実施形態によれば、ガスインジェクションが起こるように運転しているときは、(1−Qexo)×(ρexi/ρlci)≦(Vlc/Vex)≦(ρexi/ρlci)の関係が満たされる。Thus, according to this embodiment, when operating as gas injection to occur, (1-Q exo) × (ρ exi / ρ lci) ≦ (V lc / V ex) ≦ (ρ exi / Ρ lci ) is satisfied.

なお、以下に説明するように、同じ設計の冷凍サイクル装置100を互いに異なる2以上の用途に用いたり、1台の冷凍サイクル装置100を2以上の用途に用いたりする場合には、あえて還流を許容する場面も出てくる。液冷媒のインジェクションが起こると、現実のCOPが動力回収を行わない場合のCOPを下回る可能性があるため、液冷媒のインジェクションは避けるべきである。他方、還流が起こったとしても、理論上、冷凍サイクル装置100のCOPが、動力回収を行わない場合のCOPを下回ることはない。   As described below, when the refrigeration cycle apparatus 100 having the same design is used for two or more different uses, or when one refrigeration cycle apparatus 100 is used for two or more uses, the reflux is intentionally performed. Some scenes allow. When liquid refrigerant injection occurs, the actual COP may fall below the COP when power recovery is not performed, so liquid refrigerant injection should be avoided. On the other hand, even if reflux occurs, theoretically, the COP of the refrigeration cycle apparatus 100 does not fall below the COP when power recovery is not performed.

冷凍サイクル装置100の具体的な用途として、例えば、ヒートポンプ給湯機および空調機が挙げられる。ヒートポンプ給湯機には、蛇口に湯を供給できる給湯機能および/または家屋の床に巡らされた配管に湯を循環させることによって室内の暖房を行う床暖房機能を有するものがある。空調機は、室内の空気と冷媒とを熱交換させることによって室内の温度調節を行うように構成されており、典型的には、冷房機能と暖房機能とを有する。   Specific applications of the refrigeration cycle apparatus 100 include, for example, a heat pump water heater and an air conditioner. Some heat pump water heaters have a hot water supply function that can supply hot water to a faucet and / or a floor heating function that heats a room by circulating hot water through a pipe routed around the floor of a house. The air conditioner is configured to adjust the temperature in the room by exchanging heat between the indoor air and the refrigerant, and typically has a cooling function and a heating function.

本発明者らは、冷凍サイクル装置100をヒートポンプ給湯機または空調機に適用する場合について、年間の消費電力を十分に低減できる容積比を計算した。具体的に、ヒートポンプ給湯機の床暖房条件では、外気温を7℃、床暖房用の温水の戻り温度を25℃、低圧段圧縮機113の吸入冷媒温度を7℃、冷媒を二酸化炭素と仮定した。任意の容積比に対して決まる中間圧力での渇き度Qexoと密度比(ρexi/ρlci)との関係から導かれた望ましい容積比(Vlc/Vex)は、4.7〜7.1であった。The inventors calculated the volume ratio that can sufficiently reduce the annual power consumption when the refrigeration cycle apparatus 100 is applied to a heat pump water heater or an air conditioner. Specifically, under the floor heating conditions of the heat pump water heater, it is assumed that the outside air temperature is 7 ° C., the return temperature of the warm water for floor heating is 25 ° C., the intake refrigerant temperature of the low-pressure compressor 113 is 7 ° C., and the refrigerant is carbon dioxide. did. Thirst of Q exo and density ratio at the intermediate pressure determined for any volume ratio (ρ exi / ρ lci) desirable volume ratio derived from the relationship (V lc / V ex) is from 4.7 to 7 .1.

空調機の冷房条件では、外気温を35℃、室内機(蒸発器111)の吸込空気温度を27℃、低圧段圧縮機113の吸入冷媒温度を27℃、冷媒を二酸化炭素と仮定した。任意の容積比に対して決まる中間圧力での渇き度Qexoと密度比(ρexi/ρlci)との関係から導かれた望ましい容積比(Vlc/Vex)は、2.4〜3.6であった。In the cooling condition of the air conditioner, it was assumed that the outside air temperature was 35 ° C, the intake air temperature of the indoor unit (evaporator 111) was 27 ° C, the suction refrigerant temperature of the low-pressure compressor 113 was 27 ° C, and the refrigerant was carbon dioxide. Thirst of Q exo and density ratio at the intermediate pressure determined for any volume ratio (ρ exi / ρ lci) desirable volume ratio derived from the relationship (V lc / V ex) is from 2.4 to 3 .6.

空調機の暖房条件では、外気温を7℃、室内機(放熱器103)の吸込空気温度を20℃、低圧段圧縮機113の吸入冷媒温度を7℃、冷媒を二酸化炭素と仮定した。任意の容積比に対して決まる中間圧力での渇き度Qexoと密度比(ρexi/ρlci)との関係から導かれた望ましい容積比(Vlc/Vex)は、2.1〜2.9であった。In the heating conditions of the air conditioner, it was assumed that the outside air temperature was 7 ° C., the intake air temperature of the indoor unit (radiator 103) was 20 ° C., the suction refrigerant temperature of the low-pressure compressor 113 was 7 ° C., and the refrigerant was carbon dioxide. Thirst of Q exo and density ratio at the intermediate pressure determined for any volume ratio (ρ exi / ρ lci) desirable volume ratio derived from the relationship (V lc / V ex) is from 2.1 to 2 .9.

ここで、容積比(Vlc/Vex)が(1−Qexo)×(ρexi/ρlci)を下回ると、液冷媒のインジェクションが起こるので、高圧段圧縮機101の吸入冷媒のエンタルピーが大幅に低下する。その結果、高圧段圧縮機101の吐出冷媒温度が低下し、ヒートポンプ給湯機の床暖房機能や空調機の暖房機能で必要とされる加熱能力が不十分となる。また、本来は蒸発器111を通過するべき液冷媒が往還流路115を通過することで、空調機の冷房機能で必要とされる冷却能力も低下する。よって、冷凍サイクル装置100を複数の用途に利用する場合には、容積比(Vlc/Vex)を各条件での(1−Qexo)×(ρexi/ρlci)以上かつ還流を可能な限り防止できる値に設定するのがよい。その値は、上述した例では4.7である。Here, when the volume ratio (V lc / V ex) is below (1-Q exo) × ( ρ exi / ρ lci), since the injection of the liquid refrigerant occurs, the enthalpy of refrigerant drawn into the high-pressure compressor 101 Decrease significantly. As a result, the discharge refrigerant temperature of the high-pressure compressor 101 decreases, and the heating capacity required for the floor heating function of the heat pump water heater and the heating function of the air conditioner becomes insufficient. Further, the liquid refrigerant that should normally pass through the evaporator 111 passes through the forward recirculation path 115, so that the cooling capacity required for the cooling function of the air conditioner also decreases. Therefore, when using the refrigeration cycle apparatus 100 to a plurality of applications, the volume ratio (V lc / V ex) for each condition (1-Q exo) × ( ρ exi / ρ lci) above and permit reflux It is better to set the value to prevent as much as possible. The value is 4.7 in the above example.

冷凍サイクル装置100をヒートポンプ給湯機、冷房空調機および暖房空調機のそれぞれに専用設計とする場合には、各用途に相応しい容積比を設定できる。しかし、図2に示すような多機能ヒートポンプシステムに冷凍サイクル装置100を利用する場合には、どのような容積比を選ぶのかという問題が出てくる。上述した例では、床暖房条件での望ましい容積比4.7を選ぶことによって、液冷媒のインジェクションを確実に回避しつつ、還流量をなるべく少なくすることが可能となる。もちろん、最適な容積比は季節や天候などの外的条件に応じて変化するので、単一の用途の冷凍サイクル装置に本発明を適用したとしてもその利益を十分に享受できる。   When the refrigeration cycle apparatus 100 is designed exclusively for each of a heat pump water heater, a cooling air conditioner, and a heating air conditioner, a volume ratio suitable for each application can be set. However, when the refrigeration cycle apparatus 100 is used in the multi-function heat pump system as shown in FIG. In the example described above, by selecting a desirable volume ratio of 4.7 under floor heating conditions, it is possible to reduce the amount of reflux as much as possible while reliably avoiding liquid refrigerant injection. Of course, since the optimal volume ratio changes according to external conditions such as season and weather, even if the present invention is applied to a single use refrigeration cycle apparatus, the benefits can be fully enjoyed.

なお、図2に示す多機能ヒートポンプシステムは、床暖房機能付きヒートポンプ給湯機12および空調機14を備えており、これら給湯機12および空調機14に共通の冷凍サイクル装置100が用いられている。ただし、放熱器103(図1)は、給湯機12および空調機14の各々に専用のものが設けられている。   The multi-function heat pump system shown in FIG. 2 includes a heat pump water heater 12 with a floor heating function and an air conditioner 14, and a refrigeration cycle apparatus 100 common to the water heater 12 and the air conditioner 14 is used. However, a dedicated radiator 103 (FIG. 1) is provided for each of the water heater 12 and the air conditioner 14.

次に、冷凍サイクル装置100の動作を説明する。   Next, the operation of the refrigeration cycle apparatus 100 will be described.

まず、起動時には、膨張弁109を全閉にする。次に、高圧段圧縮機101のモータへの給電を開始し、高圧段圧縮機101を駆動する。高圧段圧縮機101は、中間圧流路114の冷媒を吸引して圧縮する。圧縮された冷媒は、冷媒配管102、放熱器103および冷媒配管104を経て、膨張機105に送られる。膨張機105の入口側の冷媒配管104内は、高圧段圧縮機101から吐出された冷媒で満たされる。そのため、冷媒配管104内の圧力は上昇する。また、高圧段圧縮機101が往還流路115を通じて気液分離器107から冷媒を吸引するので、気液分離器107内にある液冷媒が蒸発する。そのため、膨張機105の出口側の冷媒配管106内の温度および圧力が低下する。つまり、膨張弁109を閉じた状態で高圧段圧縮機101を動作させると、膨張機105の入口と出口との間の圧力差が拡大する。こうして生じた圧力差によって、膨張機105が駆動される。   First, when starting, the expansion valve 109 is fully closed. Next, power supply to the motor of the high-pressure compressor 101 is started, and the high-pressure compressor 101 is driven. The high-pressure compressor 101 sucks and compresses the refrigerant in the intermediate pressure channel 114. The compressed refrigerant is sent to the expander 105 through the refrigerant pipe 102, the radiator 103 and the refrigerant pipe 104. The refrigerant pipe 104 on the inlet side of the expander 105 is filled with the refrigerant discharged from the high-pressure compressor 101. For this reason, the pressure in the refrigerant pipe 104 increases. Further, since the high-pressure compressor 101 sucks the refrigerant from the gas-liquid separator 107 through the forward recirculation path 115, the liquid refrigerant in the gas-liquid separator 107 evaporates. Therefore, the temperature and pressure in the refrigerant pipe 106 on the outlet side of the expander 105 are reduced. That is, when the high pressure compressor 101 is operated with the expansion valve 109 closed, the pressure difference between the inlet and the outlet of the expander 105 increases. The expander 105 is driven by the pressure difference thus generated.

一方、冷媒配管114(中間圧流路)を介して高圧段圧縮機101、往還流路115および気液分離器107が相互接続されていることから、低圧段圧縮機113の出口側の冷媒配管114内の圧力は低下する。また、低圧段圧縮機113の入口側の冷媒配管112内は、蒸発器111が設置された場所(例えば屋外)の雰囲気温度(熱源温度)に応じた蒸発圧力の冷媒で満たされる。そのため、起動時において、冷媒配管112内の圧力が、一時的に中間圧流路114内の圧力を上回る。すると、低圧段圧縮機113が膨張機として振舞い、冷媒配管112と中間圧流路114との間の圧力差によって駆動される。   On the other hand, the high-pressure stage compressor 101, the forward recirculation path 115, and the gas-liquid separator 107 are connected to each other via the refrigerant pipe 114 (intermediate pressure flow path), so that the refrigerant pipe 114 on the outlet side of the low-pressure stage compressor 113 is connected. The pressure inside falls. In addition, the refrigerant pipe 112 on the inlet side of the low-pressure stage compressor 113 is filled with a refrigerant having an evaporation pressure corresponding to the ambient temperature (heat source temperature) at the place where the evaporator 111 is installed (for example, outdoors). Therefore, at the time of startup, the pressure in the refrigerant pipe 112 temporarily exceeds the pressure in the intermediate pressure flow path 114. Then, the low-pressure compressor 113 behaves as an expander and is driven by a pressure difference between the refrigerant pipe 112 and the intermediate pressure flow path 114.

図13を参照して説明したように、低圧段圧縮機と膨張機とが軸で連結された構成を有する冷凍サイクル装置は、従来から知られている。しかし、図13に示す従来の冷凍サイクル装置の膨張機803としてロータリ膨張機を用いた場合、ピストンがベーン側に偏心して停止する、すなわち、吸入ポートと吐出ポートとが連通した状態でピストンが停止することがある。この場合、低圧段圧縮機801bおよび膨張機803を駆動するために必要な初期圧力差が十分得られず、起動エラーが生じるという問題があった。これに対し、本実施形態での起動方法によれば、低圧段圧縮機113が一時的に膨張機として振舞うので、膨張機105のピストンと低圧段圧縮機113のピストンとが同時にベーン側に偏心しないように設計しうる。すなわち、ピストンの偏心方向を互いに異ならせることによって、膨張機105および低圧段圧縮機113の少なくとも一方の吸入側と吐出側との間に、駆動に必要な圧力差を確実に生じさせることができる。これにより、冷凍サイクル装置を確実に起動できる。   As described with reference to FIG. 13, a refrigeration cycle apparatus having a configuration in which a low-pressure compressor and an expander are connected by a shaft is conventionally known. However, when a rotary expander is used as the expander 803 of the conventional refrigeration cycle apparatus shown in FIG. 13, the piston stops eccentrically on the vane side, that is, the piston stops with the suction port and the discharge port communicating with each other. There are things to do. In this case, there is a problem in that a sufficient initial pressure difference required for driving the low-pressure stage compressor 801b and the expander 803 cannot be obtained, and a start-up error occurs. On the other hand, according to the starting method in the present embodiment, the low-pressure stage compressor 113 temporarily behaves as an expander. Therefore, the piston of the expander 105 and the piston of the low-pressure stage compressor 113 are simultaneously eccentric to the vane side. Can be designed not to. That is, by making the eccentric directions of the pistons different from each other, it is possible to reliably generate a pressure difference necessary for driving between the suction side and the discharge side of at least one of the expander 105 and the low-pressure compressor 113. . Thereby, a refrigerating cycle device can be started reliably.

低圧段圧縮機113および膨張機105が動作し始めると、それ以降は、膨張機105の回収動力で低圧段圧縮機113が駆動される。低圧段圧縮機113は、冷媒配管112、蒸発器111および冷媒配管110から冷媒を吸い上げる。これにより、蒸発器111で液冷媒が蒸発し始め、蒸発器111内の温度および圧力が低下する。冷媒配管108内の圧力よりも冷媒配管110内の圧力が低くなったら、膨張弁109の開度を初期値まで徐々に拡大する。本実施形態では、第4温度センサ124の検出温度よりも第2温度センサ122の検出温度が低くなった時点で膨張弁109を開く。   When the low-pressure stage compressor 113 and the expander 105 start to operate, the low-pressure stage compressor 113 is driven by the recovered power of the expander 105 thereafter. The low-pressure stage compressor 113 sucks up the refrigerant from the refrigerant pipe 112, the evaporator 111 and the refrigerant pipe 110. Thereby, the liquid refrigerant begins to evaporate in the evaporator 111, and the temperature and pressure in the evaporator 111 are reduced. When the pressure in the refrigerant pipe 110 becomes lower than the pressure in the refrigerant pipe 108, the opening degree of the expansion valve 109 is gradually increased to the initial value. In the present embodiment, the expansion valve 109 is opened when the detected temperature of the second temperature sensor 122 becomes lower than the detected temperature of the fourth temperature sensor 124.

その後、膨張弁109の開度は、コントローラ118によって制御される。具体的には、蒸発器111での冷媒の蒸発圧力と、膨張機105の吸入冷媒温度と、高圧段圧縮機101の吐出冷媒圧力と、低圧段圧縮機113の吸入冷媒温度とに基づいて決定された目標サイクル条件において、膨張機105の理論回収動力と低圧段圧縮機113の理論圧縮仕事とが等しくなるように、気液分離器107内の圧力を調節する。これは、冷媒回路における現実の高圧を目標サイクル条件における最適高圧に一致させるための制御である。気液分離器107内の圧力(中間圧力)は、膨張弁109で調節できる。なお、理論回収動力および理論圧縮仕事とは、それぞれ、計算によって導かれる値であり、現実の回収動力と圧縮仕事とを意味しない。   Thereafter, the opening degree of the expansion valve 109 is controlled by the controller 118. Specifically, it is determined based on the refrigerant evaporation pressure in the evaporator 111, the suction refrigerant temperature of the expander 105, the discharge refrigerant pressure of the high-pressure compressor 101, and the suction refrigerant temperature of the low-pressure compressor 113. Under the set target cycle conditions, the pressure in the gas-liquid separator 107 is adjusted so that the theoretical recovery power of the expander 105 is equal to the theoretical compression work of the low-pressure compressor 113. This is a control for making the actual high pressure in the refrigerant circuit coincide with the optimum high pressure in the target cycle condition. The pressure (intermediate pressure) in the gas-liquid separator 107 can be adjusted by the expansion valve 109. The theoretical recovery power and the theoretical compression work are values derived by calculation, respectively, and do not mean actual recovery power and compression work.

図3のフローチャートを参照してさらに詳しく説明する。   This will be described in more detail with reference to the flowchart of FIG.

まず、ステップ101で、第1温度センサ121から膨張機105の吸入冷媒温度T1、第2温度センサ122から蒸発器111での冷媒の蒸発温度T2および第3温度センサ123から低圧段圧縮機113の吸入冷媒温度T3を取得する。蒸発器111での冷媒の蒸発温度T2から、蒸発器111での冷媒の蒸発圧力を知ることができる。First, in step 101, the refrigerant temperature T 1 of the expander 105 from the first temperature sensor 121, the evaporation temperature T 2 of the refrigerant in the evaporator 111 from the second temperature sensor 122, and the low pressure stage compressor from the third temperature sensor 123 are shown. It acquires 113 suction refrigerant temperature T 3 of the. From the evaporation temperature T 2 of the refrigerant in the evaporator 111, the evaporation pressure of the refrigerant in the evaporator 111 can be known.

次に、ステップ102において、ステップ101で取得した温度および圧力に基づいて、冷凍サイクル装置100のCOPが最大になる最適高圧を算出する。   Next, in step 102, the optimum high pressure at which the COP of the refrigeration cycle apparatus 100 is maximized is calculated based on the temperature and pressure acquired in step 101.

次に、ステップ103およびステップ104で、理論回収動力と理論圧縮仕事とが等しくなる目標中間圧力を算出する。まず、ステップ103で、ある目標中間圧力を設定する。設定した目標中間圧力まで冷媒を膨張機105で膨張させた場合の回収動力(理論回収動力)を、算出した最適高圧と膨張機105の吸入冷媒温度T1とに基づいて算出する。図4に示すように、膨張機105の入口における冷媒の状態は、点Dで示される。点Dは、最適高圧PHおよび吸入冷媒温度T1で特定される。目標中間圧力PMは点Eの圧力である。膨張機105において、冷媒は等エントロピー線に沿って膨張する(点D→点E)。点Dから点Eへの変化の過程で冷媒が失ったエンタルピー(h2−h1)に膨張機105の効率を積算すれば、理論回収動力が得られる。Next, in Step 103 and Step 104, a target intermediate pressure at which the theoretical recovery power and the theoretical compression work are equal is calculated. First, at step 103, a certain target intermediate pressure is set. The recovery power (theoretical recovery power) when the refrigerant is expanded by the expander 105 to the set target intermediate pressure is calculated based on the calculated optimum high pressure and the intake refrigerant temperature T 1 of the expander 105. As shown in FIG. 4, the state of the refrigerant at the inlet of the expander 105 is indicated by a point D. The point D is specified by the optimum high pressure P H and the suction refrigerant temperature T 1 . The target intermediate pressure P M is the pressure at point E. In the expander 105, the refrigerant expands along the isentropic line (point D → point E). If the efficiency of the expander 105 is added to the enthalpy (h 2 −h 1 ) that the refrigerant has lost in the process of changing from the point D to the point E, the theoretical recovery power can be obtained.

また、ステップ103で、設定した目標中間圧力まで低圧段圧縮機113で冷媒を圧縮した場合の圧縮仕事(理論圧縮仕事)を、蒸発器111の蒸発圧力PLと低圧段圧縮機113の吸入冷媒温度T3とに基づいて算出する。図4に示すように、低圧段圧縮機113の入口における冷媒の状態は、点Aで示される。点Aは、蒸発圧力PLおよび吸入冷媒温度T3で特定される。低圧段圧縮機113において、冷媒は等エントロピー線に沿って予備圧縮される(点A→点B)。点Aから点Bへの変化の過程で冷媒が獲得したエンタルピー(h4−h3)を低圧段圧縮機113の効率で除算し、さらに、膨張機105の冷媒質量流量に対する低圧段圧縮機113の冷媒質量流量の割合を積算すれば、理論圧縮仕事が得られる。Further, in step 103, the compression work (theoretical compression work) when the refrigerant is compressed by the low-pressure stage compressor 113 up to the set target intermediate pressure is expressed by the evaporation pressure P L of the evaporator 111 and the suction refrigerant of the low-pressure stage compressor 113. calculated on the basis of the temperature T 3. As shown in FIG. 4, the state of the refrigerant at the inlet of the low-pressure compressor 113 is indicated by a point A. Point A is specified by the evaporation pressure P L and the suction refrigerant temperature T 3 . In the low-pressure compressor 113, the refrigerant is pre-compressed along the isentropic line (point A → point B). The enthalpy (h 4 -h 3 ) acquired by the refrigerant in the process of changing from point A to point B is divided by the efficiency of the low-pressure stage compressor 113, and further, the low-pressure stage compressor 113 with respect to the refrigerant mass flow rate of the expander 105. If the ratio of the refrigerant mass flow rate is integrated, theoretical compression work can be obtained.

なお、膨張機105の入口における冷媒の密度と膨張機105の吸入容積とから、膨張機105の冷媒質量流量を算出できる。膨張機105の入口における冷媒の密度については、例えば、最適高圧と吸入冷媒温度T1とから算出するものとする。同様に、低圧段圧縮機113の入口における冷媒の密度と低圧段圧縮機113の吸入容積とから、低圧段圧縮機113の冷媒質量流量を算出できる。低圧段圧縮機113の入口における冷媒の密度は、例えば、蒸発温度T2と吸入冷媒温度T3とから算出するものとする。また、膨張機105や低圧段圧縮機113の効率は設計値である。The refrigerant mass flow rate of the expander 105 can be calculated from the refrigerant density at the inlet of the expander 105 and the suction volume of the expander 105. The refrigerant density at the inlet of the expander 105 is calculated from, for example, the optimum high pressure and the intake refrigerant temperature T 1 . Similarly, the refrigerant mass flow rate of the low-pressure compressor 113 can be calculated from the refrigerant density at the inlet of the low-pressure compressor 113 and the suction volume of the low-pressure compressor 113. The refrigerant density at the inlet of the low-pressure compressor 113 is calculated from, for example, the evaporation temperature T 2 and the suction refrigerant temperature T 3 . The efficiency of the expander 105 and the low-pressure compressor 113 is a design value.

次に、ステップ104で、理論回収動力と理論圧縮仕事とが一致するかどうかを判断する。一致する場合にはステップ105に進む。一致しない場合にはステップ103に戻り、別の目標中間圧力を設定して、一致するまでステップ103およびステップ104の処理を繰り返す。このように、コントローラ118は、各温度センサの検出結果に基づいて、任意の最適高圧PHおよび目標中間圧力PMを算出する。Next, in step 104, it is determined whether the theoretical recovery power and the theoretical compression work match. If they match, the process proceeds to step 105. If they do not match, the process returns to step 103, another target intermediate pressure is set, and the processes of step 103 and step 104 are repeated until they match. As described above, the controller 118 calculates an arbitrary optimum high pressure P H and target intermediate pressure P M based on the detection result of each temperature sensor.

次に、ステップ105で、気液分離器107内の圧力(現実の中間圧力)を算出する。具体的には、まず、第4温度センサ124から気液分離器107での冷媒の蒸発温度T4を取得する。冷媒の蒸発温度T4から冷媒の圧力を算出できる。すなわち、膨張弁109の開度を制御するための手段としてのコントローラ108は、第4温度センサ124の検出結果に基づいて気液分離器107内の現実の圧力を算出する。Next, in step 105, the pressure in the gas-liquid separator 107 (actual intermediate pressure) is calculated. Specifically, first, the evaporation temperature T 4 of the refrigerant in the gas-liquid separator 107 is acquired from the fourth temperature sensor 124. It can be calculated the pressure of the refrigerant from the evaporator temperature T 4 of the refrigerant. That is, the controller 108 as a means for controlling the opening degree of the expansion valve 109 calculates the actual pressure in the gas-liquid separator 107 based on the detection result of the fourth temperature sensor 124.

次に、ステップ106で、現実の中間圧力と目標中間圧力PMとを比較する。現実の中間圧力が目標中間圧力PMを上回っている場合には、ステップ107に進み、下回っている場合にはステップ107’に進む。ステップ107では、膨張弁109の設定開度を増加させる。ステップ107’では、膨張弁109の設定開度を減少させる。Next, in step 106, the actual intermediate pressure is compared with the target intermediate pressure P M. When the actual intermediate pressure is higher than the target intermediate pressure P M , the process proceeds to step 107, and when it is lower, the process proceeds to step 107 ′. In step 107, the set opening degree of the expansion valve 109 is increased. In step 107 ′, the set opening degree of the expansion valve 109 is decreased.

次に、ステップ108で、膨張弁109に対して設定開度を出力し、膨張弁109の開度を変化させる。膨張弁109の開度が変化すると、気液分離器107内の圧力も変化する。本フローチャートの処理を定期的に行うことによって、膨張機105の回収動力と低圧段圧縮機113の圧縮仕事とが理論上等しくなるように、気液分離器107内の圧力が調節されるとともに最適高圧が維持される。   Next, in step 108, the set opening degree is output to the expansion valve 109, and the opening degree of the expansion valve 109 is changed. When the opening degree of the expansion valve 109 changes, the pressure in the gas-liquid separator 107 also changes. By periodically performing the process of this flowchart, the pressure in the gas-liquid separator 107 is adjusted and optimized so that the recovery power of the expander 105 and the compression work of the low-pressure compressor 113 are theoretically equal. High pressure is maintained.

以上のように、コントローラ118は、冷凍サイクルの任意の最適高圧における膨張機105の理論回収動力と、任意の最適高圧における低圧段圧縮機113の理論圧縮仕事とが等しくなる目標中間圧力PMを算出するための手段と、気液分離器107内の現実の圧力が算出された目標中間圧力PMに近づくように、膨張弁109の開度を制御するための手段とを有している。詳細には、コントローラ118は、気液分離器107内の圧力が目標中間圧力PMに一致するように、第4温度センサ124の検出結果に基づいて膨張弁109の開度を制御する。As described above, the controller 118 sets the target intermediate pressure P M at which the theoretical recovery power of the expander 105 at an arbitrary optimum high pressure in the refrigeration cycle is equal to the theoretical compression work of the low-pressure compressor 113 at any optimum high pressure. Means for calculating, and means for controlling the opening of the expansion valve 109 so that the actual pressure in the gas-liquid separator 107 approaches the calculated target intermediate pressure P M are provided. Specifically, the controller 118 controls the opening degree of the expansion valve 109 based on the detection result of the fourth temperature sensor 124 so that the pressure in the gas-liquid separator 107 matches the target intermediate pressure P M.

また、容積比(Vlc/Vex)が冷凍サイクル装置100のサイクル条件に対して過大である場合には、低圧段圧縮機113の冷媒質量流量に対して、高圧段圧縮機101および膨張機105の冷媒質量流量が不足する。言い換えると、低圧段圧縮機113からの吐出量に対し、高圧段圧縮機101の吸入量が過少となる。そのため、中間圧流路114の圧力が上昇し、高圧段圧縮機101に吸入されない冷媒が往還流路115を通じて中間圧流路114から気液分離器107へと還流する。Further, when the volume ratio (V lc / V ex ) is excessive with respect to the cycle condition of the refrigeration cycle apparatus 100, the high-pressure stage compressor 101 and the expander with respect to the refrigerant mass flow rate of the low-pressure stage compressor 113. The refrigerant mass flow rate of 105 is insufficient. In other words, the suction amount of the high-pressure stage compressor 101 is too small with respect to the discharge amount from the low-pressure stage compressor 113. Therefore, the pressure in the intermediate pressure flow path 114 rises, and the refrigerant that is not sucked into the high pressure compressor 101 returns from the intermediate pressure flow path 114 to the gas-liquid separator 107 through the forward recirculation path 115.

他方、容積比(Vlc/Vex)が冷凍サイクル装置100のサイクル条件に対して過小である場合には、低圧段圧縮機113の冷媒質量流量に対して、高圧段圧縮機101および膨張機105の冷媒質量流量が過大となる。言い換えると、低圧段圧縮機113からの吐出量に対し、高圧段圧縮機101の吸入量が過大となる。そのため、中間圧流路114の圧力が低下し、往還流路115を通じて気液分離器107から中間圧流路114へと不足分の冷媒がインジェクションされる。On the other hand, when the volume ratio (V lc / V ex ) is too small with respect to the cycle condition of the refrigeration cycle apparatus 100, the high-pressure stage compressor 101 and the expander with respect to the refrigerant mass flow rate of the low-pressure stage compressor 113. The refrigerant mass flow rate of 105 becomes excessive. In other words, the suction amount of the high-pressure compressor 101 is excessive with respect to the discharge amount from the low-pressure compressor 113. Therefore, the pressure in the intermediate pressure flow path 114 decreases, and a shortage of refrigerant is injected from the gas-liquid separator 107 to the intermediate pressure flow path 114 through the forward recirculation path 115.

図5A〜5Cに示すモリエル線図を参照して、各用途での冷凍サイクル装置100の動作を説明する。なお、容積比(Vlc/Vex)を4.7に設定しているものとする。With reference to the Mollier diagrams shown in FIGS. 5A to 5C, the operation of the refrigeration cycle apparatus 100 in each application will be described. It is assumed that the volume ratio (V lc / V ex ) is set to 4.7.

図5Aに示すように、先に説明した床暖房条件では、容積比4.7は、(1−Qexo)×(ρexi/ρlci)で表された値に一致する。したがって、気液分離器107のガス冷媒の全部が往還流路115を通じて中間圧流路114へとインジェクションされ、液冷媒が膨張弁109を通じて蒸発器111へと送られる。As shown in FIG. 5A, the floor heating conditions described above, the volume ratio 4.7 corresponds to the value represented by (1-Q exo) × ( ρ exi / ρ lci). Therefore, all of the gas refrigerant in the gas-liquid separator 107 is injected into the intermediate pressure flow path 114 through the forward recirculation path 115, and the liquid refrigerant is sent to the evaporator 111 through the expansion valve 109.

図5Bに示すように、先に説明した冷房条件では、容積比4.7は、(ρexi/ρlci)で表された値を超える。つまり、膨張機105の冷媒質量流量に対して低圧段圧縮機113の冷媒質量流量が過剰となる。そのため、低圧段圧縮機113で圧縮された冷媒の一部が往還流路115を通じて気液分離器107へと還流し、膨張弁109で再膨張する。As shown in Figure 5B, in the cooling condition described above, the volume ratio 4.7, exceeds the value expressed by (ρ exi / ρ lci). That is, the refrigerant mass flow rate of the low-pressure compressor 113 is excessive with respect to the refrigerant mass flow rate of the expander 105. Therefore, a part of the refrigerant compressed by the low-pressure compressor 113 is returned to the gas-liquid separator 107 through the forward recirculation path 115 and re-expanded by the expansion valve 109.

図5Cに示すように、先に説明した暖房条件においても、冷房条件と同様に、容積比4.7は、(ρexi/ρlci)で表された値を超える。そのため、低圧段圧縮機113で圧縮された冷媒の一部が往還流路115を通じて気液分離器107へと還流し、膨張弁109で再膨張する。As shown in FIG. 5C, even in the heating conditions described above, similarly to the cooling conditions, the volume ratio 4.7, exceeds the value expressed by (ρ exi / ρ lci). Therefore, a part of the refrigerant compressed by the low-pressure compressor 113 is returned to the gas-liquid separator 107 through the forward recirculation path 115 and re-expanded by the expansion valve 109.

以上のように、本実施形態によれば、往還流路115を双方向に冷媒が流通しうることによって冷凍サイクルの流量バランスが成立する。これにより、密度比一定の制約に縛られることなく、年間の消費電力が最小となるように低圧段圧縮機113および膨張機105の設計を行える。さらに、膨張弁109の開度を制御することによって中間圧力を容易に調節でき、容積比(Vlc/Vex)に左右されることなく、冷媒回路における現実の高圧が最適高圧となるように冷凍サイクル装置100の運転を行える。As described above, according to the present embodiment, the refrigerant can flow bidirectionally in the forward and backward flow path 115, so that the flow rate balance of the refrigeration cycle is established. Accordingly, the low-pressure compressor 113 and the expander 105 can be designed so that the annual power consumption is minimized without being restricted by the constant density ratio. Further, the intermediate pressure can be easily adjusted by controlling the opening degree of the expansion valve 109 so that the actual high pressure in the refrigerant circuit becomes the optimum high pressure regardless of the volume ratio (V lc / V ex ). The refrigeration cycle apparatus 100 can be operated.

また、容積比(Vlc/Vex)を(1−Qexo)×(ρexi/ρlci)で表された値以上とすることで、液冷媒のインジェクションを回避できる。In addition, by setting the volume ratio (V lc / V ex) ( 1-Q exo) × (ρ exi / ρ lci) represented the value above, it is possible to avoid the injection of the liquid refrigerant.

図6Aおよび図6Bは、床暖房サイクル条件(外気温7℃、床暖房用の温水の戻り温度25℃、低圧段圧縮機の吸入冷媒温度7℃、CO2冷媒)での、容積比の変化に対する各種サイクル特性(計算値)の変化を示すグラフである。図6Aの縦軸には、サイクル特性として、中間圧力、COPおよび往還流路の冷媒流量が示されている。図6Bの縦軸には、サイクル特性として、高圧段圧縮機101の吐出冷媒温度が示されている。6A and 6B show changes in the volume ratio under floor heating cycle conditions (outside temperature 7 ° C., return temperature of warm water for floor heating 25 ° C., suction refrigerant temperature of low-pressure compressor 7 ° C., CO 2 refrigerant). It is a graph which shows the change of the various cycle characteristics (calculated value) with respect to. The vertical axis in FIG. 6A shows the intermediate pressure, the COP, and the refrigerant flow rate in the forward recirculation path as cycle characteristics. The vertical axis of FIG. 6B indicates the refrigerant discharge temperature of the high-pressure compressor 101 as cycle characteristics.

上記床暖房サイクル条件では、図6Aのグラフに示すように、容積比(Vlc/Vex)=7.1を境界に往還流路115の冷媒流量の正負が切り替わる。冷媒流量が正のときは、気液分離器107から中間圧流路114へと冷媒が流れ(インジェクション)、冷媒流量が負のときは、中間圧流路114から気液分離器107へと冷媒が流れる(還流)。ガスインジェクションが起こると、COPおよび中間圧力のいずれも上昇する。これは、低圧段圧縮機113の冷媒質量流量が低下することによって低圧段圧縮機113の圧縮負荷が軽減され、結果として、高圧段圧縮機101の圧縮負荷が軽減するからである。In the floor heating cycle condition, as shown in the graph of FIG. 6A, the refrigerant flow rate in the forward recirculation path 115 is switched between the volume ratio (V lc / V ex ) = 7.1 as a boundary. When the refrigerant flow rate is positive, the refrigerant flows from the gas-liquid separator 107 to the intermediate pressure channel 114 (injection). When the refrigerant flow rate is negative, the refrigerant flows from the intermediate pressure channel 114 to the gas-liquid separator 107. (reflux). When gas injection occurs, both COP and intermediate pressure increase. This is because the compression load of the low-pressure stage compressor 113 is reduced by reducing the refrigerant mass flow rate of the low-pressure stage compressor 113, and as a result, the compression load of the high-pressure stage compressor 101 is reduced.

また、上記床暖房サイクル条件では、図6Bに示すように、容積比(Vlc/Vex)=4.7を境界に高圧段圧縮機101の吐出冷媒温度が急低下する。つまり、容積比(Vlc/Vex)=4.7の前後で液冷媒(ガス冷媒も含まれている)のインジェクションとガス冷媒のインジェクションとが切り替わる。先に説明したように、(1−Qexo)×(ρexi/ρlci)で表された値が容積比(Vlc/Vex)よりも小さい場合には、液冷媒のインジェクションは起こらない。逆に、(1−Qexo)×(ρexi/ρlci)で表された値が容積比(Vlc/Vex)よりも大きい場合には、液冷媒のインジェクションが起こる。Further, under the above floor heating cycle condition, as shown in FIG. 6B, the discharge refrigerant temperature of the high-pressure compressor 101 rapidly decreases with the volume ratio (V lc / V ex ) = 4.7 as a boundary. That is, the injection of the liquid refrigerant (including the gas refrigerant) and the injection of the gas refrigerant are switched around the volume ratio (V lc / V ex ) = 4.7. As described above, when (1-Q exo) less than × (ρ exi / ρ lci) represented value is the volume ratio (V lc / V ex) does not occur injection of the liquid refrigerant . Conversely, (1-Q exo) when × value expressed by (ρ exi / ρ lci) is greater than the volume ratio (V lc / V ex) is injection of the liquid refrigerant occurs.

また、容積比(Vlc/Vex)=7.1を境界に高圧段圧縮機101の吐出冷媒温度の変化が止まる。つまり、容積比(Vlc/Vex)=7.1の前後でガス冷媒のインジェクションと還流とが切り替わる。先に説明したように、密度比(ρexi/ρlci)が容積比(Vlc/Vex)よりも大きい場合には、還流が起こらない。逆に、密度比(ρexi/ρlci)が容積比(Vlc/Vex)よりも小さい場合には、還流が起こる。Further, the change in the refrigerant temperature discharged from the high-pressure compressor 101 stops at the boundary of the volume ratio (V lc / V ex ) = 7.1. That is, the injection and recirculation of the gas refrigerant are switched around the volume ratio (V lc / V ex ) = 7.1. As described above, when the density ratio (ρ exi / ρ lci) is greater than the volume ratio (V lc / V ex) is refluxed does not occur. Conversely, if the density ratio (ρ exi / ρ lci) is smaller than the volume ratio (V lc / V ex) is refluxed occurs.

以上より、床暖房サイクル条件で運転が行われることを前提に考えれば、液冷媒のインジェクションおよび還流を回避するために、容積比(Vlc/Vex)を4.7〜7.1の範囲に設定すればよい。In view of the above, assuming that operation is performed under floor heating cycle conditions, the volume ratio (V lc / V ex ) is in the range of 4.7 to 7.1 in order to avoid liquid refrigerant injection and reflux. Should be set.

図2を参照して説明したように、多機能ヒートポンプシステムでは、コスト等の観点から、1台の冷凍サイクル装置100で給湯、床暖房および空調を賄うことも考慮すべきである。このような場合、床暖房だけを念頭に入れて容積比を設定すると、他の用途で効率的な運転を行えない可能性が出てくる。すなわち、図7Aおよび図7Bに示すように、冷房サイクル条件では、容積比(Vlc/Vex)を2.4〜3.6の範囲に設定することによって液冷媒のインジェクションおよび還流を回避できる。同様に、図8Aおよび図8Bに示すように、暖房サイクル条件では、容積比(Vlc/Vex)を2.1〜2.9の範囲に設定することによって液冷媒のインジェクションおよび還流を回避できる。このように、サイクル条件に応じて好適な容積比の範囲が相違する。還流は許容できるが、液冷媒のインジェクションは回避すべきなので、本例では、床暖房サイクル条件で液インジェクションを回避できる容積比(Vlc/Vex)=4.7が妥当である。As described with reference to FIG. 2, in the multi-function heat pump system, it should be considered that a single refrigeration cycle apparatus 100 covers hot water supply, floor heating, and air conditioning from the viewpoint of cost and the like. In such a case, if the volume ratio is set with only floor heating in mind, there is a possibility that efficient operation cannot be performed in other applications. That is, as shown in FIG. 7A and FIG. 7B, under the cooling cycle conditions, the liquid refrigerant injection and reflux can be avoided by setting the volume ratio (V lc / V ex ) in the range of 2.4 to 3.6. . Similarly, as shown in FIG. 8A and FIG. 8B, in the heating cycle condition, by setting the volume ratio (V lc / V ex ) in the range of 2.1 to 2.9, liquid refrigerant injection and reflux are avoided. it can. Thus, the range of suitable volume ratios differs depending on the cycle conditions. Although reflux is acceptable, liquid refrigerant injection should be avoided, so in this example, a volume ratio (V lc / V ex ) = 4.7 that can avoid liquid injection under floor heating cycle conditions is reasonable.

容積比(Vlc/Vex)を4.7に設定とすると、床暖房条件では、容積比(Vlc/Vex)が密度比(ρexi/ρlci)以下となるので、低圧段圧縮機113が圧縮した冷媒はすべて高圧段圧縮機101へ吸入され、冷凍サイクル装置100を効率的に運転できる。床暖房条件のみならず、冷房および暖房の各用途においても、(1−Qexo)×(ρexi/ρlci)で表された値が容積比(Vlc/Vex)よりも小さくなり、液冷媒のインジェクションを回避できる。When setting the volume ratio (V lc / V ex) to 4.7, the floor heating condition, since the volume ratio (V lc / V ex) is equal to or less than the density ratio (ρ exi / ρ lci), the low-pressure stage compressor All the refrigerant compressed by the machine 113 is sucked into the high-pressure compressor 101, and the refrigeration cycle apparatus 100 can be operated efficiently. Not floor heating conditions but also in the cooling and the application of the heating, it is smaller than (1-Q exo) × ( ρ exi / ρ lci) represented value is the volume ratio (V lc / V ex), Liquid refrigerant injection can be avoided.

なお、容積比(Vlc/Vex)=4.7とすると、冷房条件では、低圧段圧縮機113で圧縮された冷媒の23.6%が往還流路115を経て気液分離器107へと戻り、膨張弁109で再膨張する。同一の冷房条件で計算を行うと、バイパス回路で密度比一定の制約を回避している従来例(図14)では、49.6%の冷媒が膨張機をバイパスする。同様に、暖房条件では、低圧段圧縮機113で圧縮された冷媒の36.6%が往還流路115を経て気液分離器107へと戻り、膨張弁109で再膨張する。同一の暖房条件で計算を行うと、バイパス回路で密度比一定の制約を回避している従来例(図14)では、58.2%の冷媒が膨張機をバイパスする。このように、本実施形態の冷凍サイクル装置100によれば、バイパス回路を備えた従来の冷凍サイクル装置よりも高効率な運転を行える。If the volume ratio (V lc / V ex ) = 4.7, 23.6% of the refrigerant compressed by the low-pressure compressor 113 passes to the gas-liquid separator 107 via the forward recirculation path 115 under the cooling condition. And the expansion valve 109 is re-expanded. When the calculation is performed under the same cooling condition, 49.6% of the refrigerant bypasses the expander in the conventional example (FIG. 14) in which the restriction of the constant density ratio is avoided in the bypass circuit. Similarly, under the heating condition, 36.6% of the refrigerant compressed by the low-pressure compressor 113 returns to the gas-liquid separator 107 via the forward recirculation path 115 and is re-expanded by the expansion valve 109. When the calculation is performed under the same heating condition, 58.2% of the refrigerant bypasses the expander in the conventional example (FIG. 14) in which the restriction of the constant density ratio is avoided in the bypass circuit. Thus, according to the refrigeration cycle apparatus 100 of the present embodiment, a more efficient operation can be performed than a conventional refrigeration cycle apparatus having a bypass circuit.

なお、本発明は、液冷媒のインジェクションを全面的に禁止しているわけではないことを断っておく。   It should be noted that the present invention does not completely prohibit liquid refrigerant injection.

(第2実施形態)
図9は、本発明の第2実施形態にかかる冷凍サイクル装置の構成図である。本実施形態の冷凍サイクル装置500は、第1実施形態にかかる冷凍サイクル装置100(図1参照)と概ね同様の構成を有している。本実施形態と第1実施形態との相違点は、温度センサ520が設けられている点とコントローラ118が行う制御にある。以下では、同一機能部品については同一の符号を付し、その説明を省略する。
(Second Embodiment)
FIG. 9 is a configuration diagram of a refrigeration cycle apparatus according to the second embodiment of the present invention. The refrigeration cycle apparatus 500 of the present embodiment has a configuration that is substantially the same as that of the refrigeration cycle apparatus 100 (see FIG. 1) according to the first embodiment. The difference between the present embodiment and the first embodiment is that the temperature sensor 520 is provided and the control performed by the controller 118. In the following, the same functional parts are denoted by the same reference numerals, and the description thereof is omitted.

図9に示すように、冷凍サイクル装置500は、高圧段圧縮機101の吐出冷媒温度を検出するための温度センサ520を備えている。第1実施形態と同様に、蒸発器111における冷媒の蒸発温度を検出するための温度センサ122も設けられている。コントローラ118は、温度センサ520および温度センサ122の検出結果に基づいて、膨張弁109の開度を制御する。   As shown in FIG. 9, the refrigeration cycle apparatus 500 includes a temperature sensor 520 for detecting the discharge refrigerant temperature of the high-pressure compressor 101. Similar to the first embodiment, a temperature sensor 122 for detecting the evaporation temperature of the refrigerant in the evaporator 111 is also provided. The controller 118 controls the opening degree of the expansion valve 109 based on the detection results of the temperature sensor 520 and the temperature sensor 122.

図10のフローチャートを参照して冷凍サイクル装置500の動作を説明する。まず、ステップ501で、蒸発器111における冷媒の蒸発温度に基づいて、外気温度を推定する。次に、ステップ502で、高圧段圧縮機101の目標吐出冷媒温度を算出する。目標吐出冷媒温度は、例えば、外気温度および床暖房の設定温度(または暖房の設定温度)に応じて決定される。次に、ステップ503で、温度センサ520から高圧段圧縮機101の現実の吐出冷媒温度を取得する。次に、ステップ504で、現実の吐出冷媒温度と目標吐出冷媒温度とを比較する。現実の吐出冷媒温度が目標吐出冷媒温度よりも高い場合にはステップ505へ進む。現実の吐出冷媒温度が目標吐出冷媒温度よりも低い場合にはステップ505’へ進む。   The operation of the refrigeration cycle apparatus 500 will be described with reference to the flowchart of FIG. First, in step 501, the outside air temperature is estimated based on the evaporation temperature of the refrigerant in the evaporator 111. Next, in step 502, the target discharge refrigerant temperature of the high-pressure compressor 101 is calculated. The target discharge refrigerant temperature is determined according to, for example, the outside air temperature and the floor heating set temperature (or the heating set temperature). Next, in step 503, the actual discharge refrigerant temperature of the high-pressure compressor 101 is acquired from the temperature sensor 520. Next, in step 504, the actual discharge refrigerant temperature is compared with the target discharge refrigerant temperature. When the actual discharge refrigerant temperature is higher than the target discharge refrigerant temperature, the process proceeds to step 505. If the actual discharge refrigerant temperature is lower than the target discharge refrigerant temperature, the process proceeds to step 505 '.

ステップ505およびステップ506で、膨張弁109の設定開度を増加させて中間圧力を低下させる。中間圧力が低下すると、低圧段圧縮機113の圧縮仕事が減少する。これにより、低圧段圧縮機113の圧縮仕事と膨張機105の回収動力との間にアンバランスが生じる。このアンバランスを解消するために、軸116の回転数が増加し、冷凍サイクルの高圧が低下する。その結果、膨張機105の回収動力が減少してアンバランスが解消される。また、冷凍サイクルの高圧が低下することで、高圧段圧縮機101の吐出冷媒温度が低下する。   In step 505 and step 506, the set opening degree of the expansion valve 109 is increased to lower the intermediate pressure. When the intermediate pressure decreases, the compression work of the low-pressure stage compressor 113 decreases. Thereby, an imbalance occurs between the compression work of the low-pressure stage compressor 113 and the recovered power of the expander 105. In order to eliminate this imbalance, the rotation speed of the shaft 116 increases and the high pressure of the refrigeration cycle decreases. As a result, the recovery power of the expander 105 is reduced and the unbalance is eliminated. Moreover, the discharge refrigerant | coolant temperature of the high pressure compressor 101 falls because the high pressure of a refrigerating cycle falls.

ステップ505’およびステップ506で、膨張弁109の設定開度を減少させて中間圧力を上昇させる。中間圧力が上昇すると、低圧段圧縮機113の圧縮仕事が増加する。これにより、低圧段圧縮機113の圧縮仕事と膨張機105の回収動力との間にアンバランスが生じる。このアンバランスを解消するために、軸116の回転数が減少し、冷凍サイクルの高圧が上昇する。その結果、膨張機105の回収動力が増加してアンバランスが解消される。また、冷凍サイクルの高圧が上昇することで、高圧段圧縮機101の吐出冷媒温度が上昇する。   In steps 505 'and 506, the set opening degree of the expansion valve 109 is decreased to increase the intermediate pressure. When the intermediate pressure increases, the compression work of the low-pressure compressor 113 increases. Thereby, an imbalance occurs between the compression work of the low-pressure stage compressor 113 and the recovered power of the expander 105. In order to eliminate this imbalance, the rotational speed of the shaft 116 is decreased and the high pressure of the refrigeration cycle is increased. As a result, the recovery power of the expander 105 is increased and the unbalance is eliminated. Moreover, the discharge refrigerant | coolant temperature of the high pressure compressor 101 rises because the high pressure of a refrigerating cycle rises.

本実施形態によれば、温度センサ520,123の検出結果に基づき、膨張弁109の開度を制御する。膨張弁109の開度を制御することによって、中間圧力を調節できる。中間圧力に応じて、軸116の回転数が変化する。軸116の回転数が変化すると、冷凍サイクルの高圧も変化する。つまり、膨張弁109によって冷凍サイクルの高圧を調節できる。そのため、本実施形態の冷凍サイクル装置500は、床暖房、暖房および給湯など加熱能力が要求される用途に好適である。   According to this embodiment, the opening degree of the expansion valve 109 is controlled based on the detection results of the temperature sensors 520 and 123. By controlling the opening degree of the expansion valve 109, the intermediate pressure can be adjusted. The rotation speed of the shaft 116 changes according to the intermediate pressure. When the rotation speed of the shaft 116 changes, the high pressure of the refrigeration cycle also changes. That is, the expansion valve 109 can adjust the high pressure of the refrigeration cycle. Therefore, the refrigeration cycle apparatus 500 of the present embodiment is suitable for applications that require heating capability such as floor heating, heating, and hot water supply.

(第3実施形態)
図11は、本発明の第3実施形態に係る冷凍サイクル装置の構成図である。冷凍サイクル装置700は、第1実施形態および第2実施形態で説明した冷凍サイクル装置と概ね同様の構成を有している。本実施形態と第1実施形態との相違点は、高圧段圧縮機701、低圧段圧縮機713および膨張機705が共通の密閉容器717に収納されている点にある。
(Third embodiment)
FIG. 11 is a configuration diagram of a refrigeration cycle apparatus according to the third embodiment of the present invention. The refrigeration cycle apparatus 700 has substantially the same configuration as the refrigeration cycle apparatus described in the first embodiment and the second embodiment. The difference between the present embodiment and the first embodiment is that the high-pressure stage compressor 701, the low-pressure stage compressor 713, and the expander 705 are housed in a common sealed container 717.

図11に示すように、冷凍サイクル装置700において、高圧段圧縮機701、低圧段圧縮機713および膨張機705は、単一の密閉容器717内に上からこの順で配置されている。低圧段圧縮機713と膨張機705とは軸716で動力伝達可能に接続されている。密閉容器717の底部にはオイルが貯められている。油面よりも上の空間は、高圧段圧縮機701の吐出冷媒で満たされている。低圧段圧縮機713および膨張機705の周囲はオイルで満たされている。   As shown in FIG. 11, in the refrigeration cycle apparatus 700, the high-pressure stage compressor 701, the low-pressure stage compressor 713, and the expander 705 are arranged in this order from above in a single sealed container 717. The low-pressure stage compressor 713 and the expander 705 are connected by a shaft 716 so that power can be transmitted. Oil is stored at the bottom of the sealed container 717. The space above the oil level is filled with the refrigerant discharged from the high-pressure compressor 701. The periphery of the low-pressure stage compressor 713 and the expander 705 is filled with oil.

高圧段圧縮機701が駆動されると、油面よりも上の空間が高圧の吐出冷媒で満たされる。高圧段圧縮機701の周囲には高圧段圧縮機701を潤滑した高温のオイルが保持される。一方、低圧段圧縮機713および膨張機705は、高圧段圧縮機701よりも低い温度で動作する。そのため、低圧段圧縮機713や膨張機705の周囲には、高圧段圧縮機713の周囲に存在しているオイルに比べて低い温度のオイルが保持される。   When the high-pressure compressor 701 is driven, the space above the oil level is filled with high-pressure discharged refrigerant. Around the high-pressure compressor 701, high-temperature oil that lubricates the high-pressure compressor 701 is held. On the other hand, the low-pressure stage compressor 713 and the expander 705 operate at a lower temperature than the high-pressure stage compressor 701. Therefore, oil having a lower temperature than the oil existing around the high-pressure stage compressor 713 is held around the low-pressure stage compressor 713 and the expander 705.

つまり、高圧段圧縮機701の周囲には高温のオイルが保持され、低圧段圧縮機713および膨張機705の周囲には低温のオイルが保持されている。オイルは、鉛直方向に沿って温度成層を形成する。温度成層が形成されることによって、上層のオイルと下層のオイルとが混ざりにくくなる。これにより、オイルを介した高圧段圧縮機701から膨張機705への熱移動を抑制しうる。熱移動が生じると高圧段圧縮機701の吐出冷媒温度が低下し、膨張機705の吐出冷媒温度が上昇するため、冷凍サイクル装置の効率の観点で好ましくない。本実施形態によれば、熱移動を効果的に抑制できるため、冷凍サイクル装置700の高効率化を図ることができる。   That is, high temperature oil is held around the high pressure stage compressor 701, and low temperature oil is held around the low pressure stage compressor 713 and the expander 705. The oil forms a temperature stratification along the vertical direction. By forming the temperature stratification, it becomes difficult to mix the upper layer oil and the lower layer oil. Thereby, the heat transfer from the high pressure compressor 701 to the expander 705 via the oil can be suppressed. When heat transfer occurs, the discharge refrigerant temperature of the high-pressure compressor 701 decreases and the discharge refrigerant temperature of the expander 705 increases, which is not preferable from the viewpoint of the efficiency of the refrigeration cycle apparatus. According to this embodiment, since heat transfer can be effectively suppressed, the efficiency of the refrigeration cycle apparatus 700 can be increased.

(第4実施形態)
図12Aは、本発明の第4実施形態に係る冷凍サイクル装置の構成図である。本実施形態の冷凍サイクル装置600には、吸入容積を変更可能な多段ロータリ式の膨張機605が使用されている。さらに、冷凍サイクル装置600は、膨張機インジェクション流路630と、膨張機インジェクション弁631とを備えている。図12Bに示すように、膨張機インジェクション流路630は、膨張機605の吸入流路(配管104)と膨張機605の膨張室611に開口した膨張機インジェクションポート632とを接続している。膨張機インジェクション弁631は、膨張機インジェクション流路630上に設けられている。膨張機インジェクション弁631を制御することによって膨張機605の吸入容積を変更できる。その他の構成は、第1実施形態および第2実施形態で説明した通りである。
(Fourth embodiment)
FIG. 12A is a configuration diagram of a refrigeration cycle apparatus according to the fourth embodiment of the present invention. In the refrigeration cycle apparatus 600 of the present embodiment, a multistage rotary expander 605 capable of changing the suction volume is used. Furthermore, the refrigeration cycle apparatus 600 includes an expander injection flow path 630 and an expander injection valve 631. As shown in FIG. 12B, the expander injection flow path 630 connects the suction flow path (pipe 104) of the expander 605 and the expander injection port 632 opened to the expansion chamber 611 of the expander 605. The expander injection valve 631 is provided on the expander injection flow path 630. The suction volume of the expander 605 can be changed by controlling the expander injection valve 631. Other configurations are the same as those described in the first and second embodiments.

図12Bに示すように、膨張機605は、1段目シリンダ605aと2段目シリンダ605bとを有する2段ロータリ膨張機で構成されている。膨張機インジェクションポート632は、1段目シリンダ605aに設けられているとともに、1段目シリンダ605aの膨張室611に向かって開口している。1段目シリンダ605aと2段目シリンダ605bとは、中板605cで隔てられているが、中板605cに形成された連通孔605dを介して、1段目シリンダ605aの膨張室611が2段目シリンダ605bの膨張室612に連通している。これにより、膨張室611および612が単一の膨張室を形成している。膨張機インジェクション流路630は、膨張機インジェクションポート632から膨張室611に冷媒をインジェクションしうるように、配管104から分岐して1段目シリンダ605aに接続されている。膨張機インジェクションポート632は、シャフト116の周方向に関して、連通孔605dの近傍に設けられている。   As shown in FIG. 12B, the expander 605 is a two-stage rotary expander having a first-stage cylinder 605a and a second-stage cylinder 605b. The expander injection port 632 is provided in the first stage cylinder 605a and opens toward the expansion chamber 611 of the first stage cylinder 605a. The first-stage cylinder 605a and the second-stage cylinder 605b are separated by an intermediate plate 605c, but the expansion chamber 611 of the first-stage cylinder 605a is in two stages through a communication hole 605d formed in the intermediate plate 605c. It communicates with the expansion chamber 612 of the eye cylinder 605b. Thereby, the expansion chambers 611 and 612 form a single expansion chamber. The expander injection flow path 630 branches from the pipe 104 and is connected to the first-stage cylinder 605a so that the refrigerant can be injected from the expander injection port 632 into the expansion chamber 611. The expander injection port 632 is provided in the vicinity of the communication hole 605d in the circumferential direction of the shaft 116.

膨張機インジェクション弁631を閉じた場合、膨張機インジェクションポート632から膨張室611へ冷媒が流入しない。そのため、1段目シリンダ605aの気筒容積が吸入容積Vexとして振舞う。他方、膨張機インジェクション弁631を開いた場合、膨張機インジェクションポート632から膨張室611に冷媒が流入する。そのため、2段目シリンダ605bの気筒容積が吸入容積Vex’として振舞う。例えば、1段目シリンダ605aの気筒容積が2段目シリンダ605bの気筒容積の2倍の場合、必要に応じて吸入容積Vexを2倍の吸入容積Vex’に変更できる。When the expander injection valve 631 is closed, the refrigerant does not flow into the expansion chamber 611 from the expander injection port 632. Therefore, the cylinder volume of the first-stage cylinder 605a behaves as the suction volume V ex. On the other hand, when the expander injection valve 631 is opened, the refrigerant flows into the expansion chamber 611 from the expander injection port 632. Therefore, the cylinder volume of the second-stage cylinder 605b behaves as the suction volume V ex ′. For example, cylinder volume of the first-stage cylinder 605a may double the cylinder volume of the second-stage cylinder 605b, can change the suction volume V ex optionally twice the suction volume V ex '.

第1実施形態によると、冷房条件での望ましい容積比(Vlc/Vex)は2.4〜3.6であった。本実施形態において、膨張機インジェクション弁631を開いて吸入容積Vex’を用いると、同冷房条件での望ましい容積比(Vlc/Vex’)は2.4〜3.6になる。吸入容積Vexを用いて表記すれば、同冷房条件での望ましい容積比(Vlc/Vex)は4.8〜7.2になる。また、第1実施形態によると、暖房条件での望ましい容積比(Vlc/Vex)は2.1〜2.9であった。本実施形態において、膨張機インジェクション弁631を開いて吸入容積Vex’を用いると、同暖房条件での望ましい容積比(Vlc/Vex’)は2.1〜2.9になる。吸入容積Vexを用いて表記すれば、同暖房条件での望ましい容積比(Vlc/Vex)は4.2〜5.8になる。また、第1実施形態によると、床暖房条件での望ましい容積比(Vlc/Vex)は4.7〜7.1であった。本実施形態においても、膨張機インジェクション弁631を閉じて吸入容積Vexを用いると、同床暖房条件での望ましい容積比(Vlc/Vex)は4.7〜7.1になる。According to the first embodiment, the desirable volume ratio (V lc / V ex ) under the cooling condition was 2.4 to 3.6. In the present embodiment, when the expander injection valve 631 is opened and the suction volume V ex ′ is used, the desirable volume ratio (V lc / V ex ′) under the same cooling condition is 2.4 to 3.6. If expressed using the suction volume V ex , the desirable volume ratio (V lc / V ex ) under the same cooling condition is 4.8 to 7.2. Also, according to the first embodiment, the desired volume ratio in the heating condition (V lc / V ex) was 2.1 to 2.9. In the present embodiment, when the expander injection valve 631 is opened and the suction volume V ex ′ is used, the desirable volume ratio (V lc / V ex ′) under the same heating condition is 2.1 to 2.9. If expressed using the suction volume V ex , the desirable volume ratio (V lc / V ex ) under the same heating condition is 4.2 to 5.8. Also, according to the first embodiment, the desired volume ratio in the floor heating condition (V lc / V ex) was 4.7 to 7.1. Also in the present embodiment, when the expander injection valve 631 is closed and the suction volume V ex is used, the desirable volume ratio (V lc / V ex ) under the same floor heating condition is 4.7 to 7.1.

つまり、冷房条件および暖房条件では、膨張機インジェクション弁631を開いて吸入容積を増加させる一方、床暖房条件では膨張機インジェクション弁631を閉じる。このような制御を行うことにより、各条件における望ましい容積比(Vlc/Vex)を、互いに接近させることができる。That is, in the cooling condition and the heating condition, the expander injection valve 631 is opened to increase the suction volume, while in the floor heating condition, the expander injection valve 631 is closed. By performing such control, the desired volume ratio (V lc / V ex ) under each condition can be brought closer to each other.

詳細には、容積比(Vlc/Vex)が4.8となるように低圧段圧縮機113および膨張機605を設計できる。容積比(Vlc/Vex)=4.8という設計は、冷房、暖房および床暖房の各条件における容積比(Vlc/Vex)の上限を下回る。そのため、冷房、暖房および床暖房の各条件で還流が生じず、低圧段圧縮機113での圧縮仕事を有効に利用できる。さらに、容積比(Vlc/Vex)=4.8という設計は、冷房、暖房および床暖房の各条件の容積比(Vlc/Vex)の下限を上回る。そのため、液冷媒のインジェクションも防止できる。Specifically, the low-pressure compressor 113 and the expander 605 can be designed so that the volume ratio (V lc / V ex ) is 4.8. The design of volume ratio (V lc / V ex ) = 4.8 is below the upper limit of the volume ratio (V lc / V ex ) in each condition of cooling, heating and floor heating. Therefore, reflux does not occur in each of the cooling, heating, and floor heating conditions, and the compression work in the low-pressure compressor 113 can be used effectively. Furthermore, the design of the volume ratio (V lc / V ex ) = 4.8 exceeds the lower limit of the volume ratio (V lc / V ex ) for each condition of cooling, heating and floor heating. Therefore, liquid refrigerant injection can also be prevented.

したがって、気液分離器107から中間圧流路114に向かって、ガス冷媒が往還流路115を流れる。冷凍サイクル装置600を常時ガスインジェクション状態で運転できる。ガスインジェクション状態で運転できれば、往還流路115を流れた冷媒を低圧段圧縮機113で圧縮する必要がないので、低圧段圧縮機113の負荷を軽減できる。また、放熱器103で冷却された冷媒の全量が膨張機605を通過するので、高い動力回収効率を実現できる。このように、本実施形態の冷凍サイクル装置600によれば、バイパス回路を備えた従来の冷凍サイクル装置よりも高効率な運転を行える。   Accordingly, the gas refrigerant flows through the forward recirculation passage 115 from the gas-liquid separator 107 toward the intermediate pressure passage 114. The refrigeration cycle apparatus 600 can be always operated in a gas injection state. If the operation can be performed in the gas injection state, it is not necessary to compress the refrigerant that has flowed through the forward recirculation path 115 by the low-pressure stage compressor 113, so that the load on the low-pressure stage compressor 113 can be reduced. In addition, since the entire amount of the refrigerant cooled by the radiator 103 passes through the expander 605, high power recovery efficiency can be realized. Thus, according to the refrigeration cycle apparatus 600 of the present embodiment, a more efficient operation can be performed than a conventional refrigeration cycle apparatus having a bypass circuit.

なお、膨張機605として、スクロール膨張機、レシプロ膨張機などの他の型式の膨張機も使用できる。膨張機インジェクション弁631は、開度を多段階で変更できる弁であってもよいし、単なる開閉弁であってもよい。   As the expander 605, other types of expanders such as a scroll expander and a reciprocal expander can be used. The expander injection valve 631 may be a valve whose opening degree can be changed in multiple stages, or may be a simple on-off valve.

本発明は、空調機、冷凍冷蔵庫、ヒートポンプ給湯機、ヒートポンプ暖房機、自動販売機、カーエアコンなどに利用される冷凍サイクル装置について有用である。特に、2以上の用途に1台の冷凍サイクル装置を共用する場合に高い効果が得られる。もちろん、単一の用途の冷凍サイクル装置にも本発明を好適に採用しうる。   INDUSTRIAL APPLICATION This invention is useful about the refrigerating-cycle apparatus utilized for an air conditioner, a refrigerator-freezer, a heat pump water heater, a heat pump heater, a vending machine, a car air conditioner, etc. In particular, a high effect can be obtained when one refrigeration cycle apparatus is shared for two or more uses. Of course, the present invention can also be suitably applied to a refrigeration cycle apparatus for a single application.

本発明は、冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus.

空調機や給湯機に用いられる冷凍サイクル装置として、図13に示すように、第1圧縮機801a、放熱器802、膨張機803、吸熱器804および第2圧縮機801bを有するものが知られている(特許文献1)。第2圧縮機801bと膨張機803とが回転軸806によって連結されおり、第2圧縮機801bの駆動力が膨張機803での冷媒の膨張に伴う動力で賄われる。そのため、冷媒圧力を所定圧力まで上昇させるために費やされる第1圧縮機801aの動力を低減できる。   As a refrigeration cycle apparatus used for an air conditioner or a hot water heater, as shown in FIG. 13, one having a first compressor 801a, a radiator 802, an expander 803, a heat absorber 804, and a second compressor 801b is known. (Patent Document 1). The second compressor 801b and the expander 803 are connected by a rotating shaft 806, and the driving force of the second compressor 801b is covered by the power accompanying the expansion of the refrigerant in the expander 803. Therefore, it is possible to reduce the power of the first compressor 801a that is consumed to increase the refrigerant pressure to a predetermined pressure.

図13に示す冷凍サイクル装置によれば、膨張機803の回転数と第2圧縮機801bの回転数とが一致する。また、膨張機803で膨張した冷媒は、吸熱器804を経て第2圧縮機801bで圧縮されるので、膨張機803を通過する冷媒の質量流量と第2圧縮機801bを通過する冷媒の質量流量とが一致する。さらに、膨張機803の吸入容積および第2圧縮機801bの吸入容積が各々の設計時点で定められるため、膨張機803の吸入冷媒密度および第2圧縮機801bの吸入冷媒密度に制約が加わる。   According to the refrigeration cycle apparatus shown in FIG. 13, the rotational speed of the expander 803 and the rotational speed of the second compressor 801b coincide. Further, since the refrigerant expanded by the expander 803 is compressed by the second compressor 801b through the heat absorber 804, the mass flow rate of the refrigerant passing through the expander 803 and the mass flow rate of the refrigerant passing through the second compressor 801b. Matches. Furthermore, since the suction volume of the expander 803 and the suction volume of the second compressor 801b are determined at each design time point, restrictions are imposed on the suction refrigerant density of the expander 803 and the suction refrigerant density of the second compressor 801b.

すなわち、膨張機803の吸入容積Vexiと膨張機803の吸入冷媒密度ρexiとの積は、第2圧縮機801bの吸入容積VC2iと第2圧縮機801bの吸入冷媒密度ρc2iとの積に常に等しくなる。膨張機803の吸入冷媒密度と第2圧縮機801bの吸入冷媒密度との間には、(ρexi/ρc2i)=(VC2i/Vexi)の関係が常に成立する。この関係のことを、密度比一定の制約という。冷凍サイクル装置を最適効率で運転するには、季節や天候などの外的条件に応じて密度ρexiおよび密度ρc2iを自由に調節できることが不可欠である。しかし、密度比一定の制約があると密度ρexiおよび密度ρc2iを自由に調節できず、効率的な運転の実現が難しくなる。 That is, the product of the suction refrigerant density [rho exi the suction volume V exi and the expander 803 of the expander 803, the product of the suction refrigerant density [rho c2i of the suction volume V C2i of the second compressor 801b and the second compressor 801b Is always equal to Between the suction refrigerant density of the expander 803 and the suction refrigerant density of the second compressor 801b, (ρ exi / ρ c2i ) = relationship always holds the (V C2i / V exi). This relationship is called a constraint with a constant density ratio. To operate the refrigeration cycle apparatus at optimum efficiency, it is essential to be able to freely adjust the density [rho exi and the density [rho c2i depending on external conditions such as seasonal and weather. However, it can not be freely adjusted certain the density [rho exi and the density [rho c2i is constraint of constant density ratio, realization of efficient operation becomes difficult.

こうした課題を解決する目的で、図14に示す冷凍サイクル装置が提案されている(特許文献2)。図14に示す冷凍サイクル装置は、2段圧縮機903、放熱器904、膨張機905、気液分離器906、蒸発器908、ガスインジェクション回路910およびバイパス回路911を備えている。2段圧縮機903は、低圧段圧縮機901および高圧段圧縮機902を含む。低圧段圧縮機901と膨張機905とは、回転軸で連結されている。バイパス回路911には、流量制御弁913が設けられている。流量制御弁913の開度を適切に制御し、冷媒の一部をバイパス回路911に流すことによって、密度比一定の制約を回避できる。   In order to solve these problems, a refrigeration cycle apparatus shown in FIG. 14 has been proposed (Patent Document 2). The refrigeration cycle apparatus shown in FIG. 14 includes a two-stage compressor 903, a radiator 904, an expander 905, a gas-liquid separator 906, an evaporator 908, a gas injection circuit 910, and a bypass circuit 911. The two-stage compressor 903 includes a low-pressure stage compressor 901 and a high-pressure stage compressor 902. The low pressure compressor 901 and the expander 905 are connected by a rotating shaft. The bypass circuit 911 is provided with a flow rate control valve 913. By appropriately controlling the opening degree of the flow control valve 913 and allowing a part of the refrigerant to flow through the bypass circuit 911, it is possible to avoid the restriction of a constant density ratio.

特開2003−307358号公報JP 2003-307358 A 特開2006−71257号公報JP 2006-71257 A

しかし、冷媒の一部をバイパス回路911に流すと、膨張機905で動力回収に寄与する冷媒の量が少なくなり、動力回収効率が悪くなる問題がある。この問題は、例えば、同じ設計の冷凍サイクル装置をヒートポンプ温水床暖房機と空調機とのそれぞれに適用するような場合に顕著となる。ある設計のCO2冷凍サイクル装置に関して、最適効率を実現できる密度比(ρexi/ρc2i)を本発明者らが計算したところ、床暖房の定格条件では7.13、冷房の定格条件では3.59、暖房の定格条件では2.98であった。仮に、床暖房に合わせて低圧段圧縮機901および膨張機905の設計を行った場合、冷房時には49.6%の冷媒をバイパス回路911に流し、暖房時には58.2%の冷媒をバイパス回路911に流さざるを得ず、回収できる動力が床暖房時の約半分に低下する。 However, when a part of the refrigerant flows through the bypass circuit 911, the amount of refrigerant contributing to power recovery by the expander 905 decreases, and there is a problem that power recovery efficiency deteriorates. This problem becomes remarkable when, for example, the refrigeration cycle apparatus having the same design is applied to each of the heat pump hot water floor heater and the air conditioner. Respect CO 2 refrigeration cycle device of one design, the density ratio can realize optimum efficiency where (ρ exi / ρ c2i) The present inventors have calculated, at rated conditions of floor heating 7.13, 3 in rated conditions of cooling It was 2.98 in the rated condition of heating. If the low-pressure compressor 901 and the expander 905 are designed in accordance with floor heating, 49.6% refrigerant flows through the bypass circuit 911 during cooling, and 58.2% refrigerant flows through the bypass circuit 911 during heating. In other words, the power that can be recovered is reduced to about half that of floor heating.

本発明の目的は、密度比一定の制約を回避しながらも効率的な動力回収を行える冷凍サイクル装置を提供することにある。   An object of the present invention is to provide a refrigeration cycle apparatus capable of efficient power recovery while avoiding the restriction of a constant density ratio.

すなわち、本発明は、
冷媒を予備圧縮するための容積式の低圧段圧縮機と、
前記低圧段圧縮機で予備圧縮された冷媒をさらに圧縮するための高圧段圧縮機と、
前記低圧段圧縮機で予備圧縮された冷媒が前記高圧段圧縮機に送られるように前記低圧段圧縮機と前記高圧段圧縮機とを直列に接続している中間圧流路と、
前記高圧段圧縮機で圧縮された冷媒を冷却するための放熱器と、
動力伝達が行われるように前記低圧段圧縮機に同軸に連結されており、前記放熱器で冷却された冷媒の全量が通過するように構成され、冷媒を膨張させることによって動力回収を行うための容積式の膨張機と、
前記膨張機で膨張した冷媒をガス冷媒と液冷媒とに分離するための気液分離器と、
前記気液分離器で分離された液冷媒を蒸発させるための蒸発器と、
前記気液分離器の液冷媒出口と前記蒸発器の入口との間の流路上に設けられた開度可変の膨張弁と、
前記気液分離器に貯められた冷媒が前記蒸発器および前記低圧段圧縮機を経由することなく前記高圧段圧縮機の入口に導かれる第1流通状態と、前記低圧段圧縮機で予備圧縮された冷媒の一部が前記気液分離器に還流する第2流通状態とを相互に切り替え可能となるように、前記中間圧流路と前記気液分離器とを接続している往還流路と、
前記膨張弁の開度を制御することによって、前記第1流通状態および前記第2流通状態の各々における前記往還流路の冷媒流量を調節するためのコントローラと、
を備えた、冷凍サイクル装置を提供する。
That is, the present invention
A positive displacement low-pressure stage compressor for pre-compressing the refrigerant;
A high-pressure stage compressor for further compressing the refrigerant pre-compressed by the low-pressure stage compressor;
An intermediate pressure flow path connecting the low pressure stage compressor and the high pressure stage compressor in series so that the refrigerant pre-compressed by the low pressure stage compressor is sent to the high pressure stage compressor;
A radiator for cooling the refrigerant compressed by the high-pressure stage compressor;
It is coaxially connected to the low-pressure stage compressor so that power transmission is performed, and is configured so that the entire amount of the refrigerant cooled by the radiator passes, and for recovering power by expanding the refrigerant A positive displacement expander;
A gas-liquid separator for separating the refrigerant expanded by the expander into a gas refrigerant and a liquid refrigerant;
An evaporator for evaporating the liquid refrigerant separated by the gas-liquid separator;
An expansion valve with variable opening provided on a flow path between the liquid refrigerant outlet of the gas-liquid separator and the inlet of the evaporator;
The refrigerant stored in the gas-liquid separator is preliminarily compressed by the low-pressure stage compressor in a first flow state where the refrigerant is led to the inlet of the high-pressure stage compressor without passing through the evaporator and the low-pressure stage compressor. A recirculation path connecting the intermediate pressure flow path and the gas-liquid separator so as to be able to switch between a second flow state in which a part of the refrigerant circulates back to the gas-liquid separator;
A controller for adjusting the flow rate of the refrigerant in the forward / return path in each of the first circulation state and the second circulation state by controlling the opening of the expansion valve;
A refrigeration cycle apparatus is provided.

上記本発明によれば、膨張機の吸入容積に比べて低圧段圧縮機の吸入容積が不足している場合には、往還流路を通じてガス冷媒が気液分離器から中間圧流路へと送られ、高圧段圧縮機に吸入される。これにより、冷凍サイクルの流量バランスが成立する。他方、低圧段圧縮機の吸入容積に比べて膨張機の吸入容積が不足している場合には、低圧段圧縮機で予備圧縮されたガス冷媒の一部が、中間圧流路および往還流路を通じて気液分離器へと送られる。これにより、冷凍サイクルの流量バランスが成立する。低圧段圧縮機の吸入容積と膨張機の吸入容積との比が、如何なる値(設計値)であったとしても、往還流路の働きによって、冷凍サイクルの流量バランスは成立する。   According to the present invention, when the suction volume of the low-pressure compressor is insufficient compared to the suction volume of the expander, the gas refrigerant is sent from the gas-liquid separator to the intermediate pressure channel through the forward recirculation path. And sucked into the high-pressure stage compressor. Thereby, the flow volume balance of a refrigerating cycle is materialized. On the other hand, when the suction volume of the expander is insufficient compared to the suction volume of the low-pressure stage compressor, part of the gas refrigerant pre-compressed by the low-pressure stage compressor passes through the intermediate pressure flow path and the forward recirculation path. It is sent to the gas-liquid separator. Thereby, the flow volume balance of a refrigerating cycle is materialized. Regardless of the value of the suction volume of the low-pressure compressor and the suction volume of the expander (design value), the flow rate balance of the refrigeration cycle is established by the action of the forward recirculation path.

一方、膨張弁によって、気液分離器内の圧力を自由に調節できる。気液分離器内の圧力を調節することで、放熱器の側の冷媒圧力を任意に調節できる。例えば、任意の運転条件で膨張弁を全開にすると、気液分離器内の圧力は、蒸発器における冷媒の蒸発圧力に限りなく近づく。すると、気液分離器と中間圧流路とが往還流路で接続されているので、低圧段圧縮機の入口と出口との圧力差が限りなくゼロに近づく。つまり、低圧段圧縮機の圧縮仕事量が減少する。一方で、膨張機の入口と出口との圧力差が拡大するので、膨張機の動力回収量が増加する。この(動力回収量)>(圧縮仕事量)の関係に基づき、膨張機と低圧段圧縮機の回転数が増加する。その結果、高圧段圧縮機の吐出冷媒流量に対して、膨張機の吐出冷媒流量が過剰になるため、放熱器の側の冷媒圧力が低下する。その結果、膨張機の動力回収量が低下して低圧段圧縮機の圧縮仕事量と釣り合い、冷凍サイクルが安定する。つまり、膨張弁を開くと放熱器の側の冷媒圧力を下げることができる。   On the other hand, the pressure in the gas-liquid separator can be freely adjusted by the expansion valve. The refrigerant pressure on the radiator side can be arbitrarily adjusted by adjusting the pressure in the gas-liquid separator. For example, when the expansion valve is fully opened under an arbitrary operating condition, the pressure in the gas-liquid separator approaches the evaporating pressure of the refrigerant in the evaporator as much as possible. Then, since the gas-liquid separator and the intermediate pressure flow path are connected by the forward recirculation path, the pressure difference between the inlet and the outlet of the low-pressure stage compressor approaches zero as much as possible. That is, the amount of compression work of the low-pressure stage compressor is reduced. On the other hand, since the pressure difference between the inlet and the outlet of the expander increases, the power recovery amount of the expander increases. Based on this relationship (power recovery amount)> (compression work amount), the rotation speeds of the expander and the low-pressure compressor are increased. As a result, since the discharge refrigerant flow rate of the expander becomes excessive with respect to the discharge refrigerant flow rate of the high-pressure compressor, the refrigerant pressure on the radiator side decreases. As a result, the power recovery amount of the expander is reduced, and is balanced with the compression work amount of the low-pressure compressor, so that the refrigeration cycle is stabilized. That is, when the expansion valve is opened, the refrigerant pressure on the radiator side can be reduced.

逆に、膨張弁を徐々に絞っていくと、気液分離器内の圧力は次第に上昇する。気液分離器と中間圧流路とが往還流路で接続されているので、低圧段圧縮機の入口と出口との圧力差が拡大する。つまり、低圧段圧縮機の圧縮仕事量が増加する。一方で、膨張機の入口と出口との圧力差が減少するので、膨張機の動力回収量が低下する。この(動力回収量)<(圧縮仕事量)の関係に基づき、膨張機と低圧段圧縮機の回転数が減少する。その結果、高圧段圧縮機の吐出冷媒流量に対して、膨張機の吐出冷媒流量が不足するため、放熱器の側の冷媒圧力が上昇する。その結果、膨張機の動力回収量が増加して低圧段圧縮機の圧縮仕事量と釣り合い、冷凍サイクルが安定する。つまり、膨張弁を絞ると放熱器の側の冷媒圧力を上げることができる。   Conversely, as the expansion valve is gradually throttled, the pressure in the gas-liquid separator gradually increases. Since the gas-liquid separator and the intermediate pressure flow path are connected by the forward recirculation path, the pressure difference between the inlet and the outlet of the low-pressure compressor is increased. That is, the compression work of the low-pressure stage compressor increases. On the other hand, since the pressure difference between the inlet and outlet of the expander decreases, the power recovery amount of the expander decreases. Based on this relationship (power recovery amount) <(compression work amount), the rotation speeds of the expander and the low-pressure compressor are reduced. As a result, since the discharge refrigerant flow rate of the expander is insufficient with respect to the discharge refrigerant flow rate of the high-pressure compressor, the refrigerant pressure on the radiator side increases. As a result, the power recovery amount of the expander is increased to balance the amount of compression work of the low-pressure compressor, and the refrigeration cycle is stabilized. That is, if the expansion valve is throttled, the refrigerant pressure on the radiator side can be increased.

このように、膨張弁の開度を適切に制御し、これにより膨張機と低圧段圧縮機との回転数を制御すれば、放熱器の側の冷媒圧力を常に最適に調節することができる。しかも、冷媒の全量が膨張機を通過するので、効率的な動力回収を行える。仮に、冷媒が往還流路を還流(第2流通状態)し、回収した動力の一部が冷媒の循環に消費されたとしても、本発明によれば、バイパス回路に冷媒を流す従来例(図14参照)よりもエネルギー収支の面では良くなる。したがって、用途に適した容積比の膨張機と低圧段圧縮機とを備えた冷凍サイクル装置をエネルギー効率の観点で望ましい圧力・温度条件で運転できる。   Thus, if the opening degree of the expansion valve is appropriately controlled and thereby the rotational speeds of the expander and the low-pressure compressor are controlled, the refrigerant pressure on the radiator side can always be optimally adjusted. In addition, since the entire amount of refrigerant passes through the expander, efficient power recovery can be performed. Even if the refrigerant recirculates in the forward recirculation path (second circulation state) and a part of the recovered power is consumed for the circulation of the refrigerant, according to the present invention, the conventional example of flowing the refrigerant through the bypass circuit (FIG. 14)) in terms of energy balance. Therefore, it is possible to operate a refrigeration cycle apparatus including an expander having a volume ratio suitable for an application and a low-pressure compressor at a pressure / temperature condition desirable from the viewpoint of energy efficiency.

また、以上に説明した理論は、低圧段圧縮機と膨張機との容積比が如何なる値であっても成立しうる。したがって、本発明によれば、年間の消費電力を理論上最小にできる任意の容積比となるように、低圧段圧縮機および膨張機を設計できる。つまり、本発明によれば、冷凍サイクル装置の設計の自由度も高まる。   The theory described above can be established regardless of the value of the volume ratio between the low-pressure stage compressor and the expander. Therefore, according to the present invention, the low-pressure stage compressor and the expander can be designed to have an arbitrary volume ratio that can theoretically minimize the annual power consumption. That is, according to the present invention, the degree of freedom in designing the refrigeration cycle apparatus is also increased.

本発明の第1実施形態にかかる冷凍サイクル装置の構成図The block diagram of the refrigerating-cycle apparatus concerning 1st Embodiment of this invention. 多機能ヒートポンプシステムの構成図Configuration diagram of multi-function heat pump system 第1実施形態の制御フローチャートControl flowchart of the first embodiment 中間圧制御を示すモリエル線図Mollier diagram showing intermediate pressure control 床暖房サイクル条件での冷凍サイクルを示すモリエル線図Mollier diagram showing refrigeration cycle under floor heating cycle conditions 冷房サイクル条件での冷凍サイクルを示すモリエル線図Mollier diagram showing refrigeration cycle under cooling cycle conditions 暖房サイクル条件での冷凍サイクルを示すモリエル線図Mollier diagram showing refrigeration cycle under heating cycle conditions 床暖房サイクル条件での、容積比の変化に対する各種サイクル特性の変化を示すグラフGraph showing changes in various cycle characteristics relative to changes in volume ratio under floor heating cycle conditions 床暖房サイクル条件での、容積比の変化に対する高圧段圧縮機の吐出冷媒温度の変化を示すグラフThe graph which shows the change of the discharge refrigerant temperature of the high-pressure stage compressor to the change of the volume ratio under the floor heating cycle condition 冷房サイクル条件での、容積比の変化に対する各種サイクル特性の変化を示すグラフGraph showing changes in various cycle characteristics relative to changes in volume ratio under cooling cycle conditions 冷房サイクル条件での、容積比の変化に対する高圧段圧縮機の吐出冷媒温度の変化を示すグラフThe graph which shows the change of the discharge refrigerant temperature of the high-pressure stage compressor to the change of the volume ratio under the cooling cycle condition 暖房サイクル条件での、容積比の変化に対する各種サイクル特性の変化を示すグラフGraph showing changes in various cycle characteristics with respect to changes in volume ratio under heating cycle conditions 暖房サイクル条件での、容積比の変化に対する高圧段圧縮機の吐出冷媒温度の変化を示すグラフThe graph which shows the change of the discharge refrigerant temperature of the high-pressure stage compressor to the change of the volume ratio under the heating cycle condition 本発明の第2実施形態にかかる冷凍サイクル装置の構成図The block diagram of the refrigerating-cycle apparatus concerning 2nd Embodiment of this invention. 第2実施形態の制御フローチャートControl flowchart of the second embodiment 本発明の第3実施形態にかかる冷凍サイクル装置の構成図The block diagram of the refrigerating-cycle apparatus concerning 3rd Embodiment of this invention. 本発明の第4実施形態にかかる冷凍サイクル装置の構成図The block diagram of the refrigerating-cycle apparatus concerning 4th Embodiment of this invention. 2段ロータリ膨張機の詳細な構造を示す、図12Aの部分拡大図Partial enlarged view of FIG. 12A showing the detailed structure of the two-stage rotary expander 従来の冷凍サイクル装置の構成図Configuration diagram of conventional refrigeration cycle equipment 他の従来の冷凍サイクル装置の構成図Configuration diagram of another conventional refrigeration cycle apparatus

以下、添付の図面を参照しつつ本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

(第1実施形態)
図1に示すように、冷凍サイクル装置100は、高圧段圧縮機101、放熱器103、膨張機105、気液分離器107、膨張弁109、蒸発器111および低圧段圧縮機113を備えている。
(First embodiment)
As shown in FIG. 1, the refrigeration cycle apparatus 100 includes a high-pressure stage compressor 101, a radiator 103, an expander 105, a gas-liquid separator 107, an expansion valve 109, an evaporator 111, and a low-pressure stage compressor 113. .

低圧段圧縮機113は、蒸発器111で蒸発したガス冷媒を予備圧縮する。高圧段圧縮機101は、低圧段圧縮機113で予備圧縮された冷媒(作動流体)をさらに圧縮する。膨張機105は、放熱器103で冷却された冷媒を膨張させることによって動力回収を行う。また、膨張機105は、放熱器103で冷却された冷媒の全量が通過するように構成されている。つまり、膨張機105を迂回して冷媒を流すためのバイパス回路が設けられていない。冷媒の全量が動力回収に寄与するため、動力回収に基づくCOP(coefficient of performance)の改善効果が高い。なお、冷凍または加熱能力を発揮している通常の運転では、冷媒の全量が膨張機105を通過するが、デフロスト等の特別な運転では、冷媒が膨張機105を通過しないこともある。   The low-pressure stage compressor 113 pre-compresses the gas refrigerant evaporated in the evaporator 111. The high-pressure compressor 101 further compresses the refrigerant (working fluid) preliminarily compressed by the low-pressure compressor 113. The expander 105 performs power recovery by expanding the refrigerant cooled by the radiator 103. The expander 105 is configured so that the entire amount of the refrigerant cooled by the radiator 103 passes through. That is, no bypass circuit is provided for bypassing the expander 105 and flowing the refrigerant. Since the total amount of refrigerant contributes to power recovery, the effect of improving COP (coefficient of performance) based on power recovery is high. Note that, in a normal operation that exhibits refrigeration or heating capacity, the entire amount of refrigerant passes through the expander 105, but in a special operation such as defrosting, the refrigerant may not pass through the expander 105.

低圧段圧縮機113および膨張機105は、いずれも容積式の流体機械によって構成されている。低圧段圧縮機113および膨張機105は、膨張機105で冷媒から回収した動力が低圧段圧縮機113に伝達されるように軸116で連結されているとともに、共通の密閉容器117に収容されている。低圧段圧縮機113の気筒容積および膨張機105の気筒容積が、それぞれ一定である。具体的に、本実施形態では、低圧段圧縮機113の吸入容積および膨張機105の吸入容積が、それぞれ一定である。低圧段圧縮機113の吸入容積が膨張機105の吸入容積よりも大きい。従来から、容積可変流体機械を用いることによって、密度比一定の制約を回避できることが知られているが、容積可変流体機械の構造は複雑で、コストアップの要因になる。そのため、本実施形態のように、圧縮機や膨張機には、吸入容量が一定の流体機械を用いるのが好ましい。   The low-pressure stage compressor 113 and the expander 105 are both constituted by positive displacement fluid machines. The low-pressure stage compressor 113 and the expander 105 are connected by a shaft 116 so that the power recovered from the refrigerant in the expander 105 is transmitted to the low-pressure stage compressor 113, and are housed in a common hermetic container 117. Yes. The cylinder volume of the low-pressure stage compressor 113 and the cylinder volume of the expander 105 are constant. Specifically, in the present embodiment, the suction volume of the low-pressure compressor 113 and the suction volume of the expander 105 are constant. The suction volume of the low-pressure stage compressor 113 is larger than the suction volume of the expander 105. Conventionally, it is known that a constant density ratio can be avoided by using a variable volume fluid machine. However, the structure of the variable volume fluid machine is complicated and causes an increase in cost. Therefore, as in the present embodiment, it is preferable to use a fluid machine having a constant suction capacity for the compressor and the expander.

なお、「気筒容積」は、吸入行程完了時の作動室(膨張室または圧縮室)の容積を意味し、しばしば「閉じ込め容積」とも呼ばれる。「吸入容積」は、圧縮機または膨張機の1サイクル(吸入→圧縮または膨張→吐出)で圧縮機または膨張機に吸い込まれる冷媒の容積を意味する。本実施形態、第2実施形態および第3実施形態では、「気筒容積」は「吸入容積」に等しい。しかし、後の第4実施形態で説明するように、冷媒が膨張している最中に膨張室に高圧冷媒をインジェクションすることもある。この場合、膨張機の1サイクルで当該膨張機に吸い込まれる冷媒の容積(吸入容積)は、気筒容積を上回る。   The “cylinder volume” means the volume of the working chamber (expansion chamber or compression chamber) when the suction stroke is completed, and is often referred to as “confined volume”. “Suction volume” means the volume of refrigerant sucked into the compressor or expander in one cycle (suction → compression or expansion → discharge) of the compressor or expander. In the present embodiment, the second embodiment, and the third embodiment, the “cylinder volume” is equal to the “suction volume”. However, as will be described later in the fourth embodiment, the high-pressure refrigerant may be injected into the expansion chamber while the refrigerant is expanding. In this case, the volume (intake volume) of the refrigerant sucked into the expander in one cycle of the expander exceeds the cylinder volume.

また、本実施形態では、高圧段圧縮機101としてロータリ圧縮機を用いているが、高圧段圧縮機101の型式は何ら限定されず、スクロール圧縮機などの他の容積式圧縮機やターボ圧縮機などの遠心圧縮機を用いてもよい。低圧段圧縮機113の型式や膨張機105の型式も、動力を伝達しうるように互いを軸116で連結できる限りロータリ式に限定されない。低圧段圧縮機113および膨張機105には、スクロール流体機械などの他の容積式流体機械を用いてもよい。   In this embodiment, a rotary compressor is used as the high-pressure stage compressor 101, but the type of the high-pressure stage compressor 101 is not limited at all, and other positive displacement compressors such as a scroll compressor or a turbo compressor. A centrifugal compressor such as may be used. The type of the low-pressure compressor 113 and the type of the expander 105 are not limited to the rotary type as long as they can be connected to each other by the shaft 116 so that power can be transmitted. For the low-pressure compressor 113 and the expander 105, other positive displacement fluid machines such as a scroll fluid machine may be used.

放熱器103は、高圧段圧縮機101で圧縮された冷媒を冷却するための機器であり、典型的には、水−冷媒熱交換器または空気−冷媒熱交換器で構成されている。気液分離器107は、膨張機105で膨張した冷媒をガス冷媒と液冷媒とに分離するための機器である。気液分離器107には、底部に液冷媒出口、上部に冷媒出入り口、側部に冷媒入口が設けられている。蒸発器111は、気液分離器107で分離された液冷媒を蒸発させるための機器であり、典型的には、空気−冷媒熱交換器で構成されている。膨張弁109は、開度可変な弁、例えば電動膨張弁であり、気液分離器107の液冷媒出口と蒸発器111の入口との間の流路上に設けられている。   The radiator 103 is a device for cooling the refrigerant compressed by the high-pressure compressor 101, and typically includes a water-refrigerant heat exchanger or an air-refrigerant heat exchanger. The gas-liquid separator 107 is a device for separating the refrigerant expanded by the expander 105 into a gas refrigerant and a liquid refrigerant. The gas-liquid separator 107 has a liquid refrigerant outlet at the bottom, a refrigerant inlet / outlet at the top, and a refrigerant inlet at the side. The evaporator 111 is a device for evaporating the liquid refrigerant separated by the gas-liquid separator 107, and typically includes an air-refrigerant heat exchanger. The expansion valve 109 is a valve having a variable opening, for example, an electric expansion valve, and is provided on a flow path between the liquid refrigerant outlet of the gas-liquid separator 107 and the inlet of the evaporator 111.

上記の機器は、冷媒回路が形成されるように冷媒配管によって相互に接続されている。具体的に、高圧段圧縮機101の出口と放熱器103の入口とが、冷媒配管102によって接続されている。放熱器103の出口と膨張機105の入口とが、冷媒配管104によって接続されている。膨張機105の出口と気液分離器107の入口とが、冷媒配管106によって接続されている。気液分離器107の液冷媒出口と膨張弁109の入口とが、冷媒配管108によって接続されている。膨張弁109の出口と蒸発器111の入口とが、冷媒配管110によって接続されている。蒸発器111の出口と低圧段圧縮機113の入口とが、冷媒配管112によって接続されている。低圧段圧縮機113の出口と高圧段圧縮機101の入口とが、冷媒配管114によって接続されている。   The above devices are connected to each other by a refrigerant pipe so that a refrigerant circuit is formed. Specifically, the outlet of the high-pressure compressor 101 and the inlet of the radiator 103 are connected by the refrigerant pipe 102. The outlet of the radiator 103 and the inlet of the expander 105 are connected by a refrigerant pipe 104. The outlet of the expander 105 and the inlet of the gas-liquid separator 107 are connected by a refrigerant pipe 106. The liquid refrigerant outlet of the gas-liquid separator 107 and the inlet of the expansion valve 109 are connected by a refrigerant pipe 108. The outlet of the expansion valve 109 and the inlet of the evaporator 111 are connected by a refrigerant pipe 110. The outlet of the evaporator 111 and the inlet of the low-pressure compressor 113 are connected by a refrigerant pipe 112. The outlet of the low-pressure stage compressor 113 and the inlet of the high-pressure stage compressor 101 are connected by a refrigerant pipe 114.

さらに、気液分離器107の上部にある冷媒出入り口と冷媒配管114とが、冷媒配管115によって接続されている。以下、本明細書において、冷媒配管114によって形成された流路を中間圧流路114と、冷媒配管115によって形成された流路を往還流路115と、それぞれ称する。   Further, the refrigerant inlet / outlet at the upper part of the gas-liquid separator 107 and the refrigerant pipe 114 are connected by the refrigerant pipe 115. Hereinafter, in this specification, the flow path formed by the refrigerant pipe 114 is referred to as an intermediate pressure flow path 114, and the flow path formed by the refrigerant pipe 115 is referred to as an outward recirculation path 115, respectively.

往還流路115には、冷媒の流通方向を規定したり冷媒の流量を調節したりする弁が設けられていない。したがって、気液分離器107内の圧力が低圧段圧縮機113の吐出冷媒圧力よりも高い場合には、往還流路115を通じて気液分離器107から中間圧流路114へと冷媒が流れる(第1流通状態:インジェクション)。言い換えれば、気液分離器107で分離された冷媒が蒸発器111および低圧段圧縮機113を経由することなく高圧段圧縮機101の入口に導かれる。他方、気液分離器107内の圧力が低圧段圧縮機113の吐出冷媒圧力よりも低い場合には、往還流路115を通じて中間圧流路114から気液分離器107へと冷媒が流れる。言い換えれば、低圧段圧縮機113で予備圧縮された冷媒の一部が気液分離器107に還流する(第2流通状態:還流)。このように、往還流路115は、気液分離器107から中間圧流路114に向かう方向と、中間圧流路114から気液分離器107に向かう方向との双方向に冷媒が流通可能に構成されている。   The return flow path 115 is not provided with a valve for regulating the flow direction of the refrigerant or adjusting the flow rate of the refrigerant. Therefore, when the pressure in the gas-liquid separator 107 is higher than the discharge refrigerant pressure of the low-pressure stage compressor 113, the refrigerant flows from the gas-liquid separator 107 to the intermediate pressure flow path 114 through the forward recirculation path 115 (first Distribution state: injection). In other words, the refrigerant separated by the gas-liquid separator 107 is guided to the inlet of the high-pressure stage compressor 101 without passing through the evaporator 111 and the low-pressure stage compressor 113. On the other hand, when the pressure in the gas-liquid separator 107 is lower than the discharge refrigerant pressure of the low-pressure compressor 113, the refrigerant flows from the intermediate pressure channel 114 to the gas-liquid separator 107 through the forward recirculation channel 115. In other words, a part of the refrigerant preliminarily compressed by the low-pressure stage compressor 113 is returned to the gas-liquid separator 107 (second circulation state: reflux). In this way, the forward recirculation path 115 is configured to allow refrigerant to flow in both directions, the direction from the gas-liquid separator 107 toward the intermediate pressure flow path 114 and the direction from the intermediate pressure flow path 114 toward the gas-liquid separator 107. ing.

冷凍サイクル装置100は、さらに、第1温度センサ121、第2温度センサ122、第3温度センサ123、第4温度センサ124およびコントローラ118を備えている。第1温度センサ121は、膨張機105の吸入冷媒温度を検出する。第2温度センサ122は、蒸発器111内の冷媒温度を検出する。第3温度センサ123は、低圧段圧縮機113の吸入冷媒温度を検出する。第4温度センサ124は、気液分離器107内の冷媒温度を検出する。各温度センサの具体例は、熱電対またはサーミスタである。各温度センサは、コントローラ118に接続されている。コントローラ118の具体例は、DSP(digital signal processor)である。コントローラ118は、各温度センサから取得した信号に基づいて、膨張弁109の開度を制御する。   The refrigeration cycle apparatus 100 further includes a first temperature sensor 121, a second temperature sensor 122, a third temperature sensor 123, a fourth temperature sensor 124, and a controller 118. The first temperature sensor 121 detects the intake refrigerant temperature of the expander 105. The second temperature sensor 122 detects the refrigerant temperature in the evaporator 111. The third temperature sensor 123 detects the suction refrigerant temperature of the low-pressure compressor 113. The fourth temperature sensor 124 detects the refrigerant temperature in the gas-liquid separator 107. A specific example of each temperature sensor is a thermocouple or a thermistor. Each temperature sensor is connected to the controller 118. A specific example of the controller 118 is a DSP (digital signal processor). The controller 118 controls the opening degree of the expansion valve 109 based on the signal acquired from each temperature sensor.

以下の説明において、低圧段圧縮機113の吸入容積をVlc、膨張機105の吸入容積をVex、低圧段圧縮機113と膨張機105との容積比を(Vlc/Vex)、低圧段圧縮機113の吸入冷媒密度をρlci、膨張機105の吸入冷媒密度をρexi、膨張機105の吐出冷媒の渇き度をQexoと表す。また、気液分離器107内の圧力を中間圧力という。 In the following description, the suction volume of the low-pressure compressor 113 is V lc , the suction volume of the expander 105 is V ex , the volume ratio of the low-pressure compressor 113 and the expander 105 is (V lc / V ex ), and the low pressure lci the suction refrigerant density of the stage compressor 113 [rho, exi the suction refrigerant density of the expander 105 [rho, thirst of the discharge refrigerant of the expander 105 is expressed as Q exo. The pressure in the gas-liquid separator 107 is referred to as an intermediate pressure.

本実施形態では、容積比(Vlc/Vex)が(1−Qexo)×(ρexi/ρlci)以上かつ密度比(ρexi/ρlci)以下となるように、低圧段圧縮機113および膨張機105の設計がなされている。 In the present embodiment, the volume ratio (V lc / V ex) is (1-Q exo) × ( ρ exi / ρ lci) or more and the density ratio (ρ exi / ρ lci) as to become less, the low-pressure compressor 113 and the expander 105 are designed.

まず、容積比(Vlc/Vex)が密度比(ρexi/ρlci)以下であれば、低圧段圧縮機113の冷媒質量流量が膨張機105の冷媒質量流量よりも少なくなるので、往還流路115を通じて、気液分離器107から中間圧流路114へと冷媒が流れる(インジェクション)。この場合、往還流路115を通過した冷媒を圧縮する必要がないので、低圧段圧縮機113の負荷を軽減できる。さらに、蒸発器111を通過する冷媒流量が減少するので、蒸発器111を通過する際の圧力損失が小さくなる。 First, if the following volume ratio (V lc / V ex) is the density ratio (ρ exi / ρ lci), the refrigerant mass flow rate of the low-pressure compressor 113 is less than the refrigerant mass flow rate of the expander 105, the forward The refrigerant flows from the gas-liquid separator 107 to the intermediate pressure channel 114 through the reflux path 115 (injection). In this case, since it is not necessary to compress the refrigerant that has passed through the forward recirculation path 115, the load on the low-pressure compressor 113 can be reduced. Further, since the flow rate of the refrigerant passing through the evaporator 111 is reduced, the pressure loss when passing through the evaporator 111 is reduced.

逆に、容積比(Vlc/Vex)が密度比(ρexi/ρlci)を超えると、低圧段圧縮機113の冷媒質量流量が膨張機105の冷媒質量流量よりも多くなるので、往還流路115を通じて、中間圧流路114から気液分離器107へと冷媒が流れる(還流)。この場合、低圧段圧縮機113で予備圧縮された冷媒が膨張弁109で再膨張する。膨張機105の回収動力が冷媒の循環に消費されるので、COPの改善効果が薄れる。 Conversely, when the volume ratio (V lc / V ex) exceeds the density ratio (ρ exi / ρ lci), the refrigerant mass flow rate of the low-pressure compressor 113 is larger than the refrigerant mass flow rate of the expander 105, the forward The refrigerant flows from the intermediate pressure channel 114 to the gas-liquid separator 107 through the reflux channel 115 (reflux). In this case, the refrigerant pre-compressed by the low-pressure compressor 113 is re-expanded by the expansion valve 109. Since the recovery power of the expander 105 is consumed for the circulation of the refrigerant, the COP improvement effect is diminished.

これらのことから、下式で表された関係を満足するように設計を行い、還流が起こらないようにするのが望ましい。言い換えれば、インジェクションが起こるように運転しているときは、下記関係が満たされる。
(Vlc/Vex)≦(ρexi/ρlci
From these facts, it is desirable to design so as to satisfy the relationship represented by the following formula so that reflux does not occur. In other words, the following relationship is satisfied when driving to cause injection.
(V lc / V ex) ≦ (ρ exi / ρ lci)

一方、容積比(Vlc/Vex)が(1−Qexo)×(ρexi/ρlci)以上であれば、往還流路115を通じて気液分離器107から中間圧流路114へと流れる冷媒の割合が膨張機105の吐出冷媒の渇き度Qexoに等しくなる、もしくはそれよりも小さくなる。つまり、ガス冷媒のみが高圧段圧縮機101にインジェクションされる。往還流路115を通じて気液分離器107から中間圧流路114へと流れる冷媒の割合Riは、膨張機105の冷媒質量流量を(Vex×ρexi)、低圧段圧縮機113の冷媒質量流量を(Vlc×ρlci)として、(Vex×ρexi−Vlc×ρlci)/(Vex×ρexi)で表すことができる。割合Riが渇き度Qexoよりも小さい場合の容積比(Vlc/Vex)は、(1−Qexo)×(ρexi/ρlci)よりも大きくなる。よって、容積比(Vlc/Vex)が(1−Qexo)×(ρexi/ρlci)以上であれば、往還流路115を通じて気液分離器107から中間圧流路114へと流れる冷媒の割合Riが、膨張機105の吐出冷媒の渇き度Qexoを越えず、液冷媒のインジェクションを回避できる。言い換えれば、液インジェクションが起こらないように運転しているときには、(1−Qexo)×(ρexi/ρlci)≦(Vlc/Vex)の関係が満たされる。 The refrigerant flowing through the long volume ratio (V lc / V ex) is (1-Q exo) × ( ρ exi / ρ lci) above, from the gas-liquid separator 107 via shuttle passage 115 to the intermediate pressure passage 114 Is equal to or less than the thirst degree Q exo of the refrigerant discharged from the expander 105. That is, only the gas refrigerant is injected into the high pressure compressor 101. The ratio R i of the refrigerant flowing from the gas-liquid separator 107 to the intermediate pressure flow path 114 through the return flow path 115 is the refrigerant mass flow rate of the expander 105 (V ex × ρ exi ), and the refrigerant mass flow rate of the low pressure compressor 113. as (V lc × ρ lci), it can be represented by (V ex × ρ exi -V lc × ρ lci) / (V ex × ρ exi). Volume ratio when the ratio R i is smaller than the thirst of Q exo (V lc / V ex ) is larger than (1-Q exo) × ( ρ exi / ρ lci). Therefore, the refrigerant flowing if the volume ratio (V lc / V ex) is (1-Q exo) × ( ρ exi / ρ lci) above, from the gas-liquid separator 107 via shuttle passage 115 to the intermediate pressure passage 114 The ratio R i does not exceed the thirsty degree Q exo of the refrigerant discharged from the expander 105, and the liquid refrigerant injection can be avoided. In other words, when driving to avoid potential liquid injection is satisfied relation (1-Q exo) × ( ρ exi / ρ lci) ≦ (V lc / V ex).

このように、本実施形態によれば、ガスインジェクションが起こるように運転しているときは、(1−Qexo)×(ρexi/ρlci)≦(Vlc/Vex)≦(ρexi/ρlci)の関係が満たされる。 Thus, according to this embodiment, when operating as gas injection occurs, (1-Q exo) × (ρ exi / ρ lci) ≦ (V lc / V ex) ≦ (ρ exi / Ρ lci ) is satisfied.

なお、以下に説明するように、同じ設計の冷凍サイクル装置100を互いに異なる2以上の用途に用いたり、1台の冷凍サイクル装置100を2以上の用途に用いたりする場合には、あえて還流を許容する場面も出てくる。液冷媒のインジェクションが起こると、現実のCOPが動力回収を行わない場合のCOPを下回る可能性があるため、液冷媒のインジェクションは避けるべきである。他方、還流が起こったとしても、理論上、冷凍サイクル装置100のCOPが、動力回収を行わない場合のCOPを下回ることはない。   As described below, when the refrigeration cycle apparatus 100 having the same design is used for two or more different uses, or when one refrigeration cycle apparatus 100 is used for two or more uses, the reflux is intentionally performed. Some scenes allow. When liquid refrigerant injection occurs, the actual COP may fall below the COP when power recovery is not performed, so liquid refrigerant injection should be avoided. On the other hand, even if reflux occurs, theoretically, the COP of the refrigeration cycle apparatus 100 does not fall below the COP when power recovery is not performed.

冷凍サイクル装置100の具体的な用途として、例えば、ヒートポンプ給湯機および空調機が挙げられる。ヒートポンプ給湯機には、蛇口に湯を供給できる給湯機能および/または家屋の床に巡らされた配管に湯を循環させることによって室内の暖房を行う床暖房機能を有するものがある。空調機は、室内の空気と冷媒とを熱交換させることによって室内の温度調節を行うように構成されており、典型的には、冷房機能と暖房機能とを有する。   Specific applications of the refrigeration cycle apparatus 100 include, for example, a heat pump water heater and an air conditioner. Some heat pump water heaters have a hot water supply function that can supply hot water to a faucet and / or a floor heating function that heats a room by circulating hot water through a pipe routed around the floor of a house. The air conditioner is configured to adjust the temperature in the room by exchanging heat between the indoor air and the refrigerant, and typically has a cooling function and a heating function.

本発明者らは、冷凍サイクル装置100をヒートポンプ給湯機または空調機に適用する場合について、年間の消費電力を十分に低減できる容積比を計算した。具体的に、ヒートポンプ給湯機の床暖房条件では、外気温を7℃、床暖房用の温水の戻り温度を25℃、低圧段圧縮機113の吸入冷媒温度を7℃、冷媒を二酸化炭素と仮定した。任意の容積比に対して決まる中間圧力での渇き度Qexoと密度比(ρexi/ρlci)との関係から導かれた望ましい容積比(Vlc/Vex)は、4.7〜7.1であった。 The inventors calculated the volume ratio that can sufficiently reduce the annual power consumption when the refrigeration cycle apparatus 100 is applied to a heat pump water heater or an air conditioner. Specifically, under the floor heating conditions of the heat pump water heater, it is assumed that the outside air temperature is 7 ° C., the return temperature of the warm water for floor heating is 25 ° C., the intake refrigerant temperature of the low-pressure compressor 113 is 7 ° C., and the refrigerant is carbon dioxide. did. Thirst of Q exo and density ratio at the intermediate pressure determined for any volume ratio (ρ exi / ρ lci) desirable volume ratio derived from the relationship (V lc / V ex) is from 4.7 to 7 .1.

空調機の冷房条件では、外気温を35℃、室内機(蒸発器111)の吸込空気温度を27℃、低圧段圧縮機113の吸入冷媒温度を27℃、冷媒を二酸化炭素と仮定した。任意の容積比に対して決まる中間圧力での渇き度Qexoと密度比(ρexi/ρlci)との関係から導かれた望ましい容積比(Vlc/Vex)は、2.4〜3.6であった。 In the cooling condition of the air conditioner, it was assumed that the outside air temperature was 35 ° C, the intake air temperature of the indoor unit (evaporator 111) was 27 ° C, the suction refrigerant temperature of the low-pressure compressor 113 was 27 ° C, and the refrigerant was carbon dioxide. Thirst of Q exo and density ratio at the intermediate pressure determined for any volume ratio (ρ exi / ρ lci) desirable volume ratio derived from the relationship (V lc / V ex) is from 2.4 to 3 .6.

空調機の暖房条件では、外気温を7℃、室内機(放熱器103)の吸込空気温度を20℃、低圧段圧縮機113の吸入冷媒温度を7℃、冷媒を二酸化炭素と仮定した。任意の容積比に対して決まる中間圧力での渇き度Qexoと密度比(ρexi/ρlci)との関係から導かれた望ましい容積比(Vlc/Vex)は、2.1〜2.9であった。 In the heating conditions of the air conditioner, it was assumed that the outside air temperature was 7 ° C., the intake air temperature of the indoor unit (radiator 103) was 20 ° C., the suction refrigerant temperature of the low-pressure compressor 113 was 7 ° C., and the refrigerant was carbon dioxide. Thirst of Q exo and density ratio at the intermediate pressure determined for any volume ratio (ρ exi / ρ lci) desirable volume ratio derived from the relationship (V lc / V ex) is from 2.1 to 2 .9.

ここで、容積比(Vlc/Vex)が(1−Qexo)×(ρexi/ρlci)を下回ると、液冷媒のインジェクションが起こるので、高圧段圧縮機101の吸入冷媒のエンタルピーが大幅に低下する。その結果、高圧段圧縮機101の吐出冷媒温度が低下し、ヒートポンプ給湯機の床暖房機能や空調機の暖房機能で必要とされる加熱能力が不十分となる。また、本来は蒸発器111を通過するべき液冷媒が往還流路115を通過することで、空調機の冷房機能で必要とされる冷却能力も低下する。よって、冷凍サイクル装置100を複数の用途に利用する場合には、容積比(Vlc/Vex)を各条件での(1−Qexo)×(ρexi/ρlci)以上かつ還流を可能な限り防止できる値に設定するのがよい。その値は、上述した例では4.7である。 Here, when the volume ratio (V lc / V ex) is below (1-Q exo) × ( ρ exi / ρ lci), since the injection of the liquid refrigerant occurs, the enthalpy of refrigerant drawn into the high-pressure compressor 101 Decrease significantly. As a result, the discharge refrigerant temperature of the high-pressure compressor 101 decreases, and the heating capacity required for the floor heating function of the heat pump water heater and the heating function of the air conditioner becomes insufficient. Further, the liquid refrigerant that should normally pass through the evaporator 111 passes through the forward recirculation path 115, so that the cooling capacity required for the cooling function of the air conditioner also decreases. Therefore, when using the refrigeration cycle apparatus 100 to a plurality of applications, the volume ratio (V lc / V ex) for each condition (1-Q exo) × ( ρ exi / ρ lci) above and permit reflux It is better to set the value to prevent as much as possible. The value is 4.7 in the above example.

冷凍サイクル装置100をヒートポンプ給湯機、冷房空調機および暖房空調機のそれぞれに専用設計とする場合には、各用途に相応しい容積比を設定できる。しかし、図2に示すような多機能ヒートポンプシステムに冷凍サイクル装置100を利用する場合には、どのような容積比を選ぶのかという問題が出てくる。上述した例では、床暖房条件での望ましい容積比4.7を選ぶことによって、液冷媒のインジェクションを確実に回避しつつ、還流量をなるべく少なくすることが可能となる。もちろん、最適な容積比は季節や天候などの外的条件に応じて変化するので、単一の用途の冷凍サイクル装置に本発明を適用したとしてもその利益を十分に享受できる。   When the refrigeration cycle apparatus 100 is designed exclusively for each of a heat pump water heater, a cooling air conditioner, and a heating air conditioner, a volume ratio suitable for each application can be set. However, when the refrigeration cycle apparatus 100 is used in the multi-function heat pump system as shown in FIG. In the example described above, by selecting a desirable volume ratio of 4.7 under floor heating conditions, it is possible to reduce the amount of reflux as much as possible while reliably avoiding liquid refrigerant injection. Of course, since the optimal volume ratio changes according to external conditions such as season and weather, even if the present invention is applied to a single use refrigeration cycle apparatus, the benefits can be fully enjoyed.

なお、図2に示す多機能ヒートポンプシステムは、床暖房機能付きヒートポンプ給湯機12および空調機14を備えており、これら給湯機12および空調機14に共通の冷凍サイクル装置100が用いられている。ただし、放熱器103(図1)は、給湯機12および空調機14の各々に専用のものが設けられている。   The multi-function heat pump system shown in FIG. 2 includes a heat pump water heater 12 with a floor heating function and an air conditioner 14, and a refrigeration cycle apparatus 100 common to the water heater 12 and the air conditioner 14 is used. However, a dedicated radiator 103 (FIG. 1) is provided for each of the water heater 12 and the air conditioner 14.

次に、冷凍サイクル装置100の動作を説明する。   Next, the operation of the refrigeration cycle apparatus 100 will be described.

まず、起動時には、膨張弁109を全閉にする。次に、高圧段圧縮機101のモータへの給電を開始し、高圧段圧縮機101を駆動する。高圧段圧縮機101は、中間圧流路114の冷媒を吸引して圧縮する。圧縮された冷媒は、冷媒配管102、放熱器103および冷媒配管104を経て、膨張機105に送られる。膨張機105の入口側の冷媒配管104内は、高圧段圧縮機101から吐出された冷媒で満たされる。そのため、冷媒配管104内の圧力は上昇する。また、高圧段圧縮機101が往還流路115を通じて気液分離器107から冷媒を吸引するので、気液分離器107内にある液冷媒が蒸発する。そのため、膨張機105の出口側の冷媒配管106内の温度および圧力が低下する。つまり、膨張弁109を閉じた状態で高圧段圧縮機101を動作させると、膨張機105の入口と出口との間の圧力差が拡大する。こうして生じた圧力差によって、膨張機105が駆動される。   First, when starting, the expansion valve 109 is fully closed. Next, power supply to the motor of the high-pressure compressor 101 is started, and the high-pressure compressor 101 is driven. The high-pressure compressor 101 sucks and compresses the refrigerant in the intermediate pressure channel 114. The compressed refrigerant is sent to the expander 105 through the refrigerant pipe 102, the radiator 103 and the refrigerant pipe 104. The refrigerant pipe 104 on the inlet side of the expander 105 is filled with the refrigerant discharged from the high-pressure compressor 101. For this reason, the pressure in the refrigerant pipe 104 increases. Further, since the high-pressure compressor 101 sucks the refrigerant from the gas-liquid separator 107 through the forward recirculation path 115, the liquid refrigerant in the gas-liquid separator 107 evaporates. Therefore, the temperature and pressure in the refrigerant pipe 106 on the outlet side of the expander 105 are reduced. That is, when the high pressure compressor 101 is operated with the expansion valve 109 closed, the pressure difference between the inlet and the outlet of the expander 105 increases. The expander 105 is driven by the pressure difference thus generated.

一方、冷媒配管114(中間圧流路)を介して高圧段圧縮機101、往還流路115および気液分離器107が相互接続されていることから、低圧段圧縮機113の出口側の冷媒配管114内の圧力は低下する。また、低圧段圧縮機113の入口側の冷媒配管112内は、蒸発器111が設置された場所(例えば屋外)の雰囲気温度(熱源温度)に応じた蒸発圧力の冷媒で満たされる。そのため、起動時において、冷媒配管112内の圧力が、一時的に中間圧流路114内の圧力を上回る。すると、低圧段圧縮機113が膨張機として振舞い、冷媒配管112と中間圧流路114との間の圧力差によって駆動される。   On the other hand, the high-pressure stage compressor 101, the forward recirculation path 115, and the gas-liquid separator 107 are connected to each other via the refrigerant pipe 114 (intermediate pressure flow path). The pressure inside falls. In addition, the refrigerant pipe 112 on the inlet side of the low-pressure stage compressor 113 is filled with a refrigerant having an evaporation pressure corresponding to the ambient temperature (heat source temperature) at the place where the evaporator 111 is installed (for example, outdoors). Therefore, at the time of startup, the pressure in the refrigerant pipe 112 temporarily exceeds the pressure in the intermediate pressure flow path 114. Then, the low-pressure compressor 113 behaves as an expander and is driven by a pressure difference between the refrigerant pipe 112 and the intermediate pressure flow path 114.

図13を参照して説明したように、低圧段圧縮機と膨張機とが軸で連結された構成を有する冷凍サイクル装置は、従来から知られている。しかし、図13に示す従来の冷凍サイクル装置の膨張機803としてロータリ膨張機を用いた場合、ピストンがベーン側に偏心して停止する、すなわち、吸入ポートと吐出ポートとが連通した状態でピストンが停止することがある。この場合、低圧段圧縮機801bおよび膨張機803を駆動するために必要な初期圧力差が十分得られず、起動エラーが生じるという問題があった。これに対し、本実施形態での起動方法によれば、低圧段圧縮機113が一時的に膨張機として振舞うので、膨張機105のピストンと低圧段圧縮機113のピストンとが同時にベーン側に偏心しないように設計しうる。すなわち、ピストンの偏心方向を互いに異ならせることによって、膨張機105および低圧段圧縮機113の少なくとも一方の吸入側と吐出側との間に、駆動に必要な圧力差を確実に生じさせることができる。これにより、冷凍サイクル装置を確実に起動できる。   As described with reference to FIG. 13, a refrigeration cycle apparatus having a configuration in which a low-pressure compressor and an expander are connected by a shaft is conventionally known. However, when a rotary expander is used as the expander 803 of the conventional refrigeration cycle apparatus shown in FIG. 13, the piston stops eccentrically on the vane side, that is, the piston stops with the suction port and the discharge port communicating with each other. There are things to do. In this case, there is a problem in that a sufficient initial pressure difference required for driving the low-pressure stage compressor 801b and the expander 803 cannot be obtained, and a start-up error occurs. On the other hand, according to the starting method in the present embodiment, the low-pressure stage compressor 113 temporarily behaves as an expander. Therefore, the piston of the expander 105 and the piston of the low-pressure stage compressor 113 are simultaneously eccentric to the vane side. Can be designed not to. That is, by making the eccentric directions of the pistons different from each other, it is possible to reliably generate a pressure difference necessary for driving between the suction side and the discharge side of at least one of the expander 105 and the low-pressure compressor 113. . Thereby, a refrigerating cycle device can be started reliably.

低圧段圧縮機113および膨張機105が動作し始めると、それ以降は、膨張機105の回収動力で低圧段圧縮機113が駆動される。低圧段圧縮機113は、冷媒配管112、蒸発器111および冷媒配管110から冷媒を吸い上げる。これにより、蒸発器111で液冷媒が蒸発し始め、蒸発器111内の温度および圧力が低下する。冷媒配管108内の圧力よりも冷媒配管110内の圧力が低くなったら、膨張弁109の開度を初期値まで徐々に拡大する。本実施形態では、第4温度センサ124の検出温度よりも第2温度センサ122の検出温度が低くなった時点で膨張弁109を開く。   When the low-pressure stage compressor 113 and the expander 105 start to operate, the low-pressure stage compressor 113 is driven by the recovered power of the expander 105 thereafter. The low-pressure stage compressor 113 sucks up the refrigerant from the refrigerant pipe 112, the evaporator 111 and the refrigerant pipe 110. Thereby, the liquid refrigerant begins to evaporate in the evaporator 111, and the temperature and pressure in the evaporator 111 are reduced. When the pressure in the refrigerant pipe 110 becomes lower than the pressure in the refrigerant pipe 108, the opening degree of the expansion valve 109 is gradually increased to the initial value. In the present embodiment, the expansion valve 109 is opened when the detected temperature of the second temperature sensor 122 becomes lower than the detected temperature of the fourth temperature sensor 124.

その後、膨張弁109の開度は、コントローラ118によって制御される。具体的には、蒸発器111での冷媒の蒸発圧力と、膨張機105の吸入冷媒温度と、高圧段圧縮機101の吐出冷媒圧力と、低圧段圧縮機113の吸入冷媒温度とに基づいて決定された目標サイクル条件において、膨張機105の理論回収動力と低圧段圧縮機113の理論圧縮仕事とが等しくなるように、気液分離器107内の圧力を調節する。これは、冷媒回路における現実の高圧を目標サイクル条件における最適高圧に一致させるための制御である。気液分離器107内の圧力(中間圧力)は、膨張弁109で調節できる。なお、理論回収動力および理論圧縮仕事とは、それぞれ、計算によって導かれる値であり、現実の回収動力と圧縮仕事とを意味しない。   Thereafter, the opening degree of the expansion valve 109 is controlled by the controller 118. Specifically, it is determined based on the refrigerant evaporation pressure in the evaporator 111, the suction refrigerant temperature of the expander 105, the discharge refrigerant pressure of the high-pressure compressor 101, and the suction refrigerant temperature of the low-pressure compressor 113. Under the set target cycle conditions, the pressure in the gas-liquid separator 107 is adjusted so that the theoretical recovery power of the expander 105 is equal to the theoretical compression work of the low-pressure compressor 113. This is a control for making the actual high pressure in the refrigerant circuit coincide with the optimum high pressure in the target cycle condition. The pressure (intermediate pressure) in the gas-liquid separator 107 can be adjusted by the expansion valve 109. The theoretical recovery power and the theoretical compression work are values derived by calculation, respectively, and do not mean actual recovery power and compression work.

図3のフローチャートを参照してさらに詳しく説明する。   This will be described in more detail with reference to the flowchart of FIG.

まず、ステップ101で、第1温度センサ121から膨張機105の吸入冷媒温度T1、第2温度センサ122から蒸発器111での冷媒の蒸発温度T2および第3温度センサ123から低圧段圧縮機113の吸入冷媒温度T3を取得する。蒸発器111での冷媒の蒸発温度T2から、蒸発器111での冷媒の蒸発圧力を知ることができる。 First, in step 101, the refrigerant temperature T 1 of the expander 105 from the first temperature sensor 121, the evaporation temperature T 2 of the refrigerant in the evaporator 111 from the second temperature sensor 122, and the low pressure stage compressor from the third temperature sensor 123 are shown. It acquires 113 suction refrigerant temperature T 3 of the. From the evaporation temperature T 2 of the refrigerant in the evaporator 111, the evaporation pressure of the refrigerant in the evaporator 111 can be known.

次に、ステップ102において、ステップ101で取得した温度および圧力に基づいて、冷凍サイクル装置100のCOPが最大になる最適高圧を算出する。   Next, in step 102, the optimum high pressure at which the COP of the refrigeration cycle apparatus 100 is maximized is calculated based on the temperature and pressure acquired in step 101.

次に、ステップ103およびステップ104で、理論回収動力と理論圧縮仕事とが等しくなる目標中間圧力を算出する。まず、ステップ103で、ある目標中間圧力を設定する。設定した目標中間圧力まで冷媒を膨張機105で膨張させた場合の回収動力(理論回収動力)を、算出した最適高圧と膨張機105の吸入冷媒温度T1とに基づいて算出する。図4に示すように、膨張機105の入口における冷媒の状態は、点Dで示される。点Dは、最適高圧PHおよび吸入冷媒温度T1で特定される。目標中間圧力PMは点Eの圧力である。膨張機105において、冷媒は等エントロピー線に沿って膨張する(点D→点E)。点Dから点Eへの変化の過程で冷媒が失ったエンタルピー(h2−h1)に膨張機105の効率を積算すれば、理論回収動力が得られる。 Next, in Step 103 and Step 104, a target intermediate pressure at which the theoretical recovery power and the theoretical compression work are equal is calculated. First, at step 103, a certain target intermediate pressure is set. The recovery power (theoretical recovery power) when the refrigerant is expanded by the expander 105 to the set target intermediate pressure is calculated based on the calculated optimum high pressure and the intake refrigerant temperature T 1 of the expander 105. As shown in FIG. 4, the state of the refrigerant at the inlet of the expander 105 is indicated by a point D. The point D is specified by the optimum high pressure P H and the suction refrigerant temperature T 1 . The target intermediate pressure P M is the pressure at point E. In the expander 105, the refrigerant expands along the isentropic line (point D → point E). If the efficiency of the expander 105 is added to the enthalpy (h 2 −h 1 ) that the refrigerant has lost in the process of changing from the point D to the point E, the theoretical recovery power can be obtained.

また、ステップ103で、設定した目標中間圧力まで低圧段圧縮機113で冷媒を圧縮した場合の圧縮仕事(理論圧縮仕事)を、蒸発器111の蒸発圧力PLと低圧段圧縮機113の吸入冷媒温度T3とに基づいて算出する。図4に示すように、低圧段圧縮機113の入口における冷媒の状態は、点Aで示される。点Aは、蒸発圧力PLおよび吸入冷媒温度T3で特定される。低圧段圧縮機113において、冷媒は等エントロピー線に沿って予備圧縮される(点A→点B)。点Aから点Bへの変化の過程で冷媒が獲得したエンタルピー(h4−h3)を低圧段圧縮機113の効率で除算し、さらに、膨張機105の冷媒質量流量に対する低圧段圧縮機113の冷媒質量流量の割合を積算すれば、理論圧縮仕事が得られる。 Further, in step 103, the compression work (theoretical compression work) when the refrigerant is compressed by the low-pressure stage compressor 113 up to the set target intermediate pressure is expressed by the evaporation pressure P L of the evaporator 111 and the suction refrigerant of the low-pressure stage compressor 113. calculated on the basis of the temperature T 3. As shown in FIG. 4, the state of the refrigerant at the inlet of the low-pressure compressor 113 is indicated by a point A. Point A is specified by the evaporation pressure P L and the suction refrigerant temperature T 3 . In the low-pressure compressor 113, the refrigerant is pre-compressed along the isentropic line (point A → point B). The enthalpy (h 4 -h 3 ) acquired by the refrigerant in the process of changing from point A to point B is divided by the efficiency of the low-pressure stage compressor 113, and further, the low-pressure stage compressor 113 with respect to the refrigerant mass flow rate of the expander 105. If the ratio of the refrigerant mass flow rate is integrated, theoretical compression work can be obtained.

なお、膨張機105の入口における冷媒の密度と膨張機105の吸入容積とから、膨張機105の冷媒質量流量を算出できる。膨張機105の入口における冷媒の密度については、例えば、最適高圧と吸入冷媒温度T1とから算出するものとする。同様に、低圧段圧縮機113の入口における冷媒の密度と低圧段圧縮機113の吸入容積とから、低圧段圧縮機113の冷媒質量流量を算出できる。低圧段圧縮機113の入口における冷媒の密度は、例えば、蒸発温度T2と吸入冷媒温度T3とから算出するものとする。また、膨張機105や低圧段圧縮機113の効率は設計値である。 The refrigerant mass flow rate of the expander 105 can be calculated from the refrigerant density at the inlet of the expander 105 and the suction volume of the expander 105. The refrigerant density at the inlet of the expander 105 is calculated from, for example, the optimum high pressure and the intake refrigerant temperature T 1 . Similarly, the refrigerant mass flow rate of the low-pressure compressor 113 can be calculated from the refrigerant density at the inlet of the low-pressure compressor 113 and the suction volume of the low-pressure compressor 113. The refrigerant density at the inlet of the low-pressure compressor 113 is calculated from, for example, the evaporation temperature T 2 and the suction refrigerant temperature T 3 . The efficiency of the expander 105 and the low-pressure compressor 113 is a design value.

次に、ステップ104で、理論回収動力と理論圧縮仕事とが一致するかどうかを判断する。一致する場合にはステップ105に進む。一致しない場合にはステップ103に戻り、別の目標中間圧力を設定して、一致するまでステップ103およびステップ104の処理を繰り返す。このように、コントローラ118は、各温度センサの検出結果に基づいて、任意の最適高圧PHおよび目標中間圧力PMを算出する。 Next, in step 104, it is determined whether the theoretical recovery power and the theoretical compression work match. If they match, the process proceeds to step 105. If they do not match, the process returns to step 103, another target intermediate pressure is set, and the processes of step 103 and step 104 are repeated until they match. As described above, the controller 118 calculates an arbitrary optimum high pressure P H and target intermediate pressure P M based on the detection result of each temperature sensor.

次に、ステップ105で、気液分離器107内の圧力(現実の中間圧力)を算出する。具体的には、まず、第4温度センサ124から気液分離器107での冷媒の蒸発温度T4を取得する。冷媒の蒸発温度T4から冷媒の圧力を算出できる。すなわち、膨張弁109の開度を制御するための手段としてのコントローラ108は、第4温度センサ124の検出結果に基づいて気液分離器107内の現実の圧力を算出する。 Next, in step 105, the pressure in the gas-liquid separator 107 (actual intermediate pressure) is calculated. Specifically, first, the evaporation temperature T 4 of the refrigerant in the gas-liquid separator 107 is acquired from the fourth temperature sensor 124. It can be calculated the pressure of the refrigerant from the evaporator temperature T 4 of the refrigerant. That is, the controller 108 as a means for controlling the opening degree of the expansion valve 109 calculates the actual pressure in the gas-liquid separator 107 based on the detection result of the fourth temperature sensor 124.

次に、ステップ106で、現実の中間圧力と目標中間圧力PMとを比較する。現実の中間圧力が目標中間圧力PMを上回っている場合には、ステップ107に進み、下回っている場合にはステップ107’に進む。ステップ107では、膨張弁109の設定開度を増加させる。ステップ107’では、膨張弁109の設定開度を減少させる。 Next, in step 106, the actual intermediate pressure is compared with the target intermediate pressure P M. When the actual intermediate pressure is higher than the target intermediate pressure P M , the process proceeds to step 107, and when it is lower, the process proceeds to step 107 ′. In step 107, the set opening degree of the expansion valve 109 is increased. In step 107 ′, the set opening degree of the expansion valve 109 is decreased.

次に、ステップ108で、膨張弁109に対して設定開度を出力し、膨張弁109の開度を変化させる。膨張弁109の開度が変化すると、気液分離器107内の圧力も変化する。本フローチャートの処理を定期的に行うことによって、膨張機105の回収動力と低圧段圧縮機113の圧縮仕事とが理論上等しくなるように、気液分離器107内の圧力が調節されるとともに最適高圧が維持される。   Next, in step 108, the set opening degree is output to the expansion valve 109, and the opening degree of the expansion valve 109 is changed. When the opening degree of the expansion valve 109 changes, the pressure in the gas-liquid separator 107 also changes. By periodically performing the process of this flowchart, the pressure in the gas-liquid separator 107 is adjusted and optimized so that the recovery power of the expander 105 and the compression work of the low-pressure compressor 113 are theoretically equal. High pressure is maintained.

以上のように、コントローラ118は、冷凍サイクルの任意の最適高圧における膨張機105の理論回収動力と、任意の最適高圧における低圧段圧縮機113の理論圧縮仕事とが等しくなる目標中間圧力PMを算出するための手段と、気液分離器107内の現実の圧力が算出された目標中間圧力PMに近づくように、膨張弁109の開度を制御するための手段とを有している。詳細には、コントローラ118は、気液分離器107内の圧力が目標中間圧力PMに一致するように、第4温度センサ124の検出結果に基づいて膨張弁109の開度を制御する。 As described above, the controller 118 sets the target intermediate pressure P M at which the theoretical recovery power of the expander 105 at an arbitrary optimum high pressure in the refrigeration cycle is equal to the theoretical compression work of the low-pressure compressor 113 at any optimum high pressure. Means for calculating, and means for controlling the opening of the expansion valve 109 so that the actual pressure in the gas-liquid separator 107 approaches the calculated target intermediate pressure P M are provided. Specifically, the controller 118 controls the opening degree of the expansion valve 109 based on the detection result of the fourth temperature sensor 124 so that the pressure in the gas-liquid separator 107 matches the target intermediate pressure P M.

また、容積比(Vlc/Vex)が冷凍サイクル装置100のサイクル条件に対して過大である場合には、低圧段圧縮機113の冷媒質量流量に対して、高圧段圧縮機101および膨張機105の冷媒質量流量が不足する。言い換えると、低圧段圧縮機113からの吐出量に対し、高圧段圧縮機101の吸入量が過少となる。そのため、中間圧流路114の圧力が上昇し、高圧段圧縮機101に吸入されない冷媒が往還流路115を通じて中間圧流路114から気液分離器107へと還流する。 Further, when the volume ratio (V lc / V ex ) is excessive with respect to the cycle condition of the refrigeration cycle apparatus 100, the high-pressure stage compressor 101 and the expander with respect to the refrigerant mass flow rate of the low-pressure stage compressor 113. The refrigerant mass flow rate of 105 is insufficient. In other words, the suction amount of the high-pressure stage compressor 101 is too small with respect to the discharge amount from the low-pressure stage compressor 113. Therefore, the pressure in the intermediate pressure flow path 114 rises, and the refrigerant that is not sucked into the high pressure compressor 101 returns from the intermediate pressure flow path 114 to the gas-liquid separator 107 through the forward recirculation path 115.

他方、容積比(Vlc/Vex)が冷凍サイクル装置100のサイクル条件に対して過小である場合には、低圧段圧縮機113の冷媒質量流量に対して、高圧段圧縮機101および膨張機105の冷媒質量流量が過大となる。言い換えると、低圧段圧縮機113からの吐出量に対し、高圧段圧縮機101の吸入量が過大となる。そのため、中間圧流路114の圧力が低下し、往還流路115を通じて気液分離器107から中間圧流路114へと不足分の冷媒がインジェクションされる。 On the other hand, when the volume ratio (V lc / V ex ) is too small with respect to the cycle condition of the refrigeration cycle apparatus 100, the high-pressure stage compressor 101 and the expander with respect to the refrigerant mass flow rate of the low-pressure stage compressor 113. The refrigerant mass flow rate of 105 becomes excessive. In other words, the suction amount of the high-pressure compressor 101 is excessive with respect to the discharge amount from the low-pressure compressor 113. Therefore, the pressure in the intermediate pressure flow path 114 decreases, and a shortage of refrigerant is injected from the gas-liquid separator 107 to the intermediate pressure flow path 114 through the forward recirculation path 115.

図5A〜5Cに示すモリエル線図を参照して、各用途での冷凍サイクル装置100の動作を説明する。なお、容積比(Vlc/Vex)を4.7に設定しているものとする。 With reference to the Mollier diagrams shown in FIGS. 5A to 5C, the operation of the refrigeration cycle apparatus 100 in each application will be described. It is assumed that the volume ratio (V lc / V ex ) is set to 4.7.

図5Aに示すように、先に説明した床暖房条件では、容積比4.7は、(1−Qexo)×(ρexi/ρlci)で表された値に一致する。したがって、気液分離器107のガス冷媒の全部が往還流路115を通じて中間圧流路114へとインジェクションされ、液冷媒が膨張弁109を通じて蒸発器111へと送られる。 As shown in FIG. 5A, the floor heating conditions described above, the volume ratio 4.7 corresponds to the value represented by (1-Q exo) × ( ρ exi / ρ lci). Therefore, all of the gas refrigerant in the gas-liquid separator 107 is injected into the intermediate pressure flow path 114 through the forward recirculation path 115, and the liquid refrigerant is sent to the evaporator 111 through the expansion valve 109.

図5Bに示すように、先に説明した冷房条件では、容積比4.7は、(ρexi/ρlci)で表された値を超える。つまり、膨張機105の冷媒質量流量に対して低圧段圧縮機113の冷媒質量流量が過剰となる。そのため、低圧段圧縮機113で圧縮された冷媒の一部が往還流路115を通じて気液分離器107へと還流し、膨張弁109で再膨張する。 As shown in Figure 5B, in the cooling condition described above, the volume ratio 4.7, exceeds the value expressed by (ρ exi / ρ lci). That is, the refrigerant mass flow rate of the low-pressure compressor 113 is excessive with respect to the refrigerant mass flow rate of the expander 105. Therefore, a part of the refrigerant compressed by the low-pressure compressor 113 is returned to the gas-liquid separator 107 through the forward recirculation path 115 and re-expanded by the expansion valve 109.

図5Cに示すように、先に説明した暖房条件においても、冷房条件と同様に、容積比4.7は、(ρexi/ρlci)で表された値を超える。そのため、低圧段圧縮機113で圧縮された冷媒の一部が往還流路115を通じて気液分離器107へと還流し、膨張弁109で再膨張する。 As shown in FIG. 5C, even in the heating conditions described above, similarly to the cooling conditions, the volume ratio 4.7, exceeds the value expressed by (ρ exi / ρ lci). Therefore, a part of the refrigerant compressed by the low-pressure compressor 113 is returned to the gas-liquid separator 107 through the forward recirculation path 115 and re-expanded by the expansion valve 109.

以上のように、本実施形態によれば、往還流路115を双方向に冷媒が流通しうることによって冷凍サイクルの流量バランスが成立する。これにより、密度比一定の制約に縛られることなく、年間の消費電力が最小となるように低圧段圧縮機113および膨張機105の設計を行える。さらに、膨張弁109の開度を制御することによって中間圧力を容易に調節でき、容積比(Vlc/Vex)に左右されることなく、冷媒回路における現実の高圧が最適高圧となるように冷凍サイクル装置100の運転を行える。 As described above, according to the present embodiment, the refrigerant can flow bidirectionally in the forward and backward flow path 115, so that the flow rate balance of the refrigeration cycle is established. Accordingly, the low-pressure compressor 113 and the expander 105 can be designed so that the annual power consumption is minimized without being restricted by the constant density ratio. Further, the intermediate pressure can be easily adjusted by controlling the opening degree of the expansion valve 109 so that the actual high pressure in the refrigerant circuit becomes the optimum high pressure regardless of the volume ratio (V lc / V ex ). The refrigeration cycle apparatus 100 can be operated.

また、容積比(Vlc/Vex)を(1−Qexo)×(ρexi/ρlci)で表された値以上とすることで、液冷媒のインジェクションを回避できる。 In addition, by setting the volume ratio (V lc / V ex) ( 1-Q exo) × (ρ exi / ρ lci) represented the value above, it is possible to avoid the injection of the liquid refrigerant.

図6Aおよび図6Bは、床暖房サイクル条件(外気温7℃、床暖房用の温水の戻り温度25℃、低圧段圧縮機の吸入冷媒温度7℃、CO2冷媒)での、容積比の変化に対する各種サイクル特性(計算値)の変化を示すグラフである。図6Aの縦軸には、サイクル特性として、中間圧力、COPおよび往還流路の冷媒流量が示されている。図6Bの縦軸には、サイクル特性として、高圧段圧縮機101の吐出冷媒温度が示されている。 6A and 6B show changes in the volume ratio under floor heating cycle conditions (outside temperature 7 ° C., return temperature of warm water for floor heating 25 ° C., suction refrigerant temperature of low-pressure compressor 7 ° C., CO 2 refrigerant). It is a graph which shows the change of the various cycle characteristics (calculated value) with respect to. The vertical axis in FIG. 6A shows the intermediate pressure, the COP, and the refrigerant flow rate in the forward recirculation path as cycle characteristics. The vertical axis of FIG. 6B indicates the refrigerant discharge temperature of the high-pressure compressor 101 as cycle characteristics.

上記床暖房サイクル条件では、図6Aのグラフに示すように、容積比(Vlc/Vex)=7.1を境界に往還流路115の冷媒流量の正負が切り替わる。冷媒流量が正のときは、気液分離器107から中間圧流路114へと冷媒が流れ(インジェクション)、冷媒流量が負のときは、中間圧流路114から気液分離器107へと冷媒が流れる(還流)。ガスインジェクションが起こると、COPおよび中間圧力のいずれも上昇する。これは、低圧段圧縮機113の冷媒質量流量が低下することによって低圧段圧縮機113の圧縮負荷が軽減され、結果として、高圧段圧縮機101の圧縮負荷が軽減するからである。 In the floor heating cycle condition, as shown in the graph of FIG. 6A, the refrigerant flow rate in the forward recirculation path 115 is switched between the volume ratio (V lc / V ex ) = 7.1 as a boundary. When the refrigerant flow rate is positive, the refrigerant flows from the gas-liquid separator 107 to the intermediate pressure channel 114 (injection). When the refrigerant flow rate is negative, the refrigerant flows from the intermediate pressure channel 114 to the gas-liquid separator 107. (reflux). When gas injection occurs, both COP and intermediate pressure increase. This is because the compression load of the low-pressure stage compressor 113 is reduced by reducing the refrigerant mass flow rate of the low-pressure stage compressor 113, and as a result, the compression load of the high-pressure stage compressor 101 is reduced.

また、上記床暖房サイクル条件では、図6Bに示すように、容積比(Vlc/Vex)=4.7を境界に高圧段圧縮機101の吐出冷媒温度が急低下する。つまり、容積比(Vlc/Vex)=4.7の前後で液冷媒(ガス冷媒も含まれている)のインジェクションとガス冷媒のインジェクションとが切り替わる。先に説明したように、(1−Qexo)×(ρexi/ρlci)で表された値が容積比(Vlc/Vex)よりも小さい場合には、液冷媒のインジェクションは起こらない。逆に、(1−Qexo)×(ρexi/ρlci)で表された値が容積比(Vlc/Vex)よりも大きい場合には、液冷媒のインジェクションが起こる。 Further, under the above floor heating cycle condition, as shown in FIG. 6B, the discharge refrigerant temperature of the high-pressure compressor 101 rapidly decreases with the volume ratio (V lc / V ex ) = 4.7 as a boundary. That is, the injection of the liquid refrigerant (including the gas refrigerant) and the injection of the gas refrigerant are switched around the volume ratio (V lc / V ex ) = 4.7. As described above, when (1-Q exo) less than × (ρ exi / ρ lci) represented value is the volume ratio (V lc / V ex) does not occur injection of the liquid refrigerant . Conversely, (1-Q exo) when × value expressed by (ρ exi / ρ lci) is greater than the volume ratio (V lc / V ex) is injection of the liquid refrigerant occurs.

また、容積比(Vlc/Vex)=7.1を境界に高圧段圧縮機101の吐出冷媒温度の変化が止まる。つまり、容積比(Vlc/Vex)=7.1の前後でガス冷媒のインジェクションと還流とが切り替わる。先に説明したように、密度比(ρexi/ρlci)が容積比(Vlc/Vex)よりも大きい場合には、還流が起こらない。逆に、密度比(ρexi/ρlci)が容積比(Vlc/Vex)よりも小さい場合には、還流が起こる。 Further, the change in the refrigerant temperature discharged from the high-pressure compressor 101 stops at the boundary of the volume ratio (V lc / V ex ) = 7.1. That is, the injection and recirculation of the gas refrigerant are switched around the volume ratio (V lc / V ex ) = 7.1. As described above, when the density ratio (ρ exi / ρ lci) is greater than the volume ratio (V lc / V ex) is refluxed does not occur. Conversely, if the density ratio (ρ exi / ρ lci) is smaller than the volume ratio (V lc / V ex) is refluxed occurs.

以上より、床暖房サイクル条件で運転が行われることを前提に考えれば、液冷媒のインジェクションおよび還流を回避するために、容積比(Vlc/Vex)を4.7〜7.1の範囲に設定すればよい。 In view of the above, assuming that operation is performed under floor heating cycle conditions, the volume ratio (V lc / V ex ) is in the range of 4.7 to 7.1 in order to avoid liquid refrigerant injection and reflux. Should be set.

図2を参照して説明したように、多機能ヒートポンプシステムでは、コスト等の観点から、1台の冷凍サイクル装置100で給湯、床暖房および空調を賄うことも考慮すべきである。このような場合、床暖房だけを念頭に入れて容積比を設定すると、他の用途で効率的な運転を行えない可能性が出てくる。すなわち、図7Aおよび図7Bに示すように、冷房サイクル条件では、容積比(Vlc/Vex)を2.4〜3.6の範囲に設定することによって液冷媒のインジェクションおよび還流を回避できる。同様に、図8Aおよび図8Bに示すように、暖房サイクル条件では、容積比(Vlc/Vex)を2.1〜2.9の範囲に設定することによって液冷媒のインジェクションおよび還流を回避できる。このように、サイクル条件に応じて好適な容積比の範囲が相違する。還流は許容できるが、液冷媒のインジェクションは回避すべきなので、本例では、床暖房サイクル条件で液インジェクションを回避できる容積比(Vlc/Vex)=4.7が妥当である。 As described with reference to FIG. 2, in the multi-function heat pump system, it should be considered that a single refrigeration cycle apparatus 100 covers hot water supply, floor heating, and air conditioning from the viewpoint of cost and the like. In such a case, if the volume ratio is set with only floor heating in mind, there is a possibility that efficient operation cannot be performed in other applications. That is, as shown in FIG. 7A and FIG. 7B, under the cooling cycle conditions, the liquid refrigerant injection and reflux can be avoided by setting the volume ratio (V lc / V ex ) in the range of 2.4 to 3.6. . Similarly, as shown in FIG. 8A and FIG. 8B, in the heating cycle condition, by setting the volume ratio (V lc / V ex ) in the range of 2.1 to 2.9, liquid refrigerant injection and reflux are avoided. it can. Thus, the range of suitable volume ratios differs depending on the cycle conditions. Although reflux is acceptable, liquid refrigerant injection should be avoided, so in this example, a volume ratio (V lc / V ex ) = 4.7 that can avoid liquid injection under floor heating cycle conditions is reasonable.

容積比(Vlc/Vex)を4.7に設定とすると、床暖房条件では、容積比(Vlc/Vex)が密度比(ρexi/ρlci)以下となるので、低圧段圧縮機113が圧縮した冷媒はすべて高圧段圧縮機101へ吸入され、冷凍サイクル装置100を効率的に運転できる。床暖房条件のみならず、冷房および暖房の各用途においても、(1−Qexo)×(ρexi/ρlci)で表された値が容積比(Vlc/Vex)よりも小さくなり、液冷媒のインジェクションを回避できる。 When setting the volume ratio (V lc / V ex) to 4.7, the floor heating condition, since the volume ratio (V lc / V ex) is equal to or less than the density ratio (ρ exi / ρ lci), the low-pressure stage compressor All the refrigerant compressed by the machine 113 is sucked into the high-pressure compressor 101, and the refrigeration cycle apparatus 100 can be operated efficiently. Not floor heating conditions but also in the cooling and the application of the heating, it is smaller than (1-Q exo) × ( ρ exi / ρ lci) represented value is the volume ratio (V lc / V ex), Liquid refrigerant injection can be avoided.

なお、容積比(Vlc/Vex)=4.7とすると、冷房条件では、低圧段圧縮機113で圧縮された冷媒の23.6%が往還流路115を経て気液分離器107へと戻り、膨張弁109で再膨張する。同一の冷房条件で計算を行うと、バイパス回路で密度比一定の制約を回避している従来例(図14)では、49.6%の冷媒が膨張機をバイパスする。同様に、暖房条件では、低圧段圧縮機113で圧縮された冷媒の36.6%が往還流路115を経て気液分離器107へと戻り、膨張弁109で再膨張する。同一の暖房条件で計算を行うと、バイパス回路で密度比一定の制約を回避している従来例(図14)では、58.2%の冷媒が膨張機をバイパスする。このように、本実施形態の冷凍サイクル装置100によれば、バイパス回路を備えた従来の冷凍サイクル装置よりも高効率な運転を行える。 If the volume ratio (V lc / V ex ) = 4.7, 23.6% of the refrigerant compressed by the low-pressure compressor 113 passes to the gas-liquid separator 107 via the forward recirculation path 115 under the cooling condition. And the expansion valve 109 is re-expanded. When the calculation is performed under the same cooling condition, 49.6% of the refrigerant bypasses the expander in the conventional example (FIG. 14) in which the restriction of the constant density ratio is avoided in the bypass circuit. Similarly, under the heating condition, 36.6% of the refrigerant compressed by the low-pressure compressor 113 returns to the gas-liquid separator 107 via the forward recirculation path 115 and is re-expanded by the expansion valve 109. When the calculation is performed under the same heating condition, 58.2% of the refrigerant bypasses the expander in the conventional example (FIG. 14) in which the restriction of the constant density ratio is avoided in the bypass circuit. Thus, according to the refrigeration cycle apparatus 100 of the present embodiment, a more efficient operation can be performed than a conventional refrigeration cycle apparatus having a bypass circuit.

なお、本発明は、液冷媒のインジェクションを全面的に禁止しているわけではないことを断っておく。   It should be noted that the present invention does not completely prohibit liquid refrigerant injection.

(第2実施形態)
図9は、本発明の第2実施形態にかかる冷凍サイクル装置の構成図である。本実施形態の冷凍サイクル装置500は、第1実施形態にかかる冷凍サイクル装置100(図1参照)と概ね同様の構成を有している。本実施形態と第1実施形態との相違点は、温度センサ520が設けられている点とコントローラ118が行う制御にある。以下では、同一機能部品については同一の符号を付し、その説明を省略する。
(Second Embodiment)
FIG. 9 is a configuration diagram of a refrigeration cycle apparatus according to the second embodiment of the present invention. The refrigeration cycle apparatus 500 of the present embodiment has a configuration that is substantially the same as that of the refrigeration cycle apparatus 100 (see FIG. 1) according to the first embodiment. The difference between the present embodiment and the first embodiment is that the temperature sensor 520 is provided and the control performed by the controller 118. In the following, the same functional parts are denoted by the same reference numerals, and the description thereof is omitted.

図9に示すように、冷凍サイクル装置500は、高圧段圧縮機101の吐出冷媒温度を検出するための温度センサ520を備えている。第1実施形態と同様に、蒸発器111における冷媒の蒸発温度を検出するための温度センサ122も設けられている。コントローラ118は、温度センサ520および温度センサ122の検出結果に基づいて、膨張弁109の開度を制御する。   As shown in FIG. 9, the refrigeration cycle apparatus 500 includes a temperature sensor 520 for detecting the discharge refrigerant temperature of the high-pressure compressor 101. Similar to the first embodiment, a temperature sensor 122 for detecting the evaporation temperature of the refrigerant in the evaporator 111 is also provided. The controller 118 controls the opening degree of the expansion valve 109 based on the detection results of the temperature sensor 520 and the temperature sensor 122.

図10のフローチャートを参照して冷凍サイクル装置500の動作を説明する。まず、ステップ501で、蒸発器111における冷媒の蒸発温度に基づいて、外気温度を推定する。次に、ステップ502で、高圧段圧縮機101の目標吐出冷媒温度を算出する。目標吐出冷媒温度は、例えば、外気温度および床暖房の設定温度(または暖房の設定温度)に応じて決定される。次に、ステップ503で、温度センサ520から高圧段圧縮機101の現実の吐出冷媒温度を取得する。次に、ステップ504で、現実の吐出冷媒温度と目標吐出冷媒温度とを比較する。現実の吐出冷媒温度が目標吐出冷媒温度よりも高い場合にはステップ505へ進む。現実の吐出冷媒温度が目標吐出冷媒温度よりも低い場合にはステップ505’へ進む。   The operation of the refrigeration cycle apparatus 500 will be described with reference to the flowchart of FIG. First, in step 501, the outside air temperature is estimated based on the evaporation temperature of the refrigerant in the evaporator 111. Next, in step 502, the target discharge refrigerant temperature of the high-pressure compressor 101 is calculated. The target discharge refrigerant temperature is determined according to, for example, the outside air temperature and the floor heating set temperature (or the heating set temperature). Next, in step 503, the actual discharge refrigerant temperature of the high-pressure compressor 101 is acquired from the temperature sensor 520. Next, in step 504, the actual discharge refrigerant temperature is compared with the target discharge refrigerant temperature. When the actual discharge refrigerant temperature is higher than the target discharge refrigerant temperature, the process proceeds to step 505. If the actual discharge refrigerant temperature is lower than the target discharge refrigerant temperature, the process proceeds to step 505 '.

ステップ505およびステップ506で、膨張弁109の設定開度を増加させて中間圧力を低下させる。中間圧力が低下すると、低圧段圧縮機113の圧縮仕事が減少する。これにより、低圧段圧縮機113の圧縮仕事と膨張機105の回収動力との間にアンバランスが生じる。このアンバランスを解消するために、軸116の回転数が増加し、冷凍サイクルの高圧が低下する。その結果、膨張機105の回収動力が減少してアンバランスが解消される。また、冷凍サイクルの高圧が低下することで、高圧段圧縮機101の吐出冷媒温度が低下する。   In step 505 and step 506, the set opening degree of the expansion valve 109 is increased to lower the intermediate pressure. When the intermediate pressure decreases, the compression work of the low-pressure stage compressor 113 decreases. Thereby, an imbalance occurs between the compression work of the low-pressure stage compressor 113 and the recovered power of the expander 105. In order to eliminate this imbalance, the rotation speed of the shaft 116 increases and the high pressure of the refrigeration cycle decreases. As a result, the recovery power of the expander 105 is reduced and the unbalance is eliminated. Moreover, the discharge refrigerant | coolant temperature of the high pressure compressor 101 falls because the high pressure of a refrigerating cycle falls.

ステップ505’およびステップ506で、膨張弁109の設定開度を減少させて中間圧力を上昇させる。中間圧力が上昇すると、低圧段圧縮機113の圧縮仕事が増加する。これにより、低圧段圧縮機113の圧縮仕事と膨張機105の回収動力との間にアンバランスが生じる。このアンバランスを解消するために、軸116の回転数が減少し、冷凍サイクルの高圧が上昇する。その結果、膨張機105の回収動力が増加してアンバランスが解消される。また、冷凍サイクルの高圧が上昇することで、高圧段圧縮機101の吐出冷媒温度が上昇する。   In steps 505 'and 506, the set opening degree of the expansion valve 109 is decreased to increase the intermediate pressure. When the intermediate pressure increases, the compression work of the low-pressure compressor 113 increases. Thereby, an imbalance occurs between the compression work of the low-pressure stage compressor 113 and the recovered power of the expander 105. In order to eliminate this imbalance, the rotational speed of the shaft 116 is decreased and the high pressure of the refrigeration cycle is increased. As a result, the recovery power of the expander 105 is increased and the unbalance is eliminated. Moreover, the discharge refrigerant | coolant temperature of the high pressure compressor 101 rises because the high pressure of a refrigerating cycle rises.

本実施形態によれば、温度センサ520,123の検出結果に基づき、膨張弁109の開度を制御する。膨張弁109の開度を制御することによって、中間圧力を調節できる。中間圧力に応じて、軸116の回転数が変化する。軸116の回転数が変化すると、冷凍サイクルの高圧も変化する。つまり、膨張弁109によって冷凍サイクルの高圧を調節できる。そのため、本実施形態の冷凍サイクル装置500は、床暖房、暖房および給湯など加熱能力が要求される用途に好適である。   According to this embodiment, the opening degree of the expansion valve 109 is controlled based on the detection results of the temperature sensors 520 and 123. By controlling the opening degree of the expansion valve 109, the intermediate pressure can be adjusted. The rotation speed of the shaft 116 changes according to the intermediate pressure. When the rotation speed of the shaft 116 changes, the high pressure of the refrigeration cycle also changes. That is, the expansion valve 109 can adjust the high pressure of the refrigeration cycle. Therefore, the refrigeration cycle apparatus 500 of the present embodiment is suitable for applications that require heating capability such as floor heating, heating, and hot water supply.

(第3実施形態)
図11は、本発明の第3実施形態に係る冷凍サイクル装置の構成図である。冷凍サイクル装置700は、第1実施形態および第2実施形態で説明した冷凍サイクル装置と概ね同様の構成を有している。本実施形態と第1実施形態との相違点は、高圧段圧縮機701、低圧段圧縮機713および膨張機705が共通の密閉容器717に収納されている点にある。
(Third embodiment)
FIG. 11 is a configuration diagram of a refrigeration cycle apparatus according to the third embodiment of the present invention. The refrigeration cycle apparatus 700 has substantially the same configuration as the refrigeration cycle apparatus described in the first embodiment and the second embodiment. The difference between the present embodiment and the first embodiment is that the high-pressure stage compressor 701, the low-pressure stage compressor 713, and the expander 705 are housed in a common sealed container 717.

図11に示すように、冷凍サイクル装置700において、高圧段圧縮機701、低圧段圧縮機713および膨張機705は、単一の密閉容器717内に上からこの順で配置されている。低圧段圧縮機713と膨張機705とは軸716で動力伝達可能に接続されている。密閉容器717の底部にはオイルが貯められている。油面よりも上の空間は、高圧段圧縮機701の吐出冷媒で満たされている。低圧段圧縮機713および膨張機705の周囲はオイルで満たされている。   As shown in FIG. 11, in the refrigeration cycle apparatus 700, the high-pressure stage compressor 701, the low-pressure stage compressor 713, and the expander 705 are arranged in this order from above in a single sealed container 717. The low-pressure stage compressor 713 and the expander 705 are connected by a shaft 716 so that power can be transmitted. Oil is stored at the bottom of the sealed container 717. The space above the oil level is filled with the refrigerant discharged from the high-pressure compressor 701. The periphery of the low-pressure stage compressor 713 and the expander 705 is filled with oil.

高圧段圧縮機701が駆動されると、油面よりも上の空間が高圧の吐出冷媒で満たされる。高圧段圧縮機701の周囲には高圧段圧縮機701を潤滑した高温のオイルが保持される。一方、低圧段圧縮機713および膨張機705は、高圧段圧縮機701よりも低い温度で動作する。そのため、低圧段圧縮機713や膨張機705の周囲には、高圧段圧縮機713の周囲に存在しているオイルに比べて低い温度のオイルが保持される。   When the high-pressure compressor 701 is driven, the space above the oil level is filled with high-pressure discharged refrigerant. Around the high-pressure compressor 701, high-temperature oil that lubricates the high-pressure compressor 701 is held. On the other hand, the low-pressure stage compressor 713 and the expander 705 operate at a lower temperature than the high-pressure stage compressor 701. Therefore, oil having a lower temperature than the oil existing around the high-pressure stage compressor 713 is held around the low-pressure stage compressor 713 and the expander 705.

つまり、高圧段圧縮機701の周囲には高温のオイルが保持され、低圧段圧縮機713および膨張機705の周囲には低温のオイルが保持されている。オイルは、鉛直方向に沿って温度成層を形成する。温度成層が形成されることによって、上層のオイルと下層のオイルとが混ざりにくくなる。これにより、オイルを介した高圧段圧縮機701から膨張機705への熱移動を抑制しうる。熱移動が生じると高圧段圧縮機701の吐出冷媒温度が低下し、膨張機705の吐出冷媒温度が上昇するため、冷凍サイクル装置の効率の観点で好ましくない。本実施形態によれば、熱移動を効果的に抑制できるため、冷凍サイクル装置700の高効率化を図ることができる。   That is, high temperature oil is held around the high pressure stage compressor 701, and low temperature oil is held around the low pressure stage compressor 713 and the expander 705. The oil forms a temperature stratification along the vertical direction. By forming the temperature stratification, it becomes difficult to mix the upper layer oil and the lower layer oil. Thereby, the heat transfer from the high pressure compressor 701 to the expander 705 via the oil can be suppressed. When heat transfer occurs, the discharge refrigerant temperature of the high-pressure compressor 701 decreases and the discharge refrigerant temperature of the expander 705 increases, which is not preferable from the viewpoint of the efficiency of the refrigeration cycle apparatus. According to this embodiment, since heat transfer can be effectively suppressed, the efficiency of the refrigeration cycle apparatus 700 can be increased.

(第4実施形態)
図12Aは、本発明の第4実施形態に係る冷凍サイクル装置の構成図である。本実施形態の冷凍サイクル装置600には、吸入容積を変更可能な多段ロータリ式の膨張機605が使用されている。さらに、冷凍サイクル装置600は、膨張機インジェクション流路630と、膨張機インジェクション弁631とを備えている。図12Bに示すように、膨張機インジェクション流路630は、膨張機605の吸入流路(配管104)と膨張機605の膨張室611に開口した膨張機インジェクションポート632とを接続している。膨張機インジェクション弁631は、膨張機インジェクション流路630上に設けられている。膨張機インジェクション弁631を制御することによって膨張機605の吸入容積を変更できる。その他の構成は、第1実施形態および第2実施形態で説明した通りである。
(Fourth embodiment)
FIG. 12A is a configuration diagram of a refrigeration cycle apparatus according to the fourth embodiment of the present invention. In the refrigeration cycle apparatus 600 of the present embodiment, a multistage rotary expander 605 capable of changing the suction volume is used. Furthermore, the refrigeration cycle apparatus 600 includes an expander injection flow path 630 and an expander injection valve 631. As shown in FIG. 12B, the expander injection flow path 630 connects the suction flow path (pipe 104) of the expander 605 and the expander injection port 632 opened to the expansion chamber 611 of the expander 605. The expander injection valve 631 is provided on the expander injection flow path 630. The suction volume of the expander 605 can be changed by controlling the expander injection valve 631. Other configurations are the same as those described in the first and second embodiments.

図12Bに示すように、膨張機605は、1段目シリンダ605aと2段目シリンダ605bとを有する2段ロータリ膨張機で構成されている。膨張機インジェクションポート632は、1段目シリンダ605aに設けられているとともに、1段目シリンダ605aの膨張室611に向かって開口している。1段目シリンダ605aと2段目シリンダ605bとは、中板605cで隔てられているが、中板605cに形成された連通孔605dを介して、1段目シリンダ605aの膨張室611が2段目シリンダ605bの膨張室612に連通している。これにより、膨張室611および612が単一の膨張室を形成している。膨張機インジェクション流路630は、膨張機インジェクションポート632から膨張室611に冷媒をインジェクションしうるように、配管104から分岐して1段目シリンダ605aに接続されている。膨張機インジェクションポート632は、シャフト116の周方向に関して、連通孔605dの近傍に設けられている。   As shown in FIG. 12B, the expander 605 is a two-stage rotary expander having a first-stage cylinder 605a and a second-stage cylinder 605b. The expander injection port 632 is provided in the first stage cylinder 605a and opens toward the expansion chamber 611 of the first stage cylinder 605a. The first-stage cylinder 605a and the second-stage cylinder 605b are separated by an intermediate plate 605c, but the expansion chamber 611 of the first-stage cylinder 605a is in two stages through a communication hole 605d formed in the intermediate plate 605c. It communicates with the expansion chamber 612 of the eye cylinder 605b. Thereby, the expansion chambers 611 and 612 form a single expansion chamber. The expander injection flow path 630 branches from the pipe 104 and is connected to the first-stage cylinder 605a so that the refrigerant can be injected from the expander injection port 632 into the expansion chamber 611. The expander injection port 632 is provided in the vicinity of the communication hole 605d in the circumferential direction of the shaft 116.

膨張機インジェクション弁631を閉じた場合、膨張機インジェクションポート632から膨張室611へ冷媒が流入しない。そのため、1段目シリンダ605aの気筒容積が吸入容積Vexとして振舞う。他方、膨張機インジェクション弁631を開いた場合、膨張機インジェクションポート632から膨張室611に冷媒が流入する。そのため、2段目シリンダ605bの気筒容積が吸入容積Vex’として振舞う。例えば、1段目シリンダ605aの気筒容積が2段目シリンダ605bの気筒容積の2倍の場合、必要に応じて吸入容積Vexを2倍の吸入容積Vex’に変更できる。 When the expander injection valve 631 is closed, the refrigerant does not flow into the expansion chamber 611 from the expander injection port 632. Therefore, the cylinder volume of the first-stage cylinder 605a behaves as the suction volume V ex. On the other hand, when the expander injection valve 631 is opened, the refrigerant flows into the expansion chamber 611 from the expander injection port 632. Therefore, the cylinder volume of the second-stage cylinder 605b behaves as the suction volume V ex ′. For example, cylinder volume of the first-stage cylinder 605a may double the cylinder volume of the second-stage cylinder 605b, can change the suction volume V ex optionally twice the suction volume V ex '.

第1実施形態によると、冷房条件での望ましい容積比(Vlc/Vex)は2.4〜3.6であった。本実施形態において、膨張機インジェクション弁631を開いて吸入容積Vex’を用いると、同冷房条件での望ましい容積比(Vlc/Vex’)は2.4〜3.6になる。吸入容積Vexを用いて表記すれば、同冷房条件での望ましい容積比(Vlc/Vex)は4.8〜7.2になる。また、第1実施形態によると、暖房条件での望ましい容積比(Vlc/Vex)は2.1〜2.9であった。本実施形態において、膨張機インジェクション弁631を開いて吸入容積Vex’を用いると、同暖房条件での望ましい容積比(Vlc/Vex’)は2.1〜2.9になる。吸入容積Vexを用いて表記すれば、同暖房条件での望ましい容積比(Vlc/Vex)は4.2〜5.8になる。また、第1実施形態によると、床暖房条件での望ましい容積比(Vlc/Vex)は4.7〜7.1であった。本実施形態においても、膨張機インジェクション弁631を閉じて吸入容積Vexを用いると、同床暖房条件での望ましい容積比(Vlc/Vex)は4.7〜7.1になる。 According to the first embodiment, the desirable volume ratio (V lc / V ex ) under the cooling condition was 2.4 to 3.6. In the present embodiment, when the expander injection valve 631 is opened and the suction volume V ex ′ is used, the desirable volume ratio (V lc / V ex ′) under the same cooling condition is 2.4 to 3.6. If expressed using the suction volume V ex , the desirable volume ratio (V lc / V ex ) under the same cooling condition is 4.8 to 7.2. Also, according to the first embodiment, the desired volume ratio in the heating condition (V lc / V ex) was 2.1 to 2.9. In the present embodiment, when the expander injection valve 631 is opened and the suction volume V ex ′ is used, the desirable volume ratio (V lc / V ex ′) under the same heating condition is 2.1 to 2.9. If expressed using the suction volume V ex , the desirable volume ratio (V lc / V ex ) under the same heating condition is 4.2 to 5.8. Also, according to the first embodiment, the desired volume ratio in the floor heating condition (V lc / V ex) was 4.7 to 7.1. Also in the present embodiment, when the expander injection valve 631 is closed and the suction volume V ex is used, the desirable volume ratio (V lc / V ex ) under the same floor heating condition is 4.7 to 7.1.

つまり、冷房条件および暖房条件では、膨張機インジェクション弁631を開いて吸入容積を増加させる一方、床暖房条件では膨張機インジェクション弁631を閉じる。このような制御を行うことにより、各条件における望ましい容積比(Vlc/Vex)を、互いに接近させることができる。 That is, in the cooling condition and the heating condition, the expander injection valve 631 is opened to increase the suction volume, while in the floor heating condition, the expander injection valve 631 is closed. By performing such control, the desired volume ratio (V lc / V ex ) under each condition can be brought closer to each other.

詳細には、容積比(Vlc/Vex)が4.8となるように低圧段圧縮機113および膨張機605を設計できる。容積比(Vlc/Vex)=4.8という設計は、冷房、暖房および床暖房の各条件における容積比(Vlc/Vex)の上限を下回る。そのため、冷房、暖房および床暖房の各条件で還流が生じず、低圧段圧縮機113での圧縮仕事を有効に利用できる。さらに、容積比(Vlc/Vex)=4.8という設計は、冷房、暖房および床暖房の各条件の容積比(Vlc/Vex)の下限を上回る。そのため、液冷媒のインジェクションも防止できる。 Specifically, the low-pressure compressor 113 and the expander 605 can be designed so that the volume ratio (V lc / V ex ) is 4.8. The design of volume ratio (V lc / V ex ) = 4.8 is below the upper limit of the volume ratio (V lc / V ex ) in each condition of cooling, heating and floor heating. Therefore, reflux does not occur in each of the cooling, heating, and floor heating conditions, and the compression work in the low-pressure compressor 113 can be used effectively. Furthermore, the design of the volume ratio (V lc / V ex ) = 4.8 exceeds the lower limit of the volume ratio (V lc / V ex ) for each condition of cooling, heating and floor heating. Therefore, liquid refrigerant injection can also be prevented.

したがって、気液分離器107から中間圧流路114に向かって、ガス冷媒が往還流路115を流れる。冷凍サイクル装置600を常時ガスインジェクション状態で運転できる。ガスインジェクション状態で運転できれば、往還流路115を流れた冷媒を低圧段圧縮機113で圧縮する必要がないので、低圧段圧縮機113の負荷を軽減できる。また、放熱器103で冷却された冷媒の全量が膨張機605を通過するので、高い動力回収効率を実現できる。このように、本実施形態の冷凍サイクル装置600によれば、バイパス回路を備えた従来の冷凍サイクル装置よりも高効率な運転を行える。   Accordingly, the gas refrigerant flows through the forward recirculation passage 115 from the gas-liquid separator 107 toward the intermediate pressure passage 114. The refrigeration cycle apparatus 600 can be always operated in a gas injection state. If the operation can be performed in the gas injection state, it is not necessary to compress the refrigerant that has flowed through the forward recirculation path 115 by the low-pressure stage compressor 113, so that the load on the low-pressure stage compressor 113 can be reduced. In addition, since the entire amount of the refrigerant cooled by the radiator 103 passes through the expander 605, high power recovery efficiency can be realized. Thus, according to the refrigeration cycle apparatus 600 of the present embodiment, a more efficient operation can be performed than a conventional refrigeration cycle apparatus having a bypass circuit.

なお、膨張機605として、スクロール膨張機、レシプロ膨張機などの他の型式の膨張機も使用できる。膨張機インジェクション弁631は、開度を多段階で変更できる弁であってもよいし、単なる開閉弁であってもよい。   As the expander 605, other types of expanders such as a scroll expander and a reciprocal expander can be used. The expander injection valve 631 may be a valve whose opening degree can be changed in multiple stages, or may be a simple on-off valve.

本発明は、空調機、冷凍冷蔵庫、ヒートポンプ給湯機、ヒートポンプ暖房機、自動販売機、カーエアコンなどに利用される冷凍サイクル装置について有用である。特に、2以上の用途に1台の冷凍サイクル装置を共用する場合に高い効果が得られる。もちろん、単一の用途の冷凍サイクル装置にも本発明を好適に採用しうる。   INDUSTRIAL APPLICATION This invention is useful about the refrigerating-cycle apparatus utilized for an air conditioner, a refrigerator-freezer, a heat pump water heater, a heat pump heater, a vending machine, a car air conditioner, etc. In particular, a high effect can be obtained when one refrigeration cycle apparatus is shared for two or more uses. Of course, the present invention can also be suitably applied to a refrigeration cycle apparatus for a single application.

Claims (11)

冷媒を予備圧縮するための容積式の低圧段圧縮機と、
前記低圧段圧縮機で予備圧縮された冷媒をさらに圧縮するための高圧段圧縮機と、
前記低圧段圧縮機で予備圧縮された冷媒が前記高圧段圧縮機に送られるように前記低圧段圧縮機と前記高圧段圧縮機とを直列に接続している中間圧流路と、
前記高圧段圧縮機で圧縮された冷媒を冷却するための放熱器と、
動力伝達が行われるように前記低圧段圧縮機に同軸に連結されており、前記放熱器で冷却された冷媒の全量が通過するように構成され、冷媒を膨張させることによって動力回収を行うための容積式の膨張機と、
前記膨張機で膨張した冷媒をガス冷媒と液冷媒とに分離するための気液分離器と、
前記気液分離器で分離された液冷媒を蒸発させるための蒸発器と、
前記気液分離器の液冷媒出口と前記蒸発器の入口との間の流路上に設けられた開度可変の膨張弁と、
前記気液分離器に貯められた冷媒が前記蒸発器および前記低圧段圧縮機を経由することなく前記高圧段圧縮機の入口に導かれる第1流通状態と、前記低圧段圧縮機で予備圧縮された冷媒の一部が前記気液分離器に還流する第2流通状態とを相互に切り替え可能となるように、前記中間圧流路と前記気液分離器とを接続している往還流路と、
前記膨張弁の開度を制御することによって、前記第1流通状態および前記第2流通状態の各々における前記往還流路の冷媒流量を調節するためのコントローラと、
を備えた、冷凍サイクル装置。
A positive displacement low-pressure stage compressor for pre-compressing the refrigerant;
A high-pressure stage compressor for further compressing the refrigerant pre-compressed by the low-pressure stage compressor;
An intermediate pressure flow path connecting the low pressure stage compressor and the high pressure stage compressor in series so that the refrigerant pre-compressed by the low pressure stage compressor is sent to the high pressure stage compressor;
A radiator for cooling the refrigerant compressed by the high-pressure stage compressor;
It is coaxially connected to the low-pressure stage compressor so that power transmission is performed, and is configured so that the entire amount of the refrigerant cooled by the radiator passes, and for recovering power by expanding the refrigerant A positive displacement expander;
A gas-liquid separator for separating the refrigerant expanded by the expander into a gas refrigerant and a liquid refrigerant;
An evaporator for evaporating the liquid refrigerant separated by the gas-liquid separator;
An expansion valve with variable opening provided on a flow path between the liquid refrigerant outlet of the gas-liquid separator and the inlet of the evaporator;
The refrigerant stored in the gas-liquid separator is preliminarily compressed by the low-pressure stage compressor in a first flow state where the refrigerant is led to the inlet of the high-pressure stage compressor without passing through the evaporator and the low-pressure stage compressor. A recirculation path connecting the intermediate pressure flow path and the gas-liquid separator so as to be able to switch between a second flow state in which a part of the refrigerant circulates back to the gas-liquid separator;
A controller for adjusting the flow rate of the refrigerant in the forward / return path in each of the first circulation state and the second circulation state by controlling the opening of the expansion valve;
A refrigeration cycle apparatus comprising:
前記低圧段圧縮機の気筒容積および前記膨張機の気筒容積が、それぞれ一定であり、
前記低圧段圧縮機の気筒容積が前記膨張機の気筒容積よりも大きい、請求項1に記載の冷凍サイクル装置。
The cylinder volume of the low-pressure stage compressor and the cylinder volume of the expander are each constant,
The refrigeration cycle apparatus according to claim 1, wherein a cylinder volume of the low-pressure stage compressor is larger than a cylinder volume of the expander.
前記コントローラが、
冷凍サイクルの任意の最適高圧での前記膨張機の理論回収動力と、前記任意の最適高圧での前記低圧段圧縮機の理論圧縮仕事とが等しくなる目標中間圧力を算出するための手段と、
前記気液分離器内の現実の圧力が前記算出された目標中間圧力に近づくように、前記膨張弁の開度を制御するための手段と、を含む、
請求項1または2に記載の冷凍サイクル装置。
The controller is
Means for calculating a target intermediate pressure at which the theoretical recovery power of the expander at any optimum high pressure of the refrigeration cycle is equal to the theoretical compression work of the low pressure stage compressor at any optimum high pressure;
Means for controlling the opening of the expansion valve so that the actual pressure in the gas-liquid separator approaches the calculated target intermediate pressure,
The refrigeration cycle apparatus according to claim 1 or 2.
前記膨張機の入口冷媒温度を検出するための第1温度センサと、
前記蒸発器の冷媒蒸発温度を検出するための第2温度センサと、
前記低圧段圧縮機の入口冷媒温度を検出するための第3温度センサと、
をさらに備え、
前記コントローラは、前記第1〜第3温度センサの検出結果に基づいて、前記任意の最適高圧および前記目標中間圧力を算出する、請求項3に記載の冷凍サイクル装置。
A first temperature sensor for detecting an inlet refrigerant temperature of the expander;
A second temperature sensor for detecting a refrigerant evaporation temperature of the evaporator;
A third temperature sensor for detecting an inlet refrigerant temperature of the low-pressure stage compressor;
Further comprising
The refrigeration cycle apparatus according to claim 3, wherein the controller calculates the arbitrary optimum high pressure and the target intermediate pressure based on detection results of the first to third temperature sensors.
前記気液分離器内の冷媒温度を検出するための第4温度センサをさらに備え、
前記膨張弁の開度を制御するための手段が、前記第4温度センサの検出結果に基づいて前記気液分離器内の現実の圧力を算出する、請求項4に記載の冷凍サイクル装置。
A fourth temperature sensor for detecting a refrigerant temperature in the gas-liquid separator;
The refrigeration cycle apparatus according to claim 4, wherein the means for controlling the opening degree of the expansion valve calculates an actual pressure in the gas-liquid separator based on a detection result of the fourth temperature sensor.
前記膨張機の吸入容積をVex、前記低圧段圧縮機の吸入容積をVlc、前記膨張機の吐出冷媒の渇き度をQexo、前記膨張機の吸入冷媒の密度をρexi、前記低圧段圧縮機の吸入冷媒の密度ρlciとしたとき、
下式(1)で表された関係を満足する、請求項1〜5のいずれか1項に記載の冷凍サイクル装置。
(1−Qexo)×(ρexi/ρlci)≦(Vlc/Vex) ・・・(1)
The suction volume of the expander is V ex , the suction volume of the low-pressure stage compressor is V lc , the thirst degree of the refrigerant discharged from the expander is Q exo , the density of the suction refrigerant of the expander is ρ exi , and the low-pressure stage Compressor suction refrigerant density ρ lci
The refrigeration cycle apparatus according to any one of claims 1 to 5, wherein the relationship represented by the following expression (1) is satisfied.
(1-Q exo) × ( ρ exi / ρ lci) ≦ (V lc / V ex) ··· (1)
前記膨張機の吸入容積をVex、前記低圧段圧縮機の吸入容積をVlc、前記膨張機の吸入冷媒の密度をρexi、前記低圧段圧縮機の吸入冷媒の密度ρlciとしたとき、
下式(2)で表された関係を満足する、請求項1〜5のいずれか1項に記載の冷凍サイクル装置。
(Vlc/Vex)≦(ρexi/ρlci) ・・・(2)
The suction volume V ex expander, the suction volume V lc of the low-pressure compressor, the density of the suction refrigerant of the expander [rho exi, when the density [rho lci of suction refrigerant of the low-pressure compressor,
The refrigeration cycle apparatus according to any one of claims 1 to 5, which satisfies the relationship represented by the following expression (2).
(V lc / V ex) ≦ (ρ exi / ρ lci) ··· (2)
前記膨張機の吸入容積をVex、前記低圧段圧縮機の吸入容積をVlc、前記膨張機の吐出冷媒の渇き度をQexo、前記膨張機の吸入冷媒の密度をρexi、前記低圧段圧縮機の吸入冷媒の密度ρlciとしたとき、
下式(3)で表された関係を満足する、請求項1〜5のいずれか1項に記載の冷凍サイクル装置。
(1−Qexo)×(ρexi/ρlci)≦(Vlc/Vex)≦(ρexi/ρlci) ・・・(3)
The suction volume of the expander is V ex , the suction volume of the low-pressure stage compressor is V lc , the thirst degree of the refrigerant discharged from the expander is Q exo , the density of the suction refrigerant of the expander is ρ exi , and the low-pressure stage Compressor suction refrigerant density ρ lci
The refrigeration cycle apparatus according to any one of claims 1 to 5, which satisfies the relationship represented by the following expression (3).
(1-Q exo) × ( ρ exi / ρ lci) ≦ (V lc / V ex) ≦ (ρ exi / ρ lci) ··· (3)
前記膨張機の吸入流路と前記膨張機の膨張室に向かって開口した膨張機インジェクションポートとを接続している膨張機インジェクション流路と、
前記膨張機インジェクション流路上に設けられた膨張機インジェクション弁と、をさらに備え、
前記膨張機インジェクション弁を制御することによって前記膨張機の吸入容積を変更可能である、請求項1〜8のいずれか1項に記載の冷凍サイクル装置。
An expander injection flow path connecting the suction flow path of the expander and an expander injection port opened toward the expansion chamber of the expander;
An expander injection valve provided on the expander injection flow path,
The refrigeration cycle apparatus according to any one of claims 1 to 8, wherein a suction volume of the expander can be changed by controlling the expander injection valve.
前記低圧段圧縮機および前記膨張機が、共通の密閉容器内に配置されている、請求項1〜9のいずれか1項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 9, wherein the low-pressure stage compressor and the expander are arranged in a common sealed container. 蛇口に湯を供給できる給湯機能および/または家屋の床に巡らされた配管に湯を循環させることによって室内の暖房を行う床暖房機能を有するヒートポンプ給湯機と、
室内の空気と冷媒とを熱交換させることによって室内の温度調節を行うように構成された空調機とを備え、
前記給湯機および前記空調機に共通の冷凍サイクル装置として、請求項1〜10のいずれか1項に記載の冷凍サイクル装置が用いられた、多機能ヒートポンプシステム。
A heat pump water heater having a hot water supply function that can supply hot water to the faucet and / or a floor heating function that heats the interior of the house by circulating hot water through a piping around the floor of the house;
An air conditioner configured to adjust indoor temperature by exchanging heat between indoor air and refrigerant;
A multifunction heat pump system in which the refrigeration cycle apparatus according to any one of claims 1 to 10 is used as a refrigeration cycle apparatus common to the water heater and the air conditioner.
JP2010515764A 2008-06-03 2009-06-01 Refrigeration cycle equipment Withdrawn JPWO2009147826A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008146004 2008-06-03
JP2008146004 2008-06-03
PCT/JP2009/002443 WO2009147826A1 (en) 2008-06-03 2009-06-01 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
JPWO2009147826A1 true JPWO2009147826A1 (en) 2011-10-20

Family

ID=41397909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010515764A Withdrawn JPWO2009147826A1 (en) 2008-06-03 2009-06-01 Refrigeration cycle equipment

Country Status (5)

Country Link
US (1) US20110225999A1 (en)
EP (1) EP2302310A1 (en)
JP (1) JPWO2009147826A1 (en)
CN (1) CN101765749A (en)
WO (1) WO2009147826A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2474259A (en) * 2009-10-08 2011-04-13 Ebac Ltd Vapour compression refrigeration circuit
CN103429975B (en) * 2010-03-08 2016-08-10 开利公司 Refrigerant distribution device and method for transport refrigeration system
JP5367164B2 (en) * 2010-04-28 2013-12-11 パナソニック株式会社 Refrigeration cycle equipment
US20140102117A1 (en) * 2012-10-12 2014-04-17 Ford Global Technologies, Llc Optimization of Evaporator Core Temperature Control Using Active Thermocouple Array Sensor
CN105781637A (en) * 2016-03-07 2016-07-20 南京航空航天大学 Electricity generating and drying integrated system and working method
KR101811957B1 (en) * 2016-11-09 2017-12-22 한국해양대학교 산학협력단 Cascade Heat Pump with Two Stage Expansion Structure using CO2 Refrigerant and Method for Circulating thereof
WO2018141150A1 (en) * 2017-02-04 2018-08-09 海尔集团公司 Control method and device for air conditioner, and air conditioner
CN108131855A (en) * 2017-12-19 2018-06-08 珠海格力节能环保制冷技术研究中心有限公司 Cooling cycle system and with its air conditioner
CN208831238U (en) * 2017-12-22 2019-05-07 珠海格力节能环保制冷技术研究中心有限公司 A kind of compressor and refrigerating circulatory device
EP3719409B1 (en) * 2018-02-19 2022-09-28 Daikin Industries, Ltd. Air-conditioning apparatus
US11421907B2 (en) 2018-04-04 2022-08-23 Mitsubishi Electric Corporation Controller of air conditioning system, outdoor unit, relay unit, heat source apparatus, and air conditioning system
ES2899692T3 (en) * 2019-05-21 2022-03-14 Carrier Corp refrigeration appliance
CN114279097B (en) * 2021-12-14 2023-01-24 珠海格力电器股份有限公司 Refrigerator refrigerating system, refrigerator and refrigerating method
CN114877550B (en) * 2022-06-07 2024-04-16 上海美控智慧建筑有限公司 Control method of throttle valve, water chiller, and computer-readable storage medium

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1138109C (en) * 2001-12-28 2004-02-11 西安交通大学 Two-stage carbon dioxide low-temp. refrigerator
JP4045154B2 (en) * 2002-09-11 2008-02-13 日立アプライアンス株式会社 Compressor
KR100642709B1 (en) * 2004-03-19 2006-11-10 산요덴키가부시키가이샤 Refrigerator
JP3870951B2 (en) * 2004-04-13 2007-01-24 松下電器産業株式会社 Refrigeration cycle apparatus and control method thereof
JP4389699B2 (en) * 2004-07-07 2009-12-24 ダイキン工業株式会社 Refrigeration equipment
JP4375171B2 (en) * 2004-08-31 2009-12-02 ダイキン工業株式会社 Refrigeration equipment
JP2007071430A (en) * 2005-09-06 2007-03-22 Tgk Co Ltd Refrigeration cycle and compression auxiliary device
JP2007303709A (en) * 2006-05-10 2007-11-22 Sanden Corp Refrigerating cycle

Also Published As

Publication number Publication date
EP2302310A1 (en) 2011-03-30
WO2009147826A1 (en) 2009-12-10
CN101765749A (en) 2010-06-30
US20110225999A1 (en) 2011-09-22

Similar Documents

Publication Publication Date Title
WO2009147826A1 (en) Refrigeration cycle device
KR101280155B1 (en) Heat pump device, two-stage compressor, and method of operating heat pump device
EP2565555B1 (en) Refrigeration cycle apparatus
JP4069733B2 (en) Air conditioner
KR100208322B1 (en) Heat pump airconditioner for cold area
US8122735B2 (en) Refrigerating apparatus
JP4075429B2 (en) Refrigeration air conditioner
JP5502459B2 (en) Refrigeration equipment
JP5484889B2 (en) Refrigeration equipment
JP5484890B2 (en) Refrigeration equipment
JP5496645B2 (en) Refrigeration equipment
JP5523817B2 (en) Refrigeration equipment
US20100326125A1 (en) Refrigeration system
KR101332478B1 (en) Freezing device
JP2014196874A (en) Refrigeration cycle device and air conditioner including the same
JP6498299B2 (en) Refrigeration cycle equipment
JP4313083B2 (en) Screw refrigeration equipment
JP2013164250A (en) Refrigerating apparatus
JP2011137557A (en) Refrigerating apparatus
JP5971633B2 (en) Refrigeration cycle equipment
JP2011133208A (en) Refrigerating apparatus
JP2014159950A (en) Freezer
CN110494702B (en) Refrigeration cycle device
JP6136403B2 (en) Air conditioner
KR20070054461A (en) Air conditioner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20121017